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Abstract
We study the single-impurity Anderson model out of equilibrium under the in� uence of a bias voltage
f and a magnetic� eldB. We investigate the interplay between the shift( B�X ) of the Kondo peak in the
spin-resolved density of states(DOS) and the one( B�G) of the conductance anomaly. In agreement with
experiments and previous theoretical calculations we� nd that, while the latter displays a rather linear
behavior with an almost constant slope as a function ofBdown to the Kondo scale, the DOS shift� rst
features a slower increase reaching the same behavior asB�G only for g B k TB B K�N ��� � . Our auxiliary
master equation approach yields highly accurate nonequilibrium results for the DOS and for the
conductance all the way from within the Kondo up to the charge� uctuation regime, showing excellent
agreement with a recently introduced scheme based on a combination of numerical renormalization
group with time-dependent density matrix renormalization group.

1. Introduction

Since its discovery almost one century ago, the Kondo effect has been measured in many physical systems
ranging from bulk materials to nanostructures. The latter are especially attractive to study, because the
parameters controlling the effect can be precisely tuned in the laboratory. There is a variety of experiments on
nanowires[1–3], two-dimensional electron gases con� ned in heterostructures[4,5], carbon nanotubes[6] and
also organic molecules[7], to mention a few. Whereas a� nite temperature and a bias voltage to probe the effect
are perturbations that naturally arise in these experiments and should therefore be studied, it is also interesting
to study the effect of an additional magnetic� eld.

It is known from these experiments that upon introducing a Zeeman magnetic� eldBthe zero-bias
conductance anomaly(i.e. the peak of the conductanceGas a function of bias voltagef ) splits into two peaks
located at B�G�o , where B�G increases almost linearly withB[1–3,8]. Theoretical calculations[2,9–15] con� rm
this behavior showing an essentially constant slope,e g BB B� G � N�x � � , almost all the way down to the point where
the splitting disappears atg B k TB B K�N �_� � , whereTK is the Kondo temperature that characterizes the width of the
zero-bias anomaly at zero temperature and zero� eld. At the same time, the magnetic� eld produces a similar
split in the total impurity density of states(DOS) (spectral function), which again starts developing for magnetic
� elds of the order of the Kondo scale, and which corresponds to a shiftB� �̃X�o in the spin-resolved impurity DOS.
However, in contrast toB�G, this shift does not show the same strictly linear behavior. Accurate calculations based
on Bethe ansatz and the numerical renormalization group(NRG) [16–18] show that B�X is initially smaller,
starting as g BB B
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� �̃ X � N�x � � and reachingg BB�N� � for g B k TB B K�N ��� � (up to logarithmic corrections[19]). Notice
that less sophisticated equations of motion approaches[20] yield instead a constant slope ofB�X as well. On the
other hand, the different behavior ofB�X and B�G is in contradiction with the simple expectation[20] that the
enhancement of the conductance should occur when the chemical potential difference reaches the splitting in
the spectral function. Kondo physics out of equilibrium is a challenging issue from the theoretical point of view
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and it is hard to obtain accurate results for both the spectral function and the conductance for voltages beyond
the linear-response regime, most nonequilibrium steady-state approaches being perturbative or their accuracy
being uncontrolled.

In this paper, we investigate the single-impurity Anderson model (SIAM) in the presence of both a magnetic
field Band a finite bias voltage f. We adopt the recently introduced auxiliary master equation approach (AMEA),
which has been shown to produce very accurate results for spectral functions and current characteristics both in
as well as out of equilibrium [21]. To confirm the accuracy of our results we compare them with the ones
obtained within a hybrid method that combines NRG with the time-dependent density matrix renormalization
group (tDMRG) [22] to address quantum impurities out of equilibrium. The two approaches compare
excellently (see figure 6) also at zero bias voltage, where we directly compare the spectral function with NRG.
Our results confirm the different behavior of Bw and Bf , showing that there is no incompatibility. We also
evaluate the magnetization in the high and lowfield limit, confirming the presence of a plateau at highfields for
bias voltages e g BBf m∣ ∣ observed in previous theoretical results [12].

This work is organized as follows: in section 2 the model and the solution method are described. We start
with an introduction to the model, section 2.1, followed by a part about Keldysh Green’s functions, section 2.2.
Then the general idea of AMEA and the solution method are sketched, section 2.3. In section 2.4 the hybrid
NRG-tDMRG method, which we use for comparison, is described. Section 3 contains the results and section 4 a
summary and our conclusions.

2.Model andmethod

2.1.Model
We study the SIAM in a magnetic field and out of equilibrium. Throughout this paper we use units of

e k g 1B B m= = = =∣ ∣ and 1G = , see equations (6) and (15). The model is described by the following
Hamiltonian,

H H H H . 1imp leads coup= + + ( )

Himp is the Hamiltonian of the impurity. It is a single-site Hubbard Hamiltonian with a spin-dependent on-site
energy, accounting for the magnetic field,

H f f Un n , 2f f fimp
,

å e= +
s

s s s
Î  

  ( )
{ }

†

with U Bf
1

2
e s= - +s ( ). fs

(†) is the fermionic annihilation (creation) operator at the impurity for spinσ,
n f ff =s s s

† , U is the interaction strength and Bthe magentic field. The on-site energy fe s is chosen such that the
system is particle-hole symmetric at B=0. The impurity is connected to two leads described by

H d d . 3
L R k

k k kleads
,

å å e=
l s

l l s l s
Î
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d kl s
(†) is the annihilation (creation) operator for electrons with spinσ in lead L R,l Î { }at level k (out of N energy

levels); kel is the energy of level k. The leads have different chemical potentials ml, realizing a bias voltage
R Lf m m= - across the impurity. The Hamiltonian mediating the coupling between the impurity and the leads

is given by

H
N

t d f
1
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with a symmetric hopping t tL R¢ = ¢ . We assume that Hleads produces a flat DOS r wl ( ) in the disconnected leads
with a bandwidth of D2 ,

D
D

1

2
, 5r w w= Q -l ( ) ( ∣ ∣) ( )

whereΘ is the Heaviside step function. In this flat-band model the hybridization strengthΓ, defined in
equation (15), is given by

D
t t

2
. 6L R

2 2p
G = ¢ + ¢( ) ( )

Using 1G = as unit of energy yields t D¢ =l p
for the hopping to the leads. Throughout this paper we

take D=10.
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We furthermore use the following definition of the Kondo temperature TK,

G T T G, 0
1

2
, 7K 0f= = =( ) ( )

at B=0. Gis the linear-response differential conductance, equation (18), G G T 0, 0 10 f p= = = =( ) .

2.2. KeldyshGreen’s functions
While there is only one independent Green’s function in equilibrium, there are two in nonequilibrium: the
retarded and the Keldysh Green’s function, GRand GK, e.g., are independent of each other. Atfinite magnetic
field they are furthermore different for both spin kinds. In steady state, when the system is time-translation
invariant, they are defined as

G t t f t f

G t f t f

i , ,

i , , 8

R

K

=- Q

=-

s s s

s s s
⎡⎣ ⎤⎦

{ }( ) ( ) ( )

( ) ( ) ( )

†

†

and in Fourier space,

G G t t texp i d , 9òw w=s
a

s
a( ) ( ) ( ) ( )

with R K,a Î { }. Upon introducing the Keldysh contour, these Green’s functions can be arranged in a matrix
structure, according to

G
G G
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where the advanced Green’s function is related to the retarded one by G GA Rw w=s s( ) ( )†. In this way, the familiar
form of Dyson’s equation is maintained,
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0
1

w w w w

w w

= - D - S

= - S

s s

s

- -

-

( ) ( ) ( ) ( )

( ) ( ) ( )

G ws ( ) is the full interacting Green’s function of the impurity connected to the leads, g
0

w
s

( ) is the
noninteracting Green’s function of the disconnected impurity, wD( ) is the hybridization of the impurity by the
leads and wS( ) accounts for the interaction at the impurity. The noninteracting Green’s functions are combined
to G g0 0

1w w w= - Ds s
-( ) ( ) ( ). The hybridization function is given by

t g , 122åw wD = ¢
l

l l
( ) ( ) ( )

where g w
l

( ) is the (noninteracting) Green’s function of the decoupled leads. Since these are in equilibrium, its
components obey thefluctuation-dissipation theorem,

g f T2 i 2 , 1 , 13K w p w r w= -l l l( ) ( ( ) ) ( ) ( )

where f Texp 1 1w m= - +l l
-[ [( ) ] ] denotes the Fermi function at temperature T and chemical potential ml.

The DOS in the leads is connected to g R wl ( ),

g
1

. 14Rr w
p

w= -l l( ) ( ) ( )I

Therefore in equilibrium only one independent Green’s function persists. The hybridization strengthΓ is
defined, using equation (12),

0 . 15R wG = - D =( ) ( )I

Given the full interacting Green’s function at the impurity, the spin-resolved and total spectral functions are
calculated as

A G A A A
1

,
1

2
. 16Rw

p
w= - = +s s   ( ) ( ) ( ) ( )I

The current across the impurity is determined via the Meir–Wingreen formula [20]. In case of a bias-
independent lead DOS with L Rr w r w=( ) ( ), such as equation (5), it reduces to [23]

j A f T f T, , d , 17R Lò w g w w w w= -( ) ( )( ( ) ( )) ( )

where Rg w w= - D( ) ( )I . In linear-response the differential conductance G
j=
f
¶
¶

is calculated from
equation (17) as
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where f f fL R0 0L R

= =
m m= =

is the Fermi function at zero bias. In the general case, we calculate the differential
conductance from finite current differences using three-point Lagrange polynomials to approximate the
derivative.

2.3.Method
We here present a short sketch of the AMEA used in this paper. For more details, we refer to [21, 24–26]. The
idea is to map the physical system described by (1) to afinite and open auxiliary system that has almost the same
hybridization at the impurity as the original one (12) and thereby maintains the impurity physics, which we are
interested in. The auxiliary system consists of a small number of NBbath sites connected to Markovian
environments and its dynamics is governed by a Lindblad master equation. The parameters in this equation are
determined to achieve a corresponding auxiliary hybridization function aux wD ( ) such that aux w wD » D( ) ( ) as
accurately as possible, see [25]. The physical hybridization function D is calculated from the given lead DOS,
equation (5), using equations (12)–(14) and the Kramers–Kronig relation that links the real and imaginary part
of a Green’s function. The auxiliary hybridization function auxD can be calculated for a general set of bath
parameters by solving a noninteracting Lindblad problem, see, e.g. [24–28]. The determination of these
parameters and thus the mapping to the physical system is carried out with a parallel tempering algorithm [25].
The resulting Lindblad equation is solved by using matrix product states (MPS) and the time evolving block
decimation algorithm (TEBD), as described in [21]. Since the auxiliary Lindblad system is essentially exactly
solvable, the approximation of the method lies in the difference between aux wD ( ) and wD( ). As shown in [25],
this difference vanishes exponentially upon increasing NB. Therefore, a moderate number of bath sites
(N 14 20B » – ) is sufficient to reach the accuracy required in the present paper.

The results we present here are in the steady state, which is determined via time evolution and formally
reached with t  ¥. The Green’s functions are also calculated in the time domain, starting from the steady
state; they are continued to large times by linear prediction and then subjected to a Fourier transformation. The
bias voltage is realized by shifting the chemical potentials in the leads symmetrically with respect to each other,

R L 2
m m= - = f . Note that for each bias voltage a new auxD has to be determined, since f enters the Keldysh part
of the hybridization function. The calculations for B 1< , 1.8f < and B 1> , 2.1f < are with NB=20 bath
sites; for all other parameters NB=14 is sufficient. For the subsequent TEBD calculation we restrict the fit to
nearest neighbor couplings. All results shown in this paper are for the symmetric SIAM, t tL R¢ = ¢ . Note that the
extension to the non-symmetric model is simple and straightforward.

2.4. Comparison toNRG-tDMRGquench calculations
We compare our data to results obtained in a hybrid NRG-tDMRG quench setup which is described in [22].
While AMEA treats the impurity model as a truly open quantum system in the sense of a Lindblad master
equation, for ‘small enough’ time scales t one can equally well consider quenches in a closed quantum system
[29, 30]. Starting with an initial state in which the two leads are in thermal equilibrium, but held at different
chemical potential, standard Hamiltonian time evolution will drive the system towards its ‘steady state’until at
some point in time finite-size effects set in. For the SIAM one faces the difficulty that the different energy and
time scales inherent in the model have to be handled with care. The hybrid NRG-tDMRG approach presented in
[22]meets this challenge by exploiting the fact that energy scales outside the transport window, where
f T f T, ,L Rw w»( ) ( ), are effectively in equilibrium. Thus, they can be traced out using the NRG [31].
Subsequently, the non-equilibrium processes arising on the energy scale of the transport window are treated
within this renormalized setup using a tDMRG [32–35] quench. Both methods, NRG and tDMRG, are
implemented based on MPS.

For the high-energy range outside the transport window a logarithmic discretization is used, while the
transport window itself is discretized linearly. After mapping the problem onto a chain, the Hamiltonian of the
first part of this chain, which represents the high-energy modes, can be diagonalized using NRG. This yields a
truncated effective low-energy basis for this part of the system, which can be seen as the local state space of a
renormalized impurity (RI). This RI is coupled to the remainder of the leads, which corresponds to the energy
range of the transport window and therefore has an effective bandwidth set by voltage and temperature. The
quench is initialized with a state iniyYñ = ñ Ä Wñ∣ ∣ ∣ , where iniy ñ∣ lies in the ground state sector of the RI and Wñ∣
is the thermal state of the remaining part of the leads at different chemical potential and decoupled from the RI.
This state is time-evolved using tDMRG. The relevant time scale for this quench is given by the size of the
transport window.

4
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Infigure 6 wedisplay a comparison of results obtained within AMEA (dashed lines and circles) with results from
NRG ((a)dotted lines) and the hybrid NRG-tDMRG scheme discussed in section2.4 ((b), (c) squares). Equilibrium
spectral functions (a), differential conductance (b) and magnetization (c) curves at different magneticfields agree
remarkablywell between the twoapproaches. One can only see small deviations in the spectral functions at high
energies, due to the logarithmic discretization in NRG,which makes it less accurate in this energy region. The inset in
(a) shows a zoom around 0w = ,where NRG is known to produce essentially exact results. In this region the two
spectral functions deviate by less than 1%. Thedifferential conductance atfinite bias, being evaluated fromfinite
current differences (see section 2.2) in both approaches, is, in principle, more prone to errors.Nontheless, the results
lie essentially on top of each other. On theotherhand, as remarked in section2.4, the magnetization from the NRG-
tDMRG scheme is not fully converged to the steady state and the datahave been extrapolated assuming an
exponential decay of the occupancy n tá ñs ( ). For this reason, at highvoltages, we can see that the values for the
magnetization lie slightly above the AMEA results. While it is, in principle, possible to calculate spectral functions
within the NRG-tDMRG scheme, it is unclear at the moment, whether this is numerically feasible. For this reason, we
donot provide a comparisonbetween the twoapproaches infigure 6.

4. Summary and conclusions

In this paper, we studied the Anderson impurity model out of equilibrium under the influence of a bias voltage f
and a magnetic field B. In particular, we addressed the issue of the different behavior of the shift of the Kondo

Figure 2.Nonequilibrium spin-resolved (a) and total (b) impurity spectral function for different values of the bias voltage f andfixed
magnetic field B g ;Bm= G (∣ ∣ ) T k T0.05 2B K= G » . Note that f is in units of eG . Here a larger value of U 8= G is chosen, in
order to resolve the four-peak structure in A.
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Figure 3. (a) Current–voltage characteristic j f( ) and (b) differential conductance G f( ) for different values of the magneticfield B. G
is in units of G G T e0, 00

2 f p= = = =( ) ( ). Parameters are as in figure 1.

Figure 4. Shift Bf of the conductance peak (infigure 3(b)) and Bw of the equilibrium spectral function (infigure 1(a)) divided by the
magnetic field Bplotted as a function of B. Parameters are as infigure 1.
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peak in the impurity spectral function and the one in the conductance anomaly as a function of the magnetic
field. We also presented explicitly results for the spectral function showing a four-peak structure resulting from
the combined effects of Band f.

Our results agree with previous theoretical and experimental results in the known limits B TK and
B TK , while our approach allows us to access the intermediate regime B T, Kf as well. The key aspect of
AMEA [21, 24–26] is that we can obtain very accurate results also for the spectral functions out of equilibrium,
which is difficult by other methods. The accuracy of our results in the parameter regime we considered is
confirmed by an excellent comparison of spectral functions with NRG at 0f = (up to frequencies for which
NRG is supposed to yield correct results), and of expectation values with a recently introduced hybrid NRG-
tDMRG scheme [22] at finite bias voltages.

The two approaches adopted here, AMEA and the NRG-tDMRG scheme, deal with the challenge of
describing the long time behavior of the nonequilibrium SIAM in a different manner. While AMEA explicitly
describes an open quantum system and thus is not restricted tofinite time scales, the quench approach
renormalizes the problem down to the relevant energy scale. In addition, AMEA is able to evaluate the impurity
spectral function. While, in principle, this is also possible in the NRG-tDMRG approach, from a numerical point
of view, it would be more costly. Therefore, it is unclear at the moment, whether it is realizable in practice. Also
for the magnetization AMEA was able to achieve better convergence, especially at high voltages.

In summary, it is convenient to use AMEA, whenever very long time scales are needed, or when information
over the full energy range is required, as it is the case in the determination of spectral functions. For example,
AMEA is an interesting tool for DMFT in nonequilibrium, where spectral functions are needed explicitly
[26, 55–59]. On the other hand, the NRG-tDMRG approach is moreflexible with respect to the parameter

Figure 5. (a) Magnetization and (b) double occupancy as a function of the bias voltage f for different values of the magnetic field B. (b)
Shares its legend with (a). Dotted lines in (a) correspond to Bf = . Parameters are as infigure 1.
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regime, as it uses an explicit renormalization of the impurity. In particular, it has proven to be able to describe
very strong interactions such as U 12G = and zero temperature T=0, see [22]. AMEA can deal with
interactions of the same strength and temperatures down to T T 10K~ [21]. Much larger values of U and/or

Figure 6.Comparison of AMEA with NRG [54] and NRG-tDMRG [22]. (a) Equilibrium total impurity spectral function A w( ), (b)
differential conductance G f( ) and (c) magnetization n n fá - ñ  ( ) for different values of B. Dashed lines and circles correspond to
AMEA, dotted lines to NRG and squares to NRG-tDMRG. Parameters are as infigure 1.
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