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We demonstrate that low dimensional Kondo-Heisenberg systems, consisting of itinerant electrons and
localized magnetic moments (Kondo impurities), can be used as a principally new platform to realize scalar
chiral spin order. The underlying physics is governed by a competition of the Ruderman-Kittel-Kosuya-
Yosida (RKKY) indirect exchange interaction between the local moments with the direct Heisenberg one.
When the direct exchange is weak and RKKY dominates, the isotropic system is in the disordered phase.
A moderately large direct exchange leads to an Ising-type phase transition to the phase with chiral spin
order. Our finding paves the way towards pioneering experimental realizations of the chiral spin liquid in
systems with spontaneously broken time-reversal symmetry.
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Interactions between magnetic moments usually lead to
some kind of magnetic order where rotational symmetry is
broken and the order parameter is linear in spins [1]. This is
what happens in ferromagnets, antiferromagnets, and all
sorts of helimagnets. Villain has demonstrated [2] that, in
addition to the magnetic order, helical magnets possess a
vector chiral order parameter. It is bilinear in spins and is
related to the mutual orientation of neighboring spins. This
chiral order breaks the discrete symmetry and can exist
even without magnetic order [3]. The discovery of the
vector chiral order has given rise to the idea that there could
exist an order which includes a combination of three spins.
The corresponding order parameter is a mixed product of
three neighboring spins; seeOc in Eq. (1) and Refs. [4,5]. It
breaks time-reversal and parity symmetries. Such an order
parameter is considered as the key quantity for description
of exotic magnetic phases [4]. In contemporary language,
Oc is referred to as “scalar chiral spin order,” and the state
of matter with (spontaneously) broken time-reversal and
parity symmetries but with conserved spin rotational
symmetry is called chiral spin liquid (CSL) [6]. The
seminal example possessing the CSL symmetry is the
Kalmeyer-Laughlin model [7–10]. Its wave functions
demonstrate the topological behavior inherent in the frac-
tional quantum Hall effect. Thus, the Kalmeyer-Laughlin
model links spin liquids and topologically nontrivial states
[11–16] and can be called “topological CSL.” An increas-
ing interest in the topological CSL [17–23] is stimulated, in
part, by a search for exotic (anyon) superconductivity
[24,25] and by the physics of skyrmions [26–29]. The
latter can be realized in magnets with the chirality resulting
from the lattice structure or from the Dzyaloshinskii-
Moriya interaction [30–33].
Although the concept ofCSLand its order parameterwere

introduced in the 1980s, it still remains unclearwhether such
a state can exist in realistic systems where time-reversal
symmetry is not explicitly broken. Numerous theoretical

suggestions include spin systems with a complicated set of
either Heisenberg exchange interactions extended far
beyond nearest neighbors [34–36] or multispin interactions
[15,16], moat-band lattices [37], and even laser-drivenMott
insulators [38]. This list can be continued, but, to the best of
our knowledge, the question is still open and a reliable
experimental evidence of CSL governed by the spontane-
ously broken time-reversal symmetry is still absent.
The goal of this Letter is to demonstrate that this

uncertainty can be removed by realizing CSL in Kondo-
Heisenberg systems (KHS) [39–43], which consist of
localized spins and itinerant electrons. Their coexistence
leads to a competition between the direct Heisenberg spin
exchange and Ruderman-Kittel-Kosuya-Yosida (RKKY)
generated by the electrons, Fig. 1: the short-range
Heisenberg exchange prefers a commensurate Néel order
and RKKY prefers an incommensurate plane spiral order.
Thus, the system is magnetically frustrated. When the
Heisenberg interaction exceeds some critical value, see

FIG. 1. Competition between spin interactions in KHS. The
spin on each lattice site is decomposed in terms of an orthonormal
triad e1;2;3 (green arrows) with e⊥ ¼ ð−1ÞNðrÞe3; see Eq. (3). The
RKKY exchange interaction (red lines) is mediated by electrons
(red circles) and favors helical-like configuration of the vectors
e1;2. The Heisenberg exchange interaction (blue line) favors
antiparallel orientation of e⊥ on neighboring lattice sites.
Coupling constants JK;H are introduced in Eq. (2).
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Eqs. (5) and (6), the compromise between the two inter-
actions is reached via an Ising-type phase transition leading
to formation of a 3D spiral, Fig. 2. It is accompanied by the
spontaneous breaking of the chirality and by an appearance
of the CSL order. This is our main result.
We emphasize that the scalar chirality is necessary for the

quantum effects mentioned above, but it does not require
them and can exist in spin systemswhere the magnetic order
is destroyed not by quantum but by thermal fluctuations.We
shall demonstrate that the CSL state can emerge in classical
(quasi-)two-dimensional systems when the spin susceptibil-
ity of the electrons has a sharp maximum at some nonzero
wave vector Q incommensurate with the lattice. The easiest
way to model this is to assume that the Fermi surface has
nested portions. In the second order in the spin-electron
coupling constant, the Fourier transform of the RKKY
exchange is proportional to the spin susceptibility of
itinerant electrons and, hence, is strongly enhanced at Q.
Without loss of generality, we can consider KHS with the
spins situated on a 2D lattice with a short-range antiferro-
magnetic Heisenberg exchange. The spins interact with
electrons with a nested Fermi surface. Thermal fluctuations
in 2D prevent long-range spin order in the SU(2) symmetric
system, but do not prevent the chiral one. When the
Heisenberg exchange overwhelms the RKKY interaction,
the scalar chiral order (SCO) emerges as the only nontrivial
order parameter:

Oc ¼ (Sðr1Þ; ½Sðr2Þ × Sðr3Þ�); ð1Þ
where S are the spin operators located on neighboring lattice
sites r1;2;3. The energetically favorable spin configuration is
presented in Eq. (3). Such 3D spiral of spins is the only
configuration which preserves the constraint on the spin
length and, at the same time, contains Fourier components
with�Q andNéel wavevectors.We predict thatOc acquires
a nonzero expectation value below a certain temperature

breaking parity and time-reversal symmetries. Unlike non-
collinear magnets, which have other order parameters (e.g.,
linear in spins), the thermodynamic CSL phase is fully
characterized by Oc.
We will now explain how to justify our predictions. We

consider themodel combining theKondo lattice Hamiltonian
and the Heisenberg interaction between the local moments,
Ĥ ¼ ĤK þ ĤH, where

ĤK ¼
X
k

ϵðkÞĉ†ðkÞĉðkÞ þ JK
X
r

ĉ†ðrÞσĉðrÞSðrÞ;

ĤH ¼ JH
X
r;a

Sðrþ aÞSðrÞ; S ¼ fSx; Sy; Szg: ð2Þ

Here ĉT ≡ (c↑ðrÞ; c↓ðrÞ) are electron operators at lattice site
r, ĉðkÞ is Fourier-transformed ĉðrÞ, σ ¼ fσx; σy; σzg are
Paulimatrices,Sx;y;zðrÞ are components of the spin-s operator
S located on lattice site r, and JK;H are coupling constants of
the isotropic exchange interaction which are much smaller
than the bandwidth, sJK , sJH ≪ D. The Heisenberg
exchange acts between nearest neighbors; i.e., a are the
smallest vectors of the lattice. To model the above discussed
maximum of the electron spin susceptibility, we assume that
the dispersion ϵðkÞ is nested with a wave vector Q being
incommensurate with the lattice: ϵðkÞ ¼ −ϵðkþ QÞ. We
emphasize that this is just a simple model providing the
susceptibility maximum and nesting should not be consid-
ered as a strict requirement for our theory. The electron band
is far from half filling. We concentrate on the regime where
RKKY suppresses the Kondo screening such that the latter
can be neglected; see Ref. [44] for details. For the sake of
simplicity, wewill not distinguish the crystalline and the spin
lattices. To simplify the calculations, we choose the 2D
dispersion relation ϵðkÞ ¼ k2x=2mx − 2ty cosðkyayÞ [45],
which is parametrized by the effective mass in the x direction
mx and by the hopping integral along the y direction ty.
Results will be simplified for the case of a square 2D lattice
with equal lattice constants ax ¼ ay ¼ a0.
A one-dimensional Kondo chain [a 1D version of the

model Eq. (2) with JH ¼ 0] was studied in Refs. [44,46]. It
has been shown that, in the case of densely located spins,
the physics is dominated by the backscattering processes
which generate the RKKY exchange and suppress the
Kondo screening. We have obtained nonperturbative sol-
utions for cases of the easy-axis and of the easy-plane
anisotropy of the Kondo exchange. In the latter case, the
local spins assemble into a quasi-long-range vector chiral
(or “helical”) order [47]. The spontaneously chosen helix
orientation (left or right handed) breaks the helical sym-
metry of the conduction electrons which results in a
symmetry protection of the ideal transport.
In this Letter, we concentrate on magnetic properties of

KHS. Because of thermal fluctuations, the helical spin
ordering does not occur when the SU(2) symmetry
is present. Therefore, KHS is in a disordered phase at

FIG. 2. Chiral configuration of spins in the CSL phase. The
dotted line is the helix. The green and red arrows show helical S∥
and antiferromagnetic S⊥ spin components, respectively; see
Eq. (3). For simplicity, we disregard helix deformations on the
scale of several lattice constants which are caused by the thermal
fluctuations of the triad e1;2;3.
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JH < Jc ∼ ðJ2K=DÞ logðD=jJKjÞ. When JH exceeds Jc, an
Ising-type phase transition occurs and the spins form SCO;
see the phase diagram on Fig. 3.
To establish the existence of the CSL it suffices to calculate

the ground state energy of our model in the proper spin
background. These calculations are similar to those for the 1D
Kondo chain [44,46]. We outline them for KHS skipping
algebraic details. Firstly, we change from the Hamiltonian to
the action and single out slow fermionic modes located at the
right and left sheets of the open Fermi surface [45], with an
ultimate aim to develop an effective low-energy field theory
for the spins. To do this, we separate fast and slow spin
degrees of freedom which can be conveniently done with the
help of the parametrization:

SðrÞ ¼ S∥ðrÞ þ S⊥ðrÞ;
S∥ ¼ s cosðαÞ½e1 cosðQ · rÞ þ e2 sinðQ · rÞ�;
S⊥ ¼ s sinðαÞð−1ÞNðrÞe3; ðeiejÞ ¼ δij: ð3Þ

The triad of mutually orthogonal unit vectors e1;2;3 and the
angleα dependon the coordinate r and change slowlyover the
lattice distance a0. To be definite, we choose the antiferro-
magnetic Heisenberg exchange on a bipartite lattice such that
NðrÞ is a sum of all lattice coordinates for a given site.
We are interested in the state where sinðαÞ acquires a

nonzero average below some transition temperature and the
triad of vectors e1;2;3 remains disordered, at least at finite
temperatures. As we shall see, the fluctuations of angle α
always remain massive. Its mean value will be found from
minimizing the free energy.
To calculate the ground state energy, we first neglect

space variations of the ei vector fields and integrate out the
electrons [48]. We will comment on the space variations
below while deriving the Landau free energy for the
fluctuations. The spin configuration Eq. (3) gaps out only
half of the electronic modes and another half remains
gapless. A similar effect has been predicted by us for the 1D

Kondo lattice where the anisotropy is of the easy-plane type
and one helical sector of the fermions is gapped [44,46].
However, in the SU(2)-symmetric system, the axis of the
spin spiral fluctuates in space which does not allow a global
identification of gapped and gapless fermionic modes. The
density of the ground state energy for the uniform and static
configuration reads as

E0=s2 ¼ JH
X
a

ð−1ÞNðaÞsin2ðαÞ

þ cos2ðαÞf~JHðQÞ − ρðϵFÞJ2K ln½D=jsJK cosðαÞj�g;
ð4Þ

where ~JHðqÞ ¼ JH
P

a cosðq · aÞ is the Fourier transform of
the Heisenberg exchange interaction, ρðϵFÞ is the density of
states (per one unit cell of the lattice) at the Fermi energy. We
emphasize that, if the Fermi surface is nested, the specific
choice of the dispersion relation has an influence only on
ρðϵFÞ, but neither the structure of Eq. (4) nor its further
analysis depends on details of ϵðkÞ. In the case of a square
2D lattice, ð−1ÞNðaÞ ¼ −1 such that JH

P
að−1ÞNðaÞ sim-

plifies to ~JHðGÞ with G ¼ fπ=a; π=ag. We will use the
contracted notation ~JHðGÞ for JH

P
að−1ÞNðaÞ, implying

that ~JHðGÞ < 0.
E0ðαÞ has three extrema, one at α ¼ 0 and the other two

at α defined by the following equation:

j cos αj ¼ CðJHÞ≡ e−1=2D
sjJKj

exp

�
~JHðGÞ − ~JHðQÞ

ρðϵFÞJ2K

�
: ð5Þ

The fluctuations of α are massive in both cases. Since
j cosðαÞj ≤ 1, the nontrivial minimum defined in Eq. (5)
appears only at sufficiently strong JH. The critical value can
be found from the equation

CðJcÞ ¼ 1 ⇒ Jc ∼ ρðϵFÞJ2K logðD=sjJKjÞ: ð6Þ
IfJH < Jc, theminimumof the energy is located atα ¼ 0 and
the system is in the disordered phasewithOc ¼ 0 [49].When
JH > Jc, the effective potential Eq. (4) has two equivalent
minima corresponding to different signs of α ≠ 0 defining
signs of the finite SCO parameter; see Eq. (9). This corre-
sponds to the CSL phase. Since the vacuum is doubly
degenerate, the SCO parameter at T ¼ 0 reflects broken
Z2 symmetry and there is an Ising-like phase transition at
finite temperature Tc.We can estimate Tc by the height of the
potential barrier in the effective potential Eq. (4):

Tc ∼ E0jcosðαÞ¼1 − E0jcosðαÞ¼hcosðαÞi; JH > Jc: ð7Þ
For JH close to Jc, Eq. (7) simplifies to

Tc ∼ ρ−1ðϵFÞ½ðJH − JcÞ=JK�2: ð8Þ
At T < TcðJHÞ and JH > Jc, Oc acquires the finite
value [49]:

FIG. 3. Phase diagram of the isotropic 2D KHS on the plane T
vs JH at T ≪ sjJK j. The green line is the critical line; see Eq. (7).
It separates the disordered phase and CSL (green area). JAFM
marks the transition from CSL to the antiferromagnetic phase (red
line) at T ¼ 0. Inset: Temperature dependence of the mean value
hsinðαÞi. Note that the SCO parameter is proportional to this
quantity; see Eq. (9).
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Oc ¼ s3hsin½αðrÞ� cos½αðrÞ�2i½ð−1ÞNðr3Þ sinðΔ12Þ
þ ð−1ÞNðr1Þ sinðΔ23Þ þ ð−1ÞNðr2Þ sinðΔ31Þ�;

Δjj0 ≡ ðQ; rj − rj0 Þ: ð9Þ
To describe fluctuations of the vector fields, we have to

integrate over the fermions and make a usual gradient
expansion keeping only leading terms [50]. This yields the
Landau free-energy density for the disordered and for the
chiral phases. At low temperatures and on the square 2D
lattice, we obtain

F ¼ 1

8

X
j¼1;2;3

X
ν¼x;y

Rj;νð∂νejÞ2; ðei; ejÞ ¼ δij;

R1;ν ¼ ρðϵFÞv2xδν;x − 2hcos2ðαÞiðsa0Þ2JH cosðQ · aνÞ;
R2;ν ¼ R1;ν;

R3;ν ¼ ρðϵFÞv2xδν;x − 2hsin2ðαÞiðsa0Þ2 ~JHðGÞ; ð10Þ
where vx is the x projection of the Fermi velocity. The
stiffness tensor Rj;ν is generically anisotropic. Its aniso-
tropy is not universal and depends, in particular, on a
specific choice of ϵðkÞ and on temperature.
Equation (10) has a form of a nonlinear σ model with the

symmetry SUð2Þ × Uð1Þ. Similar σ models were studied in
the context of noncollinear antiferromagnetism [51–53].
Nonlinearity of the theory Eq. (10) comes from the
orthonormality of the vectors ej. In 2D, this interaction
generates a finite correlation length ξ [54]. In the renorm-
alization procedure, this manifests itself as a continuous
decrease of the stiffness components Rj;νðΛÞ with the
decrease of the momentum cutoff Λ. As a result, the
fluctuations acquire a correlation length which is exponen-
tially large in EUV=T; EUV is the UV regularizer [55,56].
We consider the finite temperatures implying that ther-

mal fluctuations dominate over the quantum ones at length
scales L > ξ > v=T, where v is a characteristic velocity of
the spin excitations. In this case, one can treat the fields ei
as time independent and there is no need to promote the
free-energy description to the full dynamical theory. The
thermal fluctuations prevent a breaking of the SU(2)
symmetry of Eq. (10) and the magnetic order can occur
only at T ¼ 0; see Fig. 3. This leaves us with SCO as the
only possible order at JH > Jc and T ≠ 0.
One has to distinguish two regimes where Eq. (10) can

be used. (1) The model with α ¼ 0 corresponds to the
disordered phase and can be used in the temperature
interval between the Ising transition temperature and the
fermionic gap: Tc ≪ T ≪ sJK . (2) The model with α ≠ 0
corresponds to CSL and should be used well below the
Ising transition, Tmin < T ≪ Tc, where one can neglect
fluctuations of hsin αi.
Although all quantum effects in CSL are very interesting,

we leave their systematic study for a forthcoming paper. At
present, we can make only a preliminary guess: We note

that the charge and the spin degrees of freedom are
deeply connected in our approach [57]. The Kondo lattice
model considered in Refs. [44,46] has the same property.
Based on this analogy and on the fully quantum theory of
Refs. [44,46], we surmise that nontrivial excitation of the
KHS are slow spinons dressed by localized electrons.
To summarize, we have found that increasing the direct

Heisenberg exchange in the Kondo-Heisenberg model with
the nested Fermi surface leads to a phase transition to the
state with spontaneously broken scalar chirality. The
corresponding chiral order parameter, Oc in Eq. (1), breaks
time-reversal and parity symmetry. This symmetry is Z2

and the transition belongs to the universality class of the
Ising model.
We believe that KHS can be used as a principally new

platform to realize SCO in nonexotic experimental setups.
Our finding paves the way towards removing the doubt of
whether the chiral spin liquid with the scalar chirality can
exist in the realistic systems where the time-reversal
symmetry is not explicitly broken.
Broken time-reversal and parity symmetries can reveal

themselves in the optical measurements through, for in-
stance, the Kerr effect or measurements of nonlinear optical
responses. The second harmonic response is particularly
sensitive to the presence of global inversion symmetry.
There are two other, though not definite, experimentally
detectable indicators which can complement the optical
experiments and confirm formation of CSL, namely, pecu-
liar magnetic and electronic responses of the antiferromag-
netic KHS with the nested Fermi surface. Firstly, the
energetically favorable spin configuration, Eq. (3), suggests
that correlation functions of all spin components have Q
harmonics. Therefore, spin susceptibilities possess the
Bragg peaks not only on the Néel vector but also on the
wave vectors �Q. These new peaks are smeared out by
smooth fluctuations of the spinQ components, including the
fluctuations of the triad e1;2;3 and of the angle α. The triad
fluctuations are (almost) insensitive to the Ising phase
transition at JH > Jc, T → Tc. However, the fluctuations
of α are suppressed in the CSL phase and, therefore, the
peaks become sharper at JH > Jc, T < Tc. On the other
hand, the response of the itinerant electronswill experience a
drop when the probe frequency and the temperature are
below sJK > Tc. Such a drop is related to the fact that one
half of the electrons acquire a gapwhile the other half remain
gapless. This decrease in the number of carriers is expected
to alter the electric properties of a sample, cf. Ref. [58]; more
details will be presented elsewhere. Thus, the full charac-
terization of CSL predicted in the present Letter can be
achieved via a combination of the optical measurements
with measurements of the spin and electron responses at
various temperatures.
A model described by the Kondo part of our

Hamiltonian, Ĥ ¼ ĤK at JH ¼ 0, has been considered in
Ref. [59] on a triangular lattice. It has been demonstrated
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that, for a particular band filling providing two independent
nesting vectors of the Fermi surface, the chiral order is
formed. We would like to stress that our approach is much
more general and does not require any special fine-tuning.
In particular, details of the band dispersion are not
important for our general predictions. The only crucial
ingredient is the strong maximum of the spin susceptibility
of the itinerant electrons. A nested Fermi surface is just a
simple way to achieve it and should not be considered as a
strict requirement for our theory imposing restrictions on its
experimental verification. Possible candidates for the
experimental realization of KHS with the spontaneously
broken chirality are proximity-coupled layers of metals and
Mott insulators. At present, we know at least one system
which is structurally similar to what we propose. This is
Sr2VO3FeAs [60], a naturally assembled heterostructure
made of well-separated layers of an iron-based metal
SrFeAs and Mott-insulating vanadium oxide. One can
search suitable materials among similar systems.
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