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We study single-electron spectral functions in a quantum dimer model introduced by Punk, Allais, and Sachdev
in Ref. [M. Punk, A. Allais, and S. Sachdev, Proc. Natl. Acad. Sci. U.S.A. 112, 9552 (2015)]. The Hilbert space
of this model is spanned by hard-core coverings of the square lattice with two types of dimers: ordinary bosonic
spin singlets, as well as fermionic dimers carrying charge +e and spin 1/2, which can be viewed as bound
states of spinons and holons in a doped resonating valence bond (RVB) liquid. This model realizes a metallic
phase with topological order and captures several properties of the pseudogap phase in hole-doped cuprates, such
as a reconstructed Fermi surface with small hole pockets and a highly anisotropic quasiparticle residue in the
absence of any broken symmetries. Using a combination of exact diagonalization and analytical methods, we
compute electron spectral functions and show that this model indeed exhibits a sizable antinodal pseudogap, with
a momentum dependence deviating from a simple d-wave form, in accordance with experiments on underdoped
cuprates.
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I. INTRODUCTION

Since the discovery of high-temperature superconductivity
in cuprates [1], many efforts have been made to understand
the underlying pairing mechanism. A potential solution to
this problem might come from a better understanding of the
so-called pseudogap state at low doping, out of which the
superconducting phase develops upon further doping. By now,
we know from a wide range of experiments that the pseudogap
state is largely dominated by antiferromagnetic fluctuations
[2–5] and has a tendency to charge density-wave ordering
(CDW) [6–10].

During the last decades, experiments have explored the
complex physics of the pseudogap phase in much detail.
Early studies of the Knight shift in NMR measurements
have shown that the magnetic susceptibility decreases below
a characteristic temperature scale, indicative of a spin gap
[11,12]. Soon, measurements of the tunneling density of states
[13], c-axis optical conductivity [14,15], and specific heat
[16,17] revealed that the opening of the pseudogap appears
in both, charge and spin degrees of freedom.

Interestingly, some transport experiments show rather ordi-
nary metallic properties in the pseudogap phase. For example,
in-plane optical conductivity and magnetoresistance measure-
ments show Fermi liquidlike behavior [18,19]. However, Hall
coefficient as well as the Drude weight indicate that the charge
carrier density is small and proportional to the density p

of doped holes away from half-filling [20–24], rather than
1 + p as expected from Luttinger’s theorem and observed in
the Fermi liquid regime at large doping. On the other hand,
angle-resolved photoemission (ARPES) experiments show a
distinct Fermi-arc spectrum and a gap opening in the vicinity
of the antinodes in momentum space [25–32]. Taken together,
these observations are hard to reconcile with a Fermi liquid
picture, where the Fermi surface is reconstructed by some
thermally fluctuating order parameter. In this case, one would

expect some signatures of the order parameter correlation
length to be observable, e.g., in transport measurements.

A different set of theoretical ideas, based on Anderson’s
resonating valence bond (RVB) picture [33–35], tries to ap-
proach the pseudogap from the Mott insulating state at low
doping [36]. Upon doping the RVB state with holes, electrons
fractionalize into neutral spin-1/2 spinon excitations, as well as
spinless holons, carrying charge +e. While electron fraction-
alization in quasi-two-dimensional systems has been a topic
of considerable interest on its own, it became clear early that
simple incarnations of the RVB state do not capture the sharp
Fermi-arc features observed in photoemission experiments,
which requires that a certain part of the low-energy spectrum
behaves like electron or holelike quasiparticles which carry
both spin and charge.

One possible solution to this puzzle might be provided
by the idea of fractionalized Fermi liquids (FL*), introduced
originally in the context of heavy fermion systems [37]. In
the context of cuprates, a fractionalized Fermi liquid can be
viewed as a doped RVB liquid where spinons and holons
form bound states. These holelike bound states then form a
Fermi liquid, with the size of the Fermi surface proportional
to the density p of doped holes. Note that the FL* inherits
topological order from the RVB background, which accounts
for the violation of Luttinger’s theorem [38–43]. The quantum
dimer model introduced in Ref. [44] provides an explicit and
intuitive lattice realization of a fractionalized Fermi liquid and
allows to directly compute electronic properties. Subsequent
numerical work indeed showed clear signatures of a small
Fermi surface, indicative of a FL* ground state [45]. In this
model, bound states between spinons and holons are repre-
sented by fermionic dimers on nearest-neighbor sites, which
resonate with the background of bosonic spin-singlet dimers.
At vanishing doping, the model reduces to the well-known
Rokhsar-Kivelson model [46]. An exact solution has been
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FIG. 1. (Left) One specific dimer configuration with two
fermionic spin S = 1/2 and charge +e dimers (green ellipses) in
a background of bosonic spin singlets (purple rectangles). The blue
and orange lines are reference lines to determine the winding numbers
of the configuration. (Right) Using periodic boundary conditions, the
reference lines map onto noncontractible loops on the torus.

found along a special line in parameter space for an arbitrary
density of fermionic dimers and the ground state can be shown
to be an FL* in the vicinity of this line [47]. We note that
doped quantum dimer models have been studied previously,
with doped holes as monomers occupying a single lattice site,
carrying no spin [46,48,49].

In this work, our aim is to compute electronic spectral
functions for the dimer model introduced in Ref. [44]. Using
a combination of exact diagonalization and analytical ap-
proaches, we show that this model exhibits a sizable pseudogap
in the antinodal region of the Brillouin zone close to momen-
tum k = (0,π ) and symmetry related momenta, in accordance
with experimental observations in the pseudogap regime of
underdoped cuprates.

This paper is organized as follows. In Sec. II, we give a
short overview of the quantum dimer model introduced in
Ref. [44], define the single hole spectral function and show
how it is related to dimer correlation functions. In Sec. III, we
discuss our numerical results for ground-state properties as
well as the spectral functions at zero and at finite temperature.
Section IV contains an analysis of the spectral functions
in terms of a two-mode approximation for the low-energy
spectrum of the dimer model. Finally, in Sec. V, we present
a diagrammatic approach to compute the electron dispersion
as well as the coherent quasiparticle residuum. We conclude
with a discussion in Sec. VI.

II. DIMER MODEL

The Hamiltonian of the quantum dimer model introduced
in Ref. [44] acts on a Hilbert space HD = {|C〉} spanned
by close-packed hard-core configurations |C〉 of two types
of dimers living on the links of a two-dimensional square
lattice (see Fig. 1): the usual bosonic spin-singlet dimers,
represented by bosonic operators Di,η, as well as fermionic
spin-1/2 dimers carrying charge +e, represented by fermionic
operators Fi,η,α . Here, i denotes the lattice site, α ∈ {↑ , ↓}
is a spin S = 1/2 index, and η ∈ {x,y} distinguishes x and
y links on the square lattice. A fermionic dimer represents
a single electron, delocalized in the bonding orbital between
two neighboring lattice sites. Alternatively, one can view it as
a bound state of a spinon and a holon in a doped RVB liquid.

Within the restricted Hilbert space of the dimer model,
the annihilation operator of an electron with spin α on lattice
site i can be uniquely expressed in terms of the bosonic and
fermionic dimer annihilation and creation operators as [44]

ci,α = εαβ

2

∑
η

(F †
i−η̂,η,βDi−η̂,η + F

†
i,η,βDi,η), (1)

where εαβ is the unit antisymmetric tensor and a sum over
repeated spin indices β is implied.

We follow Ref. [44] and consider a Hamiltonian, which
acts on the states |C〉 by resonating dimers of both types
along short, flippable loops. The corresponding quantum dimer
Hamiltonian reads

H = HRK + H1, (2)

where

HRK = − J
∑

i

D
†
i,xD

†
i+ŷ,xDi,yDi+x̂,y + 1 term

+ V
∑

i

D
†
i,xD

†
i+ŷ,xDi,xDi+ŷ,x + 1 term, (3)

is the standard Rokhsar-Kivelson Hamiltonian [46] and

H1 = − t1
∑

i

D
†
i,xF

†
i+ŷ,x,αFi,x,αDi+ŷ,x + 3 terms

− t2
∑

i

D
†
i+x̂,yF

†
i,y,αFi,x,αDi+ŷ,x + 7 terms

− t3
∑

i

D
†
i+x̂+ŷ,xF

†
i,y,αFi+x̂+ŷ,x,αDi,y + 7 terms

− t3
∑

i

D
†
i+2ŷ,xF

†
i,y,αFi+2ŷ,x,αDi,y + 7 terms (4)

describes dimer resonances between a bosonic and a fermionic
dimer. Additional terms are related to the ones shown explicitly
by lattice symmetries. We note that further terms describing
resonances between two fermionic dimers can be included as
well, but are not expected to play an important role at low
doping, where the density of fermionic dimers is small.

The overlap between two possible dimer configurations can
be caluclated using transition graphs and decreases strongly
with system size [46,50]. We therefore demand that two
different dimer configurations |C〉 ∈ HD are orthogonal by
construction 〈C|C ′〉 = δC,C ′ .

In the following, we use periodic boundary conditions
(see Fig. 1). The Hilbert space HD then splits into different
topological sectors labeled by a set of two integer winding
numbers W = {Wx,Wy} defined by

Wx =
∑
ix

(−1)ix

(∑
α

F
†
i,y,αFi,y,α + D

†
i,yDi,y

)
, (5)

Wy =
∑
iy

(−1)iy

(∑
α

F
†
i,x,αFi,x,α + D

†
i,xDi,x

)
, (6)

where the sums run over a line of lattice sites in one direction,
counting the staggered number of dimers that cross the refer-
ence lines in Fig. 1. Note that any local Hamiltonian like (2)
has nonzero matrix elements only between states in the same
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FIG. 2. (Left) Energy dispersion εk of a single fermionic dimer in a background of bosonic dimers, plotted in one quadrant of the
Brillouin zone, computed using Lanczos on a 8 × 8 lattice with twisted boundary conditions. Hamiltonian parameters: J = V = 1, t1 = −1.05,

t2 = 1.95, and t3 = −0.6. (Middle) Corresponding quasiparticle residue Zk = |〈k|ck,α|0〉|2. Note the pronounced dispersion minimum in the
vicinity of k = 1

2 (π,π ), giving rise to pocket Fermi surfaces at a finite density of fermionic dimers, as well as the sharp drop of the quasiparticle
residue for momenta larger than π/2. (Right) Schematic plot of the coherent part of the spectral function Ak(ω) � Zkδ(ω − εk + μ) as function
of momentum with Lorentzian broadening. Here the chemical potential μ has been adjusted such that the hole density equals p � 1/8.

topological sector. Matrix elements between states in different
topological sectors vanish.

We further make use of symmetries of the quantum dimer
Hamiltonian that allow to reduce the computational cost for
exact diagonalization. Particle number conservation as well
as SU(2) spin-rotation symmetry is implicit in the dimer
representation. Finally, the Hamiltonian (2) is invariant under
translations as well as square lattice point group symmetries.
We make use of these symmetries in our numerical implemen-
tation to reach a maximum system size of N = 6 × 6 lattice
sites for which we calculate the full spectrum for one fermionic
dimer embedded in a background of bosonic dimers using exact
diagonalization, and a maximum size ofN = 8 × 8 sites for the
computation of ground-state wave functions using a Lanczos
algorithm.

In this work our main quantity of interest is the single-
electron spectral function, which is directly measurable in
ARPES experiments [25–32]. The mapping in Eq. (1) allows
us to directly compute the hole-part of the electron spectral
function

A−,k(ω) = 2π

Z

∑
m,n

e−βEm |〈n|ck,α|m〉|2δ(ω − Em + En + μ),

(7)

where {|n〉} denotes a complete set of eigenstates of the dimer
model with energy En and

ck,α = εαβ

2

∑
q,η

(1 + eikη )F †
k+q,η,βDq,η (8)

is the electron annihilation operator in the dimer representation.
For our numerical computation we fix the particle number and
take |m〉 to be eigenstates of the undoped Rokhsar-Kivelson
model, whereas |n〉 are eigenstates of the dimer model with
one fermionic dimer. The full single-electron spectral function
Ak(ω) = (1 + e−βω)A−,k(ω) follows from the hole-part via
detailed balance and is usually normalized as

∫
ω

dω
2π
Ak(ω) = 1.

It is important to note here that the electron annihilation opera-
tor defined in Eq. (8) does not obey canonical anticommutation
relations, because it is a composite operator. For this reason,

the positive definite electron spectral function computed here
does not satisfy the above normalization condition. The reason
for this is that the electron annihilation operator has a nonlocal
representation in the dimer Hilbert space and is dressed by
the form factor fη(k) = 1 + eikη . The normalization of the
spectral function at zero temperature indeed depends explicitly
on momentum k and is given by 1

4 (cos2 kx + cos2 ky), which
is thus an upper bound to the quasiparticle residuum shown
in Fig. 2. The spectrum of the dimer model in our finite
size numerics is discrete and the spectral functions are thus
composed of a series of delta function peaks with different
weight. For better visibility, we broaden the delta functions
in our figures using a Lorentzian with a width δ = 0.04J . In
order to extract quantitative results for the pseudogap from our
numerical spectral function data, we define the gap function 
k
as the distance between lowest energy state at fixed momentum
k and the Fermi energy. It is important to realize that this
is a lower bound for the energy gap in the spectral function,
because our numerical data show that the lowest energy states
in the spectrum carry a vanishingly small weight in the zero
temperature spectral function as one approaches the antinode
(see also Fig. 2 middle), shifting the apparent gap to larger
energies. This is no longer true at finite temperatures, however.

III. NUMERICAL RESULTS

A. Fermi pockets and quasiparticle residue

The ground-state energy εk of a single fermionic dimer at
fixed total momentum k in a background of bosonic dimers
has already been computed in Ref. [44], together with the
corresponding quasiparticle residue Zk = |〈k|ck,α|0〉|2. Here,
|k〉 denotes the ground state of (2) with one fermionic dimer
at fixed total momentum k, and |0〉 is the ground state of
the undoped RK-model. In Fig. 2, we show similar data, but
with strongly increased momentum resolution, obtained using
a Lanczos algorithm for a 8 × 8 lattice with twisted, rather than
periodic boundary conditions, which allows us to compute εk
and Zk for any momentum in the Brillouin zone.

Our results for parameters J = V = 1, t1 = −1.05,

t2 = 1.95, and t3 = −0.6, which follow from electron hopping
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parameters in an effective t-J model appropriate for cuprates
(see Ref. [44] for details), show a pronounced dispersion
minimum in the vicinity, but not directly at momentum
k = (π/2,π/2). We note that the position of the dispersion
minimum depends on microscopic details and the precise
value of the ti amplitudes. At a finite density of fermionic
dimers, this would give rise to a Fermi surface comprised of
small hole pockets with an area proportional to the density of
fermionic dimers, which equals the density p of doped holes
away from half filling, realizing a fractionalized Fermi liquid.
The corresponding quasiparticle residue Zk drops sharply for
momenta larger than π/2 and the associated photoemission
response, which is proportional to the hole-part of the electron

spectral function, indeed shows Fermi-arc like features due
to the highly anisotropic quasiparticle residue. Note that the
ground state at a finite density of fermonic dimers potentially
breaks symmetries in certain parameter regimes and is not
necessarily a fractionalized Fermi liquid with a Fermi surface
encompassing an area proportional to the density of fermionic
dimers. While the precise nature of the ground state is not
yet known in the full parameter space, numerical studies
showed the presence of Friedel oscillations associated with
a small Fermi surface in accordance with an FL* ground state
[45]. Moreover, a recent exact solution of the dimer model
also shows that the ground state is an FL* in an interesting
parameter regime [47].

FIG. 3. Top left to bottom right: hole spectral function A−,k(ω) at zero temperature for different momenta k between the nodal and antinodal
region, computed using exact diagonalization for two different system sizes, 4 × 4 (dashed orange line) and 6 × 6 (blue solid line). Parameters:
J = V = 1, t1 = −1.05, t2 = 1.95, and t3 = −0.6. Insets show the respective momentum in the Brillouin zone. The black dash-dotted line
corresponds to a two-mode approximation (TMA). The spectral function shows a clear signature of the opening of a pseudogap upon approaching
the antinode, independent of system size. At the node (top left), the spectrum exhibits a coherent peak at the Fermi energy, the weight of which
is redistributed to the incoherent part of the spectrum at negative frequencies as we move closer to the antinode (bottom right). Note that the
TMA is not able to reproduce the coherent peak.
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B. Spectral functions and pseudogap

In Fig. 3, we display results for the hole spectral function
Eq. (7) at zero temperature along a series of momenta between
the nodal point on the Fermi pocket and the antinode at
k = (π,0) for two different system sizes, 4 × 4 and 6 × 6
lattice sites, where we use the same parameters in the Hamil-
tonian as in the previous section (J = V = 1, t1 = −1.05,

t2 = 1.95, and t3 = −0.6). At zero temperature, we only have
to consider matrix elements between the RVB ground state
of the Rokhsar-Kivelson model and eigenstates of (2) with
one fermionic dimer that belong to the zero winding number
sector (Wx,Wy) = (0,0). At J = V = 1 the RVB ground state
|�〉RVB = ∑

C |C〉 is an equal amplitude superposition of all
dimer configurations and has vanishing energy. Again, we
used twisted boundary conditions to access arbitrary momenta
within the first Brillouin zone.

The top left panel shows A−,k(ω) at the nodal point, which
has a sharp peak at the Fermi surface (ω = μF ) independent of
system size, as expected from our ground-state computations.
The incoherent part of the spectrum, containing ∼40% of the
hole spectral weight, is broadly distributed with a maximum
located around ω − μF ≈ −3.1J . The 6 × 6 data clearly show
that the spectral weight of the central peak vanishes and a gap
opens as we go away from the nodal point towards the antinode,
where the spectral weight is redistributed to lower frequencies.
In the antinodal region around k = (π,0), the spectral function
exhibits a sizable pseudogap on the order of J , independent of
system size (see Fig. 3 bottom right). The complete spectral
weight is now distributed over a broad peak of width ∼3J

centered around ω − μF ≈ −2.8J .
In Fig. 4, we plot the pseudogap 
k as function of the angle

φ between the antinode (φ = 0) and the node (φ = 45◦) for a
fixed distance from k = (π,π ), extracted from our numerical
data for a lattice size of 6 × 6 sites. We emphasize again that 
k
corresponds to the onset of the spectral function at low energies
and represents a lower bound for the pseudogap extracted

FIG. 4. Pseudogap 
k, defined as the energy difference between
the onset of the spectrum at fixed total momentum k and the chemical
potential, plotted as a function of the angle between the antinode and
the node (see bottom left inset for a definition of the angle) for a 6 × 6
lattice. Hamiltonian parameters are identical to Fig. 3. The top right
inset shows the clear deviation of 
k from a pure d-wave form factor
∼ cos kx − cos ky .

FIG. 5. Hole spectral function A−,k(ω) at the antinode k = (0,π )
for four different temperatures T = 0, 0.01J, 0.02J, and 0.04J . The
Hamiltonian parameters are the same as in Fig. 3 and only numerical
data for 6 × 6 lattices are shown. At finite temperature, the gap
corresponds to 
k plotted in Fig. 4, whereas at zero temperature
the gap is apparently larger because the low-energy states have a
vanishingly small weight.

from the spectral function, because the low-energy states in
the spectrum turn out to have a vanishingly small weight
in the antinodal region, which leads to an apparently larger
gap in the spectral function. This effect is only seen at zero
temperature, however. Nonetheless, the dimer model features
a sizable pseudogap on the order of 
k ∼ 0.4 at the antinode.
It is also important to note that the pseudogap shows a clear
deviation from a simple d-wave form 
k ∼ cos kx − cos ky

(see inset in Fig. 4) and is thus clearly distinguishable from the
superconducting gap. This is in agreement with a wide range of
experiments that found evidence for corrections to the d-wave
symmetry for the pseudogap in the underdoped regime, in stark
contrast to the superconducting gap [30,32,51].

Finally, in Fig. 5, we show finite temperature results for
the hole spectral function in the antinodal region. At finite
temperature, matrix elements involving excited states of the
Rokshar-Kivelson model contribute to the spectrum as well,
which leads to a thermal broadening of the incoherent peak and
a shift of spectral weight to lower energies. More interestingly,
the finite temperature results show that the low-energy states do
contribute finite weight to the spectral function at the antinode,
and the pseudogap is indeed given by 
k shown in Fig. 4. This
is in contrast to the zero temperature case, where low-energy
states have a vanishingly small weight and the pseudogap
appears to be larger in the spectral function.

IV. TWO-MODE APPROXIMATION

In this section, we present a semianalytic description of the
hole spectral function in terms of a two-mode approximation,
where we assume that the low-energy part of the spectrum of
excited states can be captured by states of the form

|p〉k = F̃
†
k+p,1D̃p,1|GS〉, (9)

where the fermionic (bosonic) operator F̃k,1 (D̃k,1) is a linear
combination of Fk,x (Dk,x) and Fk,y (Dk,y) and describes the
lower of the two fermionic (bosonic) bands. |GS〉 denotes the
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ground state of (2) at a given doping. In order to determine
the matrix elements relating F̃k,1 and Fk,η, we use a mean-field
approximation to diagonalize the Hamiltonian (2), as outlined
below. A similar mean-field approach has been used previously
in Ref. [52].

It is important to note here that the two-mode approximation
captures the incoherent part of the hole spectral function, but
is not able to reproduce the coherent peak, as we explain
in detail below. Moreover, the mean-field approach violates
the hard-core constraint for the dimers, which is a very
crude approximation. Nevertheless, the main features of the
pseudogap are correctly reproduced when approaching the
antinodal region in momentum space.

We start by outlining the mean-field approximation for the
description of a small, but finite density of fermionic dimers
interacting with a background of bosonic dimers forming an

RVB spin liquid. In total, we need five real, homogeneous
and isotropic fields to decouple the dimer Hamiltonian in all
possible bosonic channels,

χs
z = 〈D†

i,ηDj,η′ 〉, (10)

where s = 0 denotes on-site terms (i = j ), whereas s = 1 are
nearest-neighbor terms (j = i ± x̂,ŷ). The index z = ||, ⊥
denotes parallel (η̂ || η̂′) or perpendicular (η̂ ⊥ η̂′) dimer
configurations.

We demand that the mean-field solutions represent a state
with no broken symmetries, thus χs

z must be invariant under
the symmetry group of the square lattice. From this follows that
the mean fields χ1

⊥ and χ0
⊥ have to be equal. The RK mean-field

Hamiltonian thus takes the form

H MF
RK =

∑
q

(D†
q,x,D

†
q,y)

(
V χ0

|| + V χ1
|| cos(qy) − J

2 χ0
⊥(1 + ei(qx−qy )) − J

2 χ1
⊥(e−iqy + eiqx )

− J
2 χ0

⊥(1 + e−i(qx−qy )) − J
2 χ1

⊥(eiqy + e−iqx ) V χ0
|| + V χ1

|| cos(qx)

)(
Dq,x

Dq,y

)
.

(11)

Similarly, the interaction term H1 between fermionic and bosonic dimers can be decoupled using the mean fields (10) and reads

H MF
1 =

∑
q

(F †
q,x,F

†
q,y)

(
−2t1χ

1
|| cos(qy) −t2χ

1
⊥h2,q − t3χ

2
⊥h3,q

−t2χ
1
⊥h̄2,q − t3χ

2
⊥h̄3,q −2t1χ

1
|| cos(qx)

)(
Fq,x

Fq,y

)
, (12)

with

h2,q = (1 + eiqx + e−iqy + ei(qx−qy )), (13)

h3,q = (ei(qy−2qx ) + eiqx + e−i2qx + ei(qx+qy ) + ei2qy + ei(2qy−qx ) + e−iqy + e−i(qx+qy )). (14)

We diagonalize the mean-field Hamiltonian using a Bogoli-
ubov transformation (Dq,x,Dq,y)T = Mq (D̃q,1,D̃q,2)T and

(Fq,x,Fq,y)T = Nq (F̃q,1,F̃q,2)T , which provides the matrix
elements relating F̃ and F , as mentioned above. The single-
particle operators F̃q,α and D̃q,α describe excitations with
dispersion relations ξ F̃

q,α and ξ D̃
q,α , respectively, with band index

α ∈ {1,2}.
Assuming that the electronic spectrum is well approximated

by excitations of the form (9), the corresponding eigenenergies
of the excitations are then given by

H MF|p〉k = [
ξ F̃
k+p,1 − ξ D̃

p,1 + ξGS
]|p〉k,

where H MF = H MF
RK + H MF

1 and H MF|GS〉 = ξGS|GS〉.
The hole part of the spectral function at zero temperature in

this mean-field approximation reads

A−,k(ω) =
∑

p

Qk(p) δ
(
ω + ξ F̃

k+p,1 − ξ D̃
p,1 + ξGS

)
, (15)

where

Qk(p) = [
fk(p)

(
1 − nF

(
ξ F̃
k+p,1

))
nB

(
ξ D̃
p,1

)]2
,

fk(p) = 1√
2NxNy

[
N̄11

p+kM
11
p fx̂(k) + N̄21

p+kM
21
p fŷ(k)

]
.

Note that the spectral function in the two-mode approximation
cannot have a sharp, coherent delta-function peak, because

Eq. (15) always involves an integral over momenta. We use the
numerical data of the dispersion εk in Fig. 2 to constrain the
fitting of the mean-field dispersions ξ F̃

k,1 and ξ D̃
k,1 by using

the relation εk = minp[ξ F̃
k+p,1 − ξ D̃

p,1], which determines the
onset of the spectrum. Furthermore, we approximate the
momentum distribution of fermionic dimers nF (ξ F̃

k+p,1) by a
simple Fermi-Dirac distribution, which is appropriate within
the mean-field description. For the bosonic dimers, a Bose-
Einstein distribution would not be appropriate, however, be-
cause it does not capture the important hard-core constraint
of bosonic dimers. For this reason, we take the bosonic dimer
distribution to be a constant, as expected for hard core bosons
in a semiclasscial limit [53].

In Fig. 3, we plot the spectral functions together with
the two-mode approximation for different momenta. Even
though this approach is not capable to reproduce the coherent
peak of the spectral function, we find a finite weight at the
chemical potential. Upon approaching the antinodal region,
the pseudogap slowly opens as function of momentum and has
a similar size as in the ED results (see Fig. 3 bottom left).
The semianalytic mean-field approach describes the spectral
function at the antinode reasonably well, where it shows a
clear signature of the pseudogap with a dominant incoherent
peak at ω − μF ≈ −3J (see Fig. 3 bottom right).

In conclusion, the two-mode approximation is able to
reproduce some common features of the spectral function. Its
drawback is that it does not capture the coherent quasiparticle
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peak, however. Such a coherent peak would appear in the two-
mode approximation only if we allow for a boson condensate.
Since there is no physical basis for the appearance of a conden-
sate in a hard-core boson system at integer filling, we refrained
from such a modification. Another modification would be the
inclusion of corrections to the boson distribution nB beyond the
semiclassical limit, as discussed in Ref. [53]. These corrections
give rise to a term ∼1/p in the momentum distribution of
the bosonic dimers, which leads to the appearance of an
additional peak in the spectral function at high energies around
ω − μF ≈ −6J , but do not change the qualitative behavior at
lower energies, in particular the onset of the pseudogap.

V. DIAGRAMMATIC RESULTS

In this section, we present a systematic diagrammatic ap-
proach to compute the electron spectral function and the coher-
ent quasiparticle residuum in particular. Since the Hamiltonian
of the dimer model does not feature a quadratic part, there
formally does not exist a small parameter in the system that
would rigorously justify the use of such perturbative means.
We pursue this approach nonetheless and for |ti |  J = 1
find good agreement with numerical results. The essential
ingredient is the expansion around the exactly solvable ti = 0
RK point [46], where dimer-dimer correlations take a classical
form, see, e.g., Ref. [54].

Within the domain |ti |  J , fermionic dimers are inserted
into an RK-like bosonic background, which most importantly
allows to consider the ground state to be translationally
invariant. We expect the coherent part of the spectral function
to be induced by the part H1 of the dimer Hamiltonian (2) in
which we will conduct a perturbative expansion starting from
the action S of the model in momentum space:

S =
∑

q1,q2,q3,q4

{H [F̄ (q1),F (q4),D̄(q2),D(q3)]}

+
∑
q,η,α

F̄q,η,α(iω)(−iω − μf )Fq,η,α(iω)

+
∑
q,η

D̄q,η(iω)(−iω − μb)Dq,η(iω), (16)

where in the notation q ≡ (iωq,q), momentum and energy
conservation q1 + q2 = q3 + q4 is understood. The fields
F̄ and F correspond to anticommuting Grassmann variables,
while D̄ and D are complex fields. Since SU(2) symmetry is
manifest, we drop the spin index for the fermionic fields in
the following. As a further approximation, we do not enforce
the hard-core dimer constraint exactly for the moment, but
introduce chemical potentials μf and μb to fix the fermionic
and bosonic dimer densities on average [we comment on how
to enforce the hard-core constraint below Eq. (24)]. Since
the individual terms in the Hamiltonian obey the hard-core
constraint locally, this turns out to be a good approximation.
The bare dimer propagators thus are

G0
f/b(iω) = 1

iω + μf/b

, (17)

with doping dependent chemical potentials fixing the av-
erage dimer densities on a given link of the lattice to

nF (−μf ) = p

4 and nB(−μb) = 1−p

4 . Within the Matsubara
formalism, we can compute the electronic spectral function
A p(ωp) = −2�[GR

p (ωp)] from the electronic imaginary time
ordered Green’s function via analytic continuation GR

p (ωp) =
G p(iωp → ωp + i0+). In the dimer Hilbert space [see Eq. (1)],
G can be obtained from the relation

G p(iωp) = 1

4βN

∑
η1,η2ε{x,y}

(1 + e−ipη1 )(1 + eipη2 )

×
∑
q1,q2

〈Fq2,η2Dq1+p,η1D̄q2+p,η2 F̄q1,η1〉, (18)

where the average 〈Fq2,η2Dq1+p,η1D̄q2+p,η2 F̄q1,η1〉 is to be eval-
uated in the framework of the action S from Eq. (16) (N is
the number of sites). The corresponding spectral function for
holes is then given by A− p(−ω).

We can write the four point dimer correlator in full gener-
ality as

〈Fq2,η2Dq1+p,η1D̄q2+p,η2 F̄q1,η1〉
= δq1,q2δη1,η2Gf (q1)Gb(q1 + p)

+ Gf (q2)Gb(q1 + p) �̃η1,η2,η1,η2

× (q1,q2 + p,q1 + p,q2) Gb(q2 + p)Gf (q1), (19)

where we have introduced the full interaction vertex
�̃η1,η2,η1,η2 (q1,q2 + p,q1 + p,q2) and the full (dressed) prop-
agators Gf and Gb. It is important to realize that the full
propagators can not develop a dispersion at any order in
perturbation theory, as the interaction terms in the Hamiltonian
locally respect the hard-core constraint. Any diagram with only
two external lines thus necessarily has propagators on the same
lattice site for the incoming and outgoing lines. Typically,
we expect the full propagators to contain finite lifetimes for
the two dimer species which merely lead to a Lorentzian
broadening of delta-type peaks in the spectral function. We
thus approximate Gf/b → G0

f/b in Eq. (19). The first term in
Eq. (19) corresponds to the zeroth-order contribution and upon
insertion into Eq. (18) results in the electronic spectral function

A0
p(ωp) = 1

4

(
cos2

(px

2

)
+ cos2

(py

2

))
2πδ(ωp) (20)

for the noninteraction limit ti = 0. Here, μf/b
T →0−−→ 0, which

leads to the peak position at ωp = 0, was used. It can be verified
that this expression indeed reproduces the exact quasiparticle
residuum at this specific point in parameter space. We have
thus shown that our expansion around an RK-like background
at ti = 0 reproduces the correct result right at the expansion
point as required for a meaningful ansatz.

We now seek to find a good approximation to the full vertex
by considering particle-hole-like ladder diagrams. These turn
out to correspond to repeated exchange hoppings of a fermionic
dimer in the bosonic background and are thus expected to
yield good estimates for considering exchange terms only. The
effective vertex is then determined by solving a Bethe-Salpter
equation, which is displayed diagrammatically in Fig. 6. For
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FIG. 6. Bethe-Salpeter equation for the effective two-particle vertex �̃. Dashed blue lines correspond to bare bosonic, solid red lines to bare
fermionic propagators. The approach effectively sums up all particle-hole like ladder diagrams.

the vertex from Eq. (19), this equation reads

�̃η1η2η1η2 (q1,q2 + p,q1 + p,q2)

= �η1η2η1η2 (q1,q2 + p,q1 + p,q2)

+
∑
η̃f ,η̃b

βψ(iωp)

⎧⎨
⎩

∑
q̃

�η1η̃bη1η̃f (q1,q̃ + p,q1 + p,q̃)

× �̃η̃f η2η̃bη2 (q̃,q2 + p,q̃ + p,q2)

⎫⎬
⎭, (21)

where � corresponds to the bare vertex (see Appendix), which
is derived from the Hamiltonian, while the particle-hole bubble
ψ(iωp) = 1

4
1

iωp+μb−μf
corresponds to the Matsubara sum of an

antiparallel pair of bare fermionic and bosonic propagators.
To solve this integral equation for �̃, we note that in

principle only the exchange interactions t1 and t3 contribute
to the ladder diagrams of Eq. (21). This is due to the
external dimer orientations in Eq. (21) being fixed such
that the orientation of the ingoing (outgoing) fermionic
(bosonic) dimer η2 (η1) matches the orientation of the out-
going (ingoing) bosonic (fermionic) dimer. A t2 flip term
would induce a different relative orientation between ingo-
ing and outgoing dimers and thus cannot contribute to the
particle-hole ladder. However, we can include the t2 terms in

an effective manner by substituting them with the following
exchange terms:

Ht2 → H̃t2 = −t2
∑

i

D
†
i,yF

†
i+ŷ,x,αFi,y,αDi+ŷ,x + 7 terms.

(22)

Even though this term explicitly violates the hard-core con-
straint, the physical reasoning for this replacement is the
following: we expect the major contributions by t2 processes
to come via induced exchange interactions, i.e., a t2 flip
combines with a t1 or t3 exchange and a subsequent bosonic
J -plaquette flip, which restores the starting configuration of
the bosonic background. Such a sequence effectively acts as
an exchange. Since our ladder approach does not include
the purely bosonic background interactions, we account for
these by assigning to t2 an effective first-order exchange
interaction that induces the correct exchange interactions at
higher order. Note that although the terms in Eq. (22) project on
nonconstraint configurations, we still expect this substitution
to be valid as we consider a translational invariant dimer
density in our approach. Comparing our diagrammatic results
to numerical data shows that this approximation indeed works
very well.

For exchange terms only, the Bethe-Salpeter equation can
be solved exactly as the bare vertex �η1η2η1η2 (q1,q2 + p,q1 +
p,q2) = �η1η2η1η2 ( p) only depends on the electronic momen-
tum p. We can hence assume �̃ = �̃(p) and the sum over q̃ in
Eq. (21) can be evaluated trivially.

Equation (21) can then be brought into a simple matrix form by defining the vector
��( p) ≡ (�xxxx( p), �xyxy( p), �yxyx( p), �yyyy( p)) (23)

(and likewise for �̃�) and writing ��( p) = M(p) · �̃�(p) with

M(p) =

⎛
⎜⎜⎜⎝

1 − βNψ �xxxx 0 −βNψ �xyxy 0

0 1 − βNψ �xxxx 0 −βNψ �xyxy

−βNψ �yxyx 0 1 − βNψ �yyyy 0

0 −βNψ �yxyx 0 1 − βNψ �yyyy

⎞
⎟⎟⎟⎠. (24)

Straightforward matrix inversion then yields the effective
vertex.

We first shortly discuss how to implement the hard-core
constraint beyond the mean-field level of chemical potentials.
To this end, we note that for every m-rung real space particle-
hole ladder diagram, antiparallel bosonic and fermionic prop-
agator lines correspond to the same link on the lattice. This
is due to ingoing bosonic links matching outgoing fermionic
ones and vice versa on every interaction line in exchange
processes. As the particle-hole bubble is proportional to the
total average dimer density on the corresponding link, the

contribution of an m-rung process is proportional to the product∏m
s=0 nD(js,ns) over the total dimer densities nD = 1/4 of

all links (js,ns) occuring in the process. Because we expand
around the ti = 0 RK point, we may substitute this product
with the classical probability of having all the links occuring
in the process occupied, denoted by Qc[(j0,n0), . . . ,(jm,nm)].
These correlations can be computed from a Grassmann field
theory for the classical dimer problem [55]. Attention has
to be paid only for interaction lines corresponding to H̃t2 ,
where the classical probability of having both occurring links
occupied would vanish. Instead, we consider the probability
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FIG. 7. Comparison of the dimer dispersion and quasiparticle residuum, computed using the ladder ansatz and exact diagonalization
(ED) for a lattice with 6 × 6 sites. Left column: results from ladder approach. Middle column: results from ED. Right column: line cuts
of ε p or Zp (orange: ladder approach; blue: ED). Top row: dispersion for t1 = −0.01, t2 = −0.02, t3 = 0.01. Middle row: residuum for
t1 = −0.01, t2 = −0.02, t3 = 0.01. Bottom row: residuum for t1 = t3 = 0.01, t2 = 0.

of having the two dimers in a relative position which corre-
sponds to the original t2 flip. By this reasoning, the classical
dimer correlations can in principle be implemented exactly
into our approach. We can achieve a first-order approxima-
tion by the simple replacement ti → ti 16 Qc[(js,ns),(js +
rti ,ns + 
nti )], where (rti ,
nti ) correspond to the displace-
ment vector and relative orientation change in a single

ti process. In analogy to Ref. [44], this leads to the simple
replacements t1 → 4/2 t1, t2 → 4/2 t2, and t3 → 4/π t3 that
have to be made in all our diagrammatic results presented
below.

Using the effective vertex from above and introducing a
finite peak width γ via iωp → ωp + iγ yields the electronic
spectral function

A p(ωp) = 4γ
8Z0

p

(
16

(
γ 2 + ω2

p

) + K1( p)
) + 2K2( p)(4ωp − t1 cos(px) − t1 cos(py))[

16
(
γ 2 − ω2

p

) + 8ωpt1(cos(px) + cos(py)) + K1( p)
]2 + [8γ (4ωp − t1 cos(px) − t1 cos(py))]2

, (25)

which assumes the form of a sum of two LorentziansA = Z1, p · 2γ

(ωp−ω1)2+γ 2 + Z2, p · 2γ

(ωp−ω2)2+γ 2 . The functions K1( p) and K2( p)

are given in Appendix, while Z0 is the residuum at ti = 0. The peak positions of Eq. (25) are given by the singularities in the
limit γ → 0 and turn out to be

ω1,2 = 1
4 t1

(
cos(px) + cos(py)

) ± 1
4

√
t2
1 (cos(px) + cos(py))2 + K1( p). (26)

Note that the spectral function (25) only has two sharp
peaks and no incoherent background due to the fact that the
dimer propagators cannot obtain a dispersion at any order in
perturbation theory. Consequently, the particle-hole bubble of
a bosonic and a fermionic dimer has a simple pole on the

real frequency axis, which gives rise to the simple two-peak
structure in the spectral function.

As the insertion of holes corresponds to the removal of
the highest band electrons, we can relate the dispersion and
residuum for the holes with the rightmost peak of Eq. (25)
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to obtain

ε p = − ω1( p), (27)

Z p = Z1, p = lim
γ→0

1
2γA p(ω1( p)) (28)

for hole dispersion and hole residuum. Examples for different
values of ti are compared to ED results in Fig. 7. For the
chosen parameter regime ti  J , the assumption of an RK
background is valid and yields good agreement with ED
results. This includes parameter sets with nonvanishing t2
interactions, which were treated via the effective exchange
interaction of Eq. (22). We note that the hole dispersion of
Eq. (27) reproduces exactly the dispersion obtained in Ref. [44]
by a perturbative ansatz. Our approach can hence be viewed
as an extension of this ansatz, which additionally yields the
quasiparticle residuum.

VI. DISCUSSION AND CONCLUSIONS

Our numerical results show that the dimer model introduced
in Ref. [44] has a sizable pseudogap in the antinodal region
of the Brillouin zone close to k = (0,π ) and symmetry re-
lated momenta. Moreover, its momentum dependence clearly
deviates from a simple d-wave form, in accordance with
observations in the pseudogap regime of underdoped cuprates.

It is important to emphasize here that we always fine tune
our model to the RK point at J = V , where the ground state
of the undoped model is a U(1) spin liquid. Away from this
point, the U(1) spin liquid is confining and unstable towards
sym-metry broken valence bond solid states. Upon doping
away from the RK-point, the dimer model (2) thus realizes
a U(1)-FL*, which again is expected to be confining at long

length scales. This problem can be circumvented by allowing
for diagonal dimers between next-nearest-neighbor sites as
well. In this case, the undoped RK model has a stable Z2 spin
liquid ground state in an extended parameter regime [56]. Ac-
cordingly, upon doping, the ground state of the appropriately
modified model in Eq. (2) is expected to be a Z2-FL*, which is
a stable phase of matter [57]. Nevertheless, we do not expect a
qualitatively different behavior of the single-electron spectral
function when including diagonal dimers. In particular, the
pseudogap in the antinodal region is expected to be a robust
property of the dimer model. We leave a detailed analysis of
this problem open for further study.

It is also worthwhile to contrast our results with numerical
dynamical cluster approximation (DCA) studies of the Hub-
bard model on the square lattice, where a sizable pseudogap in
the spectral function at the antinode was found as well [58,59].
We point out here that two-site cluster dynamical mean field
theory (DMFT) studies of the Hubbard model indeed showed
that the electron configuration on the two-site cluster at low
dopings is dominated by the same two states that are used here
to span the Hilbert space of the dimer model on the full lattice,
i.e., the bosonic and the fermionic dimer [60]. This suggests
that the dimer model introduced in Ref. [44] provides an
effective low-energy description of the square lattice Hubbard
model at large U and low doping.
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APPENDIX: DIAGRAMMATIC APPROACH

We provide some additional information on the ladder approach of Sec. V. The bare vertex �( p) from the Bethe-Salpeter
equation (21) is determined from the momentum space form of the dimer Hamiltonian H1, including H̃t2 . The relevant bare
vertices in Eqs. (23) and (24) are

�xxxx(p) = 2t1

βN
cos(py), (A1)

�yyyy(p) = 2t1

βN
cos(px), (A2)

�xyxy(p) ≡ C( p) (A3)

= t3

βN
(ei(px+py ) + eipx + ei(py−2px ) + e−2ipx + e2ipy + ei(2py−px ) + e−ipy + e−i(px+py )) + t2

βN
(1 + eipx )(1 + e−ipy ),

�yxyx(p) = C∗( p) = C(− p). (A4)

The functions K1( p) and K2( p), which contribute to the spectral function from Eq. (25), are given by

K1( p) = t2
3 [8 + 4 cos(px) + 4 cos(3px) + 2 cos(px − 3py) + 4 cos(px − 2py) + 4 cos(2px − 2py) + 4 cos(px − py)

+ 4 cos(2px − py) + 2 cos(3px − py) + 4 cos(py) + 4 cos(3py) + 4 cos(px + py) + 4 cos(2px + 2py)

+ 4 cos(2px + py) + 2 cos(3px + py) + 4 cos(px + 2py) + 2 cos(px + 3py)]

− t2
1 [2 cos(px − py) + 2 cos(px + py)]

+ t2
2 [4 + 4 cos(px) + 4 cos(py) + 2 cos(px − py) + 2 cos(px + py)]

+ t2t3[4 + 6 cos(px) + 6 cos(py) + 4 cos(2px) + 4 cos(2py) + 2 cos(3px) + 2 cos(3py) + 4 cos(px − 3py)
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+ 4 cos(3px − py) + 2 cos(2px − 3py) + 2 cos(3px − 2py)4 cos(px − 2py) + 4 cos(2px − py) + 4 cos(2px − 2py)

+ 8 cos(px + py) + 2 cos(2px + py) + 2 cos(px + 2py)],

K2( p) = t3[2 + 3 cos(px) + 2 cos(2px) + cos(3px) + 2 cos(3px − py) + cos(2px − 3py) + 2 cos(px − 2py)

+ 2 cos(2px − 2py) + cos(3px − 2py) + 2 cos(2px − py) + 2 cos(3px − py) + 3 cos(py) + 2 cos(2py) + cos(3py)

+ 4 cos(px + py) + cos(2px + py) + cos(px + 2py)] − t1[2 cos(px) + cos(2px) + 2 cos(py) + cos(2py)]

+ t2[4 + 4 cos(px) + 4 cos(py) + 2 cos(px − py) + 2 cos(px + py)]. (A5)

Note that these functions satisfy K1/2(− p) = K1/2( p) and K1 is even in the parameters ti while K2 is odd. We use the notation
K1,{−ti } = K1,{ti },K2,{−ti } = −K2,{ti }. From these properties and the expression (25) for the spectral function, we can easily deduce

A− p(ωp) =A p(ωp),

A{−ti }, p(ωp) =A{ti }, p(−ωp),

ε{a·ti }, p = a · ε{ti }, p,

Z{a·ti }, p =Z{ti }, p (A6)

for any positive a. Using the second of these equations, one can prove by a straightforward calculation the interesting relation

Z{−ti }, p + Z{ti }, p = lim
γ→0

1
2γ [A{ti }, p(ω1( p)) + A{ti }, p(ω2( p))] = Z0

p = 1
4 [cos2(px/2) + cos2(py/2)]. (A7)
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