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We present a Keldysh-based derivation of a formula, previously obtained by Oguri using the Matsubara
formalism, for the linear conductance through a central, interacting region coupled to noninteracting fermionic
leads. Our starting point is the well-known Meir-Wingreen formula for the current, whose derivative with respect
to the source-drain voltage yields the conductance. We perform this derivative analytically by exploiting an exact
flow equation from the functional renormalization group, which expresses the flow with respect to voltage of
the self-energy in terms of the two-particle vertex. This yields a Keldysh-based formulation of Oguri’s formula
for the linear conductance, which facilitates applying it in the context of approximation schemes formulated
in the Keldysh formalism. (Generalizing our approach to the nonlinear conductance is straightforward, but not
pursued here.) We illustrate our linear conductance formula within the context of a model that has previously
been shown to capture the essential physics of a quantum point contact in the regime of the 0.7 anomaly. The
model involves a tight-binding chain with a one-dimensional potential barrier and onsite interactions, which we
treat using second-order perturbation theory. We show that numerical costs can be reduced significantly by using
a nonuniform lattice spacing, chosen such that the occurrence of artificial bound states close to the upper band
edge is avoided.
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I. INTRODUCTION

Two cornerstones of the theoretical description of transport
through a mesoscopic system are the Landauer-Büttiker [1]
and Meir-Wingreen [2] formulas for the conductance. The
Landauer-Büttiker formula describes the conductance between
two reservoirs connected by a central region in the absence of
interactions. The Meir-Wingreen formula applies to the more
general case that the central region contains electron-electron
interactions: it expresses the current, in beautifully compact
fashion, in terms of the Fermi functions of the reservoirs,
and the retarded, advanced, and Keldysh components of the
Green’s function for the central region.

To actually apply the Meir-Wingreen formula, these
Green’s functions have to be calculated explicitly, which in
general is a challenging task. Depending on the intended
application, a wide range of different theoretical tools have
been employed for this purpose. Much attention has been
lavished on the case of nonequilibrium transport through a
quantum dot described by a Kondo or Anderson model, where
the central interacting region consists of just a single localized
spin or a single electronic level (see Refs. [3,4] for reviews).
Here, we are interested in the less well-studied case of systems
for which the physics of the interacting region cannot be
described by just a single site, but rather requires an extended
model, consisting of many sites.

We have recently used a model of this type in a paper that
offers an explanation for the microscopic origin of the 0.7
anomaly in the conductance through a quantum point contact
(QPC) [5]. The model involves a tight-binding chain with
a one-dimensional potential barrier and onsite interactions.
In Ref. [5] we used two approaches to treat interactions:
second-order perturbation theory (SOPT) and the functional
renormalization group (fRG). Our calculations of the linear
conductance were based on an exact formula derived by Oguri

[6,7]. He started from the Kubo formula in the Matsubara
formalism and performed the required analytical continuation
of the two-particle vertex function occurring therein using
Eliashberg theory [8].

Since Oguri’s formula for the linear conductance is exact,
it can also be used when employing methods different from
SOPT, for example fRG, to calculate the self-energy and
two-particle vertex. If this is done in the Matsubara formalism,
and if one attempts to capture the frequency dependence of the
self-energy (as for the fRG calculations of Ref. [5]), one is
limited, in practice, to the case of zero temperature because
finite-temperature calculations would require an analytic
continuation of numerical data from the imaginary to the real
frequency axis, which is a mathematically ill-defined problem.
This problem can be avoided by calculating the self-energy and
vertex directly on the real axis using the Keldysh formalism
[9,10]. However, to then calculate the linear conductance, the
ingredients occurring in Oguri’s formula would have to be
transcribed into Keldysh language, and such a transcription
is currently not available in the literature in easily accessible
form.

The main goal of this paper is to derive a Keldysh version
of Oguri’s formula for the linear conductance by working
entirely within the Keldysh formalism. Our starting point is
the Meir-Wingreen formula for the current J (V ), with the
conductance defined by g = ∂V J . Rather than performing this
derivative numerically, we here perform it analytically, based
on the following central observation: the voltage derivative
of the Green’s functions that occur in the Meir-Wingreen
formula ∂VG all involve the voltage derivative of the self-
energy ∂V �. The latter can be expressed in terms of the
two-particle vertex by using an exact flow equation from
the fRG. (Analogous strategies have been used in the past
for the dependence of the self-energy on temperature [11] or
chemical potential [12,13].) We show that it is possible to
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use this observation to derive Oguri’s formula for the linear
conductance, expressed in Keldysh notation, provided that the
Hamiltonian is symmetric and conserves particle number. Our
argument evokes a Ward identity [14], following from U(1)
symmetry, which provides a relation between components of
the self-energy and components of the vertex.

As an application of our Keldysh version of Oguri’s
conductance formula, we use Keldysh-SOPT to calculate the
conductance through a QPC using the model of Ref. [5].
Some results of this type were already presented in Ref. [5],
but without offering a detailed account of the underlying
formalism. Providing these details is one of the goals of
this paper. We also discuss some details of the numerical
implementation of these calculations. In particular, we show
that it is possible to greatly reduce the numerical costs by
using a nonmonotonic lattice spacing when formulating the
discretized model. We present results for the conductance as
function of barrier height for different choices of interaction
strength U , magnetic field B, and temperature T and discuss
both the successes and limitations of the SOPT scheme.

The paper is organized as follows: After introducing the
general interacting model Hamiltonian in Sec. II, we present
the Keldysh derivation of Oguri’s conductance formula in
Sec. III. In Sec. IV, we present an efficient strategy for
computing, within SOPT, the voltage derivative of the current
needed for the linear conductance. We introduce the one-
dimensional (1D) model of a QPC and discuss results for
the conductance in Sec. V. A detailed collection of definitions
and properties of both Green’s and vertex functions in the
Keldysh formalism can be found in Appendix A and in
Ref. [15] (in fact our paper closely follows the notation used
therein). Appendix B presents the details of our calculations
for the self-energy and the two-particle vertex within Keldysh
SOPT. The Ward identity resulting from particle conservation
is presented in Appendix C. Finally, we apply the method of
finite differences in Appendix D, to discretize the continuous
Hamiltonian using a nonconstant discretization scheme. In the
Supplemental Material [16], we perform an explicit calculation
to verify the fluctuation-dissipation theorem for the vertex
functions within SOPT.

II. MICROSCOPIC MODEL

Within this work, we consider a system composed of a finite
central interacting region coupled to two noninteracting semi-
infinite fermionic leads, a left lead, with chemical potential
μl , temperature T l , and Fermi-distribution function f l , and
a right lead, with chemical potential μr , temperature T r , and
Fermi-distribution function f r . The two leads are not directly
connected to each other, but only via the central region. A
similar setup was considered in Refs. [2,6].

The general form of the model Hamiltonian reads as

H = H0 + Hint =
∑
ij

hij di
†dj +

∑
ij

Uijninj , (1)

where hij is a Hermitian matrix, and Uij is a real, symmetric
matrix, nonzero only for states i,j within the central region.
di

†/di creates/destroys an electron in state i and ni = di
†di

counts the number of electrons in state i. While in general
the index i can represent any set of quantum numbers we will

regard it as a composite index, referring, e.g., to the site and
spin of an electron for a spinful lattice model. Note that the
Hamiltonian conserves particle number, which is crucial in
order to formulate a continuity equation for the charge current
in the system.

We use a block representation of the matrix h of the single-
particle Hamiltonian

h =
⎛
⎝hl hlc 0

hcl h0,c hcr

0 hrc hr

⎞
⎠, (2)

where the indices l, r , and c stand for the left lead, right
lead, and central region, respectively. For example, the spatial
indices of the matrix h0,c both take values only within the
central region, while the first spatial index of hcl takes a
value within the central region and the second spatial index
takes a value within the left lead. The subscript 0 emphasizes
the absence of interactions in the definition of h0,c (the leads
and the coupling between the leads and the central region are
assumed noninteracting throughout the whole paper).

III. TRANSPORT FORMULAS

We henceforth work in the Keldysh formalism. Our notation
for Keldysh indices, which mostly follows that of Ref. [15],
is set forth in detail in Appendix A, to allow the main text to
focus only on the essential steps of the argument.

A. Current formula

We begin by retracing the derivation of the Meir-Wingreen
formula. In steady state, the number of particles in the central
region is constant. Hence, the particle current from the left
lead into the central region is equal to the particle current from
the central region into the right lead, J := Jl→c = Jc→r . [We
remark that this continuity equation can also be obtained by
imposing the invariance of the partition sum under a gauged
U(1) transformation, following from particle conservation of
the Hamiltonian (see Appendix C).] This allows us to focus on
the current through the interface between left lead and central
region. Expressing the current in terms of the time derivative
of the total particle-number operator of the left lead, nl =∑

i∈L ni , we obtain the Heisenberg equation of motion J =
−e〈ṅl〉 = −ie/h̄〈[H,nl]〉, where e is the electronic charge and
h̄ is Planck’s constant. For the Hamiltonian of Eq. (1), the
current thus reads as

J = − ie

h̄

∑
i∈L
j∈C

[hij 〈d−
j (t)[d+

i ]†(t)〉 − hji〈d−
i (t)[d+

j ]†(t)〉]

= e

h̄
[Tr{(hlc − hcl)G

−|+}], (3)

with the interacting equal-time lesser Green’s function
G

−|+
i|j = G

−|+
i|j (t |t) = −i〈d−

i (t)[d+
j ]†(t)〉 (here we used time-

translational invariance of the steady state). Fourier transfor-
mation of Eq. (3) yields

J = e

h

∫
dε Tr{(hlc − hcl)G−|+(ε)}, (4)

125141-2



DERIVATION OF OGURI’s LINEAR CONDUCTANCE . . . PHYSICAL REVIEW B 96, 125141 (2017)

with h = 2πh̄. We introduced the symbol G for a Green’s
function that depends on a single frequency only {as opposed
to the Fourier transform of the time-dependent Green’s
function G, which, in general, depends on two frequencies
[see Appendix A, Eq. (A7), for details]}.

Following the strategy of Ref. [2], we use Dyson’s equation
(A26) to express the current in terms of the central region
Green’s function Gc and rotate from the contour basis into
the Keldysh basis [the explicit Keldysh rotation is given by
Eqs. (A10) and (A14c)]. This yields

J = ie

2h

∫
dε Tr

{
�l

[
G2|2

c − (1 − 2f l)
(
G2|1

c − G1|2
c

)]}
, (5)

with retarded G2|1
c (ε), advanced G1|2

c (ε), and Keldysh central
region Green’s function G2|2

c (ε), and the hybridization function
�l(ε) = ihcl(g

2|1
l (ε) − g

1|2
l (ε))hlc, where gl(ε) is the Green’s

function of the isolated left lead. Here and below, we omit
the frequency argument for all quantities that depend on the
integration variable only. Equation (5) is the celebrated Meir-
Wingreen formula for the current [cf. Eq. (6) in Ref. [2] for a
symmetrized version thereof].

We now present a version of the Meir-Wingreen formula in
terms of the interacting one-particle irreducible self-energy �

{with retarded �1|2, advanced �2|1, and Keldysh component
�1|1 [Eqs. (A3), (A7), and (A13)]}. It can be derived by means
of Dyson’s equation (A25), which enables a reformulation of
the Green’s functions in Eq. (5) in terms of the hybridization
functions �, the lead distribution functions f , and the self-
energy �:

G2|1
c − G1|2

c = G2|1
c

([
G1|2

c

]−1 − [
G2|1

c

]−1)G1|2
c

= G2|1
c [−i(�l + �r ) + �1|2 − �2|1]G1|2

c ,

G2|2
c = G2|1

c

(
−i

∑
k=l,r

(1 − 2f k)�k + �1|1
)
G1|2

c . (6)

Hence, the current formula can be written as the sum of two
terms

J = e

h

∫
dε

[
(f l − f r )Tr

{
�lG2|1

c �rG1|2
c

}
+ i

2
Tr
{
�lG2|1

c (�1|1 − (1 − 2f l)(�1|2 − �2|1))G1|2
c

}]
.

(7)

In equilibrium, i.e., f = f l = f r , the current must fulfill
J = 0. With the first term of Eq. (7) vanishing trivially, we see
that J = 0 is ensured by the fluctuation-dissipation theorem
(FDT) for the self-energy at zero-bias voltage �1|1 = (1 −
2f )(�1|2 − �2|1). Note that a similar FDT can be formulated
for the Green’s function in Eq. (5). From Eq. (7), as a
consistency check, we directly see that in a noninteracting
system (� = 0), the current is determined fully by the states
within the bias window.

B. Differential conductance formula

Differentiating Eq. (5) with respect to the source-drain
voltage V = (μl − μr )/e, i.e. the voltage drop from the
left to the right lead, provides the differential conductance
gV = ∂V J . We denote derivatives with respect to frequency

by a prime, e.g., f l ′ = ∂εf
l , and derivatives with respect to

the source-drain voltage by a dot, Ġc = ∂VGc. Using Dyson’s
equation [Eq. (A25)], we can express the derivative of the
Green’s function in terms of derivatives of the self-energy:

Ġα|α′
c =

∑
β,β ′

Gα|β ′
c �̇β ′|βGβ|α′

c + Sα|α′
,

S1|1 = S1|2 = S2|1 = 0, S2|2 = G2|1
c �̇

1|1
leadG1|2

c . (8)

Here, we introduced the so-called single-scale propagator
S and the lead self-energy �

1|1
lead = −i

∑
k=l,r (1 − 2f k)�k

[Eq. (A21)]. Hence, we can write the differential conductance
in the form

gV = ie

2h

∫
dε Tr

⎧⎨
⎩�l

⎡
⎣∑

β,β ′
G2|β ′

c �̇β ′|βGβ|2
c + S2|2

− (1 − 2f l)
(
G2|1

c �̇1|2G2|1
c − G1|2

c �̇2|1G1|2
c

)
+ 2ḟ l

(
G2|1

c − G1|2
c

)⎤⎦
⎫⎬
⎭. (9)

We specify the voltage via the chemical potentials in the leads
μl = μ + αeV and μr = μ + (α − 1)eV , with α ∈ [0,1].
This yields

S2|2 = −2ieG2|1
c [αf l ′�l + (α − 1)f r ′

�r ]G1|2
c . (10)

Note that in the special case α = 0, i.e., if the voltage is applied
to the right lead only, the last term in Eq. (9) vanishes and the
differential conductance takes a particularly simple form. This
is a consequence of our initial choice to express the current via
the time derivative of the left lead’s occupation.

Equation (9) for the differential conductance of an inter-
acting Fermi system involves derivatives of all self-energy
components �̇. In this paper, we apply the above procedure
for the equilibrium case to derive a Keldysh Kubo-type formula
for the linear conductance (i.e., taking the limit V → 0), which
for a symmetric Hamiltonian yields a Keldysh version of
Oguri’s formula. However, we emphasize that an extension
to finite bias (V �= 0) is trivial; for that case, too, Eq. (9) can
be written in terms of the two-particle vertex, following the
strategy discussed below.

In Ref. [5] we used Eq. (9) (with α = 1
2 ) to calculate the

differential conductance (linear and nonlinear) for a model
designed to describe the lowest transport mode of a quantum
point contact (QPC). The model involves a 1D parabolic
potential barrier in the presence of an onsite electron-electron
interaction (see Sec. V for details of the model). In Ref. [5]
we used Keldysh-SOPT (details are presented in Sec. IV) to
evaluate both the self-energy and its derivative with respect to
voltage. The results qualitatively reproduce the main feature of
the 0.7 conductance anomaly, including its typical dependence
on magnetic field and temperature, as well as the zero-bias peak
in the nonlinear conductance. For the remainder of this paper,
though, we will consider only the linear conductance.

C. Linear conductance formula

In linear response, i.e., V → 0, the linear conductance g0

does not depend on the specific choice of α. For the sake
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of simplicity we use α = 1, which corresponds to a voltage
setup μl = μ + eV and μr = μ. Henceforth, a dot implies
the derivative at zero bias, e.g., ḟ l = ∂V f l|V =0, and we have
ḟ l = −ef ′ and ḟ r = 0. Setting V = 0 in Eq. (9) and using
Eqs. (6) and (10) yields

g0 = −e2

h

∫
dε f ′Tr

{
�lG2|1

c [�r + i(�1|2 − �2|1)]G1|2
c

}
+ e2

h

∫
dε Tr

{
�lG2|1

c 	lG1|2
c

}
. (11)

All quantities in the integrand are evaluated in equilibrium.
The voltage derivatives of the self-energy are combined in the
expression

	l = i

2e
[�̇1|1 − (1 − 2f )(�̇1|2 − �̇2|1)]. (12)

Provided that all components of the self-energy and its
derivative in Eq. (12) are known at zero bias, Eq. (11) is
sufficient to calculate the linear conductance. But, as is shown
below, it is possible to express the voltage derivatives of �

directly in terms of the two-particle vertexL, i.e., the rank-four
tensor defined as the sum of all one-particle irreducible (1PI)
diagrams with four external amputated legs (see Appendix A).
This not only reduces the numbers of objects to be calculated,
but more importantly, it completely eliminates the voltage
from the linear conductance formula: whereas the derivative
�̇ needs information of the self-energy at finite bias, the
two-particle vertex does not.

To this end, we use the fact that an exact expression for the
derivative of the self-energy with respect to some parameter 


can be related to the two-particle vertex via an exact relation,
the so-called flow equation of the functional renormalization
group (fRG). (For a diagrammatic derivation of this equation,
see Ref. [13]. A rigorous functional derivation of the full set
of coupled fRG equations for all 1PI vertex functions is given
in, e.g., Ref. [17].) For example, this type of relation was
exploited in Refs. [18,19] to derive nonequilibrium properties
of the single-impurity Anderson model. Although 
 is usually
taken to be some high-energy cutoff, it can equally well be a
physical parameter of the system, such as temperature [11],
chemical potential [12,13], or, as in the present case, voltage:

 = V . If only the quadratic part of the bare action depends
explicitly on the flow parameter, as is the case here, the general
flow equation reads as

∂
�
α′|α
i|j (ε) = 1

2πi

∫
dε′ ∑

ββ ′
kl∈C

S
β|β ′

,k|l(ε

′)Lα′β ′|αβ


,ik|j l (ε
′,ε; 0), (13)

where L(ε′,ε; 0) is the irreducible two-particle vertex, defined
via Eqs. (A4) and (A7). The specific form of this equation
for a given flow parameter 
 is encoded in the single-scale
propagator S, which is given by

S
 = −Gc∂
[G0,c]−1Gc = GcG−1
0,c [∂
G0,c]G−1

0,cGc, (14)

with bare central region Green’s function G0,c(ε). According to
Eq. (A22), only its Keldysh component G2|2

0,c depends explicitly

on the voltage. Additionally, we use [G−1
0,c ]

2|2 = 0, following

from causality, Eq. (A12), which yields

S
2|2
V =0 = G2|1

c

[
G−1

0,c

]1|2
∂V =0G2|2

0,c

[
G−1

0,c

]2|1G1|2
c

= −2ief ′G2|1
c �lG1|2

c ,

S
1|1
V =0 = S

1|2
V =0 = S

2|1
V =0 = 0. (15)

It is instructive to realize that this is indeed the single-
scale propagator already introduced in the derivation of the
differential conductance via Eq. (10). The trivial Keldysh
structure of S now implies that the α′|α dependence of the
self-energy derivatives only enters via that of the two-particle
vertex:

�̇
α′|α
i|j (ε) = 1

2πi

∫
dε′ ∑

kl∈C

S
2|2
V =0,k|l(ε

′)Lα′2|α2
il|jk (ε′,ε; 0). (16)

This allows us to write Eq. (12) in the form

	l
i|j (ε) = 1

2πi

∫
dε′f ′(ε′)

∑
kl∈C

[
G2|1

c (ε′)�l(ε′)G1|2
c (ε′)

]
k|l

×Kil|jk(ε′,ε; 0), (17)

with vertex response part

Kil|jk(ε′,ε; 0) = L12|12
il|jk (ε′,ε; 0) − [1 − 2f (ε)]

× (
L12|22

il|jk (ε′,ε; 0) − L22|12
il|jk (ε′,ε; 0)

)
. (18)

We use the invariance of the trace under a cyclic permutation
Tr{�lG2|1

c 	lG1|2
c } = Tr{	lG1|2

c �lG2|1
c }, and interchange the

frequency labels ε ↔ ε′ to obtain the linear conductance
formula

g0 = −e2

h

∫
dε f ′[Tr

{
�lG2|1

c (�r + i(�1|2 − �2|1))G1|2
c

}
− Tr

{
�lG1|2

c 	̃lG2|1
c

}]
, (19)

with the rearranged vertex correction term

	̃l
l|k(ε) = 1

2πi

∫
dε′ ∑

ij∈C

[
G1|2

c (ε′)�l(ε′)G2|1
c (ε′)

]
j |i

×Kil|jk(ε,ε′; 0). (20)

In Appendix C we show that particle conservation implies that
the imaginary part of the self-energy and the vertex correction
are related by the following Ward identity:

i[�1|2(ε) − �2|1(ε)] = 	̃l + 	̃r . (21)

This result is obtained by demanding the invariance of the
physics under a gauged, local U(1) transformation, which must
hold for any Hamiltonian that conserves the particle number
in the system. This symmetry implies an infinite hierarchy
of relations connecting different Green’s functions. The first
equation in this hierarchy reproduces the continuity equation
used in the beginning of the above derivation. The second
equation in the hierarchy is Eq. (21), which connects parts of
one-particle and two-particle Green’s functions. Inserting the
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Ward identity in Eq. (19) yields

g0 = −e2

h

∫
dε f ′(ε)

× [
Tr
{
�l(ε)G2|1

c (ε)[�r (ε) + 	̃l(ε) + 	̃r (ε)]G1|2
c (ε)

}
− Tr

{
�l(ε)G1|2

c (ε)	̃l(ε)G2|1
c (ε)

}]
. (22)

This formula is the central result of this paper. It expresses
the linear conductance in terms of the two-particle vertex
L, which enters via the vertex part 	̃ [Eq. (20)] and the
response vertex K [Eq. (18)]. Note that the two terms in
Eq. (22) differ in their Keldysh structure via the Keldysh
indexing of the full Green’s functions, which prevents further
compactification of Eq. (22) for a nonsymmetric Hamiltonian
(e.g., in the presence of finite spin-orbit interactions, see,
e.g., Ref. [20]). If, in contrast, the Hamiltonian of Eq. (1)
is symmetric (i.e., hij = hji), Eq. (22) can be compactified
significantly using the following argument: A symmetric
Hamiltonian implies that the Green’s function G, the self-
energy �, and the hybridization � are symmetric, too. This
in turn gives a symmetric 	̃ via Eq. (21). Hence, the trace
in the first term of Eq. (22) is taken over the product of four
symmetric matrices, and transposing yields Tr{�lG2|1

c [�r +
	̃l + 	̃r ]G1|2

c } = Tr{�lG1|2
c [�r + 	̃l + 	̃r ]G2|1

c }. Hence, all
contributions involving 	̃l cancel in Eq. (22) and the linear
conductance now simply reads as

g0 = −e2

h

∫ ∞

−∞
dε f ′(ε)

× Tr
{
�l(ε)G1|2

c (ε)[�r (ε) + 	̃r (ε)]G2|1
c (ε)

}
. (23)

This equation constitutes a Keldysh version of Oguri’s formula
for the linear conductance for a symmetric Hamiltonian
[Eq. (2.35) in Ref. [6]]. Oguri worked in the Matsubara
formalism and used Eliashberg theory to perform the analytic
continuation of the vertex from Matsubara frequencies to
real frequencies. By comparing our formula (23) to Oguri’s
version, due to the structural equivalence a connection between
the three Keldysh vertex components in Eq. (18) and the ones
used in Oguri’s derivation can be established, if desired: Eqs.
(2.35) and (2.36) of Oguri are of the same form as our Eq. (23),
if we insert Eq. (20), where Oguri’s 
[2] is defined through
Eqs. (2.34) and the text between (2.34) and (2.35). The vertex
contribution L[22] in Oguri, defined in Eq. (2.29), needs to be
compared to our Eq. (18).

We stress that Eq. (23) is in fact identical to Oguri’s
Eq. (2.35) of Ref. [6]. He assumes a real Hamiltonian, which
corresponds to a symmetric Hamiltonian matrix in our setup.
We thus only recover his expression after this simplification.
The more general expression is Eq. (22).

To better understand the structure of Eq. (23), consider a
setup where the left and right leads have the same structure.
Concretely, suppose that �l(ε) and �r (ε) differ only by their
spatial structure, while their frequency structure is completely
detemined by the leads’ density of states ν(ε) and the coupling
between the leads and the system, which we set to τ . In
this case, the single-particle transmission amplitude T (ε) =
−2πiτν(ε)GR

lr (ε), where GR
lr denotes the retarded Green’s

function from the left of the central region to the right of the
central region, may be read off from the S matrix. The first

term in Eq. (23) thus corresponds to a frequency integral over
the single-particle transmission probability T = |T |2, as in the
Landauer-Büttiker formula (we remark that the single-particle
transmission is determined by the full Green’s functions,
including the self-energy); the second term is an additional
vertex correction.

All calculations of the linear conductance reported in
Ref. [5] using Matsubara fRG and SOPT, and in Ref. [21]
using Keldysh fRG, were based on Eq. (23).

D. Linear thermal conductance formula

We end this section with some considerations regarding
thermal conductance, i.e., the conductance induced by a
temperature difference between the leads. In the following,
we assume zero-bias voltage V = 0. The left lead is in
thermal equilibrium with T l = T + T̃ and the right lead
in thermal equilibrium with temperature T r = T . Thus, the
temperature gradient between the leads will provide a charge
current through the central region. Similar to above, we are
now interested in the linear response thermal conductance
formula g0,T = ∂T̃ =0J , which we could calculate in similar
fashion as the linear conductance g0. Much easier is the
following though: all terms in Eq. (22) were obtained by
once time taking the derivative of the Fermi distribution
f l with respect to the voltage, partly explicitly in Eq. (7)
and partly from evaluating the single-scale propagator in
Eq. (15). Now, note that ∂T̃ =0f

l = ε−μ

T
f ′ = − (ε−μ)

eT
∂V =0f

l .
For a symmetric Hamiltonian this directly implies that the
linear thermal conductance is given by

g0,T = e

hT

∫ ∞

−∞
dε(ε − μ)f ′(ε)

× Tr
{
�l(ε)G1|2

c (ε)[�r (ε) + 	̃r (ε)]G2|1
c (ε)

}
. (24)

IV. DIFFERENTIAL CONDUCTANCE IN SOPT

In Ref. [5] we calculated the linear conductance of our
QPC model (Sec. V) using Eq. (23), and the nonlinear
differential conductance using Eq. (9). There, we used fRG
(within the coupled ladder approximation) to calculate the
linear conductance at T = V = 0, and SOPT to calculate both
the linear conductance at T �= 0 and the nonlinear (V �= 0)
differential conductance at T = 0. The details of the fRG
approach can be found in Ref. [22]. One of the goals of this
paper is to present the details of the SOPT calculations. The
computation of the self-energy � and the two-particle vertex
L is standard and is contained in Appendix B. Here, we just
focus on a useful shortcut for efficiently computing the voltage
derivative needed for the conductance.

In order to calculate the differential conductance via Eq. (9),
we now provide explicit formulas for the voltage derivative of
the self-energy components. In principle, we could use the nat-
ural approach and differentiate the right-hand side of the self-
energy expressions, given in Appendix B [Eq. (B24)], with the
corresponding vertex components given by Eqs. (B16)–(B18).
To illustrate the power of the fRG flow equation, we choose
an alternative, more direct route, by expanding Eq. (16) up
to second order in the bare interaction and allow for arbitrary
values of the voltage V .
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To first order in the interaction the single-scale propagator (14) reads as

S
2|2
1,V = Ġ2|2

0 + G2|1
0 �

1|2
1 Ġ2|2

0 + Ġ2|2
0 �

2|1
1 G1|2

0 . (25)

Inserting both Eq. (25) and the SOPT vertex (B19c) into Eq. (16) directly yields

�̇
σ,1|2
2,i|j (ε) = −i

2π

∫
dε′

[
δijui Ġ σ̄ ,2|2

0,i|i + δij

∑
k

[
ui

(
G σ̄2|1

0,i|k�
σ̄1|2
1,k|kĠ

σ̄2|2
0,k|i + Ġ σ̄ ,2|2

0,i|k �
σ̄ ,2|1
1,k|k G

σ̄ ,1|2
0,k|i

) + Ġσ,2|2
0,k|k �σσ

ik (0)
]

+ Ġσ,2|2
0,i|j X

σσ,1|2
ij (x) + Ġ σ̄ ,2|2

0,i|j
[
X

σσ̄,1|2
ij (x) + �

1|2
ij (p)

]]
,

�̇
σ,2|1
i|j (ε) = [

�̇
σ,1|2
i|j (ε)

]∗
,

�̇
σ,1|1
i|j (ε) = −i

2π

∫
dε′[Ġσ,2|2

0,i|j X
σσ,1|1
ij (x) + Ġ σ̄ ,2|2

0,i|j
(
X

σσ̄ ,1|1
ij (x) + �

1|1
ij (p)

)]
, (26)

where the derivative of the Keldysh bare Green’s function is
given by [e.g., Eq. (A22)]

Ġ2|2
0 = G2|1

0 �̇
1|1
leadG

1|2
0 = 2iG2|1

0

(∑
k∈l,r

ḟ k�k

)
G1|2

0 . (27)

For compactness, we dropped all arguments that match the
integration frequency in Eq. (26).

It is important to note that the energy integral
∫

dε′ in
Eq. (26) can be performed trivially for the special case of zero
temperature T = 0: then, the derivative of the Fermi functions
in Ġ2|2

0 are Dirac delta functions (for the definition of the
voltage see Sec. III B)

ḟ l(ε′) T =0= eα δ(ε′ − μ − eαV ),

ḟ r (ε′) T =0= e(α − 1) δ[ε′ − μ − e(α − 1)V ]. (28)

This reduces the integration in Eq. (26) to evaluating the
integrand at the chemical potentials of the left and right leads,
respectively. Naturally, this simplification proves extremely
beneficial: we can express the self-energy at arbitrary voltage
as

�(V ) = �(0) +
∫ V

0
dV ′�̇(V ′). (29)

Numerically calculating this voltage integration provides both
the self-energy �(V ′) and its derivative �̇(V ′) within the
whole interval 0 � V ′ � V . Hence, this procedure can save
orders of magnitude of calculation time compared to the direct
evaluation of the self-energy and its voltage derivative via
Eqs. (B24) and (26), respectively. If one is interested in a large
number n of data points at finite voltage, the saved time is to
leading order in n given by ntdiff , where tdiff is the difference
in computational time between the full SOPT calculation
[which is dominated by two integrals over frequencies for the
self-energy, one being the

∫
dε′ in Eq. (B24a), the second a

frequency integral for the vertex] and the evaluation of Eq. (26)
[which is dominated by a single integral over frequencies for
the vertex since the

∫
dε′ integral in Eq. (26) is constrained

by the limited support of ḟ in Eq. (26)]. The time required to
perform the integral over voltage in Eq. (29) is in practice
negligible compared to the time required to perform the
integrals over frequency.

V. 1D MODEL OF A QPC

As an application of the above formalism, we now study
the influence of electron-electron interactions on the linear
conductance of a one-dimensional symmetric potential barrier
of height Vc (measured with respect to the chemical potential
μ) and parabolic near the top,

V (x) = Vc + μ − m�2
x

2h̄2 x2, (30)

where m is the electron’s mass. The geometry of the barrier is
determined by the energy scale �x and the length scale lx =
h̄/

√
2m�x . While the system extends to infinity, the potential

is nonzero only within the central region C, defined by −�/2 <

x < �/2, and drops smoothly to zero as |x| approaches |�|/2.
We call the outer homogeneous regions the left lead L (x <

−�/2) and the right lead R (x > �/2).
Numerics cannot deal with the infinite Hilbert space of

this continuous system. Hence, we discretize real space using
the method of finite differences (see Appendix D for details),
which maps the system onto a discrete set of space points {xj }.
This results in the tight-binding representation

H =
∑
jσ

[
Eσ

j njσ − τj (d†
jσ dj+1σ + H.c.)

] +
∑
j∈C

Ujnj↑nj↓,

(31)

with spin-dependent onsite energy Eσ
j = Ej − σB/2 = Vj +

τj−1 + τj − σB/2, site-dependent hopping amplitude τj =
h̄2/(2ma2

j ), spacing aj = xj+1 − xj , and potential energy
Vj = V (xj ). Note that we included a homogeneous Zeeman
field B to investigate magnetic field dependencies, as well
as an onsite interaction, whose strength is tuned by the
site-dependent parameter Uj .

In Ref. [5] we have used this model to investigate the
physics of a quantum point contact (QPC), a short one-
dimensional constriction. We showed that the model suffices
to reproduce the main features of the 0.7 anomaly, including
the strong reduction of conductance as function of magnetic
field, temperature, and source-drain voltage in a subopen QPC
(see below). We argued that the appearance of the 0.7 anomaly
is due to an interplay of a maximum in the local density of
states (LDOS) just above the potential barrier (the “van Hove
ridge”) and electron-electron interactions.
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In Ref. [5] we have introduced a real-space discretization
scheme that dramatically minimizes numerical costs. Here,
we discuss this scheme in more detail. We discuss both the
noninteracting physics of the model as well as the magnetic
field and temperature dependence of the linear conductance in
the presence of interactions using SOPT.

A. Choice of discretization

For a proper description of the continuous case, it is
essential to choose the spacing much smaller than the length
scale on which the potential changes (condition of adiabatic
discretization). We model the central region by N = 2N ′ + 1
sites, located at the space points {x−N ′ ,x−N ′+1, . . . ,xN ′−1,xN ′ },
where N � 100 proves sufficient for a potential of the form
(30). Due to the parity symmetry of the barrier, we always
choose x0 = 0 and xj = −x−j .

The discretization of real space introduces an upper bound
Emax = max(Vj + 2τj−1 + 2τj ) for the eigenenergies of the
bare Hamiltonian. In addition, it causes the formation of a
site-dependent energy band, defined as the energy interval
where the local density of states (LDOS) is non-negligible,
i.e., where eigenstates have non-negligible weight. In case of
an adiabatic discretization, this energy band follows the shape
of the potential. At a site j it is defined within the upper and
lower band edges

εmin
j = Vj , εmax

j = Vj + wj, (32)

where the band width depends on the local spacing, i.e., on
the choice of discretization (see Appendix D for additional
information):

wj = 2τj−1 + 2τj = h̄2

m

(
1

a2
j−1

+ 1

a2
j

)
. (33)

Note that a larger distance between successive sites leads to a
narrowing of the energy band and vice versa; while the lower
band edge is, for any adiabatic discretization, directly given
by the potential, the upper band edge depends sensitively on
the applied discretization scheme.

In the following, we discuss and compare two different
discretization procedures: the standard approach of equidistant
discretization (constant hopping τ ) causes a local maximum
εmax

0 = V0 + 4τ of the upper band edge in the vicinity of the
barrier center. This approach leads to artificial bound states
far above the potential barrier, which complicate numerical
implementation and calculation. Hence, we recommend and
apply an alternative adaptive scheme where the spacing
increases (the band width decreases) with increasing potential,
i.e., towards j = 0. Note that this still implies a constant
hopping τ|j |>N ′ = τ in the leads.

1. Constant discretization

We discuss the case of constant spacing a = aj , implying
grid points xj = aj and a constant hopping τ = h̄2/(2ma2).
In a homogeneous system, V (xj ) = 0, the energy eigenstates
are Bloch waves ψk(xj ) = eikaj , which form an energy band
εk = 2τ [1 − cos(ka)] of width w = 4τ . Adding the parabolic

potential

V (xj ) = Vc + μ − �2
x

4τ
j 2, (34)

these states are now subject to scattering at the barrier
which causes the formation of standing wave patterns for
energies ε < V0 = V (0) = Vc + μ below the barrier top.
The left half (xj < 0) of Fig. 1(a) shows the noninteracting
central region’s local density of states (LDOS) Aσ

0 (xj ,ε) =
−1/(πa)ImGσ,2|1

0,j |j (ε) at B = 0 as a function of position xj

and energy ε. Due to the condition of adiabaticity, the energy
band smoothly follows the shape of the potential, implying a
site-dependent upper band edge εmax(xj ) = Vj + 4τ .

The local maximum of εmax(xj ) in the central region’s
center generates artificial bound states, owed to the discretiza-
tion scheme, in the energy interval ε ∈ [4τ,4τ + V0]. This is
illustrated in Fig. 1(c), where the real and imaginary parts of the
bare Green’s function of the central site G2|1

0,0|0(ε) are plotted.
These bound states result from the shape of the upper band
edge: since the band in the homogeneous leads is restricted to
energies below 4τ (unlike in the continuous case), all states
with higher energy are spatially confined to within the central
region, have an infinite lifetime, and form a discrete spectrum,
determined by the shape of the applied potential V (xj ).

The calculation of self-energy and two-particle vertex
[Eqs. (B24) and Eq. (B18)] is performed by ad infinitum
frequency integrations over products of Green’s functions.
Thus, the energy region of the upper band edge and the
local bound states must be included in their calculation with
adequate care. This involves determining the exact position
and weight of the bound states, which requires high numerical
effort, as well as dealing with the numerical evaluation of
principal value integrals and convolutions, where one function
has poles and the other one is continuous. While all this
is doable with sufficient dedication, we can avoid such
complications entirely by adapting the discretization scheme,
discussed next.

2. Adaptive discretization

According to Eqs. (32) and (33), we can modify the band
width locally by choosing nonequidistant discretization points.
In the following, we discuss a nonconstant discretization
scheme that reduces the band width within the central region
enough so that the upper band edge exhibits a local minimum
at x0 rather than a local maximum (as in the case of constant
spacing). In consequence, the Green’s functions are continuous
within the whole energy band, which facilitates a numerical
treatment of interactions.

For a nonconstant real-space discretization it proves useful
to first define the onsite energy Ej and the hopping τj of
the discrete tight-binding Hamiltonian (31) and then use these
expressions to calculate the geometry of the corresponding
physical barrier, i.e., its height Vc and curvature �x .

We specify the onsite energy to be quadratic near the top
with

Ej = Ẽj + 2τ � Ẽ0

[
1 − j 2

N ′2

]
+ 2τ, (35)

where Ẽ0 is positive. We use the shape of Ẽj within C (which,
apart from its height and the quadratic shape around the top
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FIG. 1. (a) Left half: the noninteracting LDOS of the central region A0(ε,xj ), resulting from a constant real-space discretization. The
position of the discrete points xj is indicated by the x-axis ticks. Both the lower and upper band edges follow the shape of the potential:
εmin

j = V (xj ) and εmax
j = V (xj ) + 4τ . The local maximum of εmax

j at j = 0 causes the formation of bound states for energies ε > 4τ . (c) Their
discrete spectrum shows up as poles in the noninteracting Green’s function G0,0|0(ε). (a) Right half: the noninteracting LDOS of the central
region resulting from an adaptive real-space discretization with c = 0.55 [Eq. (36)], i.e., the spacing aj increases towards the barrier center (see
x-axis ticks). Hence, the band width decreases with increasing barrier height, resulting in a local minimum of εmax

j at j = 0. (b) The LDOS at
the central site A0(ε,0) for both schemes. We have used �x ≈ 0.039τ .

does not influence transport properties, as long as Ẽj goes
adiabatically to zero upon approaching j = |N ′|) to define
a site-dependent hopping (amounting to a site-dependent
spacing)

τj = τ
[
1 − c

2τ
(Ẽj + Ẽj+1)

]
, (36)

where we have introduced a dimensionless positive parameter
c < τ/Ẽ0 that determines how strongly the band width is to
be reduced. Note that Eq. (36) describes a hopping, that is
constant (=τ ) in the leads, where Ẽj = Vj = 0, and decreases
with increasing Ẽj in the central region. This corresponds to a
site-dependent lattice spacing aj = a

√
τ/τj , which increases

towards the center of the central region. The real-space position
xj that corresponds to a site j is given by

xj = sgn(j )
|j |∑

j ′=1

aj ′ = a
√

τ sgn(j )
|j |∑

j ′=1

1√
τj

, (37)

where sgn(x) is the sign function. Following Eq. (32), the
construction introduced in Eqs. (35) and (36) leads to an upper
band edge given by

εmax
j � Ej + τj−1 + τj � 4τ + (1 − 2c)Ẽj , (38)

which for the choice c > 0.5 indeed exhibits a smooth local
minimum at j = 0, thus avoiding the bound states discussed
above for the constant discretization c = 0.

Despite the drastic manipulation of εmax
j , the lower band

edge still serves as a proper potential barrier

εmin
j = Vj � (1 + 2c)Ẽj , (39)

with a quadratic potential barrier top whose height now
depends on the compensation factor c:

Vj � (1 + 2c)Ẽj

[
1 − j 2

N ′2

]
. (40)

Finally, we write the potential barrier in the form given in
Eq. (34), i.e., express the curvature �x in units of the constant
lead hopping τ . By comparison, we find

Vc = V0 − μ, �x = 2

N ′
√

V0τ0. (41)

The right half (xj > 0) of Fig. 1(a) shows the LDOS of the
central region for an adaptive discretization with c = 0.55.
All additional parameters are chosen such that the resulting
potential barrier matches the case of constant discretization
(plotted for xj < 0). Most importantly, the minimum of εmax

j

at j = 0 prevents the occurrence of bound states above the
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FIG. 2. (a)–(c) Linear conductance as a function of barrier height Vc for some values of magnetic field B with interaction strength U

increasing from left to right. (d)–(f) Linear conductance as a function of barrier height Vc for some values of temperature T with interaction
strength U increasing from left to right. Dashed lines indicate Vc = 0 and g = 0.5. Interactions cause an asymmetric evolution of conductance
with magnetic field and temperature due to the interaction-enhanced reduction of conductance in the subopen regime: the 0.7 anomaly.

barrier, which allows for a faster numerical evaluation of
the vertex functions. Importantly, both discretization schemes
approximate the same physical system; their differences are
non-negligible only for energies far above the barrier, i.e., far
away from the energies relevant for transport. This can be
seen from the matching gray scale at the interface j = 0 for
energies ε < V0 + O(�x), as well as from comparison of the
central site’s LDOS in Fig. 1(c).

B. Choice of system parameters

To ensure that the discrete model reflects the transport
properties of the continuous barrier [Eq. (30)], the chemical
potential of the system (or of both leads in nonequilibrium)
must be chosen far enough below the global minimum of
εmax(xj ). Only in this case the unphysical upper band edge
does not contribute to the results. The onsite energy is chosen
as

Ẽj = θ (N ′ − |j |)Ẽ0 exp

(
−

(
j

N ′
)2

1 − (
j

N ′
)2

)
, (42)

where θ (x) is the Heaviside step function. Note that this
definition is consistent with Eq. (35). In order to calculate
the site-dependent coupling, we use c = 0.55 in Eq. (36).
Hence, for a barrier height V0 = μ [corresponding to a
noninteracting transmission T0 = 0.5, see Eq. (44) below],
we get a potential curvature �x = 0.039τ . Finally, the shape
of the onsite interaction is chosen as

Uj = θ (N ′ − |j |)U0 exp

(
−

(
j

N ′
)6

1 − (
j

N ′
)2

)
. (43)

C. Noninteracting properties of the model

In Ref. [5] we argued that the model of Eq. (31), combined
with a potential with parabolic barrier top [Eq. (30)], is
sufficient to describe the physics of the lowest subband of
a QPC: making a saddle-point ansatz for the electrostatic
potential caused by voltages applied to a typical QPC gate
structure provides an effective 1D potential of the form
Eq. (30). Information about the transverse geometry of the
QPC potential can be incorporated into the site-dependent
effective interaction strength Uj [see Eq. (43)].

The noninteracting, spin-dependent transmission through
a quadratic barrier of height V0 = Vc + μ and curvature �x

[Eq. (30)] in the presence of a magnetic field B can be derived
analytically [23] and is given by

T σ
0 (ε) = 1

e−2π(ε−V0+σB/2)/�x + 1
. (44)

Hence, according to the Landauer-Büttiker formula, the
noninteracting (bare) linear conductance

g0 = −e2

h

∑
σ

∫ ∞

−∞
f ′(ε)T σ

0 (ε) (45)

is a step function of width �x at B = T = 0, changing from 0
to 1, when the barrier top is shifted through μ from above.
This step gets broadened with temperature [see Fig. 2(d)]
and develops a double-step structure with magnetic field [see
Fig. 2(a)]. For all B and T , the bare conductance obeys the
symmetry g0(Vc) = 1 − g0(−Vc).

Furthermore, an analytic expression for the noninteracting
LDOS at the chemical potential in the barrier center as function
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of barrier height Vc can be calculated (see e.g. Ref. [24]),

A0(ε = μ,0) = |�[1/4 + iVc/(2�x)]|2
4
√

2π2eπVc/(2�x )
, (46)

where �(z) is the complex gamma function. This is a smeared
and shifted version of the 1D van Hove singularity (see Ref. [5]
for further details), peaked at Vc = −O(�x), i.e., if the barrier
top lies sightly below the chemical potential. Here, the value of
the noninteracting conductance is given by g0 ≈ 0.8. Hence,
we call this parameter regime subopen.

D. Interacting results

As was discussed in Ref. [5], the shape of the LDOS in the
barrier center lies at the heart of the mechanism causing the
0.7 conductance anomaly: semiclassically, the LDOS can be
interpreted as being inversely proportional to the velocity v

of the charge carriers A0(ε,xj ) ∝ 1/vj (ε). Hence, the average
time that a noninteracting electron with energy ε = μ spends
in the vicinity of the barrier center is maximal in the subopen
regime [where A0(μ,0) is maximal, see Eq. (46) and its
subsequent discussion], resulting in an enhanced scattering
probability and thus a strong reduction of conductance at finite
interaction strength in this parameter regime.

Figure 2 compares the bare conductance, calculated via the
Landauer-Büttiker formula [Eq. (45)], with the conductance
obtained by taking into account interactions using SOPT, cal-
culated via the Keldysh version of Oguri’s formula [Eq. (23)],
as a function of barrier height Vc for several values of magnetic
field [Figs. 2(a)–2(c)] and temperature [Figs. 2(d)–2(f)), for
three interaction strengths increasing from left to right. For
small but finite interactions, U/

√
�xτ = 0.5, the shape of

the LDOS causes a slight asymmetry in the conductance
curves at [Fig. 2(b)] finite magnetic field or [Fig. 2(e)] finite
temperature: A finite magnetic field induces an imbalance of
spin species in the vicinity of the barrier center. This imbalance
is enhanced by exchange interactions via Stoner-type physics,
where the disfavored spin species (say spin down) is pushed
out of the center region by the Coulomb blockade of the
the favored spin species (say spin up). Hence, transport
is dominated by the spin-up channel, resulting in a strong
reduction of total conductance in the subopen regime even
for a small magnetic field. A finite temperature, on the other
hand, opens phase space for inelastic scattering, which, again,
is strongest for large LDOS, again resulting in the reduction of
conductance in the subopen regime. This interaction-induced
trend continues with increasing interactions, and gives rise to
a weak 0.7 anomaly at B �= 0 [Fig. 2(c)] or T �= 0 [Fig. 2(f)]
for intermediate interaction strength U/

√
�xτ = 1.7. Upon

a further increase of interactions, SOPT breaks down (see
below), and more elaborate methods are needed to obtain
qualitatively correct results. This was done in Refs. [5,22],
where we used fRG to reach interaction strength of up to
U/

√
�xτ = 3.5; they yielded a pronounced 0.7 anomaly even

at B = T = 0 and its typical magnetic field development into
the spin-resolved conductance steps at high field.

The main limitations of SOPT when treating the inhomo-
geneous system, introduced in Eq. (30), can be explained as
follows: Upon increasing interactions, the LDOS is shifted
towards higher energy, as Hartree contributions cause an

effective higher potential barrier compared to the noninter-
action case. As a consequence, a proper description of interac-
tions requires information about this shift to be incorporated
into the calculation of the vertex functions via feedback of the
self-energy into all propagators. However, SOPT calculates the
self-energy and the two-particle vertex (Sec. IV) using only
bare propagators, which only carry information of the bare
LDOS. Together with the drastic truncation of the perturbation
series beyond second order, this limits the quantitative validity
of SOPT to weak interaction strength and the qualitative
validity of SOPT to intermediate interaction strength. In par-
ticular, the skewing of the conductance curves with increasing
temperature is typically much stronger for measured data
curves than seen in Fig. 2(f). Nevertheless, SOPT does serve
as a useful too for illustrating the essential physics involved in
the appearance of the 0.7 conductance anomaly.

Following the above argument, a modification of SOPT
incorporating Hartree contributions at all orders (i.e., replacing
bare propagators with Hartree-dressed propagators and modi-
fying the diagrams to avoid double counting) seems promising.
At T = 0, V = 0, such a procedure as has been implemented
in Ref. [5] does indeed yield good results (see Fig. S18 in
the supplement of Ref. [5]). However, we do not consider this
extension reliable at either T �= 0 or V �= 0, as it is doubtful
that the mean-field (Hartree) treatment can accurately capture
the highly relevant inelastic processes that lead to a finite
imaginary part of the self-energy. The major issue is that
this extension would treat Hartree and Fock terms on unequal
footing. To reliably overcome the limitations of SOPT at finite
excitation energies would therefore require more powerful
approaches, such as Keldysh fRG, as we briefly discuss below.

VI. CONCLUSION AND OUTLOOK

In this paper, we discuss electronic transport through
an interacting region of arbitrary shape using the Keldysh
formalism. Starting from the well-established Meir-Wingreen
formula for the system’s current we derive exact formulas
for both the differential and linear conductances. In the latter
case, we use the fRG flow equation for the self-energy as well
as a Ward identity, following from the Hamiltonian’s particle
conservation, to obtain a Keldysh version of Oguri’s linear
conductance formula. As an application, we use SOPT to
calculate the conductance of the lowest subband of a QPC,
which we model by a one-dimensional parabolic potential
barrier and onsite interactions, a setup we have recently used
to explore the microscopic origin of the 0.7 conductance
anomaly [5]. We present detailed discussion of the model’s
properties and argue that an adaptive, nonconstant real-space
discretization scheme greatly facilitates numerical effort. We
treat the influence of interactions using SOPT, presenting all
details that are necessary to employ the derived conductance
formulas. Our SOPT results for the linear conductance as
function of magnetic field and temperature illustrate that the
anomalous reduction of conductance in the subopen regime
of a QPC is due to an interplay of the van Hove ridge and
electron-electron interactions.

A logical next step would be to go beyond SOPT by treating
interactions using Keldysh fRG. Work in this direction is cur-
rently in progress. For example, in Ref. [21] the conductance
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formula (23) was used to compute the finite-temperature linear
conductance through an interacting QPC using Keldysh fRG.
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APPENDIX A: PROPERTIES OF GREEN’S AND VERTEX
FUNCTIONS IN KELDYSH FORMALISM

To investigate transport properties of the system in and
out of equilibrium, we apply the well-established Keldysh
formalism [9,10]. We mostly follow the definitions and
conventions given in Ref. [15] (but use a different overall sign
for γ ). We collect all relevant conventions below in concise
form, as a convenient reference and to explicitly specify how
we deal with spatial indices, which play a crucial role in the
present application.

All operators carry Keldysh time-contour indices
a1,a

′
1,a2, . . . = {+,−}, marking the position of the time

argument t of an operator as lying on the forward (−) or
backward (+) branch of the Keldysh contour. We use Keldysh
indices with or without a prime, a or a′, to label the time
arguments of annihilation or creation operators, respectively.
Since the model Hamiltonian (1) is time independent, the only
nonzero matrix elements of the Hamiltonian in contour space
have equal contour indices:

Ha1|a′
1

0 = −a1δa1a
′
1
H0,

Ha1a2|a′
1a

′
2

int = −a1δa1a2δa1a
′
1
δa1a

′
2
Hint, (A1)

with {a} labeling the time arguments of annihilation operators
and {a′} labeling the time arguments of creation operators.
Note that a calligraphic H carries contour indices, while a
capital italic H does not.

We define time-dependent, n-particle Keldysh Green’s
functions as the expectation values

G
n,a|a′
i |i ′ ( t| t ′)

= G
a1,...,an|a′

1,...a
′
n

i1,...,in|i ′1,...i ′n (t1, . . . ,tn|t ′n, . . . ,t ′1)

= (−i)n
〈
Tcd

a1
i1

(t1) . . . d
an

in
(tn)

[
d

a′
n

i ′n

]†
(t ′n) . . .

[
d

a′
1

i ′1

]†
(t ′1)

〉
,

(A2)

where we use boldface notation for multi-indices x =
(x1, . . . ,xn). The operator da

i (t)/[da
i ]†(t) destroys/creates an

electron at time t on contour branch a in quantum state i, and
the time-ordering operator Tc moves later contour times to the
left. In case of equal-time arguments, annihilation operators are
always arranged to the right of creation operators. The bare,
noninteracting Green’s function, whose time dependence is
governed by the quadratic part of the Hamiltonian H0, carries
an additional subscript G0.

We define antisymmetrized, irreducible, n-particle vertex
functions γ

n,a′|a
i ′|i (t ′|t) as the sum of all one-particle irreducible

(1PI) diagrams with n amputated ingoing and n amputated
outgoing legs.

The Dyson equation provides a direct relation between the
one-particle Green’s and vertex functions:

G(t1|t ′1) = G0(t1|t ′1) −
∫

dτ1dτ ′
1G0(t1|τ ′

1)γ (τ ′
1|τ1)G(τ1|t ′1).

(A3)
Here and below, whenever quantum state indices i and contour
indices a/Keldysh indices α are implicit, they are understood
to be summed over in products.

Decomposing the two-particle Green’s function yields a
connection to the two-particle vertex function via

G(t1,t2|t ′1,t ′2)

= G(t1|t ′1)G(t2|t ′2) − G(t1|t ′2)G(t2|t ′1)

− i

∫
dτ G(t1|τ ′

1)G(t2|τ ′
2)γ (τ ′

1,τ
′
2|τ1,τ2)G(τ1|t ′1)G(τ2|t ′2).

(A4)

Our choice of sign for γ is opposite to that of Ref. [15].
Since the Hamiltonian (1) is time independent, the

Green’s/vertex functions are translationally invariant in time,
implying that n-particle functions depend on 2n − 1 time
arguments only:

G(t1, . . . ,tn|t ′1, . . . ,t ′n) = G(0, . . . ,tn − t1|t ′1−t1, . . . ,t
′
n−t1),

γ (t ′1, . . . ,t
′
n|t1, . . . ,tn) = γ (0, . . . ,t ′n−t ′1|t1−t ′1, . . . ,tn − t ′1).

(A5)

As a consequence, the Fourier transform

G( ε| ε′) =
∫

dt dt′eiεte−iε′ t ′
G(t|t′),

γ ( ε′| ε) =
∫

dt dt′eiε′ t ′
e−iεtγ (t′|t) (A6)

fulfills energy conservation. In particular, this allows for
the following representation for the one- and two-particle
functions, where calligraphic letters G and L are used when a
δ function has been split off:

G(ε1|ε′
1) = 2πδ(ε1 − ε′

1)G(ε1),

G(ε1,ε2|ε′
1,ε

′
2) = 2πδ(ε1 + ε2 − ε′

1 − ε′
2)G(ε2,ε

′
1; ε1 − ε′

1),

γ (ε′
1|ε1) = −2πδ(ε′

1 − ε1)�(ε′
1),

γ (ε′
1,ε

′
2|ε1,ε2) = 2πδ(ε′

1 + ε′
2 − ε1 − ε2)L(ε′

2,ε1; ε′
1 − ε1).

(A7)

The one-particle vertex function �, introduced above, is called
the interacting irreducible self-energy. We Fourier transform
Dyson’s equation (A3), which provides

G(ε) = G0(ε) + G0(ε)�(ε)G(ε) = [[G0(ε)]−1 − �(ε)]−1.

(A8)

Note that this is a matrix equation in both Keldysh and position
space.

The four single-particle Green’s functions and self-energies
in contour space are called chronological (G−|−, �−|−), lesser
(G−|+, �−|+), greater (G+|−, �+|−), and antichronological
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(G+|+, �+|+). As a consequence of the definition (A2), the
single-particle Green’s functions fulfill the contour relation

G+|+ + G−|− = G−|+ + G+|−. (A9)

We define the transformation from contour space (a =
{−,+}) into Keldysh space (α = {1,2}) by the rotation

R =
(

R−|1 R−|2

R+|1 R+|2

)
= 1√

2

(
1 1

−1 1

)
. (A10)

Hence, any nth-rank tensor An,α′|α in Keldysh space is
represented in contour space by

An,α|α′ =
∑
a,a′

[R−1]α|aAn,a|a′
Ra′|α′

. (A11)

As can be shown explicitly (see Chap. 4.3 of Ref. [15]) the
Green’s and vertex functions fulfill a theorem of causality:

G1...1|1...1 = 0,

L2...2|2...2 = 0. (A12)

The remaining three nonzero Keldysh components of the
single-particle functions are called retarded (G2|1, �1|2),
advanced (G1|2, �2|1), and Keldysh (G2|2, �1|1):

G =
(

0 GA

GR GK

)
=

(
0 G1|2

G2|1 G2|2

)
,

� =
(

�K �R

�A 0

)
=

(
�1|1 �1|2

�2|1 0

)
. (A13)

The transformation (A11) provides the identities

G−|+ = 1
2 [G2|2 − (G2|1 − G1|2)], (A14a)

G+|− − G−|+ = G2|1 − G1|2, (A14b)

H1|2
0 = H2|1

0 = H0, H1|1
0 = H2|2

0 = 0, (A14c)

all of which are used in the derivation of the conductance
formula in Sec. I. Note that a calligraphicH carries Keldysh in-
dices, while a capital italic H does not. The retarded/advanced
components are analytic in the upper/lower half plane of the
complex frequency plane. Hence, the following notation is
always implied:

G2|1(ε) = G2|1(ε + iδ), �1|2(ε) = �1|2(ε + iδ), (A15)

G1|2(ε) = G1|2(ε − iδ), �2|1(ε) = �2|1(ε − iδ), (A16)

with real, infinitesimal, positive δ. In contrast, the Keldysh
component describes fluctuations, restricted to the real fre-
quency axis. In equilibrium, the single-particle functions fulfill
a fluctuation-dissipation theorem (FDT):

�1|1(ε) = [1 − 2f (ε)][�1|2(ε) − �2|1(ε)], (A17a)

G2|2(ε) = [1 − 2f (ε)][G2|1(ε) − G1|2(ε)], (A17b)

where f (ε) = 1/{1 + exp[(ε − μ)/T ]} is the Fermi distribu-
tion function.

Within this work we consider a system composed of a
finite central interacting region coupled to two noninteracting
fermionic leads: the left lead, with chemical potential μL and
temperature TL, and the right lead, with chemical potential μR

and temperature TR . We can represent the quadratic part of the
Hamiltonian in block-matrix form as

h0 =
⎛
⎝hl hlc 0

hcl h0,c hcr

0 hrc hr

⎞
⎠, (A18)

where the matrices hl and hr fully define the properties of the
isolated leads, and the matrix h0,c describes the noninteracting
part of the isolated central region. Finally, hcl and hcr specify
the coupling of the central region to the corresponding
lead. Similarly, we write the system’s Green’s function G(ε)
[Eq. (A8)] in the same basis (for the bare, noninteracting
Green’s function G0 we set � = 0):

G =
⎛
⎝Gl Glc Glr

Gcl Gc Gcr

Grl Grc Gr

⎞
⎠. (A19)

We use the small letter g to denote the Green’s function
of an isolated subsystem, e.g., gl(ε) is the Green’s function of
the isolated left lead L. The noninteracting Green’s function
of the central region is given by Dyson’s equation

G0,c = g0,c + g0,c�leadG0,c = [[g0,c]−1 − �lead]−1. (A20)

Again note that this is a matrix equation in Keldysh and
position space. We incorporated environment contributions
into the lead self-energy

�lead =
∑
k=l,r

hckgkhkc. (A21)

The individual Keldysh components of the noninteracting
Green’s function are given by

G1|2
0,c (ε) = (

ε − hc − �
2|1
lead(ε)

)−1
, (A22a)

G2|1
0,c (ε) = (

ε − hc − �
1|2
lead(ε)

)−1
, (A22b)

G2|2
0,c (ε) = G2|1

0,c (ε)�1|1
lead(ε)G1|2

0,c (ε)

= −i
∑
k=l,r

[1 − 2f k(ε)]G2|1
0,c (ε)�k(ε)G2|1

0,c (ε), (A22c)

where we introduced the hybridization function �k(ε) =
ihck[g2|1

k (ε) − g
1|2
k (ε)]hkc.

With the interaction being restricted to the central region,
we use the notation � = �c = C�C for the interacting
self-energy. Dyson’s equation [Eq. (A8)] and the real-space
structure (A19) yields

Gc(ε) = [[G0,c(ε)]−1 − �(ε)]−1. (A23)

The matrix representation of its Keldysh structure is given by

(
0 G1|2

c

G2|1
c G2|2

c

)
=

⎡
⎣(

0 G1|2
0,c

G2|1
0,c G2|2

0,c

)−1

−
(

�1|1 �1|2

�2|1 0

)⎤⎦−1

.

(A24)
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Block-matrix inversion then provides the components

G1|2
c (ε) = (

ε − hc − �
2|1
lead(ε) − �2|1(ε)

)−1
, (A25a)

G2|1
c (ε) = (

ε − hc − �
1|2
lead(ε) − �1|2(ε)

)−1
, (A25b)

G2|2
c (ε) = G2|1

c (ε)
[
�

1|1
lead + �1|1]G1|2

c (ε). (A25c)

From Eq. (A8), we can show that the off-diagonal compo-
nents of the full Green’s function are given by

Gkc = gkHkcGc, Gck = GcHckgk, (A26)

where in this single case, Hkc is the matrix element hkc with
additional Keldysh structure. In general, one has

G1|2
0,i|j = [

G2|1
0,j |i

]∗
, G1|2

i|j = [
G2|1

j |i
]∗

, �
1|2
i|j = [

�
2|1
j |i

]∗
,

(A27a)

G2|2
0,i|j = −[

G2|2
0,j |i

]∗
, G2|2

i|j = −[
G2|2

j |i
]∗

, �
1|1
i|j = −[

�
1|1
j |i

]∗
.

(A27b)

For a symmetric, real Hamiltonian, the following additional
symmetries hold in equilibrium:

G1|2
0,i|j = G1|2

0,j |i , G1|2
i|j = G1|2

j |i , �
1|2
i|j = �

1|2
j |i , (A28a)

G2|1
0,i|j = G2|1

0,j |i , G2|1
i|j = G2|1

j |i , �
2|1
i|j = �

2|1
j |i . (A28b)

APPENDIX B: VERTEX FUNCTIONS IN SOPT

The purpose of this appendix is to present the details of
the SOPT calculations reported in Ref. [5] for the linear
conductance at T �= 0 and the nonlinear (V �= 0) differential
conductance at T = 0.

In order to apply the conductance formulas derived in the
main text, we need the self-energy � and the two-particle
vertex L in second-order perturbation theory (SOPT). Both
are defined in Eq. (A7) and needed when evaluating the
conductance formulas (24) or (25). The SOPT strategy is to
approximate them by a diagrammatic series truncated beyond
second order in the bare interaction vertex ν, defined below.

Within this section, the compact composite index notation
used in the main text is dropped in favor of a more explicit one.
We henceforth use blue roman subscripts (i1,i2, . . .) for site
indices only and explicitly denote spin dependencies using σ ∈
{↑,↓} = {+,−}. A green number subscript denotes an object’s
order in the interaction, e.g., �2 is the desired self-energy to
second order in the bare vertex ν.

Below, the quadratic part of the model Hamiltonian (1) is
represented by a real matrix that is symmetric in position basis
and diagonal in spin space

hσ
ij = hσ

ji ∈ R, h = h↑ + h↓. (B1)

In consequence, the bare Green’s function, too, is diagonal in
spin space and symmetric in position space:

G0,iσ |jσ ′ = δσσ ′Gσ
0,i|j , Gσ

0,i|j = Gσ
0,j |i . (B2)

We distinguish between composite quantum numbers includ-
ing contour indices kn = (an,in,σn) and composite quantum
numbers including Keldysh indices κn = (αn,in,σn). The

noninteracting Green’s function is represented by a directed
line

G0,k1|k′
1
(ε) = . (B3)

We choose an onsite interaction, which reduces the quartic
term in Eq. (1) to a single sum

Hint =
∑
i∈C

Uini↑ni↓, (B4)

i.e., we evaluate the vertex functions for the case of an onsite
electron-electron interaction. Since the two-particle interaction
is instantaneous in time, we construct the antisymmetrized bare
interaction vertex as

νk′
1,k

′
2|k1,k2 (t ′1,t

′
2|t1,t2) = Ui1δi1i2δi1i

′
1
δi1i

′
2
(−a1)δa1a2δa1a

′
1
δa1a

′
2

× δ(t1 − t2)δ(t1 − t ′1)δ(t1 − t ′2)

× δσ1σ̄2δσ ′
1σ̄

′
2
(δσ ′

1σ1 − δσ ′
1σ2 ), (B5)

with σ̄ = −σ . Note that its spin dependence is determined
by Pauli’s exclusion principle and the Slater-determinant
character of the fermionic state. After Fourier transformation
[Eqs. (A6) and (A7)] and Keldysh rotation [Eqs. (A10) and
(A11)] we find

νκ ′
1,κ

′
2|κ1κ2 (ε′

1,ε
′
2|ε1,ε2) = 2πδ(ε1 + ε2 − ε′

1 − ε′
2)ūκ ′

1,κ
′
2|κ1κ2 ,

(B6)

where we introduced the bare vertex

ūκ ′
1,κ

′
2|κ1κ2 = ui1δi1i2δi1i

′
1
δi1i

′
2
ξα′

1α
′
2|α1α2

× δσ1σ̄2δσ ′
1σ̄

′
2

(
δσ ′

1σ1 − δσ ′
1σ2

)
= , (B7)

with ui = Ui/2 and the modulo operation

ξα′
1α

′
2|α1α2 =

{
1, if α′

1 + α′
2 + α1 + α2 = odd

0, else.

1. Two-particle vertex in SOPT

Our goal is to approximate the vertex part [Eq. (20)]
to second order in the interaction. The fully interacting
two-particle vertex L(ε,ε′; 0), has the following diagrammatic
representation:

Lκ ′
1κ

′
2|κ1κ2 (ε′,ε; 0) = (B8)

In SOPT, the vertex L2 is given by the sum of all 1PI
diagrams with four external amputated legs and not more than
two bare vertices. Defining the frequencies

p = ε + ε′, x = ε − ε′, (B9)

the vertex reads as

L2(ε′,ε; 0) = ū + Lp

2 (p) + Lx
2(x) + Ld

2 (0), (B10)
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with particle-particle channel Lp

2 , particle-hole channel Lx
2 , and direct channel Ld

2 defined as

Lp

2,κ ′
1κ

′
2|κ1κ2

(p) = = i

2π

∫ ∞

−∞
dε′′ ∑

q1q2q
′
1q

′
2

ūκ ′
1κ

′
2|q1q2G0,q1|q ′

1
(p − ε′′)G0,q2|q ′

2
(ε′′)ūq ′

1q
′
2|κ1κ2 , (B11a)

Lx
2,κ ′

1κ
′
2|κ1κ2

(x) = = i

2π

∫ ∞

−∞
dε′′ ∑

q1q2q
′
1q

′
2

ūκ ′
1q

′
2|q1κ2G0,q1|q ′

1
(ε′′)G0,q2|q ′

2
(ε′′ + x)ūq ′

1κ
′
2|κ1q2 , (B11b)

Ld
2,κ ′

1κ
′
2|κ1κ2

(0) = = −i

2π

∫ ∞

−∞
dε′′ ∑

q1q2q
′
1q

′
2

ūκ ′
1q

′
2|κ1q1G0,q1|q ′

1
(ε′′)G0,q2|q ′

2
(ε′′)ūq ′

1κ
′
2|q2κ2 . (B11c)

These expressions can be derived by a straightforward perturbation theory.
Using Eqs. (B2) and (B7), we can identify the only nonvanishing components in spin and real space:

�σσ̄
ij (p) = Lp

2,iσ iσ̄ |jσj σ̄ (p), (B12a)

Xσσ ′
ij (x) = Lx

2,iσ jσ ′|jσ iσ ′(x), (B12b)

�σσ ′
ij (0) = Ld

2,iσ jσ ′|iσ ′jσ (0). (B12c)

Equation (B1) and the channel definitions (B11) imply the symmetries

�ij = �ji, Xij = Xji, �ij = �ji, (B13a)

�(p) = �σσ̄ (p) = �σ̄σ (p), (B13b)

Xσσ ′
(x) = Xσ ′σ (−x), (B13c)

�σσ ′
(0) = �σ ′σ (0). (B13d)

Moreover, and directly following from the Keldysh structure of the bare vertex in Eq. (B7), we are left with only four nonzero
components per channel in Keldysh space. This is best seen from realizing that the internal Keldysh structure of the diagrams
in Eq. (B11) only depends on whether the sum of external indices belonging to the same bare vertex is even/odd. Furthermore,
from the Keldysh structure of the bare vertex, combined with G1|1 = 0 and the analytic properties of G, it follows that L22|22 = 0.
Hence, SOPT preserves the theorem of causality (A12), as it should. (This has also been shown for a wide range of approximation
schemes in Ref. [25].) Thus, the Keldysh structure of the channels Y = �,X,� is given by the matrix representation

Y =
(

YK YR

YA 0

)
=

(
Y 1|1 Y 1|2

Y 2|1 Y 2|2

)
. (B14)

We define the individual components according to the Keldysh structure of the full vertex,

Lα′
1α

′
2|α1α2

2 =�ψ(α′
1,α

′
2)|ψ(α1,α2) + Xψ(α′

1,α2)|ψ(α1,α
′
2) + �ψ(α′

1,α1)|ψ(α2,α
′
2), (B15)

where we introduced the modified modulo operation

ψ(α1,α2, . . . ,αn) =
{

1, if
∑

i=1,...,n αi = odd
2, else.

That leaves us with the following explicit formulas:

�
1|2
ij (p) = −uiuj

2πi

∫
dε

[
Gσ,2|1

0,i|j (p − ε)G σ̄ ,2|2
0,i|j (ε) + Gσ,2|2

0,i|j (p − ε)G σ̄ ,2|1
0,i|j (ε)

]
, (B16a)

�2|1 = [�1|2]∗, (B16b)

�
1|1
ij (p) = −uiuj

2πi

∫
dε

[
Gσ,2|2

0,i|j (p − ε)G σ̄ ,2|2
0,i|j (ε) + Gσ,2|1

0,i|j (p − ε)G σ̄ ,2|1
0,i|j (ε) + Gσ,1|2

0,i|j (p − ε)G σ̄ ,1|2
0,i|j (ε)

]
, (B16c)

�1|1(p)|V =0 = [1 + 2b(p − μ)][�1|2(p) − �2|1(p)]V =0, (B16d)
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X
σσ ′,1|2
ij (x) = −uiuj

2πi

∫
dε

[
G σ̄ ,1|2

0,i|j (ε)G σ̄ ′,2|2
0,i|j (ε + x) + G σ̄ ,2|2

0,i|j (ε)G σ̄ ′,2|1
0,i|j (ε + x)

]
, (B17a)

X2|1 = [X1|2]∗, (B17b)

X
σσ ′,1|1
ij (x) = −uiuj

2πi

∫
dε

[
G σ̄ ,2|2

0,i|j (ε)G σ̄ ′,2|2
0,i|j (ε + x) + G σ̄ ,2|1

0,i|j (ε)G σ̄ ′,1|2
0,i|j (ε + x) + G σ̄ ,1|2

0,i|j (ε)G σ̄ ′,2|1
0,i|j (ε + x)

]
, (B17c)

X1|1(x)|V =0 = [1 + 2b(x + μ)][X1|2(x) − X2|1(x)]V =0, (B17d)

�
σσ ′,1|2
ij (0) = uiuj

2πi

∫
dε

[
G σ̄ ,1|2

0,i|j (ε)G σ̄ ′,2|2
0,i|j (ε) + G σ̄ ,2|2

0,i|j (ε)G σ̄ ′,2|1
0,i|j (ε)

]
, (B18a)

� = �2|1 = �1|2, (B18b)

�1|1 = 0. (B18c)

Here, we introduced the Bose distribution function b(z) = 1/(e(z−μ)/T − 1), with chemical potential μ and temperature T . [. . .]∗
denotes the complex conjugate. Note that the components of every individual channel fulfill a fluctuation-dissipation theorem
(FDT) in equilibrium [Eqs. (B16d), (B17d), and (B18c)], warranting the choice of notation introduced in Eq. (B15). We derive
this FDT in detail in the Supplemental Material [16].
Finally, we write the three components of the SOPT two-particle vertex that occur in the vertex-correction part [Eq. (18)]:

L12|22
2,iσ,lσ ′|jσ,kσ ′(ε′,ε; 0) = δσ σ̄ ′δij δikδilui + δσ σ̄ ′δilδjk�

1|2
ij (p) + δikδjlX

σσ ′,1|2
ij (x) + δσσ ′δij δkl�

σσ ′
ik (0), (B19a)

L22|12
2 = ū + �2|1 + X2|1 + �, (B19b)

L12|12
2 = �1|1 + X1|1. (B19c)

Utilizing the equilibrium’s FDT for the � and X channels [Eqs. (B16d) and (B17d)], we find

Kiσ,lσ ′|jσ,kσ ′(ε′,ε; 0) = δσ σ̄ ′δilδjk[2f (ε) + 2b(p − μ)]
[
�

1|2
ij (p) − �

2|1
ij (p)

]
+ δikδjl[2f (ε) + 2b(x + μ)]

[
X

σσ ′,1|2
ij (x) − X

σσ ′,2|1
ij (x)

]
. (B20)

We note that this result (for μ = 0) has been obtained before by Oguri [see Eq. (4.7) of Ref. [6]] using Matsubara formalism and
an analysis of the two-particle vertex following Eliashberg [8].

2. Self-energy in SOPT

Our goal is to approximate the self-energy to second order in the interaction. The fully interacting self-energy �(ε) has the
following diagrammatic representation:

�κ ′
1|κ1 (ε) = . (B21)

In SOPT, the self-energy �2 is given by the sum of all 1PI diagrams with two external amputated legs and not more than two
bare vertices. This amounts to three topologically different diagrams:

�2,κ ′
1|κ1 (ε) =

= −i

2π

∫ ∞

−∞
dε′ ∑

q1q
′
1

[
ūk′

1q
′
1|k1q1 + γ d

2,k′
1q

′
1|k1q1

(0) + γ
p

2,k′
1q

′
1|k1q1

(ε + ε′)
]
G0,q1|q ′

1
(ε′). (B22)

We note that, equivalently, the third diagram can also be expressed via either spin configuration Xσσ or Xσσ̄ [Eqs. (B19a) and
(B24a)] of the particle-hole vertex channel γ x

2 instead of the particle-particle channel γ
p

2 .
As a consequence of the spin dependence of both the noninteracting Green’s function and the bare vertex [Eqs. (B2) and

(B7)], as well as the real-space symmetry of the Hamiltonian (B1), the self-energy, too, is spin diagonal and symmetric in real
space:

�iσ |jσ ′ = δσσ ′�σ
i|j , �σ

i|j = �σ
j |i . (B23)
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The Keldysh structure of the self-energy is given by matrix structure [Eq. (A13)] with �R = �1|2. The theorem of causality
demands �2|2 = 0 [Eq. (A12)]. Finally, explicit evaluation of the diagrams in Eq. (B22) yields

�
σ,1|2
2,i|j (ε) = −i

2π

∫
dε′

[
δijuiG σ̄ ,2|2

0,i|i (ε′) + δij

∑
k

Gσ,2|2
0,k|k (ε′)�σσ

ik (0) + Gσ,2|2
0,i|j (ε′)Xσσ,1|2

ij (ε − ε′) + Gσ,2|1
0,i|j (ε′)Xσσ,1|1

ij (ε − ε′)
]
,

(B24a)

�21
2 = [�12]∗, (B24b)

�
σ,1|1
2,i|j (ε) = −i

2π

∫
dε′[Gσ,2|2

0,i|j (ε′)Xσσ,1|1
ij (ε − ε′) + Gσ,2|1

0,i|j (ε′)Xσσ,1|2
ij (ε − ε′) + Gσ,1|2

0,i|j (ε′)Xσσ,21
ij (ε − ε′)

]
, (B24c)

�
σ,1|1
2,i|j (ε)|V =0 = [1 − 2f (ε)]

[
�

σ,1|2
2,i|j (ε) − �

σ,2|1
2,i|j (ε)

]
V =0. (B24d)

We derive the FDT (B24d) in the Supplemental Material [16].

APPENDIX C: CHARGE CONSERVATION: WARD IDENTITY

In this Appendix, we derive the Ward identity used in the main text, Eq. (23), from variational principles, following Ref. [26].
Since the action corresponding to the Hamiltonian (1) is invariant under a global U(1) symmetry, it satisfies a conservation law.
Starting from the path-integral representation of expectation values using Grassmann variables, the requirement of vanishing
variation under the gauged U(1) transformation yields both a continuity equation for particle current and the desired connection
between the interacting self-energy �, introduced in Eq. (A7), and the vertex part 	, defined in Eq. (20).

Within this appendix, for notational convenience, we combine the left and right leads, thus representing the matrix h in the
Hamiltonian (1) and the Green’s function by

h =
(

hc hc�

h�c h�

)
, G =

(
Gc Gc�

G�c G�

)
, (C1)

where l corresponds to spatial indices in either lead, and c to spatial indices within the central region. Let {ψ},{ψ̄} be sets of
Grassmann variables, i.e., fermionic fields. We write n-particle expectation values in terms of the functional path integral

G
n,a|a′
i |i ′ ( t| t ′) = (−i)n

〈
Tcψ

a1
i1

(t1) . . . ψ
an

in
(tn)ψ̄

a′
n

i ′n
(t ′n) . . . ψ̄

a′
1

i ′1
(t ′1)

〉 = (−i)n
∫

D(ψ̄ψ)ψa1
i1

(t1) . . . ψ
an

in
(tn)ψ̄

a′
n

i ′n
(t ′n) . . . ψ̄

a′
1

i ′1
(t ′1)eiS[ψ̄,ψ],

(C2)

where the Keldysh action is given by the Keldysh contour time integral

S[ψ̄,ψ] =
∫
C
dt

∑
ii ′

ψ̄i ′ (t)(

[G0(t)−1]i′ i︷ ︸︸ ︷
iδi ′i∂t − hi ′i) ψi(t) + Sint[ψ̄,ψ] =

∫ ∞

−∞
dt

∑
a,ii ′

(−a)ψ̄a
i ′ (t)(iδi ′i∂t − hi ′i)ψ

a
i (t) + Sint[ψ̄,ψ]

=
∫ ∞

−∞
dt

∑
a

(−a)ψ̄
a
(t)(i ∂ t − h)ψa(t) + Sint[ψ̄,ψ]. (C3)

In the last line we introduced the vector notation ψ = (
ψ1
ψ2
.
.
.
) and ψ̄ = (ψ1,ψ2, . . .). Note that ∂ t is a diagonal matrix.

1. Gauge transformation

The action (C3) is invariant under the global U(1) transformation ψ → ψeiα and ψ̄ → ψ̄e−iα , where α is a real constant.
Gauging this transformation, i.e., making α space and time dependent, yields to linear order in α

δψa
i (t) = iαa

i (t)ψa
i (t), δψ̄a

i ′ (t
′) = −iαa

i ′ (t
′)ψ̄a

i ′ (t
′). (C4)

Since we are interested in the current through the system, from one lead to another, it is convenient to pick α nonvanishing only
in the central region:

αa
i (t) =

{
αa(t), if i ∈ C

0, if i ∈ L.
(C5)

This is equivalent to first deriving the Ward identity using an arbitrary α and then summing over the central region. The
requirement that the right-hand side of Eq. (C2) is invariant when applying the gauged U(1) transformation to all ψ’s therein
now reads as

δG
n,a|a′
i |i ′ ( t| t ′) = 0. (C6)
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This requirement is simply a change of the integration variable in field space. In other words, the physical correlators cannot
depend on an arbitrary choice of basis in which the fields are represented.

2. Continuity equation (zeroth-order Ward identity)

For n = 0, Eq. (C6) sets a condition on the variation of the partition sum. Since the measure of the path integral is invariant
under the transformation in Eq. (C4) [the U(1) symmetry is not anomalous], this in turn sets a condition on the variation of the
action:

0 = δ

[∫
D(ψ̄ψ)eiS[ψ̄,ψ]

]
= i

∫
D(ψ̄ψ)δS[ψ̄,ψ]eiS[ψ̄,ψ]. (C7)

The quartic term Sint describes a density-density interaction. Hence, its variation vanishes trivially and the variation of the total
action reduces to the variation of the quadratic term:

δS[ψ̄,ψ] =
∫ ∞

−∞
dt

∑
a,i

(−a)

[
αa

i (t)ψ̄a
i (t)∂tψ

a
i (t) − ψ̄a

i (t)∂t

[
αa

i (t)ψa
i (t)

] +
∑

i ′

[
iαa

i ′(t) − iαa
i (t)

]
ψ̄a

i ′ (t)hi ′iψ
a
i (t)

]

=
∫ ∞

−∞
dt

∑
a

(−a)αa(t)
[
∂t

[
ψ̄

a

c (t)ψa
c (t)

] − iψ̄
a

c (t)hclψ
a
l (t) + iψ̄

a

l (t)hlcψ
a
c (t)

]

=
∫ ∞

−∞
dt

∑
a

(−a)αa(t)
[−∂t

[
ψa

c (t)ψ̄
a

c (t)
] + iTr

{
hclψ

a
l (t)ψ̄

a

c (t)
} − iTr

{
hlcψ

a
c (t)ψ̄

a

l (t)
}]

, (C8)

where we used integration by parts in the first term. Since Eq. (C7) must hold for arbitrary α(t), this provides the continuity
equation

−∂t

〈
ψa

c (t)ψ̄
a

c (t)
〉 = iTr

{
hlc

〈
ψa

c (t)ψ̄
a

l (t)
〉} − iTr

{
hcl

〈
ψa

l (t)ψ̄
a

c (t)
〉}

. (C9)

In steady state, the time derivative of the density term on the left-hand side vanishes and Eq. (C9) reduces to current conservation,
i.e., the current into the central region equals the current out of the central region:

Tr
{
hlcG

−|+
cl (0)

} = Tr
{
hclG

−|+
lc (0)

}
. (C10)

Here, we made use of the time-translational invariance of the Green’s function [Eq. (A5)] and the equivalence of the contour
Green’s function components for equal-time arguments G−|+(t,t) = G−|−(t,t) = G+|+(t,t).

3. Relation between self-energy and two-particle vertex (first-order Ward identity)

For n = 1, Eq. (C6) reads as

0 = δ
〈
ψa

i (t)ψ̄a′
i ′ (t ′)

〉 =
∫

D(ψ̄ψ)
[[

δψa
i (t)

]
ψ̄a′

i ′ (t ′) + ψa
i (t)

[
δψ̄a′

i ′ (t ′)
] + iψa

i (t)ψ̄a′
i ′ (t ′)(δS[ψ̄,ψ])

]
eiS[ψ̄,ψ]. (C11)

Since the right-hand side contains both terms quadratic and quartic in ψ , this equation will eventually lead to a relation between
the self-energy and the two-particle vertex. For states i,i ′ ∈ C, Eq. (C11) can be written as

0 =
∫ ∞

∞
dt ′′

∑
a′′

(−a′′)iαa′′
(t ′′)

{∫
D(ψ̄ψ)ψa

i (t)ψ̄a′
i ′ (t ′)

[
(−a)δ(t ′′ − t)δaa′′ + a′δ(t ′′ − t ′)δa′a′′ +

∑
j∈C

∂t ′′
(
ψ̄a′′

j (t ′′)ψa′′
j (t ′′)

)

+ i
∑
j1,j2

(
ψ̄a′′

j1
(t ′′)h�c,j1|j2ψ

a′′
j2

(t ′′) − ψ̄a′′
j2

(t ′′)hc�,j2|j1ψ
a′′
j1

(t ′′)
)]

eiS[ψ̄,ψ]

}
. (C12)

Again, this must be true for arbitrary α(t), providing

[(−a)δ(t ′′ − t)δaa′′ + a′δ(t ′′ − t ′)δa′a′′ ]Ga|a′
i|i ′ (t |t ′)

=
∑
j1,j2

[
h�c,j1|j2G

a′′a|a′′a′
j2i|j1i ′ (t ′′t |t ′′t ′) − hc�,j2|j1G

a′′a|a′′a′
j1i|j2i ′ (t ′′t |t ′′t ′)] − i∂t ′′

∑
j∈C

G
a′′a|a′′a′
ji|ji ′ (t ′′t |t ′′t ′). (C13)

We proceed by decomposing the two-particle Green’s function in the first term of the right-hand side according to Eq. (A4).
Since the first disconnected term G(t ′′|t ′′)G(t |t ′) vanishes due to the current conservation (C9), we get

[(−a)δ(t ′′ − t)δaa′′ + a′δ(t ′′ − t ′)δa′a′′ ]Ga|a′
i|i ′ (t |t ′)

= −
∑
j1,j2

[
G

a|a′′
i|j1

(t |t ′′)h�c,j1|j2G
a′′ |a′
j2|i ′ (t ′′|t ′) − G

a|a′′
i|j2

(t |t ′′)hc�,j2|j1G
a′′ |a′
j1|i ′ (t ′′|t ′)] − i∂t ′′

∑
j∈C

G
a′′a|a′′a′
ji|ji ′ (t ′′t |t ′′t ′)
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− i
∑
j1,j2

∑
k,b

∫
d τ G

a|b′
2

i|k′
2
(t |τ ′

2)
[
G

b1|a′′
k1|j1

(τ1|t ′′)h�c,j1|j2G
a′′ |b′

1

j2|k′
1
(t ′′|τ ′

1) − (j1 ↔ j2,h�c ↔ hc�)
]
γ

b′
1b

′
2|b1b2

k′
1k

′
2|k1k2

(τ ′
1,τ

′
2|τ1,τ2)Gb2|a′

k2|i ′ (τ2|t ′).

(C14)

We find the corresponding relation in frequency domain after Fourier transformation with respect to all time arguments t,t ′,t ′′:

(−a)δaa′′Ga|a′
i|i ′ (ε + ω) + a′δa′a′′Ga|a′

i|i ′ (ε)

= −
∑
j1,j2

[
Ga|a′′

i|j1
(ε + ω)h�c,j1|j2G

a′′|a′
j2|i ′ (ε) − (j1 ↔ j2,h�c ↔ hc�)

] − ω

2π

∫
dε′ ∑

j∈C

Ga′′a|a′′a′
ji|ji ′ (ε,ε′; ω)

− i

2π

∑
k,b

j1,j2

Ga|b′
2

i|k′
2

(ε)

{∫
dε′[Gb1|a′′

k1|j1
(ε′)h�c,j1|j2G

a′′ |b′
1

j2|k′
1

(ε′ + ω) − (j1 ↔ j2,h�c ↔ hc�)
]
Lb′

1b
′
2|b1b2

k′
1k

′
2|k1k2

(ε,ε′; ω)

}
Gb2|a′

k2|i ′ (ε + ω).

(C15)

We set ω = 0 and sum over a′′ on both sides to get the matrix equation∑
a′′

[(−a)δaa′′ + a′δa′a′′ ]Ga|a′
c (ε) = Y a|a′

(ε), (C16)

where we defined the response object

Y
a|a′
i|i ′ (ε) = −

∑
a′′

∑
j1,j2

[
Ga|a′′

i|j1
(ε)h�c,j1|j2G

a′′ |a′
j2|i ′ (ε) − (j1 ↔ j2,h�c ↔ hc�)

]

− i

2π

∑
a′′

∑
k,b

j1,j2

Ga|b′
2

i|k′
2

(ε)

{∫
dε′[Gb1|a′′

k1|j1
(ε′)h�c,j1|j2G

a′′ |b′
1

j2|k′
1

(ε′) − (j1 ↔ j2,h�c ↔ hc�)
]
Lb′

1b
′
2|b1b2

k′
1k

′
2|k1k2

(ε,ε′; 0)

}
Gb2|a′

k2|i ′ (ε).

(C17)

With two independent contour arguments a and a′, Eq. (C16) results in four independent contour space relations

0 = Y+|+ = Y−|−, − 2G+|−
c = Y+|−, 2G−|+

c = Y−|+. (C18)

Adding up all equations and transforming into Keldysh space [Eq. (A10)] yields

2(G+|−
c − G−|+

c ) = Y+|+ + Y−|− − Y+|− − Y−|+

Eq.(A10)⇔ G2|1
c − G1|2

c = Y 1|1. (C19)

As a consequence of the theorem of causality [Eq. (A12)], we have G1|1 = 0. Hence, only the summand with a′′ = 2 in Y 1|1 is
nonzero:

Y 1|1(ε) = b1|1(ε) − iG1|2
c (ε)	̃(ε)G2|1

c (ε), (C20)

where we defined the coupling term

bα|α′ = Gα|2
c hc�G2|α′

�c − Gα|2
c� h�cG2|α′

c

Eq.(A26)= Gα|2
c hc�

∑
β,γ

g
2|β
� Hβ|γ

�c Gγ |α′
c −

∑
β,γ

Gα|β
c Hβ|γ

c� g
γ |2
� h�cG2|α′

c , (C21)

and the response function

	̃k′
2|k2 (ε) = 1

2π

∫
dε′ ∑

b1,b
′
1

k1 ,k′
1

b
b1|b′

1

k1|k′
1
(ε′)Lb′

12|b12
k′

1k
′
2|k1k2

(ε,ε′; 0). (C22)

Using the hybridization � = ihc�(g2|1
� − g

1|2
� )h�c, we find

b1|1 = −iG1|2
c �G2|1

c , b1|2 = −b2|1 = (1 − 2f )b1|1. (C23)

Hence, the response function reads as (since γ 22|22 = 0)

	̃k′
2|k2 (ε) = 1

2πi

∫
dε′ ∑

j1,j
′
1

k1 ,k′
1

G1|2
k1|j ′

1
(ε′)�j ′

1|j1 (ε′)G2|1
j1|k′

1
(ε′)

[
L12|12

k′
1k

′
2|k1k2

(ε,ε′; 0) − [1 − 2f (ε′)]
(
L12|22

k′
1k

′
2|k1k2

(ε,ε′; 0) − L22|12
k′

1k
′
2|k1k2

(ε,ε′; 0)
)]

,

(C24)
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in accord with Eq. (22). Finally, we multiply [G1|2]
−1

from the
left and [G2|1]

−1
from the right in Eq. (C19), which provides

[G1|2(ε)]−1 − [G2|1(ε)]−1 = −i[�(ε) + 	̃(ε)]. (C25)

Inserting Eq. (A25) and using �
1|2
lead(ε) − �

2|1
lead(ε) = −i�(ε)

[see Eq. (A21)], the hybridization terms cancel and we recover
Eq. (23) (note that we combined the left and right leads, which
implies 	̃ = 	̃l + 	̃r ):

i[�1|2(ε) − �2|1(ε)] = 	̃(ε). (C26)

This equation is a necessary condition that any method for
describing the influence of interactions has to satisfy in order
to produce quantitative reliable results for transport properties
of the system. If Eq. (C26), and therefore particle conservation,
is violated by a chosen approach (such as, e.g., truncated fRG
schemes), one should exercise great caution in interpreting the
results.

We remark that SOPT does satisfy the Ward identity (C26)
expanded to second order in the interaction because SOPT
contains all diagrams up to this order.

APPENDIX D: METHOD OF FINITE DIFFERENCES
FOR NONUNIFORM GRID

In this Appendix, we derive a discrete description of a con-
tinuous system having the Hamiltonian H (x) = h̄2/(2m)∂2

x +
V (x). While the standard procedure usually involves dis-
cretization via a grid with constant spacing, we focus on the
more general case, where the spacing is nonconstant. This
bypasses, for a proper choice of nonmonotonic discretization,
the occurrence of artificial bound states close to the upper band
edge, which are a consequence of the inhomogeneity V (x).

We discretize real space using a set of grid points {xj } (see
Fig. 3). The distance between two successive points is given by
aj = xj+1 − xj . Now, a function ψ(x) and its first and second

ajaj−1 aj+1

x

ψ(x)

ψj

ψj+1

ψj−1

ψj+2

xj+1xj−1 xj+2xj

FIG. 3. Illustration of the choice of notation used to discretize
real space.

derivatives ψ ′(x) and ψ ′′(x) are discretized as

ψj = ψ(xj ),

ψ ′
j+1/2 = ψ(xj+1) − ψ(xj )

aj

,

ψ ′′
j = ψ ′

j+1/2 − ψ ′
j−1/2

aj +aj−1

2

= 2

ψj+1−ψj

aj
− ψj −ψj−1

aj−1

aj + aj−1

� 1

a2
j−1

ψj−1 −
(

1

a2
j−1

+ 1

a2
j

)
ψj + 1

a2
j

ψj+1,

(D1)

where we demanded that the spacing changes smoothly as
a function of j , implying (aj + aj−1)aj � 2a2

j and (aj +
aj−1)aj−1 � 2a2

j−1. Note that the first derivative is defined
“in-between” grid points. Hence, the discretized version of the
Hamiltonian H (x) = − h̄2

2m
∂2
x + V (x) at a point xj is given by

Hψj = −τj−1ψj−1 − τjψj+1 + Ejψj , (D2)

with site-dependent hopping τj = 1/(2ma2
j ) (here and below

we set h̄ = 1) and the onsite energy Ej = τj−1 + τj + Vj .
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