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Abstract
We study the single-impurity Andersonmodel out of equilibriumunder the influence of a bias voltage
f and amagneticfieldB.We investigate the interplay between the shift ( Bw ) of theKondo peak in the
spin-resolved density of states (DOS) and the one ( Bf ) of the conductance anomaly. In agreement with
experiments and previous theoretical calculationswefind that, while the latter displays a rather linear
behavior with an almost constant slope as a function ofB down to theKondo scale, theDOS shiftfirst
features a slower increase reaching the same behavior as Bf only for g B k TB B Km ∣ ∣ . Our auxiliary
master equation approach yields highly accurate nonequilibrium results for theDOS and for the
conductance all theway fromwithin theKondo up to the chargefluctuation regime, showing excellent
agreementwith a recently introduced scheme based on a combination of numerical renormalization
groupwith time-dependent densitymatrix renormalization group.

1. Introduction

Since its discovery almost one century ago, the Kondo effect has beenmeasured inmany physical systems
ranging frombulkmaterials to nanostructures. The latter are especially attractive to study, because the
parameters controlling the effect can be precisely tuned in the laboratory. There is a variety of experiments on
nanowires [1–3], two-dimensional electron gases confined in heterostructures [4, 5], carbon nanotubes [6] and
also organicmolecules [7], tomention a few.Whereas afinite temperature and a bias voltage to probe the effect
are perturbations that naturally arise in these experiments and should therefore be studied, it is also interesting
to study the effect of an additionalmagnetic field.

It is known from these experiments that upon introducing a Zeemanmagnetic fieldB the zero-bias
conductance anomaly (i.e. the peak of the conductanceG as a function of bias voltagef) splits into two peaks
located at Bf , where Bf increases almost linearly withB [1–3, 8]. Theoretical calculations [2, 9–15] confirm
this behavior showing an essentially constant slope, e g BB Bf m» ∣ ∣ , almost all theway down to the point where
the splitting disappears at g B k TB B Km ~∣ ∣ , whereTK is the Kondo temperature that characterizes thewidth of the
zero-bias anomaly at zero temperature and zerofield. At the same time, themagnetic field produces a similar
split in the total impurity density of states (DOS) (spectral function), which again starts developing formagnetic
fields of the order of theKondo scale, andwhich corresponds to a shift Bw in the spin-resolved impurityDOS.
However, in contrast to Bf , this shift does not show the same strictly linear behavior. Accurate calculations based
onBethe ansatz and the numerical renormalization group (NRG) [16–18] show that Bw is initially smaller,

starting as g BB B
2

3
w m» ∣ ∣ and reaching g BBm∣ ∣ for g B k TB B Km ∣ ∣ (up to logarithmic corrections [19]). Notice

that less sophisticated equations ofmotion approaches [20] yield instead a constant slope of Bw as well. On the
other hand, the different behavior of Bw and Bf is in contradictionwith the simple expectation [20] that the
enhancement of the conductance should occurwhen the chemical potential difference reaches the splitting in
the spectral function. Kondo physics out of equilibrium is a challenging issue from the theoretical point of view
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and it is hard to obtain accurate results for both the spectral function and the conductance for voltages beyond
the linear-response regime,most nonequilibrium steady-state approaches being perturbative or their accuracy
being uncontrolled.

In this paper, we investigate the single-impurity Andersonmodel (SIAM) in the presence of both amagnetic
fieldB and a finite bias voltagef.We adopt the recently introduced auxiliarymaster equation approach (AMEA),
which has been shown to produce very accurate results for spectral functions and current characteristics both in
aswell as out of equilibrium [21]. To confirm the accuracy of our results we compare themwith the ones
obtainedwithin a hybridmethod that combinesNRGwith the time-dependent densitymatrix renormalization
group (tDMRG) [22] to address quantum impurities out of equilibrium. The two approaches compare
excellently (see figure 6) also at zero bias voltage, wherewe directly compare the spectral functionwithNRG.
Our results confirm the different behavior of Bw and Bf , showing that there is no incompatibility.We also
evaluate themagnetization in the high and lowfield limit, confirming the presence of a plateau at highfields for
bias voltages e g BBf m∣ ∣ observed in previous theoretical results [12].

This work is organized as follows: in section 2 themodel and the solutionmethod are described.We start
with an introduction to themodel, section 2.1, followed by a part about KeldyshGreen’s functions, section 2.2.
Then the general idea of AMEA and the solutionmethod are sketched, section 2.3. In section 2.4 the hybrid
NRG-tDMRGmethod, whichwe use for comparison, is described. Section 3 contains the results and section 4 a
summary and our conclusions.

2.Model andmethod

2.1.Model
We study the SIAM in amagnetic field and out of equilibrium. Throughout this paper we use units of

e k g 1B B m= = = =∣ ∣ and 1G = , see equations (6) and (15). Themodel is described by the following
Hamiltonian,

H H H H . 1imp leads coup= + + ( )

Himp is theHamiltonian of the impurity. It is a single-siteHubbardHamiltonianwith a spin-dependent on-site
energy, accounting for themagnetic field,

H f f Un n , 2f f fimp
,

å e= +
s

s s s
Î  

  ( )
{ }

†

with U Bf
1

2
e s= - +s ( ). fs

(†) is the fermionic annihilation (creation) operator at the impurity for spinσ,

n f ff =s s s
† ,U is the interaction strength andB themagentic field. The on-site energy fe s is chosen such that the

system is particle-hole symmetric atB=0. The impurity is connected to two leads described by

H d d . 3
L R k

k k kleads
,

å å e=
l s

l l s l s
Î

( )
{ }

†

d kl s
(†) is the annihilation (creation) operator for electronswith spinσ in lead L R,l Î { }at level k (out ofN energy

levels); kel is the energy of level k. The leads have different chemical potentials ml, realizing a bias voltage
R Lf m m= - across the impurity. TheHamiltonianmediating the coupling between the impurity and the leads

is given by

H
N

t d f
1

H.c. 4
L R k

kcoup
,

å å= +
l

l
s

l s s
Î

¢ ( ) ( )
{ }

†

with a symmetric hopping t tL R¢ = ¢ .We assume that Hleads produces a flatDOS r wl ( ) in the disconnected leads
with a bandwidth of D2 ,

D
D

1

2
, 5r w w= Q -l ( ) ( ∣ ∣) ( )

whereΘ is theHeaviside step function. In this flat-bandmodel the hybridization strengthΓ, defined in
equation (15), is given by

D
t t

2
. 6L R

2 2p
G = ¢ + ¢( ) ( )

Using 1G = as unit of energy yields t D¢ =l p
for the hopping to the leads. Throughout this paper we

takeD=10.
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We furthermore use the following definition of theKondo temperatureTK,

G T T G, 0
1

2
, 7K 0f= = =( ) ( )

atB=0.G is the linear-response differential conductance, equation (18), G G T 0, 0 10 f p= = = =( ) .

2.2. KeldyshGreen’s functions
While there is only one independent Green’s function in equilibrium, there are two in nonequilibrium: the
retarded and theKeldyshGreen’s function,GR andGK, e.g., are independent of each other. Atfinitemagnetic
field they are furthermore different for both spin kinds. In steady state, when the system is time-translation
invariant, they are defined as

G t t f t f

G t f t f

i , ,

i , , 8

R

K

=- Q

=-

s s s

s s s
⎡⎣ ⎤⎦

{ }( ) ( ) ( )

( ) ( ) ( )

†

†

and in Fourier space,

G G t t texp i d , 9òw w=s
a

s
a( ) ( ) ( ) ( )

with R K,a Î { }. Upon introducing theKeldysh contour, these Green’s functions can be arranged in amatrix
structure, according to

G
G G

G0
, 10

R K

A
w

w w

w
=s

s s

s

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( )

( ) ( )
( )

( )

where the advancedGreen’s function is related to the retarded one by G GA Rw w=s s( ) ( )†. In this way, the familiar
formofDyson’s equation ismaintained,

G g

G . 11

1
0

1

0
1

w w w w

w w

= - D - S

= - S

s s

s

- -

-

( ) ( ) ( ) ( )

( ) ( ) ( )

G ws ( ) is the full interactingGreen’s function of the impurity connected to the leads, g
0

w
s

( ) is the
noninteractingGreen’s function of the disconnected impurity, wD( ) is the hybridization of the impurity by the
leads and wS( ) accounts for the interaction at the impurity. The noninteractingGreen’s functions are combined
to G g0 0

1w w w= - Ds s
-( ) ( ) ( ). The hybridization function is given by

t g , 122åw wD = ¢
l

l l
( ) ( ) ( )

where g w
l

( ) is the (noninteracting)Green’s function of the decoupled leads. Since these are in equilibrium, its
components obey thefluctuation-dissipation theorem,

g f T2 i 2 , 1 , 13K w p w r w= -l l l( ) ( ( ) ) ( ) ( )

where f Texp 1 1w m= - +l l
-[ [( ) ] ] denotes the Fermi function at temperatureT and chemical potential ml.

TheDOS in the leads is connected to g R wl ( ),

g
1

. 14Rr w
p

w= -l l( ) ( ) ( )I

Therefore in equilibriumonly one independentGreen’s function persists. The hybridization strengthΓ is
defined, using equation (12),

0 . 15R wG = - D =( ) ( )I

Given the full interactingGreen’s function at the impurity, the spin-resolved and total spectral functions are
calculated as

A G A A A
1

,
1

2
. 16Rw

p
w= - = +s s   ( ) ( ) ( ) ( )I

The current across the impurity is determined via theMeir–Wingreen formula [20]. In case of a bias-
independent leadDOSwith L Rr w r w=( ) ( ), such as equation (5), it reduces to [23]

j A f T f T, , d , 17R Lò w g w w w w= -( ) ( )( ( ) ( )) ( )

where Rg w w= - D( ) ( )I . In linear-response the differential conductance G
j=
f
¶
¶

is calculated from

equation (17) as
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G A f T, d , 18ò w g w
w

w w= -
¶
¶

 ⎜ ⎟⎛
⎝

⎞
⎠( ) ( ) ( ) ( )

where f f fL R0 0L R

= =
m m= =

is the Fermi function at zero bias. In the general case, we calculate the differential

conductance from finite current differences using three-point Lagrange polynomials to approximate the
derivative.

2.3.Method
Wehere present a short sketch of theAMEAused in this paper. Formore details, we refer to [21, 24–26]. The
idea is tomap the physical systemdescribed by (1) to afinite and open auxiliary system that has almost the same
hybridization at the impurity as the original one (12) and therebymaintains the impurity physics, whichwe are
interested in. The auxiliary system consists of a small number ofNB bath sites connected toMarkovian
environments and its dynamics is governed by a Lindbladmaster equation. The parameters in this equation are
determined to achieve a corresponding auxiliary hybridization function aux wD ( ) such that aux w wD » D( ) ( ) as
accurately as possible, see [25]. The physical hybridization functionD is calculated from the given leadDOS,
equation (5), using equations (12)–(14) and theKramers–Kronig relation that links the real and imaginary part
of aGreen’s function. The auxiliary hybridization function auxD can be calculated for a general set of bath
parameters by solving a noninteracting Lindblad problem, see, e.g. [24–28]. The determination of these
parameters and thus themapping to the physical system is carried outwith a parallel tempering algorithm [25].
The resulting Lindblad equation is solved by usingmatrix product states (MPS) and the time evolving block
decimation algorithm (TEBD), as described in [21]. Since the auxiliary Lindblad system is essentially exactly
solvable, the approximation of themethod lies in the difference between aux wD ( ) and wD( ). As shown in [25],
this difference vanishes exponentially upon increasingNB. Therefore, amoderate number of bath sites
(N 14 20B » – ) is sufficient to reach the accuracy required in the present paper.

The results we present here are in the steady state, which is determined via time evolution and formally
reachedwith t  ¥. TheGreen’s functions are also calculated in the time domain, starting from the steady
state; they are continued to large times by linear prediction and then subjected to a Fourier transformation. The
bias voltage is realized by shifting the chemical potentials in the leads symmetrically with respect to each other,

R L 2
m m= - = f . Note that for each bias voltage a new auxD has to be determined, sincef enters the Keldysh part

of the hybridization function. The calculations for B 1< , 1.8f < and B 1> , 2.1f < arewithNB=20 bath
sites; for all other parametersNB=14 is sufficient. For the subsequent TEBD calculationwe restrict the fit to
nearest neighbor couplings. All results shown in this paper are for the symmetric SIAM, t tL R¢ = ¢ . Note that the
extension to the non-symmetricmodel is simple and straightforward.

2.4. Comparison toNRG-tDMRGquench calculations
Wecompare our data to results obtained in a hybridNRG-tDMRGquench setupwhich is described in [22].
While AMEA treats the impuritymodel as a truly open quantum system in the sense of a Lindbladmaster
equation, for ‘small enough’ time scales t one can equally well consider quenches in a closed quantum system
[29, 30]. Starting with an initial state inwhich the two leads are in thermal equilibrium, but held at different
chemical potential, standardHamiltonian time evolutionwill drive the system towards its ‘steady state’until at
some point in time finite-size effects set in. For the SIAMone faces the difficulty that the different energy and
time scales inherent in themodel have to be handledwith care. The hybridNRG-tDMRG approach presented in
[22]meets this challenge by exploiting the fact that energy scales outside the transport window, where
f T f T, ,L Rw w»( ) ( ), are effectively in equilibrium. Thus, they can be traced out using theNRG [31].
Subsequently, the non-equilibriumprocesses arising on the energy scale of the transport window are treated
within this renormalized setup using a tDMRG [32–35] quench. Bothmethods,NRG and tDMRG, are
implemented based onMPS.

For the high-energy range outside the transport window a logarithmic discretization is used, while the
transport window itself is discretized linearly. Aftermapping the problemonto a chain, theHamiltonian of the
first part of this chain, which represents the high-energymodes, can be diagonalized usingNRG. This yields a
truncated effective low-energy basis for this part of the system, which can be seen as the local state space of a
renormalized impurity (RI). This RI is coupled to the remainder of the leads, which corresponds to the energy
range of the transport window and therefore has an effective bandwidth set by voltage and temperature. The
quench is initializedwith a state iniyYñ = ñ Ä Wñ∣ ∣ ∣ , where iniy ñ∣ lies in the ground state sector of the RI and Wñ∣
is the thermal state of the remaining part of the leads at different chemical potential and decoupled from the RI.
This state is time-evolved using tDMRG.The relevant time scale for this quench is given by the size of the
transport window.

4
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To further simplify theMPS calculation, the leads are described in the form suggested by the thermofield
approach [36–38], inwhich the thermal state Wñ∣ is a pure quantum state, and, evenmore advantageously, a
simple product state on theMPS chain. This implies that the time evolution of the tDMRGquench is started
with a product state and, hence, with lowest possible entanglement.

In practice, the time evolution is typically limited, due to the entanglement growth, before finite size effects
set in. So far, the approach has only been used to calculate expectation values, because the determination of
spectral functionswould need farmore numerical resources. For all data points with D0.14f > there was no
need to useNRG, because the transport window is of similar size as the full bandwidth. For high voltages
convergence was achieved only in the current and not in themagnetization.However, the time dependence of
the dot’s occupation, n tá ñs ( ), follows an exponential decay such that one can extrapolate to the steady-state
value.

3. Results

Our approach allows for an accurate solution of themodel in and out of equilibrium, below, but also above the
energy scaleTK, so as to take into account the influence of charge excitations and of theHubbard bands. At the
same time, belowTK and in equilibriumour results show a remarkable agreement of the spectral functionwith
NRGup to intermediate values ofU 6G , see figure 6(a) and [21]. Here wewant to study the behavior and
interplay of the spectral function and the differential conductance in the presence of afinite Zeemanmagnetic
fieldB and bias voltagef. In particular, we focus on the shift of the Kondo and of the zero-bias peak.

We start by plotting the impurity spectral function in equilibrium ( 0f = ) for differentmagnetic fieldsB, see
figure 1.Most of our results are obtained for an interaction ofU=6, corresponding to aKondo temperature of
T 0.2K » . The temperature isfixed toT T 0.25K » . Atfinitemagnetic field, the spin degeneracy is lifted,
resulting in different spectral functions for spin-up and spin-down electrons. At particle-hole symmetry they are
related to each other, according to A Aw w= - ( ) ( ). Upon increasing themagnetic field, the Kondo resonance
is suppressed and it broadens, similarly to the effect of a bias voltage, see [14, 21, 24, 39–49]. Furthermore, a
magnetic field causes a shift Bw of theKondo resonance to higher energies in the spin-resolved spectral function
A and produces a splitting Ad in the total spectral function A A A1

2
= +  ( ). This splitting starts at B TK ,

see also [11, 17, 50], and persists until the peaksmergewith theHubbard bands. The position of theKondo
resonance in A becomes B» for largeB, while for decreasingB the ratio BBw decreases (see figure 4),
consistent with previous results,mainly on theKondomodel [9, 10, 16–18, 51]. Note that for largemagnetic
fields one has 2A Bd w= , while for smallmagnetic fields Ad is smaller, due to the overlap of the contributions
from the two spin directions.

A similar splitting is produced by a bias voltage in the absence of amagnetic field [14, 21, 24], so that it is
interesting to study the combined behavior of the two effects. In the presence of both, afinite bias voltage and
magnetic field, onewould expect 4 peaks in the total spectral function at B 2f  . This has been observed
within an equation ofmotion approach in [10] (see also [12]). It is not easy to observe such a four-peak structure
within a numerically controlled, nonperturbative approach. In our case, forU=6, the higher energy peaks
mergewith theHubbard bands before the peaks are sufficiently far apart, so that they lookmore like shoulders
than peaks. For this reason, we investigate this effect forU=8. Figure 2(a) shows the spin-resolved spectral
functions A w( ) atB=1 for different bias voltagesf andU=8. At 0f = the position of theKondo resonance

Bw is closer toB than for theU=6 case, due to the fact thatTK is smaller here. As a result of the applied bias
voltage the shifted Kondo resonance first acquires a broadening and then, starting from 1f » , it gets split. The
two peaks have a distance of f» as expected, but the splitting is not symmetric. The corresponding four-peak

structure in the total spectral function can be seen infigure 2(b)with split peaks at B
2

w   f , see [10].
Amore direct quantity to bemeasured experimentally is the differential conductanceG across the impurity.

Infigure 3we plot the current j (a) aswell asG (b) as a function of the bias voltage for different values ofB. The
parameters are the same as infigure 1. To test the approaches, infigure 6(b)we compare results fromAMEA
with the ones from the hybridNRG-tDMRG calculation discussed in section 2.4. Results are essentially on top of
each other. Themagnetic field affects the zero-bias peak in the conductance byfirst broadening it up to B TK
and then producing a split [9–12, 14, 15], as observed experimentally [2, 3, 5, 52]. Notice that Gd , the splitting in
G, starts at B 0.3» and is slightly delayed in comparison to Ad , the splitting in A w( ),figure 1(b), which sets in
at B 0.2» . The reason for the delay in the splitting is the averaging of the spectral function in the current
integral (17), which smears out the effect of the split peaks. Since G G G= =  at particle-hole symmetry, Bf ,

5
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the shift in the spin-resolved conductance G, exactly fulfills B 2
Gf = d , in contrast to its spectral counterpart,

B 2
Aw d . On the other hand, themagnitude of the shift inG, while becoming B~ for B TK , as shown in

figure 4, it reaches this limit faster than the shift in A w( ). In fact, figure 4 suggests that, within the error bars3 Bf
becomes B~ as soon as it shows up, in contrast to Bw . This is consistent with experiments [1, 2, 52], which
indicate a strictly linear behavior. At Bf  but smaller than the bandwidth the differential conductance
reaches aB-independent value of G G0.27 0» .

Figure 5(a) shows themagnetization n ná - ñ  and 5(b) the double occupancy n ná ñ  at the impurity in
dependence of the bias voltage for differentmagnetic fields. At largemagnetic fields B TK themagnetization
shows a plateau for Bf followed by a logarithmic decrease (straight lines infigure 5(a)), in agreementwith
previous results, see [12]. At smallmagnetic fields B TK it starts to decrease for TKf » . Again, we find a very
good agreement betweenAMEA andNRG-tDMRG, see figure 6(c). For smallmagnetic fields the double
occupancy has aminimumat 2f » , which seems to be independent ofTK, see [53]. Thisminimumvanishes at
largermagnetic fields as the Zeeman splitting of the local level increases and hence presumably is governed by
chargefluctuations.

Figure 1.Equilibrium ( 0f = ) spin-resolved A w( ) (a) and total A w( ) (b) impurity spectral function for differentmagnetic fieldsB
and forU 6= G and T k T0.05 4B K= G » . Note thatB is in units of g BmG (∣ ∣ ),ω is in units of G and spectral functions are in
units of  G.

3
The error bars are rough estimates of the error in the numerical derivative of jused to determineG. They are calculated under the

conservative assumption that the turning points in j f( ), which determine themaxima inG, lie atmost one voltage point off the calculated
value.

6
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Infigure 6wedisplay a comparisonof results obtainedwithinAMEA (dashed lines and circles)with results from
NRG ((a)dotted lines) and thehybridNRG-tDMRGschemediscussed in section2.4 ((b), (c) squares). Equilibrium
spectral functions (a), differential conductance (b) andmagnetization (c) curves at differentmagneticfields agree
remarkablywell between the twoapproaches.One canonly see small deviations in the spectral functions at high
energies, due to the logarithmicdiscretization inNRG,whichmakes it less accurate in this energy region.The inset in
(a) shows a zoomaround 0w = ,whereNRG is known toproduce essentially exact results. In this region the two
spectral functions deviate by less than1%.Thedifferential conductance atfinite bias, being evaluated fromfinite
current differences (see section2.2) in both approaches, is, in principle,moreprone to errors.Nontheless, the results
lie essentially on topof eachother.On theotherhand, as remarked in section2.4, themagnetization from theNRG-
tDMRGscheme is not fully converged to the steady state and thedatahave been extrapolated assuming an
exponential decay of the occupancy n tá ñs ( ). For this reason, at highvoltages,we can see that the values for the
magnetization lie slightly above theAMEAresults.While it is, in principle, possible to calculate spectral functions
within theNRG-tDMRGscheme, it is unclear at themoment,whether this is numerically feasible. For this reason,we
donot provide a comparisonbetween the twoapproaches infigure 6.

4. Summary and conclusions

In this paper, we studied the Anderson impuritymodel out of equilibriumunder the influence of a bias voltagef
and amagnetic fieldB. In particular, we addressed the issue of the different behavior of the shift of theKondo

Figure 2.Nonequilibrium spin-resolved (a) and total (b) impurity spectral function for different values of the bias voltagef andfixed
magnetic field B g ;Bm= G (∣ ∣ ) T k T0.05 2B K= G » . Note thatf is in units of eG . Here a larger value ofU 8= G is chosen, in
order to resolve the four-peak structure in A.

7
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Figure 3. (a)Current–voltage characteristic j f( ) and (b) differential conductance G f( ) for different values of themagneticfieldB. G
is in units of G G T e0, 00

2 f p= = = =( ) ( ). Parameters are as in figure 1.

Figure 4. Shift Bf of the conductance peak (infigure 3(b)) and Bw of the equilibrium spectral function (infigure 1(a)) divided by the
magnetic fieldB plotted as a function ofB. Parameters are as infigure 1.

8
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peak in the impurity spectral function and the one in the conductance anomaly as a function of themagnetic
field.We also presented explicitly results for the spectral function showing a four-peak structure resulting from
the combined effects ofB andf.

Our results agreewith previous theoretical and experimental results in the known limits B TK and
B TK , while our approach allows us to access the intermediate regime B T, Kf aswell. The key aspect of
AMEA [21, 24–26] is that we can obtain very accurate results also for the spectral functions out of equilibrium,
which is difficult by othermethods. The accuracy of our results in the parameter regimewe considered is
confirmed by an excellent comparison of spectral functionswithNRG at 0f = (up to frequencies for which
NRG is supposed to yield correct results), and of expectation valueswith a recently introduced hybridNRG-
tDMRG scheme [22] at finite bias voltages.

The two approaches adopted here, AMEA and theNRG-tDMRG scheme, deal with the challenge of
describing the long time behavior of the nonequilibrium SIAM in a differentmanner.While AMEA explicitly
describes an open quantum system and thus is not restricted tofinite time scales, the quench approach
renormalizes the problemdown to the relevant energy scale. In addition, AMEA is able to evaluate the impurity
spectral function.While, in principle, this is also possible in theNRG-tDMRGapproach, from anumerical point
of view, it would bemore costly. Therefore, it is unclear at themoment, whether it is realizable in practice. Also
for themagnetizationAMEAwas able to achieve better convergence, especially at high voltages.

In summary, it is convenient to use AMEA,whenever very long time scales are needed, or when information
over the full energy range is required, as it is the case in the determination of spectral functions. For example,
AMEA is an interesting tool for DMFT in nonequilibrium,where spectral functions are needed explicitly
[26, 55–59]. On the other hand, theNRG-tDMRG approach ismoreflexible with respect to the parameter

Figure 5. (a)Magnetization and (b) double occupancy as a function of the bias voltagef for different values of themagnetic fieldB. (b)
Shares its legendwith (a). Dotted lines in (a) correspond to Bf = . Parameters are as infigure 1.
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regime, as it uses an explicit renormalization of the impurity. In particular, it has proven to be able to describe
very strong interactions such asU 12G = and zero temperatureT=0, see [22]. AMEA can deal with
interactions of the same strength and temperatures down toT T 10K~ [21].Much larger values ofU and/or

Figure 6.Comparison of AMEAwithNRG [54] andNRG-tDMRG [22]. (a)Equilibrium total impurity spectral function A w( ), (b)
differential conductance G f( ) and (c)magnetization n n fá - ñ  ( ) for different values ofB. Dashed lines and circles correspond to
AMEA, dotted lines toNRG and squares toNRG-tDMRG. Parameters are as infigure 1.
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much lower inT are not reachable at themoment, sincewe are limited in the number of bath sites4. This is also
the reason, whywe could not accurately check thewell-known B Tln K

2~ -[ ( )] behavior of A 0w =( ) for
B TK [19], in equilibrium.Our resultsmay be consistent with a logarithmic asymptotics, but, in order to
reliably confirm this behavior, we need to considermagnetic fields that are orders ofmagnitude larger and at the
same time U . Therefore, at themoment, itmay be preferable to use theNRG-tDMRGquench approach,
whenever it gets crucial towork in the scaling limit and for very low values of the bias voltage.

The only approximation inAMEA consists in replacing the physical bath hybridization functionDwith an
auxiliary one auxD , so that the accuracy depends on the difference between the two functions. Of course, the
corresponding error in the calculated results, e.g. the spectral function, is expected to be strongly frequency
dependent, so that regions around the Fermi energies are probablymore strongly affected.More specifically, due
to the fact that at zero bias theKondo scale depends exponentially on the 0w = DOS, onemay expect a
corresponding exponential error in this scale. This is probably not yet the case at thesemoderate values of
U 8G used here, as can be deduced fromour results in [21]. For largerU (andmore bath sites), theway to
avoid this exponential problem could be to carry out the fit by constraining R

auxDI to coincide with RDI at

R Lw m= , or in any case require that the fit becomesmore accurate around these points.
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