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We show that rational conformal field theories in 1þ 1 dimensions on a Klein bottle, with a length L and
width β, satisfying L ≫ β, have a universal entropy. This universal entropy depends on the quantum
dimensions of the primary fields and can be accurately extracted by taking a proper ratio between the Klein
bottle and torus partition functions, enabling the characterization of conformal critical theories. The result is
checked against exact calculations in quantum spin-1=2 XY and Ising chains.
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Introduction.—The characterization of phases and phase
transitions is an important task in condensed matter
physics. The discovery of topological phases of matter
[1], examples of which include integer and fractional
quantum Hall states [2,3], as well as topological insulators
and topological superconductors [4,5], greatly enriches our
understanding of quantum phases. The topological systems
exhibit intriguing behaviors, such as gapless edge states,
robust ground-state degeneracy, and quasiparticles with
fractional statistics. Because of these remarkable proper-
ties, they constitute an important candidate for quantum
information processing devices.
Much effort has been made for characterizing these so-

called topological phases. In 2þ 1 dimensions, many
topological phases have gapless edge states that are
exponentially localized at the boundary. These edge modes
are either unidirectional or bidirectional, generically have
linear dispersion, and thus are described by the chiral or
nonchiral conformal field theory (CFT) in 1þ 1 dimen-
sions. The best-understood examples are fractional quan-
tum Hall states, for which the bulk properties are fully
characterized by the edge chiral CFTs through a remarkable
bulk-edge correspondence [6]. The nonchiral CFTs can
appear as the edge theory of (2þ 1)-dimensional sym-
metry-protected topological (SPT) phases, such as the Z2

topological insulators [7] protected by time-reversal and
charge conservation symmetries. Needless to say, identify-
ing the edge CFT is an important step toward the full
characterization of topological phases in 2þ 1 dimensions.
In this Letter, we show that (1þ 1)-dimensional non-

chiral rational CFTs, when placed on a Klein bottle (with
a length L and width β, satisfying L ≫ β), have a
universal entropy S ¼ ln g. This entropy depends on the
quantum dimensions of the CFT primary fields and,
therefore, provides a useful quantity which, at least
partially, distinguishes different CFTs. This result is
directly applicable to (1þ 1)-dimensional quantum chains
and two-dimensional classical statistical models, when

their low-energy effective theories are rational CFTs, and

is potentially applicable for (2þ 1)-dimensional SPT
phases with nonchiral gapless edge states. As a first step
toward its applications in lattice models, we focus on
(1þ 1)-dimensional quantum chains and devise a Klein
twist approach to extract the universal entropy. The validity
of the Klein twist approach is checked against analytical
calculations in (1þ 1)-dimensional quantum models—XY
and Ising chains. Finally, we discuss the validity and
limitations of the Klein twist and briefly comment on a
possible way to implement it at the edge of (2þ 1)-
dimensional SPT phases.
Torus vs Klein bottle partition functions.—Let us start

with a (1þ 1)-dimensional quantum system, described by a
Hamiltonian H, with a length L and periodic boundary
conditions. At a temperature T ¼ β−1, the partition function
ZT ¼ trðe−βHÞ, where T stands for the torus, can be cast
into an Euclidean path integral on a torus of a width β in the
imaginary time direction and a length L in the spatial
direction [see Fig. 1(a)].
When H is critical and is described by a CFT [8],

the Hamiltonian factorizes at the low-energy and

(a) (b)

FIG. 1. (a) Torus and (b) Klein bottle partition functions. The
arrows indicate how the opposite edges at the space and
imaginary time directions are identified.
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long-wavelength limit into left and right movers with linear
dispersion and is written as

H ¼ 2πv
L

�
L0 þ L̄0 −

c
12

�
; ð1Þ

where L0 (L̄0) is the zeroth-level holomorphic (antiholo-
morphic) Virasoro generators for the right (left) mover and
c and v the central charge and velocity, respectively, of the
CFT. The energy eigenstates jα; β̄i satisfy L0jα; β̄i ¼
hαjα; β̄i and L̄0jα; β̄i ¼ h̄βjα; β̄i, where ðhα; h̄βÞ are con-
formal weights. Accordingly, the associated Hilbert space
is the tensor product of the holomorphic and antiholomor-
phic sectors, H ⊗ H̄ with jαi ∈ H and jβ̄i ∈ H̄. The torus
partition function is then given by

ZT ¼ trH⊗H̄ðqL0−ðc=24Þq̄L̄0−ðc=24ÞÞ; ð2Þ

where q ¼ e2πiτ (τ ¼ ivβ=L) and q̄ is the complex con-
jugate of q.
The Klein bottle partition function takes a similar form

(Klein bottle denoted by K) [9]:

ZK ¼ trH⊗H̄ðΩqL0−ðc=24Þq̄L̄0−ðc=24ÞÞ ð3Þ

but has an extra operator Ω inserted. When acting on the
tensor product Hilbert space H ⊗ H̄, Ω interchanges the
states in the holomorphic and antiholomorphic sectors,
Ωjα; β̄i ¼ jβ; ᾱi. The physical picture of (3) is that the left
and right movers are swapped after the imaginary time
evolution and the Euclidean path integral is then glued back
(via taking trace) after the swapping. Thus, the Klein bottle
partition function is periodic only in the spatial direction
but contains a twist in the imaginary time direction [see
Fig. 1(b)], as opposed to the torus partition function that is
periodic in both the spatial and time directions. To evaluate
(3), a major step is to observe that only left-right symmetric
states jα; ᾱi have contributions to the trace [9], and one is
lead to the following partition function that is effectively
holomorphic:

ZK ¼ trHsym
ðq2L0−ðc=12ÞÞ; ð4Þ

where Hsym denotes the subspace of H ⊗ H̄ formed by
left-right symmetric states.
The target of the present work is rational CFT, a subclass

of CFTs whose Hilbert space is organized into a finite
number of conformal towers. In each tower, the Hilbert
space is formed by a primary state and their descendants.
A compact way of keeping track of the states in each
tower is through the so-called character, defined by
χaðqÞ ¼ traðqL0−ðc=24ÞÞ, where a labels the primary state
(and thus also the tower) and the trace is over all states in
the tower labeled by a. With such a decomposition, the
torus partition function in (2) is written as

ZT ¼
X
a;b

χaðqÞMa;bχ̄bðq̄Þ; ð5Þ

where Ma;b are non-negative integers specifying the num-
ber of distinct primary states ða; b̄Þ in H ⊗ H̄.
Accordingly, the Klein bottle partition function in (4) takes
the form of a (weighted) sum of single characters:

ZK ¼
X
a

Ma;aχaðq2Þ: ð6Þ

In the limit of our interest, L ≫ vβ, the partition
functions (5) and (6) can be evaluated by using the
modular transformation properties of the characters,
χaðqÞ ¼

P
bSabχbð ~qÞ, with q ¼ e−2πðvβ=LÞ and ~q ¼

e−2πðL=vβÞ and Sab the modular S matrix. Since ~q → 0,
the right-hand side is dominated by the primary state
contributions, so that χaðqÞ≃P

bSabe
−2πðL=vβÞ½hb−ðc=24Þ�,

where hb is the conformal weight of the primary state in
sector b. In the low-temperature limit β → ∞, the identity
sector I with hI ¼ 0 dominates all other sectors with
positive hb, which yields χaðqÞ≃ SaIe2πðL=vβÞðc=24Þ. The
torus partition function is, after taking into account its
modular invariance requirement (S†MS ¼ M) and the
nondegeneracy of the identity sector (MI;I ¼ 1), given
by ZT ≃ eπcL=6vβ. Similarly, the Klein bottle partition
function (6) can be evaluated by using the modular
transformation property of the character, χaðq2Þ ¼P

bSabχbð ~q1=2Þ, which is justified by replacing β by 2β
in the modular transformation used above for the torus case,
and we arrive at ZK ≃ geπcL=24vβ, where g ¼ P

aMa;aSaI .
By using the topological quantum field theory terminology,
SaI ¼ da=D, where da is the quantum dimension of the
primary field a and D the total quantum dimension
D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiP
ad

2
a

p
, we obtain g ¼ P

aMa;ada=D.
Until now, we have restricted ourselves to pure CFT

derivations, from which universal contributions to the
partition functions have been obtained. For lattice models,
nonuniversal terms generally appear, and we expect

lnZT ≃ −f0βLþ πc
6vβ

L; ð7Þ

lnZK ≃ −f0βLþ πc
24vβ

Lþ ln g; ð8Þ

where the nonuniversal constant f0 has the meaning of free
energy per unit length. When applying to two-dimensional
statistical models with spatially isotropic couplings (see,
e.g., [10,11]), the velocity is v ¼ 1. We note that (7) is
the seminal result obtained by Affleck [12] and Blöte,
Cardy, and Nightingale [13] and (8) is the key result of the
present work.
Several comments are in order regarding (7) and (8).

(i) f0 takes the same value for torus and Klein bottle cases
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when L and β are large. The reason is that, in the path
integral picture, the nonuniversal term f0βL is determined
by the space-time area, while the torus and Klein bottle
differ only at the “boundary” in the time direction. (ii) The
second terms are responsible for the specific heat, with
CK ¼ 1

4
CT ¼ πcT=12v, which indicates that the heat

capacity of a conformal critical system on the Klein bottle
is exactly 1=4 of that for the same system on the torus.
(iii) There exists a universal entropy ln g for conformal
critical systems on the Klein bottle. The origin of this
entropy, from a technical point of view, is analogous to the
celebrated Affleck-Ludwig entropy [14] for boundary
CFTs: They share the same feature that the partition
functions are given by a sum of single characters, from
which the universal entropies arise when performing the
modular transformation. In this sense, the universal entropy
on the Klein bottle, which by itself is a closed manifold,
may be viewed as a boundary entropy without a boundary.
Very recently, Ref. [15] transformed the Klein bottle into a
cylinder with nonlocal interactions along the time direction
and attributed the universal entropy to the nonlocal boun-
dary interactions on the cylinder, which thus provides an
appealing physical picture for the origin of the Klein bottle
universal entropy and its connection to the Affleck-Ludwig
entropy. (iv) The following ratio between the Klein bottle
and torus partition functions is universal:

ZKð2L; β
2
Þ

ZT ðL; βÞ ¼ g: ð9Þ

As g depends on the operator content of the CFT (via
g ¼ P

aMa;ada=D), it is, in general, a noninteger and
quantifies the universal, intensive “ground-state degen-
eracy” of rational CFTs on the Klein bottle. Since the
value of g is related to the quantum dimensions of the
primary fields, it provides a useful label which, at least
partially, distinguishes different CFTs. (v) The partition
function ratio in (9) may also be used for detecting and
locating phase transitions occurring at zero temperature:
(1þ 1)-dimensional quantum critical models are mostly
described by CFTs with a diagonal partition function, i.e.,
Ma;b ¼ δab in (5), and thus g ¼ P

ada=D ≥ 1 (g ¼ 1 is
achieved only for very special CFTs with a single primary,
such as E8 level-1 CFT). When entering a gapped phase,
say, with a unique ground state separated from excitations
by a gap Δ, the area-proportional terms would dominate in
(7) and (8), while all other terms are exponentially sup-
pressed by the gap at a low temperature (T ≪ Δ), and then
one obtains g ¼ 1. Thus, tuning the coupling constant in a
Hamiltonian from a gapped phase to a critical point
(described by the CFT) would indicate a sharp change
of g (see Ref. [16] for a detailed analysis of an explicit
example).
XY and Ising chains.—Now we focus on two quantum

spin-1=2 chains, i.e., the XY and Ising models, for which

exact calculations of the torus and Klein bottle partition
functions can be performed. More importantly, they shed
light on how Klein bottle partition functions may be
constructed and justified for generic lattice systems.
Both models consider spin-1=2 particles on periodic

chains with L sites (L even), the Hamiltonians of which are
given by

HXY ¼ −
XL
j¼1

ðσxjσxjþ1 þ σyjσ
y
jþ1Þ ð10Þ

and

HIsing ¼ −
XL
j¼1

ðσxjσxjþ1 þ σzjÞ; ð11Þ

where σν (ν ¼ x, y, z) are Pauli matrices and σνLþ1 ¼ σν1.
The torus partition functions are, of course, defined in a

usual way: ZT ¼ trðe−βHÞ. For the Klein bottle partition
function, the nontrivial task is to find an operator defined on
the lattice, which, when acting on the low-energy states,
plays the role of interchanging left and right movers, as
required in the definition of Ω in (3). For the XY and Ising
chains with even L, we have proven that it is simply the
bond-centered reflection operator P, defined by

Pjs1; s2;…; sL−1; sLi ¼ jsL; sL−1;…; s2; s1i; ð12Þ

which plays that role. Here jsji denotes the spin state at site
j, sj ¼ �1. The Klein bottle partition functions are hence
given by ZK ¼ trðPe−βHÞ. We name such a construction
of ZK by inserting a lattice reflection as the Klein twist,
whose connection to the Klein bottle becomes transparent
when representing e−βH in ZK by using the Trotter-Suzuki
decomposition.
The justification of the Klein twist is most conveniently

done in the energy eigenstate basis, for which we need
to diagonalize the Hamiltonian. Both XY and Ising chains
can be solved via the Jordan-Wigner transformation,

σxj¼ðc†jþcjÞð−1Þ
P

l<j
nl and σzj¼2nj−1 with nj ¼ c†jcj,

which map spins to fermions. Below, we illustrate such a
calculation for the XY chain, and the analysis for the Ising
chain requires only minor modifications. When taking into

account that the fermion parity Q ¼ ð−1Þ
P

L
j¼1

nj is a
conserved quantity, the Hilbert space splits into two sectors
with definite fermion parity Q ¼ �1, and one arrives
at [17,18]

HXY ¼ 1þQ
2

Hþ
XY þ 1 −Q

2
H−

XY; ð13Þ

whereH�
XY ¼−2

P
L
j¼1ðc†jcjþ1þc†jþ1cjÞwith cLþ1 ¼∓ c1.

The two sectors, following the CFT convention, are termed
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as the Neveu-Schwarz and Ramond sectors, respectively.
The Hamiltonian in the Neveu-Schwarz sector is then
diagonalized in momentum space, Hþ

XY ¼ P
pεpc

†
pcp,

where εp ¼ −4 cosp, cp ¼ ð1= ffiffiffiffi
L

p ÞPjcje
−ipj, and

the allowed lattice momenta are p¼�ðπ=LÞ;
�ð3π=LÞ;…;�ðπðL−1Þ=LÞ. The Hamiltonian in the
Ramond sector takes the same form, while the allowed
lattice momenta are instead q ¼ 0;�ð2π=LÞ;…;�
ðπðL − 2Þ=LÞ; π. The complete energy eigenstate basis is
formed by creating an even (odd) number of fermionic
modes on top of the vacuum j0i in the Neveu-Schwarz
(Ramond) sector. When working in this basis, the torus
partition function can be immediately written down as

ZT
XY ¼ 1

2

Y
p

ð1þ e−βεpÞ þ 1

2

Y
p

ð1 − e−βεpÞ

þ 1

2

Y
q

ð1þ e−βεqÞ: ð14Þ

The critical theory for describing the XY chain is known
to be the Uð1Þ4 CFT of a free boson with a central charge
c ¼ 1. This CFT has four primary fields, I, s, s̄, and v
with conformal dimensions hI ¼ 0, hs ¼ hs̄ ¼ 1=8, and
hv ¼ 1=2. The correspondence of (14) to the CFT torus
partition function (5) can be made clear by linearizing
the spectrum of fermions close to two Fermi points,
kF ¼ �π=2. It is straightforward to see that the
resulting CFT partition function is diagonal, ZT

XY≃P
a¼I;s;s̄;vχaðqÞχ̄aðq̄Þ, and the Neveu-Schwarz (Ramond)

sector corresponds to primary fields I, v (s, s̄), and their
descendants, respectively.
We are now in a position to justify the usage of (12) for

constructing the lattice version of the Klein bottle partition
function for the XY chain (10). Our strategy is to show that
the contributions to ZK come from left-right symmetric
states (in the lattice sense), which agrees with the CFT
derivation. To achieve this, we need to work out the action
of the reflection operator P on the energy eigenstate basis.
We note that the action of the reflection operator on spins,
PσνjP

−1 ¼ σνL−jþ1, is inherited by its action on fermions,

Pc†jP
−1 ¼ c†L−jþ1Q, which, in momentum space, is

written as

Pc†pP−1 ¼ −eipc†−pQ; Pc†qP−1 ¼ eiqc†−qQ: ð15Þ

By using (15) and noticing that the fermionic vacuum j0i
(fully polarized spin-down state) is invariant under reflec-
tion, Pj0i ¼ j0i, one realizes that only a few energy
eigenstates survive in the trace trðPe−βHÞ, since most of
the states are orthogonal to their reflected partners. In the
Neveu-Schwarz (Ramond) sector, all contributing states
can be obtained by starting from the vacuum j0i (singly
occupied states c†q¼0j0i and c†q¼πj0i) and creating pairs of

fermions with opposite momenta, such as c†−pc
†
pj0i

(c†−qc
†
qc

†
q¼0j0i and c†−qc†qc†q¼πj0i). We note that those states

originated from j0i and c†q¼0j0i are invariant under the

reflection, while those originated from c†q¼πj0i are invariant
up to a minus sign. When taking these into account, the
analytical form of the Klein bottle partition function for the
XY chain can be obtained as follows:

ZK
XY ¼

Y
0<p<π

ð1þ e−2βεpÞ þ ðe−βεq¼0 − e−βεq¼πÞ

×
Y

0<q<π

ð1þ e−2βεqÞ: ð16Þ

When linearizing the fermion spectrum in (16), only a
single Fermi point kF ¼ π=2 needs to be considered, so that
the resulting form is the sum of single characters,
ZK
XY ≃P

a¼I;s;s̄;vχaðq2Þ, which is indeed consistent with
the CFT result (6). In Fig. 2(a), we plot the exact results of
the ratio (9) for the XY chain with L ¼ 100. This is in
perfect agreement with the CFT prediction: The four
primary fields of the Uð1Þ4 CFT are Abelian and thus
have quantum dimensions dI ¼ ds ¼ ds̄ ¼ dv ¼ 1 (total
quantum dimension D ¼ 2), leading to gXY ¼ 2.
For the Ising chain, a similar calculation has been

performed, and the results are shown in Fig. 2(b). The
extracted value of g from the lattice calculation again agrees
very well with the CFT prediction: For the Ising CFT, there
are three primary fields I, σ, and ψ with quantum
dimensions dI ¼ dψ ¼ 1 and hσ ¼

ffiffiffi
2

p
(total quantum

dimension D ¼ 2), yielding gIsing ¼ 1þ ffiffiffi
2

p
=2.

The Klein twist approach has also been successfully
verified in other quantum chains, such as the Z3 Potts [15]
and spin-1 Blume-Capel models [16]. However, the validity
of the Klein twist approach deserves special attention. From
the above XY and Ising examples, one may notice that the
lattice reflection plays two roles: (i) selecting certain states

(a) (b)

FIG. 2. Ratio of Klein bottle and torus partition functions
ZKð2L; β=2Þ=ZKðL; βÞ as a function of the inverse temperature β
for (a) XY and (b) Ising chains with L ¼ 100. The ratio rapidly
converges at a low temperature to the CFT-predicted values
gXY ¼ 2 and gIsing ¼ 1þ ð ffiffiffi

2
p

=2Þ.
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at (many-body) lattice momenta 0 and π and removing all
other “unwanted” states; (ii) the kept states relevant for
low-energy physics are eigenstates of the reflection oper-
ator with the same eigenvalue (i.e., they share the same
parity quantum number �1). For models whose gapless
modes appear at other lattice momenta, one may need to
use combinations of lattice reflection and translation
operator, in order to project onto the relevant states.
However, a more subtle question is, when the low-energy
states have different parity quantum numbers, how to
construct the Klein bottle partition function on a lattice.
So far, we do not have a satisfactory answer to this
question, and it will be left for further investigations.
Conclusion and discussion.—In summary, we have

shown that (1þ 1)-dimensional nonchiral rational CFTs
exhibit a universal entropy on a Klein bottle. This entropy
depends on the quantum dimensions of the primary fields
and characterizes the CFTs. For (1þ 1)-dimensional quan-
tum lattice models, we have devised a Klein twist pro-
cedure to extract such universal entropy, which found
excellent agreement with CFT predictions for quantum
XY and Ising chains.
There is no doubt that (2þ 1)-dimensional SPTs with

gapped bulk and nonchiral gapless edges provide an
interesting class of system to investigate whether the
Klein twist might be useful for identifying the edge
CFTs. Recently, it has been shown [19] that, for (2þ 1)-
dimensional SPT wave functions, a tensor network formu-
lation allows us to represent the thermal density operator
e−βHedge of its (1þ 1)-dimensional gapless edge theory as a
matrix-product operator (MPO). Once this MPO is
obtained, the Klein twist approach developed here could
be used directly.
For future investigations, one interesting question is to

understand possible connections of the Klein twist devel-
oped in the present work and similar partial twists [20] in
topological wave functions. Another intriguing issue is to
study whether there exists a relation between the Klein
bottle universal entropy and the bulk renormalization group
flow (the Affleck-Ludwig boundary entropy decreases
during the boundary renormalization group flow [14,21]
but cannot be used for indicating bulk renormalization
group flows [22]).
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