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Abstract

Helical states are characterized by a lock-in-relation between spin and
direction of motion. The discovery of helical states as new state of matter
with virtually ideal spin- and charge transport properties have opened gates
to exploring interesting new physical effects such as persistent spin currents
of Dirac Fermions. It has recently been shown that helical states appear
not only as edge states of topological insulators, but can also result from
many-body-interaction effects in 1D quantum wires. In this thesis, we show
that electron tunneling between a single-level quantum dot which is out of
equilibrium (corresponding to a magnetization), and a 1D helical wire leads
to spin-dependent tunneling currents. We demonstrate this to result in a spin-
to-charge conversion which is an important experimental tool.
We address the problem of regularization of the tunneling Hamiltonian which
always appears in the theory of 1D Dirac Fermions. By using the scattering
approach and phenomenological arguments, we find a general expression for
the tunneling current and analyze it for different realizations of the quantum
dot.
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1 Introduction

1.1 Helical States

One of the great achievements of solid states physics in the 20th century is the devel-
opment of band theory that allows to describe the electronic structure of solids. At
first sight, it might seem reasonable that there is no substantial difference between
different insulators that have an energy gap between the valence and conduction
band since one could smoothly interpolate between them by widening or narrowing
the gap. Defining this as property of a topological equivalence class, this would
imply that all insulators belong to the same topological class. Interestingly, there
are electronic states that contradict this intuition. This topic has intensively been
explored in the past decades and new states of matter have been revealed that we
will discuss in this section.

1.1.1 Helical States in Topological Insulators

In 1980, von Klitzing, Dorda, and Pepper opened the gates to discovering a new
phase of matter. They experimentally observed the Quantum Hall effect that arises
when a strong magnetic field is applied perpendicular to a two-dimensional electron
gas. The motion of a charged particle in a uniform magnetic field is equivalent to
that of a simple harmonic oscillator in quantum mechanics. Thus, the electrons
move on cyclotron orbits and take quantized Landau levels εν = ~ωc(ν+1/2) where
ωc = eB

m is the cyclotron frequency (m is the electron mass, e is the electron charge,
and B is the applied magnetic field). Landau levels can be seen as band structure
with level spacing ∆ε = ~ωc. Hence, just like an insulator, the total energy of all
occupied energy levels is separated from the next higher energy state by an energy
gap. It was observed that a transverse electric field causes the cyclotron orbits to
drift. At the edge, the electrons are driven to perform a skipping motion since
they cannot close their orbit. This skipping motion constitutes one dimensional

transport channels with conductance e2

h per occupied level which gives rise to the
quantized Hall conductivity:

σxy =
Ne2

h
. (1)

where N denotes the number of occupied levels. It was realized that N is in fact
a topological invariant that is insensitive to the geometry of the system. In this
sense, the conductivity in the Quantum Hall effect is very robust.

In 1982, Thouless, Kohmoto, Nightingale, and Nijs (TKNN) understood that
the difference between ordinary insulators and Quantum Hall Insulators is in fact a
matter of topology [7,23]. In order to distinguish between them, they calculated the

Chern number nm ∈ Z that can be defined in terms of Bloch wavefunctions |um(~k)〉.
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Originally, the Chern number has its roots in the mathematical theory of Fiber
Bundles. The Chern number serves to classify time reversal invariant Hamiltonians
of solids into topological equivalence classes according to their band structure. Two
Hamiltonians of the same equivalence class can smoothly be transformed into one
another without closing the energy gap between the valence and the conduction
band. For the definition of nm, a vector potential ~A := i〈um(~k)|~∇k|um(~k)〉, called
Berry-connection, is used. Since quantum mechanical wave functions always have
an ambiguity with regard to their phase, the quantity ~A is not gauge invariant:

|u(~k)〉 → eiφ(~k)|u(~k)〉 (2)

~A→ ~A+ ~∇kφ(~k). (3)

However, a closed path integral in k-space of the Berry connection does not contain
this ambiguity, i.e. it is independent of the arbitrary phase φ(~k):∮

C
d~k i〈um(~k)eiφ(~k)|~∇k|eiφ(~k)um(~k)〉 (4)

=

∮
C
d~k i 〈um(~k)eiφ(~k)|eiφ(~k)um(~k)〉︸ ︷︷ ︸

=1

~∇k(iφ(~k)) +

∮
C
d~k e−iφ(~k)eiφ(~k)︸ ︷︷ ︸

=1

i〈um(~k)|~∇k|um(~k)〉

(5)

= 0 +

∮
C
d~k i〈um(~k)|~∇k|um(~k)〉. (6)

This motivates the following definition of the Chern invariant nm:

nm ≡
1

2π

∮
C
d~k i〈um(~k)|~∇k|um(~k)〉. (7)

Using Stokes’ Theorem, the closed path integral can also be expressed by a surface
integral over the curl of ~A:

nm =
1

2π

∮
C
d~k ~A =

1

2π

∮
∂C
d2~k (~∇× ~A), (8)

where (~∇× ~A) is called Berry curvature as introcuded by Berry in 1984 [3]. Struc-
turally, the Berry curvature is analogous to the magnetic field that is expressed as
curl of the electromagnetic vector potential.
The total Chern number n is the sum over all bands: n =

∑N
m nm. It characterizes

the band structure and cannot change in smooth deformations of the Hamiltonian
H(~k) that do not close the energy gap between the valence and conduction band.
n can be shown to be equivalent to N in Eq. (1).
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In return, a change of the Chern number over the interface of two materials1

requires the gap to vanish at some point which gives rise to gapless edge states that
lie inside the bulk insulating gap (see Fig. 1).

valence band

conduction band

EF

k π/2−π/2 0

E

Fig. 1: Dispersion relation of a chiral edge state
connecting the valence band to the conduction
band.

Since, for spinless models, a
topologically nontrivial bulk
can only be obtained by ex-
plicitly breaking time reversal
symmetry T (e.g. by applying
a magnetic field), these edge
states are chiral in the sense
that electrons can only travel
in one direction. The effective
electric current is nonzero, ac-
cordingly. Consequently, due
to the absence of states with
the opposite direction of mo-
tion, back-scattering is sup-
pressed and the edge states are
immune to potential disorder.

In 1988, Haldane developed
a model which gives rise to the

Quantum Hall Effect: He considered a spinless graphene model which is based on a
honeycomb-lattice. The corresponding Brillouin zone (BZ) is hexagonal which cor-
responds to a triangular Bravais lattice with a basis. One can therefore distinguish
between two types of edge points: K and K ′. If one expands the Hamiltonian at
these points in the reciprocal lattice, the dispersion relation turns out to be linear
around K and K ′. Moreover, one discovers that the conductance band and the va-
lence band touch at these points (see Fig. 2). In fact, the form of the Hamiltonian
in the vicinity of K and K ′ is analogous to a massless Dirac Hamiltonian.

By breaking either reflection symmetry R or time reversal symmetry T , a mass
term can be introduced into the Dirac-Hamiltonian that lifts the degeneracy at K
and K ′ and thus opens a band gap.
Interestingly, a broken R-symmetry (e.g. if the two atoms in the unit cell are in-
equivalent) results in a trivial insulator (n = 0) whereas a broken T -symmtery leads
to a non-zero Chern number and therefore results in chiral edge states that are pro-
tected by symmetry. Haldane proposed a periodic magnetic flux which is zero on
average to break T -symmetry. The quantum Hall conductance is therefore not due
to discrete Landau levels but originates from the band structure of electrons in the
lattice.

1This includes the interface between a nontrivial insulator(nm 6= 0) and the vacuum which
belongs to the trivial topological class with n = 0.
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Figure 2: Three dimensional band
structure of graphene. Around the two
distinct edge points of the hexagonal
Brillouin zone K and K ′, marked in
black and white, the dispersion rela-
tion is linear to a good approximation,
adopted from [1].

These chiral electrons with a linear dispersion relation can be described by the Dirac
equation and are referred to as Dirac Fermions.

Haldane used the periodic magnetic flux to explicitly break T -symmetry in order
to obtain a topologically nontrivial bulk. One could ask whether similar states can
also exist in T -invariant systems. In 2005, Kane and Mele predicted a new phase
of matter in 2D that indeed appears in T -invariant systems and has topologically
protected edge states [10]:
Up to this points, the spin of the electrons in the Haldane-graphene model was
ignored. Introducing spin into the model, Kane and Mele replaced the periodic
magnetic flux by spin-orbit-interaction (SOI) which respects all of gaphene’s sym-
metries but still introduces a mass term to the Dirac Hamiltonian [10]. Spin-orbit
interaction is a relativistic effect where a charged particle that travels in an elec-
tric field, experiences an effective magnetic field ~BSO that couples to its spin. The
resulting model can roughly be seen as two copies of the Haldane model with op-
posite signs of the Hall conductivity for up and down spins [7, 10]. T -symmetry is
preserved since time reversal flips the spin as well as the sign of the conductivity.
Thus, electrons with opposite spin travel in opposite directions. This state in 2D is
called Quantum Spin Hall (QSH) state. Such 2D time reversal invariant insulators
are also referred to as topological insulators which constitute a new phase of matter.
Since it is two copies of a Quantum Hall state, the QSH state must have gapless
edge states which are called helical due to their lock-in-relation between spin and
direction of motion [7].
Generally, helicity is defined as normalized projection of a particle’s spin on its
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momentum:

h :=
~p · ~s
|~p||~s|

.

In one dimension, h takes the simple form:

h = sgn(p)sgn(s) = ±1.

h fully characterizes a 1D helical state. This implies a lock-in relation between
spin and direction of motion: Electrons of a specific spin state can only travel in
one direction, whereas electrons in the other spin state always have the opposite
direction of motion (see Fig. 3).

Due to SOI, the states mix and it is generally not possible to define a spin-
dependent Chern number [20]. Since there is no net charge current, it is neither
possible to define a total Chern number for the system. Kane and Mele therefore
introduced a Z2 order parameter to distinguish between two classes of 2D time re-
versal invariant insulators [9].

ν = 1

ν = 0

Quantum Spin Hall Insulator

Trivial Insulator

Fig. 3: Helical states that are characterized by a lock-in-relation between spin and
direction of motion. Electrons with opposite spin states are counterpropagating at
the edge of a Quantum Spin Hall Insulator. The Z2-order parameter ν is ν = 1 in
the bulk and ν = 0 outside. Topological insulators are T -invariant.

More insight can be gained by looking at the properties of electrons as spin- 1
2 -

particles. The time-reversal-operator Θ = e(iπŜy/~)K̂, where Ŝy is the spin-operator

and K̂ is complex conjugation, is antiunitary:

Θ2 = −1 (9)

This implies that all eigenstates are at least two-fold degenerate which is known
as Kramer’s Theorem. This can be understood as follows: If the eigenstates of Θ
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were not degenerate, one could write the eigenvalue-equation Θ|χ〉 = c|χ〉 with a
constant c. This is in contradiction to Θ2|χ〉 = −|χ〉 = |c|2|χ〉 since |c|2 6= −1 and
one can therefore conclude that, for spin- 1

2 -particles, the eigenstates of T -invariant
Hamiltonians are at least twofold degenerate.
The above assumed T -invariance of the Hamiltonian for QSH-insulators implies
that time reversal flips the spin σ and the momentum k of the Hamiltonian H(~kσ):

ΘH(~kσ)Θ−1 = H(−~k−σ). (10)

Consequently, the one half of the Brillouin zone with negative k-values is simply a
mirror image of the one with positive k-values. At the point k = 0 and at the edge
points k = Γb = ±π/a, the two states must cross due to their Kramer’s degeneracy.
At all other values of k, the degeneracy is lifted by spin-orbit-interaction.

a) b)

EF EF

E Econduction band conduction band

valence band valence band

Γa ΓaΓb Γb

k k

Fig. 4: Electronic dispersion between two boundary Kramer’s degenerate points
Γa = 0 and Γb = π/a. In a), the number of surface states crossing the Fermi
energy EF is even, whereas in b) it is odd. An odd number of crossings leads to
topologically protected metallic boundary states, adapted from [7].

If the bands cross the Fermi energy an even number of times as depicted in Fig.
4 a), one can shift the energy in a way that all the bound states are pushed out
of the gap which implies the topological equivalence to trivial insulators. If the
bands intersect the Fermi energy an odd number of times, in contrast (Fig. 4 b)),
shifting the energy by adding T -invariant impurities cannot remove the degeneracy
points. This insulator is therefore nontrivial and has helical edge states that are
topologically protected by T -symmetry. This essential difference between an even
and an odd number of helical edge states motivates the introduction of a Z2 order
parameter:

ν ≡

{
0 trivial insulators (even number of crossings at EF)

1 nontrivial insulators (odd number of crossings at EF)
. (11)
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The robustness of the helical edge states is a central property that we demon-
strate for a T -invariant scattering potential V : Due to Eq. (9), it is natural to
use the following convention for the time reversal operator Θ acting on a Bloch
wavefunction |uk,σ〉 with momentum k and spin σ:

Θ|uk,↑〉 = |u−k,↓〉 (12)

Θ|u−k,↓〉 = −|uk,↑〉. (13)

The antiunitary operator Θ has the property 〈Θα|V |Θβ〉 = 〈β|V |α〉 for general
states α and β. It follows that

〈uk,↑|V |u−k,↓〉 = 〈Θu−k,↓|V |Θuk,↑〉 = −〈uk,↑|V |u−k,↓〉, (14)

and therefore: 〈uk,↑|V |u−k,↓〉 = 0 which is the condition for robustness.

1.1.2 Helical States in Interacting Wires

In the last section, we considered only noninteracting systems where symmetry
protected states were due to a topologically nontrivial bulk.
However, it was discovered that many-body interaction effects can also give rise
to helical states. In 2010, Quay et al. observed that spin-orbit-interaction (SOI)
in 1D wires can lead to such states by the following mechanism [14]: Due to SOI,
the spin degeneracy of conduction electrons in a wire is lifted and one obtains two
spinful bands. The magnetic field ~BSO, which acts on electrons, is perpendicular to
both, the electron’s momentum and external electric field that can arise as a result
of either the lack of an inversion centre in the crystal or a lack of symmetry in an
external confining potential such as metallic gates. Quay et al. showed that, when
an additional magnetic field is applied perpendicular to ~BSO, the bands mix and
the crossing points become anticrossings (see Fig. 5).

a) b) c)
E E E

k k k

EF

Electron in 1D + ~BSO + ~B ⊥ ~BSO

Fig. 5: a) Dispersion relation of electrons in 1D without spin-orbit interaction.

b),c) Dispersion relation for different orientations of ~B with respect to ~BSO. For
~B ⊥ ~BSO, a spin-orbit gap opens that gives rise to helical states.
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If the Fermi energy lies within the so-called spin-orbit-gap of such an anticrossing
point, only two states exist instead of the previous four. These two states are helical
in a similar way that conducting electrons in egde states of topological insulators
are helical: Backscattering requires a spin flip and therefore, the states are immune
to potential disorder.

Experimentally, a one dimensional hole wire can be realized as follows: In a first
step, a two-dimensional hole gas is produced in a AlGaAs/GaAs/AlGaAs quantum
well. Carbon-p-doping leads to the accumulation of a high mobility 2 dimensional
hole gas (2DHG) at the interface. Then, the sample is cleaved and more p-doped
AlGaAs is grown over the freshly exposed surface. Applying a positive voltage at
the gate electrode that is parallel to the 2DHG, one can deplete the 2DHG under
the gate which results in a one dimensional hole wire as shown in Fig. 6. This
fabrication technique is called cleaved-edge overgrowth method.

Fig. 6: Top: Cross-section of the device for the creation of 1D hole wires which is
fabricated by the cleaved-edge overgrowth method. Bottom: A section of the wire
is isolated using a gate which depletes the 2DHG just beneath it, adapted from [14].

Loss et al. showed in [4] that an embedded 3D nuclear spin lattice in such 1D
GaAs-based quantum wires with interacting electrons leads to order in both systems
in the form of a nuclear helimagnet and a helical spin density wave for half of the
electron modes. The responsible mechanism is the Ruderman-Kittel-Kasuya-Yosida
(RKKY)-interaction which is an indirect exchange coupling: the spin of one atom
interacts with a conduction electron via hyperfine interaction and this conduction
electron then interacts with another nuclear spin, thus creating a correlation energy
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between the two spins.

Tsvelik and Yevtushenko showed in [24] and [19] that in interacting systems,
spontaneous symmetry breaking can also give rise to helical modes. They concen-
trated on the RKKY-interaction in low-energy regimes of a model Kondo chain.
RKKY is the dominant interaction effect when the spin concentration is large and
the electron-electron-repulsion is present. The model consists of electrons that travel
in one dimension and interact with localized magnetic moments.
The coupling between the eletron spins and the magnetic moments of the atomic
nuclei is considered to be isotropic in the x-y-plane: Jx = Jy = J⊥ 6= Jz.

Tsvelik and Yevtushenko discovered the difference between two regimes that
constitute different phases: Easy Axis (EA) with Jz > J⊥ and Easy Plane (EP)
with Jz < J⊥. They found that in the EA-phase, all quasi particles are gapped
and therefore, electric current cannot be supported by electrons. At Jz = J⊥,
Z2-(helical) symmetry is sponateously broken: In the EP-phase, only the bands
of one helicity are gapped whereas the other branch remains gapless and allows
quasiparticles of this helicty to travel along the lattice and to support the current
(see Fig. 7).

spin down spin up

a) b) c)

E E E

k k k

Fig. 7: Panels a) and b) show the dispersion relation for electrons in the two
possible spin states in the Easy-Plane phase (Jz < J⊥). In this phase, helicity is
spontaniously broken and only electrons with a certain helicity (here h = +1) can
propagate through the lattice whereas the band structure for the other helicity is
gapped as shown in c).

Schimmel et al. showed in [19] that it is possible to define the vector product of
two neighboring spins in the dense chain of magnetic moments as order parameter
that dinstiguishes between the EP- and the EA-phase: Ac = εabc〈Sa(1)Sb(1 + ξ0)〉.
In the EP-phase, the spin components Sx and Sy are correlated which is graphically
represented by a helix when the spin waves are plotted over position (see Fig. 8).
The orientation of the helix is in one-to-one correspondance with helicity.
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Fig. 8: A travelling spin wave in the EA (left) and EP (right) setup. Since Sx and
Sy in the EA case are uncorrelated to leading order, only one contribution is shown.
The orientation of the helix (right) corresponds to a well-defined helicity. For the
other helcity, the orientation is inverted, adopted from [19].

The existence of robust helical modes is reminiscent of helical edge states in
topological insulators though it should be emphasized that its origin lies in many
body interaction effects whereas it is due to a topologically nontrivial bulk in topo-
logical insulators. Elastic single particle backscattering is surpressed because it
would contain a spin flip which would violate the U(1) spin symmetry. In this
sense, this helical state is symmetry protected.

1.2 Quantum Dots

In the main part of this thesis, the 1D helical wires that we discussed in the last sec-
tion will play a central role. More precisely, we aim at describing the spin-to-charge
conversion that we expect to take place when a 1D helical wire is tunnel coupled to
a quantum dot (QD) that is out of equilibrium, i.e. has different and fixed probabil-
ities of being occupied by ↑- and ↓-electrons (see Fig. 9). In the following, we will
therefore shortly introduce quantum dots and describe the properties that are most
important for our application. Furthermore, we will give an introduction to the
tunneling Hamiltonian that will allow us to calculate the tunneling current between
the 1D helical wire and the quantum dot that we will consider.

A quantum dot is defined as artificially produced nanostructure that is spatially
strongly restricted, such that electrons that populate the quantum dot are quantized
in energy. By definition it has the property that the time τ Thouless that it takes
the electron to cross the confining potential from one border to the other is much
smaller than its lifetime τ life and the dwelling time τ dwell which is the time that
the electron remains in the quantum dot:

τ Thouless � τ life, τ dwell. (15)
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n n+1n-1

Quantum Dot

Wire

xycoupling strength ε

µd

µw

Fig. 9: Quantum dot coupled to a wire via tunneling with coupling strength ε and
tunneling junction at site n. The quantum dot and the wire can have different
chemical potentials µα. For our considerations, we replace the general wire by a
helical wire.

This restriction implies that the electron’s trajectory almost homogeneously covers
the surface of the quantum dot (see Fig. 10). Therefore, no localization of an
electron in the quantum dot is possible which justifies a zero-dimensional description
of the QD.

τ Thouless

Fig. 10: By definition, the trajectory of an electron covers the confining potential
almost homogeneously which corresponds to τ Thouless � τ life, τ dwell. This justifies
a zero-dimensional description of the quantum dot.

As model, we consider a metallic island that is populated by electrons and car-
ries its charge on the surface. With classical electrostatics, its potential energy due
to its electric field is given by E = Q2/C where C denotes the capacitance. Since
the charge Q consists of the charge contributions from single electrons, one can

write E = e2

C N
2 where N is the number of electrons in the QD. One can define

the charging energy EC ≡ e2

C which is the energy that is needed to add an elec-
tron to the neutral QD. To add the N ’s electron, it takes an electrostatic energy of
∆E = EC(N2 − (N − 1)2) = EC(2N − 1). Coming back to the energy scale, one
defines for quantum dots that the energy spacing of different levels within the QD
is not negligible with respect to the charging energy [12].

Since we want to investigate the electron exchange between a quantum dot and
a 1D helical wire, we need to get an understanding of its transport properties that
the next section will be dedicated to.
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1.2.1 Transport properties

From a phenomenological point of view, it is natural to use a rate equation in order
to describe the probability of the quantum dot to be in a certain state α. The rate
of change from state α to state β is denoted: Γ(α→ β). In the stationary case, the
change of the probability of finding the dot in state α, pα is:

0 =
∂pα
∂t

= −pα
∑
β

Γ(α→ β) +
∑
β

pβΓ(β → α). (16)

This equation is called master equation. The states α, β could be spin states, for
example.

It is now possible to write the electric current in terms of the rates from the
master equation:

I =
∑
N,α,β

pN,α(Γ(N,α→ N + 1, β)− (Γ(N,α→ N − 1, β)).

Due to energy conservation, the transitions that are described by the rates Γ(α→ β)
can only take place if the change in energy,

∆E = (E(N ± 1, α)− E(N, β))± (µd − µw),

is negative. The first term includes the internal energy difference in the dot, as well
as the change in charging energy.

Since, for the transition of an electron in the wire with energy Ek to occur,
there must be an electron in the wire at Ek and a hole in the dot that has the
corresponding energy Ek−∆E, the transition rate Γ includes to the so-called Pauli
factor, fFD(Ek)

(
1− fFD(Ek −∆E)

)
:

Γw→d =
G

e2

∫
dEk f

FD(Ek)
[
1− fFD(Ek −∆E)

]
=
G

e2

∆E

eβ∆E − 1
. (17)

The prefactor G is called conductance and is determined by the physical system.
Taking tunneling into the opposite direction into account, one obtains analogously:

Γd→w =
G

e2

∫
dEkf

FD(Ek −∆E)[1− fFD(Ek)] =
G

e2

∆E

1− e−β∆E
. (18)

Hence, the total tunneling current can be written:

IT = e(Γw→d − Γd→w) =
G

e
∆E. (19)

Consequently, if one knows the current, one can compute the conductance via the
simple relation:

G = e
IT

∆E
. (20)
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1.3 Tunneling Hamiltonian

In order to describe the electron exchange between the bulk of a system and a
quantum dot via tunneling, one usually introduces a tunneling Hamiltonian which
takes the following form (see Fig. 9):

ĤT = ε(ĉ†nd̂+ d̂†ĉn). (21)

where ε is the tunneling coupling strength. The continuous form of ĤT for the
tunnling between a quantum dot and a helical wire reads:

ĤT = γ
(

Ψ̂†(x)d̂+ d̂†Ψ̂(x)
) ∣∣

x=0
. (22)

with γ := 2~vF√
λ
t where t is a dimensionless tunneling parameter and λ is a charac-

teristic length for the contact that can be identified with the size of the quantum
dot. In both expressions, the first term creates an electron in the wire at site n (or
at position x) and annihilates one in the dot, the second one has the inverse effect.
Performing the Fourier transform of Eq. (21) to momentum space and choosing the
tunneling junction to be located at n = 0, one obtains:

ĤT = ε
∑
k

(ĉ†kd̂ + d̂†ĉk).

Consequently, the quantum dot couples to every momentum state in the wire. If ε
is small, the effect of the tunneling Hamiltonian on the isolated systems of the wire
and the quantum dot can be treated perturbatively.
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1.4 Tunneling Conductance Between Metallic Contact and
Chiral Wire

In the main part of this thesis, we compute the tunneling conductance between a
helical wire and a quantum dot. Among other analytic methods, we explicitly solve
the Schrödinger equation which allows us to find an expression for the conductance.
Out method is similar to that of Fillippone and Brouwer in [5], where tunneling
between two quantum wires is considered. We will briefly explain the method in
this section.

1D Chiral Mode

γ

Metallic contact

1D Chiral mode in contact

Wire

Fig. 11: Tunneling contact between a
metallic contact and a one-dimensional
wire which is taken to have only a single
chiral state, adapted from [5].

Fillippone an Brouwer considered a
spinless one-dimensional wire that is
tunnel coupled to a metallic contact
which can be the tip of a scanning probe
or an integer quantum Hall edge state
(see Fig. 11). The electrons in the
wire are considered to be spinless and to
have only one chiral mode which means
that they can only travel in one direc-
tion. Interactions between electrons are
neglected. The Hamiltonian describing
this system reads:

Ĥ = ĤC + ĤW + ĤT , (23)

where

ĤC = r

∫ ∞
−∞

dxĉ†(x)(−i~uF∂x)ĉ(x) (24)

ĤW =

∫ ∞
−∞

dxΨ̂†(x)(−i~vF∂x)Ψ̂(x) (25)

ĤT = γΨ̂†(0)ĉ(0) + γ∗ĉ†(0)Ψ̂(0). (26)

Here, the operators ĉ and Ψ̂ describe electrons in the contact and in the wire,
respectively. The prefactor r = ± in Eq. (24) determines the direction of motion
of the chiral electrons in the contact with respect to the wire. The velocites uF and
vF denote the Fermi velocity in the contact and in the wire, respectively.

1.4.1 Regularization

In the following, a regularization function is introduced in order to define the tun-
neling Hamiltonian that reflects the tunnel junction at x = 0. The reason why is
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it needed is related to the fact that we deal with 1D Dirac-Fermions whose char-
acteristic property is a linear dispersion relation. We will briefly explain why this
requires a regularizaion function:
Assuming particles with a quadratic dispersion relation, when solving the Schrödinger
equation for a delta-potential V = αδ(x),(

− ~2

2m

d2

dx2
+ αδ(x)

)
Ψ(x) = εΨ(x), (27)

one needs to integrate over a small strip −ε < x < ε [6]. In the next step, one sets
ε→ 0. This yields:

limε→0

∫ ε
−ε dx−−−−−−−−−→ lim

ε→0
− ~2

2m
(Ψ′(ε)−Ψ′(−ε)) + αΨ(0) = 0 (28)

↔ Ψ′(0+)−Ψ′(0−) =
α2m

~2
Ψ(0). (29)

The right hand side in Eq. (28) is zero because it is the area of a sliver with vanishing
width and finite height. One must impose the boundary condition that the wave-
function be continuous at x = 0. The logarithmic derivative of the wavefunction at

this point, Ψ′(0)
Ψ(0) = (log Ψ(x))′|x=0, turns out to be discontinuous.

Contrarily, the case of a linear dispersion relation leads to an unphysical discon-
tinuity in the wavefunction itself:(

i~vF
d

dx
+ αδ(x)

)
Ψ(x) = εΨ(x) (30)

∫ ε
−ε dx−−−−→ i~vF(Ψ(ε)−Ψ(−ε)) + αΨ(0) = 0 (31)

↔ (Ψ(ε)−Ψ(−ε)) = i
α

~vF
Ψ(0). (32)

This contradicts the physical necessity of continuity of the wavefunction. The prob-
lem can be solved by introducing a so-called regularization function f(x) which has
the effect of opening an interval in which the potential is applied.

Fillippone and Brouwer defined the following regularization function f(x):

f(x) =
1

2δ
Θ(δ − |x|), (33)

where δ is the regularization scale and Θ(x) is the Heavyside step function. Using
this regularization function, they suggested two different regularizations:

Choice I) Ψ̂(0)→
∫
dxf(x)Ψ̂(x) and ĉ(0)→

∫
dxf(x)ĉ(x)
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x

Fig. 12: Spinless fermions on two semi-infinite lattices hopping on nearest neighbor
sites with amplitude λ. The electrons can jump from one lattice to the other with
hopping amplitude λ′ 6= λ. The indicated paths can be continously transformed to
chiral modes in the contact and the wire, respectively, adapted from [5].

Choice II) Ψ̂†(0)ĉ(0)→
∫
dxf(x)Ψ̂†(x)ĉ(x).

To leading (second) order, the expressions for the conductance coincide in all three
cases:

G =
4e2t2

h
+O(t4), (34)

where t = γ
2~√vFuF

is a dimensionless tunneling parameter. However, the different

regularization choices turn out to lead to different results in the conductance for
large tunneling. An exemplary derivation for case (I) is given in Appendix A.

It is useful to take a closer look at the physical interpretation of the individual
regularization choices:

Choice I) The conductance in this case reads G = 4e2t2

h(1 + t2)2 . The physical situ-

ation is analogous to two semi-infinite fermionic lattices whose lattice
sites are connected by a hopping amplitude λ. The hopping ampli-
tude between the two semi-infinite chains is λ′ 6= λ (see Fig. 12). An
electron at site x = 0 can therefore either be reflected or transmitted
onto the other lattice. The resulting paths are indicated in Fig. 12.
It is possible to continuously transform them into chiral modes which
can be identified with the wire and the contact. A reflection at x = 0
in this model is therefore not in contradiction to the chirality in the
wires since it simply corresponds to an electron crossing the tunneling
section without tunneling to the other wire (see Fig. 11). A transmis-
sion in Fig. 12, on the other hand, corresponds to a tunneling event
in the setup from Fig. 11. The fermionic-chain model is described by
the Schrödinger equation:

EΨj = −λ[Ψj+1(1− δ0j) + Ψj−1(1− δ1j)]− λ′[Ψ1δ0j + Ψ0δ1j ]. (35)
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A scattering approach with eigenvectors of the form Ψj ∝ eikFj +
ρe−ikFj for j < 0 and Ψj ∝ τeikFj for j > 0 leads to a transmission
amplitude of

τ =
2(λ′/λ)

1 + (λ′/λ)2
. (36)

Making the identification λ′

λ = t, this can be seen to be equivalent to
the result that we derived in Appendix A:

G =
e2

h
|τ |2 =

e2

h

4(λ′/λ)2

(1 + (λ′/λ)2)2

λ′
λ =t
−−−→ 4e2t2

h(1 + t2)2 . (37)

Choice II) This regularization choice is sensitive to the respective chirality of the
contact and the wire. For opposite chiralities, one obtains a conduc-

tance of G = e2

h tanh2(2t). In the limit t→∞, HT opens up a gap in
the contact and the wire which leads to complete backscattering that
corresponds to full transmission into the other wire. This regulariza-
tion choice is analogous to the opening of a quantum point contact
between two quantum Hall edge states with opposite chiralities.
For equal chiralities, however, electrons oscillate coherently between
the contact and the wire and the transmission strongly depends on the
strength of the contact.
The conductance in this case reads:

G =
e2

h
sin2(2t). (38)
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2 Statement of the Problem and Outline of the
Thesis

The goal of this thesis is to describe the spin-to-charge conversion that we expect
to take place when a quantum dot that is out of equilibrium (different occupation
probabilities for ↑- and ↓-electrons are fixed by a bath) is tunnel coupled to a helical
wire.
We aim at understanding the limitations of phenomenological rate equations and
the necessity of regularization in the tunneling Hamiltonian. Furthermore, we want
to find a general expression for the spin-to-charge conversion which is valid for dif-
ferent realizations of the quantum dot. Our next goal is then to make connections
between different models and to relate them to different standard-way approaches,
such as the scattering approach and a perturbative approach.

For these purposes, we consider different analytic techniques that we eventually
compare. After introducing the setup that we base our considerations upon, we
proceed as follows:

1. We use phenomenological rates from the master equation to extract an ex-
pression for the induced current in the helical wire.

2. We compute the spin-dependent tunneling current between the quantum dot
and the helical wire by explicitly solving the Schrödinger equation. This will
allow us to find an expression for the induced current in the helical wire.

3. We make a perturbative approach and compute the induced current in second
order of tunneling. This allows us to implement different models for the
quantum dot which we can relate to the result that we obtained from the
Schrödinger equation and the one that we found in the phenomenological
approach. Subsequently, we verify our results by comparing them to the
result that we obtain from Fermi’s Golden rule.

4. The result is put into perspective with the case of tunneling between two 1D
chiral states as investigated by Fillippone and Brouwer in Ref. [5] (see Sec.
1.4). The physical differences between our setup and theirs are discussed.
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3 Main part

3.1 Tunneling (spin-)current between a magnetized Quan-
tum Dot and a helical wire via the master equation

Before performing the steps outlined above, we will briefly introduce the setting that
we base our considerations upon. The initial setup is the following: Two parallel
helical wires are tunnel coupled to a quantum dot that is situated in between the
two wires (see Fig. 13).

Quantum Dot

Helical Wire 1

Helical Wire 2

γ

γ

V

Fig. 13: Setup: A quantum dot is tunnel coupled to two helical wires. Applying a
voltage in one helical wire 1 leads to the suppression of one of the two spin-currents
which results in a net magnetization of the quantum dot.

This setup has been studied in terms of master equations in Ref. [15]. They
assumed strong Coulomb repulsion which motivates the limitation of the quantum
dot population to a single electron. The change of the probabilities for the quantum
dot to be either empty or occupied by an electron of either spin state is:

∂tp↑ = (Γin,1 + Γin,2)p0 − (Γout,1 + Γout,2)p↑ + ΓS(p↓ − p↑) (39)

∂tp↓ = (Γin,1 + Γin,2)p0 − (Γout,1 + Γout,2)p↓ + ΓS(p↑ − p↓) (40)

∂tp0 = (Γout,1 + Γout,2)(p↑ + p↓)− 2(Γin,1 + Γin,2)p0 (41)

The rates Γin(out),i reflect tunneling rates into (out of) the quantum dot from (into)
wire i. ΓS is the spin-flip rate within the quantum dot.
By applying a voltage in wire 1, one can prohibit electrons in state σ =↑ to travel
in wire 1 (Γin,1 = Γout,1 = 0 for spin ↑-electrons). Assuming the stationary case (all



3 MAIN PART 22

of the above time derivatives are set to zero), one obtains [15]:

p↑ =
Γin,2

Γin,1 + 2Γin,2 + 1
2Γout,1 + Γout,2

(42)

p↓ =
Γin,1 + Γin,2

Γin,1 + 2Γin,2 + 1
2Γout,1 + Γout,2

(43)

p0 =
1
2Γout,1 + Γout,2

Γin,1 + 2Γin,2 + 1
2Γout,1 + Γout,2

(44)

If all rates are set to an equal value, one obtains for the magnetization probabilities:

p0 =
1

3
and p↑ =

2

9
and p↓ =

4

9
, (45)

which shows a magnetization of the quantum dot. The exact values for the prob-
abilities are not important in our case; we simply note that they differ for the two
spin states.
This can be reflected by different chemical potentials for the two spin-sates in the
quantum dot (see Fig. 14).

εd
µ↑

µ↓

Fig. 14: A net magnetization gives rise to spin-dependent chemical potentials in
the quantum dot.

A zero-net-magnetization would correspond to µ↑ = µ↓. In our calculations, we will
simply assume a magnetized quantum dot with fixed p↑, p↓ that we can interpret
as a source that injects electrons in the helical wire 2.

The rates yield an expression for the tunneling current. The outgoing flow of
charge for spin state σ must be proportional to the probability of an electron being
in the QD, pσ, and the outgoing tunnel rate Γout. The incoming current must be
proportional to the probability of the quantum dot being empty p0, and the incom-
ing rate Γin. Hence, the total tunneling current for spin state σ can be written as:

IσT = (Γout pσ − Γin p0) e. (46)
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3.1.1 Induced current in the helical wire

Assuming that electrons with spin σ =↓ travel to the right in the helical wire, one
can make the following considerations: In the part of the wire left to the tunneling
junction which we take to be located at x = 0, the current for σ =↓ is the one of
the unperturbed helical wire since electrons cannot backscatter at the junction:

I↓x<0 = I↓equ. (47)

Therefore, the effect of the quantum dot for this spin state can only be observed in
the right side of the wire. The current in the right side is the sum of the equilibrium
current in the left side and the tunneling current which can be positive or negative:

I↓x>0 = I↓equ + I↓T (48)

The other spin-state is analogous. The total electric current in the wire is:

left side: Ix<0 = I↓equ + I↑equ + I↑T (49)

right side: Ix>0 = I↑equ + I↓equ + I↓T . (50)

As demonstrated in Appendix D, the effective electric current in an unperturbed
helical wire is zero, I↓equ + I↑equ = 0. Consequently, Eqs. (49) and (50) simplify to:

left side: Ix<0 = I↑T (51)

right side: Ix>0 = I↓T . (52)

Hence, due to the different direction of motion for the different spin states, the
effective induced current is:

Iind = I↑T − I
↓
T . (53)

This equation is general and independent of the approach that one chooses in order
to compute the spin-dependent tunneling current.

In the case of phenomenological rate equations one finds that, if the rates are
taken to be spin-independent, the induced current in the helical wire becomes:

Iind = I↑T − I
↓
T (54)

= (Γout p↑ − Γin p0) e− (Γout p↓ − Γin p0) e (55)

= eΓout (p↑ − p↓). (56)

One can deduce that if the quantum dot is magnetized, an electric current is induced
in the helical which illustrates the spin-to-charge-conversion that we are able to
observe in our system.
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3.2 Tunneling Conductance via the Schrödinger equation

The approach with the master equation confirms the intuition that the non-equi-
librium quantum dot induces an electric current in the helical wire but it fails to
provide an explicit expression for the current. Moreover, this approach cannot
take regularization into account which we showed to be necessary for 1D Dirac
Fermions (see Sec. 1.4.1). In order to include regularization, we choose a scattering
approach. The goal of this section is to compute the tunneling conductance by
explicitly solving the Schrödinger equation in the setup of a helical wire that is
coupled to a magnetized quantum dot that is out of equilibrium. The Hamiltonians
have the following form:

ĤT =
∑
σ

γΨ̂†σ(0)d̂σ + γd̂†σΨ̂σ(0) (57)

ĤD =
∑
σ

εdσ d̂
†
σd̂σ (58)

ĤW =
∑
σ

∫
dxΨ̂†σ(x)(sσi~vF∂x)Ψ̂σ(x) (59)

with

sσ =

{
− forσ =↑
+ forσ =↓

.

ĤT is the tunneling Hamiltonian that describes the tunneling junction at x = 0 for
which we will further introduce a regularization, ĤD and ĤW are the Hamiltonians
for the quantum dot and the wire for the uncoupled system. d̂σ and Ψ̂σ describe
electrons in the quantum dot and in the wire, respectively; εdσ is the spin dependent
energy in the dot that we define as:

εdσ := εd + µσ, (60)

where µσ is the shift in the chemical potential in the QD for electrons in spin state
σ.

Moreover, we define

γ :=
2~vF√
λ
t, (61)

where λ is a characteristic length of the tunnel junction that we define to be the size
of the quantum dot, t is a dimensionless tunneling parameter that determines the
tunneling strength and vF denotes the Fermi velocity in the wire. For the reasons
explained above, a regularization function is introduced which we define as follows:

f(x) = Θ(δ − |x|)/(2δ),
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such that Ψ(x = 0) :=
∫
dxΨ(x)f(x). Physically, this reflects an interval of size 2δ

in the wire in which electrons can tunnel to or from the QD (see Fig. 15). Since the
QD is assumed to be zero-dimensional, such a regularization is not necessary for the
dot and one is therefore not left with many alternatives for boxlike regularization
schemes.

︸ ︷︷ ︸
2δ

Quantum Dot

Helical wire

xycoupling strength γ

µ↓
µ↑

x
|
0

Fig. 15: Regularization function: In an interval of size 2δ, electrons can tunnel
from the helical wire to the quantum dot and vice versa.

The zero in energy can be tuned such that the Schrödinger equation in the
interval −δ < x < δ reads:

Eσdσ = εdσdσ +
γ

2δ

∫ δ

−δ
dxΨσ(x) (62)

0 = (sσi~vF∂x)Ψσ(x) +
γ

2δ
dσ (63)

Here,
Eσ = Edσ − Ewσ (64)

where Edσ and Ewσ are the energy eigenvalues of the quantum dot and of the wire,
respectively.
This set of equations can be solved for each spin state independently since they are
not coupled and global spin is conserved. For σ =↑:

E↑d↑ = εd↑d↑ +
γ

2δ

∫ δ

−δ
dxΨ↑(x) (65)

0 = (−i~vF∂x)Ψ↑(x) +
γ

2δ
d↑ (66)

Following Ref. [5], let us make a linear ansatz for the wire. Due to the fact that
the QD is zero-dimensional, its wavefunction must be constant. This corresponds
to the situation where only its zero-momentum mode is kept:

Ψ↑ = Ax+B (67)

d↑ = C = const.
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Inserting this into Eqs. (65) and (66):

0 = (εd↑ − E↑)d↑ +
γ

2δ
2Bδ (68)

0 = −i~vFA+
γ

2δ
d↑

We can deduce Ψ↑(x) in dependence of d↑:

Ψ↑(x) = − iγd↑
2δ~vF

x−
(εd↑ − E↑)d↑

γ
=

(
− iγ

2δ~vF
x−

(εd↑ − E↑)
γ

)
d↑. (69)

As defined in Eq. (61), we insert the dimensionless tunneling parameter t = γ
√
λ

2~vF
where λ denotes a characteristic length of the junction that can be identified with
the size of the quantum dot:

Ψ↑(x) =

(
− it

δ
√
λ
x−

(εd↑ − E↑)
√
λ

2~vFt

)
d↑. (70)

It is only possible to choose a single boundary condition since we are dealing with
a set of two equations with three parameters A,B and C. Thus, adding one bound-
ary conditions fixes all three parameters. We choose the constant wavefunction in
the quantum dot to be:

d↑ =

√
λ

2π~vF
. (71)

Thus, the wavefunction in the wire, Ψ(x), will be normalized with dimensions that
correspond to the square root of its density of states (DoS):

ρw =
1

2π

∂k

∂εk
=

1

2π~vF
. (72)

Since the change of the amplitude that the wavefunction Ψ(x) acquires along the
tunneling section reflects the probability of an electron to tunnel from/to the wire
and since Ψ(x) is linear in the interval −δ < x < δ, we can identify the transmission
probability between the quantum dot and an electron in the wire as:

T↑(ε) =

∣∣∣∣Ψ↑(δ)−Ψ↑(−δ)
d↑

∣∣∣∣2 · A(ε)

ρw
(73)

=
4t2

λ

A(ε)

ρw
, (74)

where we have introduced the spectral density of states in the quantum dot,

A(ε) =
1

π

γ2ρw
(ε− εd)2 + (γ2ρw)2

γ=t
2~vF√
λ

=
1

π

t2

ρwπ2λ

(ε− εd)2 + ( t2

ρwπ2λ )2
(75)
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that we derived explicitly in App. B. Knowing the energy-dependent transmission
value and comparing to Eqs. (17) and (18), one can write the total tunneling current
for this spin state:

I↑T =
e

h

∫
dεk T↑(εk) (fQD(εk)− fW(εk)) . (76)

The form of the transmission value is a non-trivial function of the tunneling param-
eter t. In the limit t→∞, it becomes constant:

T↑
t→∞−−−→ 4π = const. (77)

In the considerations by Fillippone and Brouwer that we introduced above, however,
it was shown that only for small tunneling, the expression for the transmission value
is unambiguous in order t2, i.e. independent of the regularization choice. A(ε) has
the shape of a Lorentzian peak. Consequently, for small t, it becomes:

A(ε) =
1

π

t2

ρwπ2λ

(ε− εd)2 + ( t2

ρwπ2λ )2

t�1−−−→ δ(ε− εd). (78)

This substantially simplifies the integral in Eq. (76) which becomes:

I↑T =
e

h

∫
dεk 4

2π~vFt
2

λ
δ(εk − εd) (f(εk + µ↑)− f(εk)) (79)

= 4
e

h

t22π~vF

λ
(f(εd + µ↑)− f(εd)) . (80)

Hence, for small µ↑, such that a linear response approximation is valid, the
conductance is:

G↑ = e
I↑T
µ↑

= 4
e2

hµ↑

t22π~vF

λ
(f(εd + µ↑)− f(εd)) . (81)

The calculation for the other spin state, σ =↓, is analogous though it should be
emphasized that the chemical potentials differ in their value.

Besides the trivial temperature-dependence of the Fermi-Dirac-distributions,
this result is temperature-independent. According to Eq. (53), the induced current
in the helical wire becomes:

Iind = I↑T − I
↓
T (82)

= 4
et2

h

2π~vF

λ

(
f(εd + µ↑)− f(εd)− f(εd + µ↓) + f(εd)

)
(83)

= 4
et2

h

2π~vF

λ
(f(εd + µ↑)− f(εd + µ↓)) . (84)
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From this expression it becomes clear that, for different chemical potentials µ↑ and
µ↓ (which corresponds to a magnetization of the quantum dot), there will be an
effective electric current in the helical wire. We refer to this process as spin-to-
charge-conversion.



3 MAIN PART 29

3.3 Perturbative Calculation of the Tunneling Current

The goal of this section is to calculate the perturbative tunneling current using
methods of quantum statistics. This will allow us to find a generic expression for
the induced current in different models for the quantum dot that we can easily
implement in the calculation. The difference in Fermi-Dirac distributions in Eq.
(76) corresponds to a specific model, namely one where the quantum dot has two
uncorrelated states for electrons with spin ↑ and ↓ and energy εd. This section helps
to understand what changes if we modify the model by limiting the quantum dot
to a single electron as done in Ref. [15] (see Sec. 3.1).

3.3.1 Induced Current via Trotter formula

In this subsection, we want to apply the Trotter Formula to obtain an expression
for the induced current. The following ansatz reflects a situation in equilibrium and
we expect therefore to find a zero-current. However, it yields a useful form for this
zero-current which enables us to make a little manipulation by hand in order to
impose the non-equilibrium-situation.

First, the Hamiltonian is split into Ĥ0 for the helical wire and the quantum dot
without tunneling, and Ĥ1 as tunneling Hamiltonian:

Ĥ0 = ~vF

∑
k

k(ĉ†k,↑ĉk,↑ − ĉ
†
k,↓ĉk,↓) +

∑
σ

εd,σd̂
†
σd̂σ (85)

Ĥ1 = γ
∑
σ

(Ψ̂†σ(x)d̂σ + d̂†σΨ̂σ(x))
∣∣
x=0

. (86)

Defining the current operator Îind = ie
~ γ
∑
k,σ sσ(Ψ̂†k,σd̂σ − d̂†σΨ̂k,σ), where s↑ = +

and s↓ = −1. The average current can be written as:

〈Iind〉eq
=

1

Z
〈Îinde

−βĤ〉 (87)

=

 1

Z

∑
α

〈α, ↑ |Îinde
−β(Ĥ0+Ĥ1)|α, ↑〉︸ ︷︷ ︸

(∗)

+
1

Z

∑
α

〈α, ↓ |Îinde
−β(Ĥ0+Ĥ1)|α, ↓〉

 (88)

Z denotes the partition function that we will turn to, later. For the sake of clarity,
we will focus on the expression in in the underbrace (*) since the second term in
the brace can be treated analogously. After having evaluated (*), we will return to
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Eq. (88) to obtain the result. The Trotter formula yields (see App. C):

(∗) = − β
Z

lim
n→∞

n∑
m=1

∑
α

〈α|Îinde
−βĤ0

m
n Ĥ1

n e
−βĤ0

n−m
n |α〉 (89)

Since the spin states do not mix and global spin is conserved, this expression
can be evaluated for each spin state separately. For simplicity, the σ’s are dropped
in the notation for the calculation that is valid for either one of the spin states.

We insert unity 1 =
∑
i |i〉〈i| between the single operators where the states

|i〉 = |δ〉, |λ〉, |γ〉 denote eigenstates of Ĥ0.
Eq. (88) becomes:

(∗) = − β
Z

lim
n→∞

n∑
m=1

∑
α,δλ,γ

〈α|Îind|δ〉〈δ|e−βĤ0
m
n |λ〉〈λ| Ĥ1

n |γ〉〈γ|e
−βĤ0

n−m
n |α〉 (90)

= − β
Z

lim
n→∞

n∑
m=1

∑
α,δ,λ,γ

〈α|Îind|δ〉〈λ| Ĥ1

n |γ〉 〈δ|e
−βĤ0

m
n |λ〉︸ ︷︷ ︸

〈δ|e−βĤ0
m
n |δ〉δδ,λ

〈γ|e−βĤ0
n−m
n |α〉︸ ︷︷ ︸

〈α|e−βĤ0
n−m
n |α〉δα,γ

(91)

= − β
Z

lim
n→∞

n∑
m=1

∑
α,δ

〈α|Îind|δ〉〈δ| Ĥ1

n |α〉〈δ|e
−βĤ0

m
n |δ〉〈α|e−βĤ0

n−m
n |α〉. (92)

The terms containing m or n can be rewritten:

lim
n→∞

n∑
m=1

1

n
〈δ|e−βĤ0

m
n |δ〉〈α|e−βĤ0

n−m
n |α〉 = lim

n→∞

n∑
m=1

1

n
e−βεδ

m
n e−βεα

n−m
n (93)

= lim
n→∞

n∑
m=1

1

n
e−β(εδ−εα)mn e−βεα = lim

n→∞

n∑
m=0

1

n
e−β(εδ−εα)mn e−βεα − lim

n→∞

e−βεα

n︸ ︷︷ ︸
=0

.

(94)

Because Ĥ1 and Îind are both off-diagonal, only the case δ 6= α needs to be consid-
ered. Using the geometrical series yields:

= lim
n→∞

1− e−β
(εδ−εα)

n (n+1)

n(1− e−β(εδ−εα) 1
n )
e−βεα (95)

= lim
n→∞

1− e−β
(εδ−εα)

n (n+1)

n(1− 1 + β(εδ − εα) 1
n +O(β

2(εδ−εα)2

n2 ))
e−βεα . (96)

Evaluating the limit n→∞, one obtains:

=
1− e−β(εδ−εα)

β(εδ − εα)
e−βεα =

e−βεα − e−βεδ
β(εδ − εα)

. (97)
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(*) becomes:

(∗) =
1

Z

∑
α6=δ

〈α|Îind|δ〉〈δ|Ĥ1|α〉
e−βεδ − e−βεα

(εδ − εα)
(98)

=
1

Z

∑
α6=δ

〈α|Îind|δ〉〈δ|Ĥ1|α〉
e−βεδ − e−βεα

(εδ − εα)
. (99)

We change our notation, such that k denotes the single momentum states in the
wire, whereas d denotes momentum state in the dot:

(∗) =
1

Z

∑
k

〈k|Îind|d〉〈d|Ĥ1|k〉
e−βεd − e−βεk

εd − εk
+

1

Z

∑
k

〈d|Îind|k〉〈k|Ĥ1|d〉
e−βεk − e−βεd

εk − εd
(100)

=
1

Z
2
∑
k

〈k|Îind|d〉〈d|Ĥ1|k〉
e−βεd − e−βεk

εd − εk
. (101)

For reasons of causality, we make an infinitesimal shift of the energy along the
positive direction of the imaginary plane [11]. This yields a retarded response
function that has no poles in the upper half of the imaginary plane. Its Fourier
transform with respect to time: ε → (t − t0) yields a Θ-function Θ(t − t0). The
physical meaning is that the perturbation can only be observed at times t > t0
where t0 is the time at which the perturbation takes place:

(∗) = Re{ lim
η→0

2
1

Z

∑
k

〈k|Îind|d〉〈d|Ĥ1|k〉
e−βεd − e−βεk
εd − εk + iη

} (102)

= Re{ lim
η→0

2
1

Z

∑
k

ieγ2

~
e−βεd − e−βεk
εd − εk + iη

}. (103)

The sum over k is taken to an integral:∑
k,d

→
∫

dεk
2π~vF

, (104)

where the density of states ρ(ε) = 1
2π

∂k
∂εk

= 1
2π~vF has been introduced. (*) becomes:

(∗) = Re{ lim
η→0

∫
dεk

2

2π~vF

ie

~
γ2 1

Z

e−βεd − e−βεk
εd − εk + iη

}. (105)

Since the prefactor contains an imaginary i and in the end, only the real part of
the above expression contributes, one can conclude that only the imaginary part of
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limη→0
1

εd−εk+iη is relevant: Im{limη→0
1

εd−εk+iη} = πδ(εd − εk). This yields:

(∗) =

∫
dεkδ(εk − εd)

2

2π~vF

πe

~
γ2 1

Z
(e−βεd − e−βεk) (106)

=

∫
dεkδ(εk − εd)

2

2π~vF

πe

~
γ2(pd↑ − pwk ) (107)

where pwk denotes the probability for an electron in state k in the wire, i.e. f(εk).
Eq. (107) yields zero in equilibrium because the population in the dot and in the
wire at the corresponding energy are equal. However, this expression illustrates in
what way the probabilities enter the equation for the total current. Our goal is
to consider the non-equilibrium situation. As far as we analyze the perturbative
regime, we can adapt Eq. (106) for our purposes by making the following adaption:
We implement a source-drain-configuration by making a spin-dependent shift in
chemical potential in the quantum dot which accounts for the different and fixed
occupation probabilities for up-spin- and down-spin-electrons in the quantum dot.

The substitution εd
eq.→non-eq.−−−−−−−−→ εd + µσ concerns all thermal factors:

e−βεd

Z
→ e−β(εd+µσ)

Z
,

which yields:

(∗) =

∫
dεkδ(εk − εd)

2

2π~vF

πe

~
γ2 1

Z
(e−βεd+µ↑ − e−βεk) (108)

=
2

2π~vF

πe

~
γ2 1

Z
(e−βεd+µ↑ − e−βεd)

γ=
2~vF√
λ
t

= 4
et2

h

2π~vF

λ

1

Z
(e−βεd+µ↑ − e−βεd)

(109)

The other term in the brace of Eq. (88) can be treated analogously and will yield
the same result with opposite spin and the opposite sign.
Eq. (88) therefore becomes:

〈I〉neq
ind = 4

et2

h

2π~vF

λ

1

Z
[(e−β(εd+µ↑) − e−βεd)− (e−β(εd+µ↓) − e−βεd)] (110)

= 4
et2

h

2π~vF

λ

1

Z
[e−β(εd+µ↑) − e−β(εd+µ↓)] = 4

et2

h

2π~vF

λ
[pd↑ − pd↓]. (111)

Since we have now moved to the nonequilibrium case, pd↑ 6= pd↓ will lead to an in-
duced current in the helical wire as is evident from Eq. (111). This equation is
general and applicable to different models for the quantum dot.

If one assumes a two-electron quantum dot that can host one electron of each
spin state, respectively, the probabilites pd↑ and pd↓ are uncorrelated and become
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Fermi-Dirac distributions, fQD(εd). This is the case that we implemented in Sec.
3.2.
If one assumes strong Coulomb repulsion to allow only a single electron in the dot,
the probabilites pd↑ and pd↓ are not independent any more. This corresponds to the
situation that we considered in Sec. 3.1.



3 MAIN PART 34

3.3.2 Fermi’s Golden Rule

The perturbative ansatz can also be realized by an application of Fermi’s Golden
Rule that states for the transition rate between the initial state i and the final state
f :

Γi→f =
2π

~
∣∣〈i|ĤT |f〉

∣∣2ρ(εf ). (112)

where ρ(εf ) is the DoS in the final state and ĤT is the tunneling Hamiltonian as
introduced above:

ĤT = γ
∑
k,σ

(Ψ̂†k,σd̂σ + h.c.). (113)

The following calculation concerns the spin state σ =↑ which can be treated sepa-
rately as the two spin states do not mix. We choose the same model for the quantum
dot as in the case of the Schrödinger-approach where the quantum dot has two un-
correlated states, one for each spin state. For the tunneling between the wire and
the dot, the total rate must be proportional to the Pauli factor: fW (ε)(1− fQD(ε))
where f(ε) denotes the Fermi-Dirac distribution. Evaluating∣∣〈k|ĤT |d〉

∣∣ = γ,

the total transition rate is given by:

Γw→d =
∑
k

2π

~
γ2δ(εd − εk)fW(εk)(1− fQD(εk)). (114)

where we chose the low-coupling regime with ρ(εf ) = δ(ε − εd) in order to be able
to compare the result to the one obtained above (see Sec. 3.2). The sum over k is
taken to an integral: ∑

k

→
∫

dεk
2π~vF

.

Consequently,

Γw→d =

∫
dεk

1

2π~vF

2π

~
γ2δ(εd − εk)fW(εk)(1− fQD(εk)) (115)

t= γ
√
λ

2~vF= 4
t 2

h

2π~vF

λ
f(εd)(1− f(εd + µ↑)). (116)

This, however, is only the transition rate for electrons tunneling from the wire to the
dot. The opposite tunneling direction must be taken into account and is computed
analogously:

Γd→w = 4
t 2

h

2π~vF

λ
f(εd + µ↑)(1− f(εd)). (117)
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The total tunneling current for spin ↑-electrons is therefore given by:

I↑T = e(Γd→w − Γw→d) = 4
t 2

h

2π~vF

λ
(f(εd + µ↑)− f(εd)). (118)

This expression is equivalent to the one that we obtained in the Schrödinger-
approach and is a confirmation of the result.
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4 Conclusions and Discussion

In this section we aim at interpreting the results that we obtained above. Moreover,
we will turn to the physical comparison between our setup and the one by Fillippone
and Brouwer that we introduced in Sec. 1.4.

Our comparison is based on the model of the two-electron quantum dot as im-
plemented in the approach via the Schrödinger equation and Fermi’s Golden Rule.
In this case, both spin states are completely independent which is closest related
to the chiral case of Fillippone and Brouwer who consider spinless chiral electrons.
The conductance that we have derived in different ways reflects some physical dif-
ferences to the conductance that Fillippone and Brouwer found. Their tunneling
current is independent of the Fermi-Dirac distributions in the wire and in the dot
and therefore also independent of temperature in all three regularization choices.
This corresponds to a situation where both, the contact and the wire have contin-
uous spectra. Therefore, there is no momentum state in the wire that is ”special”
and should explicitly appear in the result. In our case, however, the dot only has a
single momentum state. It can therefore be expected that the corresponding energy
in the quantum dot, which is spin dependently shifted by the chemical potential
µσ, plays a special role and determines the exact value of the conductance via the
dimensionless parameter β(εd + µσ).
Moreover, it is important to note that the system studied in Ref. [5] is a priori
symmetric between the contact and the wire. Before specifying the boundary con-
ditions, there is no physical difference between the contact and the wire - both have
only one 1D chiral mode and the regularization is symmetric in all three cases, as
well. Interchanging the boundary conditions would lead to exactly the same result
in the conductance.

This constitutes one of the main differences to our system: The asymmetry
between the 1D wire and the 0D quantum dot is evident. This difference in spacial
dimensions already hints at the fact that an additional quantity with the dimension
of length will appear in the result. We choose this to be λ, the size of the quantum
dot. The trivial dependence of the wavefunction on the tunneling parameter t lets
us deduce that λ also plays the role of a regularizer. In our case, due to the 0D
nature of the quantum dot, an additional regularization is not needed.

Additionally, our system differs from theirs by that fact the our 1D wire is not
spinless and chiral but spinfull and helical, meaning that the two different spin
states travel in opposite directions. Even if the coupling strength was turned to
zero, one could measure a nonzero spin current in the wire.

Since there is a spin-dependent shift in chemical potentials in the dot, the sign
of the total current is completely determined by the respective chemical potentials.
Contrarily, in the case of Fillippone and Brouwer, the direction of motion of the
chiral electrons in the contact and in the dot is a priori determined by the physical
system (if the chiral states are taken to be edge states of topologically nontrivial
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bulks for example, the topology of the bulk will determine the direction of motion).
Because of this relation to the bulk in Ref. [5], the density of states in the contact
and in the wire are fixed and do not change by the exchange of electrons. The non-
trivial dependence of the conductance on the tunneling parameter t is an artifact
of the form of the Schrödinger equation and depends on the regularization choice,
even if the density of states is trivial in all cases. The wavefunction in the contact
and in the wire already contain this nontrivial t-dependence.
In our setup however, the density of states in the quantum dot can change when it
is tunnel coupled to the wire. It depends on the strength of the tunneling junction.
This is the reason for the nontrivial dependence on t in our case. The wavefunction
in the wire itself has a rather trivial dependence on t which is due to the simpler
form of the Schrödinger equation, caused by the fact that the wavefunction in the
quantum dot is constant.

Our setup is closely related to the one by Fillippone and Brouwer. By mak-
ing the necessary physical adaptions, one can merge our result with theirs. We
start from our conductance which is valid for small µσ, such that a linear response
approximation is valid:

G↑ = e
I↑T
µ↑

= 4
e2t2

hµ↑

2π~vF

λ
(f(εd + µ↑)− f(εd)) . (119)

First, one needs to set λ = 1 which corresponds to symmetrizing ĤT since λ = 1
implies equal dimensions of Ψ̂(x) and d̂(x). Moreover, one needs to change the
zero-momentum from the QD to a quasi-continuous spectrum of momenta which

requires the integration over
∫ dεd↑

2π~vF (the DoS in the contact has been intoduced,
here):

→ G↑ = 4
e2t2

hµ↑
2π~vF

∫
dεd↑

2π~vF
(f(εd + µ↑)− f(εd)) (120)

= 4
e2t2

hµ↑
µ↑ = 4

e2t2

h
. (121)

which is the result by Fillippone and Brouwer in second order of t [5].

In this thesis, we have only considered helical wires and the question can be
raised whether this is a requirement for this spin-to-charge conversion to take place.
Phenomenologically, the difference between our setup and the one of a magnetized
quantum dot that is tunnel coupled to a regular wire is easy to understand: When
an electron of either spin states tunnels from the quantum dot a normal wire, its
spin state has no effect on the direction of motion that it will have in the wire
since electrons in both spin states can travel in both directions. If the magnetized
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quantum dot with spin-dependent shifts in the chemical potential, µσ, is interpreted
as source that injects electrons into the wire, the magnetization corresponds to an
unequal number of injected ↑- and ↓-electrons. Because the spin states do not deter-
mine the direction of motion in the wire, though, the magnetization of the quantum
dot cannot have an effect on the current in the wire which remains zero, irrespective
of the magnetization.
On the other hand, the observation of spin-to-charge conversion as described in this
thesis is a clear indication that the system is helical.

4.1 Conclusion

In this work, we have investigated the spin-to-charge conversion that can be ob-
served when a quantum dot with different probabilities of hosting ↑- and ↓-electrons
is tunnel coupled to a helical wire.
We started from phenomenological rate equations which provided an expression for
the induced current in the helical wire. We found it to depend on the difference in
occupation probabilities for ↑- and ↓-electrons in the quantum dot.
Since, due to their phenomenological nature, the rate equations cannot take into
account regularization that is necessary for 1D Dirac Fermions, we then turned to
a scattering approach in which we explicitly solved the Schrödinger equation. Our
calculations show that the nontrivial dependence of the tunneling current on the
tunneling parameter t is only due to the broadened density of states of the quantum
dot which results from its coupling to the helical wire. We deduced that, due to
the 0D nature of the quantum dot, the additional regularization is not needed. The
size of the dot plays the role of a regularizer.
In the next step, in order to find a model-independent expression for the spin-to-
charge conversion, we used a perturbation theory in the tunneling amplitude. Our
result is the following:

Itotal = 4
et2

h

2π~vF

λ
[pd↑ − pd↓]. (122)

This general expression illustrates that the difference in occupation probabilities
for ↑- and ↓-electrons determines the induced current. The exact expression for the
probabilities depends on the model of the quantum dot. In this thesis, we considered
it to be either a single-electron quantum dot with strong Coulomb repulsion (in that
case, pd↑ and pd↓ are correlated) or a quantum dot with two uncorrelated states for
σ =↑, ↓. We explained that the observed spin-to-charge conversion is an effect of
the helical nature of the 1D quantum wire. Experimentally, this effect can be used
for the measurement of spin currents which are otherwise hardly accessible [21].
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Appendices

A Derivation of the conductance via the Schrödinger
equation

The Schrödinger equation for regularization choice (I) reads:

0 = −i~vF∂xΨC(x) +
γ

4δ2

∫ δ

−δ
dx′ΨW (x′) (123)

0 = −i~uF∂xΨW (x) +
γ

4δ2

∫ δ

−δ
dx′ΨC(x′). (124)

(125)

where uF and vF denote the Fermi velocity in the wire and in the contact, respec-
tively. One can make a linear ansatz for both wavefunctions:

ΨC = Ax+B (126)

ΨW = Cx+D. (127)

Inserting this into the Schrödiner equation, one obtains the following relations be-
tween the parameters:

A =
γ

2δ

D

i~vF
(128)

C =
γ

2δ

B

i~uF
. (129)

The system can be solved by adding two boundary conditions. If one takes the
electron in the contact to be incoming from the left, one can unit the amplitude of
the wavefunction at x = −δ and choose to normalize the wavefunction be the DoS:

ΨC(−δ) =
1√

2π~vF

(130)

↔ A(−δ) +B =
γ

2δ

D

i~vF
(−δ) +B =

1√
2π~vF

. (131)

Moreover, it is convenient to choose the chirality of the wire to allow electrons
to travel only from the left to the right (the regularization is independent of the
respective chiralities in the contact and in the wire which gives us this freedom of
choice.). We can therefore choose the second boundary condition to be:

ΨW (δ) = 0 (132)

↔ Cδ +D =
γ

2δ

B

i~uF
δ +D = 0. (133)
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Eqs. (128), (129), (132), and (130) allows us to solve for all four parameters A,B,C
and D. Introducing the dimensionless tunnel paramater t := γ

2~√uFvF
yields:.

ΨC(x) =
1√

2π~vF

−t2x+ δ

δ(1 + t2)
(134)

ΨW (x) =
1√

2π~uF

−it(x+ δ)

δ(1 + t2)
. (135)

The transmission amplitude is simply:∣∣∣ΨW (δ)
√

2π~uF

∣∣∣2 = 4
t2

(1 + t2)2
. (136)

which leads to the conductance:

G =
e2

h
T = 4

e2t2

h(1 + t2)2

t�1
≈ 4

e2t2

h
. (137)

B Density of States in QD in the Presence of Tun-
neling

The effective Hamiltonian for the coupled system reads:

Ĥ = εdd̂
†d̂+

∑
k

εkΨ̂†kΨ̂k + γ
∑
k

(Ψ̂†kd̂+ d̂†Ψ̂k). (138)

We use the resolvent Green’s function G(t− t′):

(i~∂t − Ĥ)G(t− t′) = δ(t− t′) (139)

The functions of primary physical interest due to causality are the retarded Green’s
functions G+(t − t′) which vanishes for t < t′ and the advanced Green’s function
G−(t− t′) which vanishes for t > t′. Their Fourier transform is defined as:

→ G±(ε) =

∫ ∞
−∞

G±(t− t′)e−iε
±(t−t′)d(t− t′), where ε± = lim

s→0
(ε± is). (140)

Thus, Eq. (139) can be rewritten in terms of G±(t− t′):

(ε± − Ĥ)G±(ε) = 1, (141)

which is an operator equation. One can use the eigenstates of Eq. (138) as basis to
write this equation componentwise.

(ε± − εd)G±dd(ε) = γ
∑
k

G±kd(ε) + 1 (142)

(ε± − εk′)G±k′d(ε) = γG±dd(ε). (143)
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This set of equations can be solved for

G±dd(ε) =
1

ε± − εd −
∑
k

γ2

ε±−εk

∆:=
∑
k

γ2

ε±−εk=
1

ε± − εd −∆
. (144)

For later purposes, it is useful to define:

Γ := Im(∆). (145)

The density of states in the QD, A(ε), is defined as:

A(ε) = − 1

π
Im(G+

dd(ε)) = − 1

π
Im(

1

ε+ − εd −∆
) (146)

= − lim
s→0

1

π
Im(

1

ε+ is− εd − Re(∆)− iΓ
) (147)

= − lim
s→0

1

π

−s− Γ

(ε− εd − Re(∆))2 + (Γ2 + s2)
=

1

π

Γ

(ε− εd − Re(∆))2 + Γ2
. (148)

Re(∆) is just a homogeneous shift in energy and we can therefore set it to zero. In
the next step, Γ needs to be evaluated:

Γ = lim
s→0

∑
k

γ2s

(ε− εk)2 + s2

∑
k→

∫ dεk
2π~vF−−−−−−−−−→ γ2

∫
dεkδ(ε− εk)

1

2π~vF︸ ︷︷ ︸
ρw

(149)

= γ2ρw. (150)

The final expression for the DoS is:

A(ε) =
1

π

γ2ρw
(ε− εd)2 + (γ2ρw)2

γ=t
2~vF√
λ

=
1

π

2t2 ~vF
πλ

(ε− εd)2 + (2t2 ~vF
πλ )2

(151)

=
1

π

t2 1
ρwπ2λ

(ε− εd)2 + (t2 1
ρwπ2λ )2

. (152)

C Trotter Formula

The Trotter-Product-Formula for (possibly non-commuting) operators A and B
reads: eA+B = limN→∞(eA/N · eB/N )N . Expanding the second exponential to first
order yields:

eA+B = lim
N→∞

(eA
1
N + eA

1
N
B

N
)N +O(BN+1) (153)

= lim
N→∞

(eA
1
N + eA

1
N
B

N
) · (eA 1

N + eA
1
N
B

N
) · ... · (eA 1

N + eA
1
N
B

N
)︸ ︷︷ ︸

N factors

+O(BN+1).

(154)
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Only terms up to O(B) are kept:

= lim
N→∞

(
eA +

N∑
m=1

eA
m
N
B

N
eA

N−m
N

)
+O(B2). (155)

In our case, the operators are the Hamiltonians Ĥ0 and Ĥ1:

= lim
N→∞

(
e−βĤ0 +

N∑
m=1

e−β(Ĥ0
m
N )−βĤ1

N
e−β(Ĥ0

N−m
N )

)
+O(Ĥ2

1 ). (156)

Since Ĥ1 is off-diagonal and the expectation value of the current in Eq. (88) also
contains the off-diagonal operator Î, the first summand in Eq. (156) will lead to a
vanishing contribution. The remaining expression will lead to an even number of
operators of each kind in Eq. (88) and therefore survives.

D Electric current in a helical wire without tun-
neling

The Hamiltonian of a free helical wire is given by:

Ĥ0 = ~vF

∑
k

k(ĉ†k,↑ĉk,↑ − ĉ†k,↓ĉk,↓)

Using x̂ = i∂k, we can express the velocity operator for an electron with momentum
k as:

v̂k =
i

~
[Ĥ, x̂] = vF(ĉ†k,↑ĉk,↑ − ĉ

†
k,↓ĉk,↓)

The mean velocity can be calculated via 〈v̂〉 = Tr(ρ̂v̂) with the density matrix

ρ̂ =
∑
k,σ ĉ

†
k,σ ĉk,σ:

〈v̂k〉 = vF

∑
σ

∑
k,k′

ĉ†k,σ ĉk,σ(ĉ†k′,↑ĉk′,↑ − ĉ
†
k′,↓ĉk′,↓)

= vF

∑
k

(ĉ†k,↑ĉk,↑ − ĉ
†
k,↓ĉk,↓)

which leads to the current:

〈Î〉 = −e〈v̂〉 = −evF

∑
k

(ĉ†k,↑ĉk,↑ − ĉ
†
k,↓ĉk,↓) = −evF

∑
k

(ρ̂kk,↑ − ρ̂kk,↓)

Since ρ̂kk,σ is spin-independent in equilibrium, we can deduce that, as expected,
there is no net current in an unbiased helical wire.
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