Neural Networks
and Matrix Product States

David Maier

BACHELOR THESIS

Faculty of Physics
at Ludwig-Maximilians-Universitat
Munich

submitted by

David Maier

Munich, 26.07.2017

Supervisor: Prof. Dr. Jan von Delft

Neuronale Netze
und Matrix Produkt Zustande

David Maier

BACHELORARBEIT

Fakultat fiir Physik
an der Ludwig-Maximilians-Universitat
Miinchen

vorgelegt von

David Maier

Miinchen, 26.07.2017

Betreuer: Prof. Dr. Jan von Delft

CONTENTS 0
Contents

(1 Introduction| 1

2 Machine learning | 2

1 Artificdalmeurond e 2

2.1.1 The perceptron| 3

2.1.2 The sigmoid neuron| Lo Lo e 3

2.2 __Architecture of neural networksl oo Lo 3

.. 4

231 Gradient descent]. 6

2.3.2 Backpropagation| Lo 7

2.4 _Basic neural networks|o o L 9

2.4.1 Boltzmann machines| 9

2.4.2 Deep neural networks| o Lo 9

2.0 Current research | e e e e e e e 10

2.6 Problems with machine learning| 00000 11

2.6.1 Overfitting] e 11

[2.6.2 Starting values|o Lo 11

[3 Tensor networks and matrix product states | 12

3.1 Tensor network theory| oo 12

3.2 Graphical notation for tensor networks| 0oL 12

B2T Tensorsl . . . o v oot e 12

13.2.2 Tensor operation| oL e e e e e e 13

3.3 Matrix product states| 13

8.3.1 Singular value decomposition |. 0oL 14

13.3.2 Decomposing arbitrary states intoa MPS| 15

4 MPS framework for machine learning | 17

4.1 Algorithm| 17

4.1.1 Encoding input datal 17

4.1.2 MPS approximation| L e 18

4.1.3 Sweeping algorithm for optimizing weights|. 19

4.1.4 Data block initializationl e 21

4.1.5 Normalizationl. 22

4.2 The MNIST dataset | o 22

[6__Discussion | 24

0.1 Normalizationl. 24

9.2 Bond dimension|. L 24

.. 25

B4 Additional remarksl L 26

[6_Conclusionl 28

[A_Codel 29

[A.1 Update function| e 34

1A.2 Cost functionl L e e e e 37

IA.3 Data block update function| oo Lo 40

[A4 Additional functionsl 40

1 Introduction 1

1 Introduction

Recent developments such as the ascent of self-driving cars, the introduction of face recognition
into our daily lives, and the omnipresence of machine learning algorithms in todays Internet
show the enormous potential of neural networks and machine learning techniques. They are also
used in a wide range of applications in chemistry, material science and condensed matter physics
[, 2, 3, @, 51 6]

Despite being highly successful, the formal understanding of these algorithms is only gradually
unfolding and for a surprisingly big part still remains illusive. Most of the methods used in
practice to optimize neural networks are largely based on heuristics and lack deeper theoretical
understanding and foundation [7], §].

Meanwhile they exhibit great structural similarities to one of the most successful and important
tools in theoretical condensed matter physics, the renormalization group and the later developed
tensor networks. These techniques have been applied to a great variety of physics problems and
stand on a very solid theoretical basis.

Both fields can benefit from potential conceptual and technical overlaps and recently a lot of work
has been published trying to shed some light on the topic, for example by using the mathematical
and physical understanding of tensor networks to optimize neural networks [9] or using neural
networks to find the ground state of quantum wavefunctions [10].

In this bachelor thesis we follow the work of Stoudenmire and Schwab [II] who use a tensor
network ansatz based on matriz product states (MPS), a very popular computational tool in
quantum many-body physics, in the context of machine learning. Specifically we focus on the
application of MPS to the recognition of handwritten digits from the MNIST dataset and explore
the details of the algorithm of Ref. [11].

This thesis is structured as follows. First we will give an introduction into the most basic concepts
of machine learning to enable the reader to understand the current research topics and have a basic
understanding of the field (Ch. [2). Then some foundations of matrix product states and tensor
networks will be covered (Ch. [3) to enable the reader to follow chapter {4 of this work, where the
method presented in [11] will be explicitly implemented and explained. The work concludes in a
discussion of the presented method and introduces some possibilities for further research into the

topic (Ch. [5).

2 Machine learning 2

2 Machine learning

In recent years machine learning has been getting an enormous amount of attention, in the media,
in science, and in society. In machine learning, a system of connected units, a so called neural net-
work, is trained using a specific training algorithm to solve a specific task without being explicitly
programmed.

This subfield of computer science is extremely successful in solving complicated classification tasks
which are not directly accessible through explicit coding. Therefore, it is used today in a wide
range of applications reaching from image classification, recommender systems and language pro-
cessing to applications in chemistry, material science and condensed matter physics [T} 2, [3] 4. [5], 6]
In the following we will introduce the most basic elements of machine learning before giving a short
overview of applications in connection to condensed matter physics. We will start by discussing
artificial neurons, the most basic building blocks of neural networks, to gain an understanding
on how machine learning uses non-linear elements for their success. Then we will present some
basics about the architecture of neural networks and give a detailed explanation of how learning
is achieved in order to enable the reader to understand the analogies of our MPS approach to
the techniques used in machine learning. In the final part of this chapter we introduce additional
concepts of machine learning that are subject of current research and give a short résumé about
the applications in connection to condensed mater physics.

2.1 Artificial neurons

The fundamental building blocks of a neural network are artificial neurons, which are named after
the neurons in our brain. The neural model applied in machine learning (Fig. contains, just
like our brain, connecting links or synapses with respective weights or strengths. In mathematical
terms this yields an input signal z; connected through a synapse to neuron k£ and multiplied by
the weight wy;. After summing the weighted input signals, an activation function is applied to
limit the output of the neuron to a signal of finite value. The model also includes a bias by which
in- or decreases the net input of the activation function. A neuron k is therefore mathematically
described by

yk = (D wrizi + by), (1)
=1

with z1, 2o, ..., being the input signals, wg1, wka, ..., Wk, the respective weights for neuron
k, by the bias, ¢(-) the activation function and yy the output signal of the neuron [12].

Activation
function

Output
Vi

Input
signals

() —

Summing
junction

Synaptic
weights

Figure 1: Nonlinear model of a neuron labeled k. [12]

2.2 Architecture of neural networks 3

2.1.1 The perceptron

The most basic type of artificial neuron is the so-called perceptron developed by Rosenblatt in
the 1950s and 60s [13]. While in todays applications other models of artificial neurons, known as
sigmoid neurons, are used, it is instructive to start with perceptrons in order to understand the
rationale behind the definition of the sigmoid neurons.

From several binary inputs @ = z1,x9,... a perceptron produces a single binary output. Real
numbered weights w = w1, wa, .. are introduced as an expression of the importance of the respective
inputs to the output. The perceptron’s output f(z) is defined as:

1, ifw-z+b>0
= 2
/(@) {0, otherwise ’ @

with w - x = Z?:l w;T;, n being the number of inputs to the perceptron and b being the bias.
The bias shifts the decision boundary of the perceptron and does not depend on any input value.
Following the analogy of neural networks to the human brain, the bias is a measure of how easy it
is to get the perceptron to fire. McCulloch and Pitts showed in 1943 [14] that every simple logical
operator, acting on one or more binary inputs to produce a single binary ouput, e.g. NOT, AND,
OR, XOR, NAND, NOR or XNOR, can be approximated with a combination of perceptrons.
The perceptron is a linear classifier, a classification algorithm making decisions based on a linear
predictor function, which uses the Heaviside step function as the activation function [15].

2.1.2 The sigmoid neuron

For the purpose of making learning possible, a small change in a weight or bias should cause only a
small corresponding change in the output. In this way we can gradually make small changes to the
weights and biases to gradually improve the behavior of our net. Obviously, a network consisting
of perceptrons is not very practical for that purpose since a tiny change in w or b can yield a
different output of a perceptron, changing the behavior of the rest of the network completely.
Thus another type of artificial neuron called the sigmoid neuron is introduced [13] .

The defining feature of the sigmoid neuron is that, instead of using the Heaviside step function as
an activation function, it uses the sigmoid function o(w - x 4+ b) which is defined as

1

"G = e

3)

As can be seen in Fig. the sigmoid neuron basically represents a smoothed version of a per-
ceptron. The strictly increasing o exhibits a solid balance between linear and non-linear behavior
and the smoothness ensures that small changes dw; and b in the weights and bias will lead to a
small change in the output.

2.2 Architecture of neural networks

To describe the layout of a neural network, a simplified architectural graph is used omitting explicit
mentioning of biases and activation functions. Each neuron is then represented by a node, as shown
in Figure 3] and the different neurons are connected by synapses.

In this text, we will concentrate on layered neural networks where the neurons are structured in
layers named after their constituents. The input layer contains all input neurons, the output layer
all output neurons and the so-called hidden neurons constitute the layers in between. The term
"hidden" refers to the fact that this part of the network can neither been seen directly from the
input nor output of the network.

The hidden neurons act as feature detectors by performing a nonlinear transformation on the
input data into the so-called feature space. Through this transformation, classes of interest, that
are hardly separable in the original input space, may be more easily separable in feature space.
This step is crucial for the extraction of higher-order statistics from the input.

2.3 Learning 4

0.8

0.6 -

04

0.2 -

—Heaviside step function
—sigmoid function

Figure 2: Comparison of the Heaviside step and the sigmoid function, the respective activation
functions of the perceptron and sigmoid neuron.

The neural network shown in Fig. [3]is not fully connected as not every node in each layer is
connected to every node in the next forward layer and is therefore called partially connected [12].
The design of in- and output layer is often straightforward and dictated by the task at hand.
In the case of identifying handwritten digits (for a detailed description of the MNIST dataset of
handwritten digits see Ch. each pixel of the input picture will be an input neuron with the
grayscale intensities scaled between 0 and 1, while the ten possible different outputs 0,1,2,..,9
make up the ten output neurons.
This choice seems rather natural at first, but from a programming perspective it would seem much
more efficient to use just four output neurons taking on binary values resulting in 2* = 16 > 10
possibilities. The justification for the choice of output neurons here is empirical and using an
architecture with ten neurons instead of four just learns to recognize digits better [I5]. This is a
great example of how much of the optimization of neural networks just depends on heuristics.
The design of the hidden layers is usually more difficult. Neural network researchers have developed
many design heuristic for hidden layers, e.g. by determining trade-offs between the number of
hidden layers and the required training time [15].
If the signal is not passed in a circle but instead the output of one layer is used as the input
for the next layer, the underlying neural network is called a feedforward neural network. Models
of networks allowing feedback loops are known as recurrent neural networks. The loops in the
network create an internal state of the network which allows for dynamic temporal behavior.
While recurrent neural networks are less popular than feedforward networks, partly because their
learning algorithms are less powerful, they are much closer to how the human brain works [15].

2.3 Learning

In a neural network context, there are generally three different types of learning: wunsupervised
learning, reinforcement learning and supervised learning, which will be the focus of this section
and our approach in Ch. (] also falls under this category.

Training a neural network means gradually adjusting the weights and biases of the network so that
the output eventually approximates the desired output y(x) for all training inputs z. Generally
speaking, given a specific task and a class of functions F', learning means using a set of observations
to find f* € F which solves the task in some optimal sense.

Supervised learning requires a teacher, whom we may think of as having knowledge about the
environment of interest in the form of input-output examples. The neural network however does
not know about the environment. Therefore a cost function C : F' — R is defined so that for the

2.3 Learning 5

X10

Input layer Layer of Layer of
of source hidden output
nodes neurons neurons

Figure 3: Architectural graph of a layered feedforward partially-connected neural network consisting
of an input, a hidden and an output layer.

optimal solution f*

Clfr)<C(f) VfeF (4)
Take for example)
C(wvb) = %Z'ly(m) _a(x’wvb)||27 (5)

with weights w, biases b, total number of training inputs n, and a the vector of outputs from the
network for the input x. C'is called the quadratic cost function or mean squared error (MSE) [15].
The cost function is a measure of how far away from an optimal solution a particular solution is. A
learning algorithm then searches through the solution space in the form of a multidimensional error
surface to find a function that minimizes C'. The network parameters are then adjusted iteratively
in a step-by-step fashion with the aim of the network eventually emulating the supervisor. In this
way, knowledge about the environment is passed to the neural network through supervised training
examples, which is stored in the form of synaptic weights representing the long-term memory. The
network can then be separated from the teacher and deal with the environment independently [12].
Unsupervised and reinforcement learning are categorized as learning processes without a teacher.
This implies that there are no labeled training examples. In reinforcement learning the network
is continuously in contact with the environment. One form of a reinforcement-learning scheme is
built around a so-called critic, which is defined as converting a primary reinforcement signal from
the environment into a heuristic reinforcement signal. The learning then occurs through delayed
reinforcement as the network observes the temporal sequence of reinforcement signals. This can
be interpreted as a cost-to-go function, the expectation of the cumulative cost of actions taken
over a number of steps, being minimized [12].

Unsupervised learning works completely without external teacher or critic. The parameters of the
network are adjusted through a task-independent measure and some sort of a competitive-learning
rule, where neurons in a competitive layer compete for the chance to respond to features in the
input data. The simplest form being a “winner takes it all” model where only the neuron with the
greatest total input turns on, while the others switch off [12].

2.3 Learning 6

2.3.1 Gradient descent

Since we apply a modified gradient scheme in the context of our implementation in Chapter [to
train our MPS, we introduce the basic concept of gradient descent. It is instructive to go into
detail here to understand where the ideas for the algorithm in Ch. come from and how they
are justified.

In a supervised learning context, a system is able to reach a global (or local) extremum through
the gradient of the error surface. The gradient is the vector that points in the direction of steepest
slope [12]. In order to find a local minimum of the surface one takes steps proportional to the
negative of the gradient therefore always moving in the direction of steepest descent. For C being
a function of n variables, v1,vs, ..., v, with Av = (Avy, Avy, ..., Av,)T we get

Av = -V, (6)
where 7 is a small, positive parameter called the step size or learning rate and VC' the gradient
vector VO = (3701, g—vc;, . gvcn)T.

One typically uses the approximation,
AC = VC - Av=—q||VC|?, (7)

which guarantees AC < 0. In this way, the function C is always decreased in every iteration.
This results in a simple update rule for v,

v—v =v-—nVC. (8)

In order for this method to work, one must choose the learning rate n sufficiently small for (7)) to
be a good approximation. Otherwise AC could become positive. If n exceeds a certain critical
value the method becomes unstable and diverges. At the same time the learning rate should not
be chosen too small, since this would lead to a small step size (@ and therefore the time needed
for the gradient descent algorithm to reach a minimum would become very large. In the context
of neural networks, the gradient descent update rule takes the following form

oC
wk%w;:wkfna—wk (9)
oC

As can be seen from Eq. , the quadratic cost function VC = %Zm VC, strongly depends
on the number of training inputs n, as the gradient for each training input has to be calculated
separately before averaging over all of them. Therefore learning slows down significantly for large
n.

To speed up learning in these regimes, stochastic gradient descent can be used. The idea of this
methods is to estimate the gradient VC by computing VC, for a small so-called mini-batch of
m randomly chosen training inputs X1, Xo, ..., X,,,. Averaging over this sample results in a good
approximation of the true gradient within a small amount of time, provided m is large enough
and

1 m
VC ~ Ezlvcxj. (11)
iz

The update rule for the weights and biases then becomes

;o o ICx;
W — Wy, = Wk o= Ej B (12)
dCx.
b b =b - LY (13)

m

2.3 Learning 7

where the sums include all X; in the current mini-batch. For each training step a new mini-
batch is randomly selected until all training inputs are exhausted, concluding a so called epoch of
training. Training then continues with a new training epoch [I5]. While batch learning allows for
a parallelization of the learning process, it also comes with a high demand in storage requirements.
The extremal case of m = 1 is known as on-line or incremental learning, where the network learns
from just one learning example at a time, and avoids this disadvantage. The stochastic nature of
the procedure reduces the likelihood of the learning process getting stuck in a local minimum [12].
Stochastic gradient descent can dramatically speed up learning in neural networks and is therefore
commonly used today. A very detailed explanation of the algorithm can be found in [12].

2.3.2 Backpropagation

In order to apply the gradient descent algorithm, one has to compute the gradient of the cost
function, VC'. This is typically performed employing a process known as backpropagation. In this
procedure the error is calculated at the output of the neural net and then propagated backwards
through the layers to compute the gradients for the individual weights and biases in a simple and
effective way. Even though this algorithm is not implemented in our MPS approach, it is integral
to many approaches in the field of machine learning. For completeness it is also instructive to go
into a little bit of detail here.

For the algorithm to work, two assumptions about the cost function C' are necessary:

1. The cost function can be written as an average C = %Zm C, over cost functions C, for
individual training examples z.

2. The cost can be written as a function of the outputs from the neural network.

Assumption 1 ensures that partial derivatives %% and 830; can be computed for individual training

examples. This allows for averaging over all training examples to compute g—g and %—(;.
Assumption 2 fixes both the training input x and the corresponding desired output such that the
only parameter, that can be influenced by modifying the weights and biases, is the networks actual
output [15].

As described earlier, the hidden neurons are not directly accessible but still contribute to the
overall error. To enable learning, it is crucial to determine how each internal decision of a hidden
neuron contributed to the overall result and how to correct the corresponding weights and biases
accordingly. This problem is known as the credit-assignment problem and backpropagation offers
an elegant way to resolving it in a two-phase process.

In the first phase, the forward phase, the input signal is propagated, layer-by-layer, through the
network until it reaches the output, while the weights and biases of the network are fixed.

In the second, the backward phase an error signal is calculated at the end of the network by
comparing the actual output of the network with the desired, correct output. This error is then
propagated backwards through the network, hence the name backpropagation. During that process
the weights of the network are successively updated [12].

Next, we will derive the fundamental equations of the backpropagation algorithm following [15].
A more detailed derivation can be found in [12], chapter 4.

We begin by defining the local error (5; of the j** neuron in the I** layer as

s oC

J 79
azj

(14)

where zé is the weighted input.
In combination with the output activation a]L the error in the output layer can simply be computed
by applying the chain rule,

L
5L22870%_ (15)

2.3 Learning 8

Since the output aF of neuron k only depends on the weighted input zj for neuron j when k = j
this further simplifies to
sL_ 0C da¥ oC , .

i dak 0zf daL” (z), (16)

L

where the second part follows from aj = o(2; L). Note that the exact form of BC - depends on the

cost function, yet, it is still easily computable. For the quadratic cost function C’ =3 Ly ; (yj —a]L)2
oL is given by
(5jL = (af — yj)a'(sz) (17)

In a next step, the error ¢! will be expressed in terms of the error in the next layer §'T', which
will be crucial to propagate the error from the output through the network,

e oC 9z ozt
o =22 = Z = Z k__git+1 (18)
i 1 T %
702 — 0z ozl — 0z,
where the chain rule is used to rewrite 6} in terms of 5, = 0C/ 8,2,[:“1. For further simplification
note that
A Zwl+1 Lpl — Zwl+1 + oL, (19)
j T Ok
and therefore -
O o) (20)
82} ki i
Inserting into :
=D w6 o’ () = (W76 0 () (21)
e

with (w17 the transpose of the weight matrix w!*! for the (I41)*" layer. A compactified matrix
notation is used in the last step. This form offers a very intuitive perspective on the algorithm.
Suppose the error 6'*! at the [+ 1** layer is known. To calculate the error of the next layer [, the
transpose weight matrix is applied moving the error backward through the layers. Componentwise
multiplication with o’(z!) then propagates the error backwards through the activation function in
layer [yielding 4!, the error in the weighted input to layer [.

Simply applying the chain rule analogous to the derivations above, equations for the rate of change
of the cost with respect to any bias and with respect to any weight in the neural network are derived
as

oC !
o 0 (22)
J
oc -1l
= St 23
8wé-k B % (23)

Revisiting the sigmoid function (Fig. , it is clear that o'(z; L)y — 0 when o(zj L) goes towards 0
or 1. This indicates that learning occurs very slowly in the regimes of low or hlgh activation, as
can easily been seen from equations and . This phenomenon is known as saturation. To
avoid this behavior, other activation functions have to be used.

With the equations above, the two-phase backpropagation algorithm can be written as:

Phase 1, forward phase:

1. Setting the corresponding activation a' for the input layer

2. Forwarding the signal through the network successively computing 2! = w'a!~! + b' and

al = o (') for every layer.

2.4 Basic neural networks 9

Phase 2, backward phase:

aC /(ZL).

2aL 7 \%j

1. Calculating the output error 6% =
J

2. Backpropagating the error through the network by successively computing
ot = (W T80/

3. Calculating the gradient of the cost function as a?ﬂ?k = afﬂ_léj» and gTC; = 6;.

This provides a simple and storage saving approach to calculating all the gradients needed for
gradient descent, and therefore offers a stable and quick algorithm to allow learning in neural
networks. By simultaneously computing all partial derivatives C/0w, using just one forward
and one backward pass the computational cost of the algorithm is roughly the same as only two
forward passes through the network. This offers a very significant speedup compared to earlier
methods where gradients had to be computed individually [15].

2.4 Basic neural networks

In the last two years the intersection of machine learning and numerical methods from physics has
attracted a lot of attention. Many of these publications rely on the same fundamental elements
of machine learning known as (restricted) Boltzmann machines and deep neural networks. It is
therefore instructive to introduce these concepts before moving on to the current research.

2.4.1 Boltzmann machines

A Boltzmann machine (BM) is one of the most basic and general neural networks. It simply
consists of computing units which are interconnected by bidirectional links. The weights on the
links between the units can take on real values of either sign. Through minimizing a cost function
one arrives at the configuration that best satisfies the constraints given by the task, e.g. 'weak’
constraints for pattern recognition [16].

A restricted Boltzmann machine (RBM) is a Boltzmann machine with a bipartite connectivity
graph. It is a two-layer network consisting of only one visible and one hidden layer. A pair of
units from each of the groups may have a symmetric link between them, but unlike BMs, no
connections between units of the same group are allowed for RBMs. An RBM can approximate
any distribution and with a sufficiently large number of hidden units can even represent them
exactly. This may need a huge number of elements and therefore training examples [17].

The hidden units of a trained RBM may also reveal correlations of the data with physical meaning,.
For example in an RBM trained with the MNIST dataset of handwritten digits, the connection
weight contains the information about pen strokes [9] p.2].

Y Y

i @ @ © © @

Figure 4: Structure of a Restricted Boltzmann Machine with 3 visible and 5 hidden units.

2.4.2 Deep neural networks

A deep neural network or deep belief network (DBN) is a probabilistic generative model consisting
of multiple layers of stochastic, latent variables. It can be seen as a composition of simple RBMs

2.5 Current research 10

where the output of one serves as the input of the next, learning features of increasingly higher
complexity. This way a DBN breaks down a very complex question into very simple question
answerable at the level of single inputs, e.g. pixels. Early layers answer very simple and specific
questions and later layers build up a hierarchy of ever more complex and abstract concepts.

A deep convolutional arithmetic circuit (ConvAC) is a deep convolutional network that operates
exactly as a regular convolutional network just with linear activations and product pooling layers
which introduce the non-linearity instead of the more common non-linear activations and average/-
max pooling. Its underlying tensorial structure resembles the quantum many-body wave function

8, p.5].

2.5 Current research

With the knowledge of the fundamentals of neural networks established over the past chapters we
now highlight some interesting examples of research connecting the fields of machine learning and
condensed matter physics and, in particular, tensor network methods.

Cichocki [I8] gives a detailed discussion about the many potential applications of tensor networks
in the field of big data.

Mehta and Schwab show the intimate relation between deep learning and the renormalization
group, an iterative coarse-graining scheme that allows for the extraction of relevant features from
a physical system, e.g. in the form of operators. They then construct an exact mapping between
the variational renormalization group and architectures based on RBMs and illustrate this map-
ping by analytically constructing a deep neural network for the 1D Ising model and numerically
examining the 2D Ising model. Their results indicate that deep learning might be employing a
generalized renormalization group-like scheme for feature extraction [7].

Carleo and Troyer [10] introduce a representation of quantum states as an RBM and then demon-
strate a reinforcement learning scheme to train the network to represent the quantum wave function
and determine the ground-state or describe the unitary time evolution of interacting systems. To
validate their scheme they consider the problem of finding the ground state of the transverse-field
Ising (TFI) model and the antiferromagnetic Heisenberg (AFH) model where they achieve some
of the best variational results so-far-reported. They describe it as a 'new powerful tool to solve
the quantum many-body problem’ [10].

Novikov, Oseledets and Trofimov [19] factorize exponentially large tensors to tensor trains El This
format allows them to regularize the model and control the number of underlying parameters.
They then develop a stochastic Riemannian optimization procedure to fit large tensors and use
the model on synthetic data and the MovieLens 100k dataset [19].

Chen et al. [9] developed an algorithm to translate an RBM into a tensor network state (TNS)
and give sufficient and necessary conditions to determine whether a TNS can be transformed into
an RBM of given architecture. This connection can then be used to design more powerful deep
learning architectures, rigorously quantify their expressive power through the entanglement en-
tropy bound of TNS or represent a quantum many-body state as an RBM with fewer parameter
as a TNS [9].

Levine et al. [8] show an equivalence between the function realized by a ConvAC and a quantum
many-body wave function. The construction of a ConvAC as a tensor network enables them to
carry out a graph-theoretic analysis of a convolutional network providing direct control over the
inductive bias of the network [g].

The work by Stoudenmire and Schwab [11] provides a concrete example of applying a tensor
network technique (matrix product states) to a machine learning problem, the recognition of
handwritten digits, which serves as a benchmark test for neural networks.

In this thesis, we will focus on the algorithm presented in this work, to take a closer look at
this interesting intersection between mathematical methods developed in physics and the field of
machine learning.

ltensor trains = matrix product states

2.6 Problems with machine learning 11

2.6 Problems with machine learning

The process of training a neural network comes with several difficulties, and poses the biggest
challenges in machine learning. To finish off the chapter on machine learning, we introduce some
of the main problems and their possible solutions. Some of these problems might apply to our
learning process, through a tensor network approach, as well.

2.6.1 Overfitting

The ability to generalize is a vital feature of a trained neural network. If the input is slightly
different from the examples used to train the network it is still able to produce a correct result.
If a neural network is trained with too many training examples it may end up memorizing the
training data losing the ability to generalize properly. It ends up modeling random error or noise
instead of the underlying function. This problem is known as overfitting or overtraining and occurs
when the model is to complex, e.g. when it has too many parameters relative to the number of
observations. The root of this problem is that the criterion for training the model (minimizing the
cost function over a set of training data) is not the same as the criterion for judging its effectiveness
(its performance on unseen test data).

The simplest way to avoid overtraining is to increase the number of training examples. The size of
the training sample N should be of order W/e following Widrow’s rule of thumb, where W is the
number of free parameters in the network and e the fraction of classification errors permitted on
test data [12] p.166]. For a small training sample it will be easy for the neural net to just memorize
the training data in its entirety, thus minimizing the cost function but failing to correctly classify
the test data. Because acquiring a large set of structured data is mostly very difficult in modern
applications, other methods have been developed to avoid overfitting. Employing early stopping,
one devises a set of rules determining when to stop training the network. The model is then
trained for a while and then stopped well before it approaches the global minimum.

Weight decay offers a more explicit method for regularization by adding a penalty AJ, with A >0
a tuning parameter, to the error function like the weight elimination penalty

wz b2l
:E m § m 24
d km1+w,’§m+ 1+02, (24)

ml

which has the effect of dampening the weights and biases [20].

2.6.2 Starting values

The choice of the initial values for the weights and biases can have a significant effect on the
success of the learning process. Usually random values close to zero are chosen where the sigmoid
function is roughly linear so that the model becomes nonlinear as the weights increase. Large
weights often lead to poor solutions, while zero weights lead to zero derivatives which in turn
leads to zero update in the learning algorithm. Choosing initial values close to one, results in the
sigmoid function become very flat and therefore slow down the learning speed [20].

There are many texts such as Hinton, 2010 [21] which offer detailed recommendations on how to
optimize specific architectures of neural networks but are largely based on heuristics.

3 Tensor networks and matrix product states 12

3 Tensor networks and matrix product states

Machine learning has recently attracted much attention in condensed matter physics [7, 10]. It
presents a possible route to resolving long-standing physical questions like high-T,. superconduc-
tivity, which are in the center of active research. tensor network (TN) methods, where the wave
function of a system is described by a network of interconnected tensors [22], are one family of
approaches to resolve many-body problems.

Exploring the combination and connections of tensor networks and machine learning can poten-
tially be very useful for both fields. Machine learning can by improved by TN ideas, e.g. neural
network architectures can be optimized through physical considerations such as the entanglement
entropy bound TN states after developing an exact mapping between the two [9]. At the same
time, condensed matter physics can profit from machine learning ideas, e.g. by representing quan-
tum systems as neural networks to find the ground state of the system [I0] or by representing
quantum many-body states as an RBM with fewer parameters compared to a TN [9].

There exist different TN representations suitable for the description of different systems. In this
text we will only focus on one type of tensor network, so-called matriz product states (MPS), which
will be applied in the machine learning context in chapter @] In the following, we will introduce
the graphical tensor network notation, then explain the basic ideas behind MPS, before going into
some important technical details like the singular value decomposition needed for our machine
learning application as well.

3.1 Tensor network theory

In quantum mechanics states are typically described by a set of coefficients of a wave function
in a certain basis. Tensor networks adopt a different representation of a quantum state in terms
of a set of interconnected tensors. This allows for a numerically more efficient treatment of a
many-body wave function, since one can mediate the otherwise exponential increase in numerical
complexity with system size [23]. This formulation also makes information about the structure
of entanglement in the system directly available [22]. In the machine learning context we also
deal with an exponentially large number of parameters. Therefore, the TN mechanism potentially
offers an elegant way to perform the optimization of a neural network.

3.2 Graphical notation for tensor networks

A huge benefit of working with tensor networks is the simple and very transparent notation that
has been developed for them. The graphical notation elegantly avoids the explicit treatment of
many indices in the standard notation and makes the structure manifest and clean. The tensor
network notation (TNN) can be considered a generalization of the Einstein summation notation
[24]. TNN is essential when dealing with more complex tensor networks such as PEPS [25] and
MERA [26], since their structure is so complex that traditional notation becomes unmanageable,
but it is already helpful in the context of MPS.

3.2.1 Tensors

Tensors represent the generalization of scalars (rank-0 tensors), vectors (rank-1 tensors) and ma-
trices (rank-2 tensors). While a d-dimensional vector lives in C? and a m x n matrix is element
of C™*" a rank-r tensor of dimensions d; X ... X d, is an element of C%* >4 For our purposes,
a tensor is a multidimensional array of complex numbers, with the rank equal to the number of
indices.

The basic graphical notation for a tensor is a closed geometrical shape, typically a circle, though
other shapes can be used to distinguish different kinds of tensors. Each index of the tensor is
represented by a line or “leg” coming from it. The direction of the legs can be used to indicate
certain properties, e.g. whether a quantum state lives in Hilbert space (“ket”) or is dual (“bra”).

3.3 Matrix product states 13

This is analogous to denoting upper and lower indices in Einstein notation [24].

1 k
|
O o i
o MY T

Figure 5: Graphical notation for a vector v*, a matrix M* and a rank-3 tensor T%*.

3.2.2 Tensor operation

Tensor operations also have a very simple diagrammatic representation. To indicate that a certain
pair of indices are contracted, the corresponding legs are simply connected through a line.

i —0—0 i —@ w . = e
EM,,U, = w. EA B =

J)] 1 %l ijkl — klm ijm

Figure 6: Graphical (top) and explicit index (bottom) notation for a matrix-vector multiplication
(left) and a more general tensor contraction of a rank-4 and a rank-3 tensor.

Other operations like the tensor product and the trace have equally simple and instructive
representations:

¥ - @ 0= "o (80)

Figure 7: Graphical notation for the tensor product (left) and the trace operation (right).

Instead of explicitly writing out the full expressions, the TNN is compact and avoids the need to
explicitly write every index sum performed in an operation. The rank of the final result can easily
be determined by counting the number of open lines after all operations have been performed. In
particular a complicated set of tensor operations can be recognized as a scalar result if no indices
remain open in a particular diagram [IT].

3.3 Matrix product states

An arbitrary quantum state can be represented by a coefficient tensor in Fock space. Consider
a one-dimensional lattice with L sites and d-dimensional local state spaces |o;) on the sites ¢ =
1,..., L. A general pure quantum state on the lattice is given by

W) = > copoylor.oL), (25)
oL

with a coefficient tensor containing d” elements, that clearly scales exponentially with system size
L.

How can we represent a quantum state of such a system as a tensor network and avoid the
exponential scaling of the number of coefficients with system size? To this end, the coefficient
tensor is approximated by an array of N lower-rank tensors, which are then contracted over a

3.3 Matrix product states 14

sequence of virtual bond indices,

W= S AT AT AT AT o, o), (26)
01,5440 L Q1.0 XL 41
where we have used a compact notation of the rank-3 tensors A([)Z.j,léj 41, With virtual bond indices
aj = 1,...,m. For open boundary conditions, as realized in Ch. oy and apyq are 1. This
one-dimensional decomposition of a tensor (see Fig. is called a matriz product state (MPS)
[11], and will be discussed in more detail later.
To avoid the exponential scaling of the number of coefficients we now limit the coefficient space
by a bound on the bond indices, the so-called bond dimension controlling the accuracy of the
MPS approximation. Despite neglecting large parts of the Hilbert space in this way, the MPS
is still an excellent approximation for many physical states of 1D quantum systems, e.g. low
energy or thermal states [27]. Many numerical techniques in condensed matter physics rely on the
MPS framework. The most famous example is the density matriz renormalization group (DMRG)
[28], 29] and its generalizations. In Ch. we will explain the rationale for the truncation and
the resulting approximation.
Matrix product states present a formalism that can not only be used in physics but also has
great potential for applications in machine learning. In this thesis we will use a set of techniques
derived from DMRG to optimize our neural network in chapter Next, we introduce a key
mathematical method used for most MPS algorithms, the singular value decomposition (SVD),
which also represents an important tool for our machine learning algorithm.

bb6bb6d

Figure 8: Graphical notation of a matrix product state for a length-7 system consisting of 7 tensors
Aj

3.3.1 Singular value decomposition

A singular value decomposition (SVD) is a linear algebra tool which lies at the core of most MPS
algorithms. A SVD decomposes an arbitrary (rectangular) matrix M of dimension (N4 x Np)
into

M =USVT, (27)
with the following properties:

e Uis a (Ng x min(Ng, Np)) matrix with orthonormal columns the so-called left singular
vectors. UTU = I especially if Ny < Np also UUT = I (in that case U is unitary).

e Sisa (min(Nag,Ng) x min(Na, Np) diagonal matrix with non-negative entries called the
singular values Suq = $o. The number of non-zero singular values is the (Schmidt) rank of
M and descending order of the singular values is assumed in this text: s; > ... > s, > 0.

e VTis (min(Na, Ng)x Ng) matrix with orthonormal rows the so-called right singular vectors.
VIV = I especially if Ny > Np also VVT =TI (in that case V is unitary).

An important consequence is the optimal approximation of M of rank r by a matrix M’ of rank
m < 7 in the Frobenius norm |[M||3. = 3, [M;;]* induced by the inner product (M|N) =
Tr(MTN) given by

M =US'VT, with S’ = diag(s1, 82, ., 8m, 0, ...). (28)

3.3 Matrix product states 15

Figure 9: Graphical representation of the matrix shapes resulting from a SVD M = USV'. The
diagonal line indicates that S is a strictly non-negative diagonal matrix.

This is achieved by setting all but the largest m singular values to zero. In numerical practice the
column dimension of U and the row dimension of VT are also reduced accordingly [27].

This offers a very simple method to reduce or limit the dimension of a tensor. When the dimension
of the tensor M becomes bigger than a desired value during an application it can simply be
truncated by using its optimal approximation M’ instead, thereby keeping the dimension fixed to
the desired m. The value of m for truncation can also be set adaptively by keeping only the those
singular values bigger than a certain threshold. Truncation is also very important in our machine
learning algorithm. There the dimension of the tensor being optimized grows very quickly and
therefore has to be truncated to a fixed value to keep the time needed for computation low.

3.3.2 Decomposing arbitrary states into a MPS

An arbitrary quantum state can easily be decomposed into a matrix product state. This is impor-
tant since an analogous construction will enable us to describe the weights of our neural network
as a MPS.

The decomposition of the state into is achieved through a series of SVDs (a very detailed
derivation can be found in [27, Chapter 4.1.3]), where Agjf,aj = Ula,0,),a, and the decomposition
was started from the left.

These A-tensors exhibit the following properties:

e For an exact decomposition of the state the bond indices (a;, a;) of the first A-tensor start
of as (1,d), then scale exponentially until they reach (d%/2~1,d%/?) and (d%/? d*/?>~1) for
the A-tensors in the middle of the chain, assuming even L, and then decrease exponentially
to reach (d,1) at the last site. In practical calculations, it is typically impossible to carry
out this exact decomposition as the tensor dimensions blow up exponentially. To allow for
numerical feasibility a upper cutoff dimension m is required.

e Each SVD guarantees UTU = I and therefore

D ATTAT =T, (29)

Tensors fulfilling this condition are called left-normalized and matrix product states consist-
ing of only left-normalized tensors are left canonical.

Analogously a similar decomposition can be obtained starting from the right to obtain

)= > B7B"..B7"'B|0y,...,00). (30)
01,..,0L

The B-tensors can be shown to have the same tensor dimension bound as the A-tensors and from
V1V = I follows, that

> BB =1 (31)
[eg]

These tensors are therefore called right-normalized and an MPS built entirely from such tensors
is right-canonical.
Introducing the vectors

|CL[>A = Z (Aal...AUlh’allo‘l,...,0’[) (32)

O1,...,0]

3.3 Matrix product states 16

s =Y. (B ..B")al0u41, . 0L), (33)

Tl415-+50L

the state can be written as

|¥) 228a|a1>A|az>B, (34)

where s, = S,q, known as a mized-canonical basis [27]. This representation allows for local
updates of the wave function in an optimal way, which is key to approaches such as DMRG (see
[27]) as well as for our machine learning algorithm.

In physical applications the truncation is very successful because of the so called entanglement
area laws which guarantee an exponentially decreasing singular value spectrum. Therefore the
optimal approximation truncated through a threshold is typically a good representation of the
actual state. Again [27] offers a very detailed discussion about the physical background but since
these area laws do not apply in the machine learning context we will not go into further detail
here. Also Cichocki offers further background about these more technical aspects of MPS in [18].

4 MPS framework for machine learning 17

4 MPS framework for machine learning

Recently, several papers suggested that tensor networks can not only be applied in quantum many-
body systems but can also be effective in a machine learning context. Two papers in particular
pointed out that tensor networks can represent powerful tools in the setting of non-linear kernel
learning [11] 19]. This means optimizing a decision function of the form

flx) =W (), (35)

where input vectors @ are mapped into a higher dimensional space via a feature map ®(x) and
the feature vector ®(x) and the weight tensor W can be exponentially large.

Here, we adapt the approach taken in Ref. [I1] following a different direction than the typical
machine learning approaches described in Chapter To this end, we approximate the optimal
weight tensor W as a matrix product state to optimize the weights directly and adaptively change
their number by locally varying W two tensors at a time. The rest of the network is stored in
two blocks, which are not altered during the local update. The details of this procedure closely
follow the DMRG algorithm. During training, dimensions of tensor indices grow and shrink to
concentrate resources on the most relevant correlations within the data. This training procedure
scales only linearly with the training set size. Furthermore, the MPS representation of W offers
the possibility to extract information from the trained model that would otherwise be hidden. Ad-
ditionally, the form of the tensor network adds another type of regularization beyond the choice
of ®(x), which could have interesting consequences for generalization [IT].

In this chapter an MPS approach for solving a machine learning task, specifically the recognition
of handwritten digits from the MNIST dataset, will be implemented in MatLab following Stouden-
mire and Schwab [I1]. We will explain the feature map and the MPS approximation of the weight
tensor W and then go through the details of the optimization algorithm. Finally we will discuss
the results we obtained.

4.1 Algorithm
4.1.1 Encoding input data

To account for the 1D structure of the MPS representation, we first have to classify the input data
by mapping each component z; of the input data vector « to a d-dimensional vector. Analogous
to many-body Fock states, we choose a feature map of similar form for our machine learning
approach

Oo1925N () = O (1) ® D2 (29) ® ...V (zy). (36)

The tensor ®*1%2-°N is the tensor product of the same local feature map ®% (x;) applied to each
input z; and the indices s; € [1,d], where d is known as the local dimension. Analogous to working
with normalized wave functions in physics, local feature map is required to have unit norm, which
in turn implies that ®(x) also has unit norm [11I]. In physical terms the feature map has the
structure of a product state or unentangled wave function. The graphical notation is shown in

Fig.

S3 S S SG S

OO UUW
D=-000606606
@s, @.92 @Sx @51 Q).@,‘ @su @57

Figure 10: Graphical notation of the feature map ®, a normalized order N tensor of dimension d¥

and rank-1 product structure.

In our example, the input data are grayscale pictures with N pixels. Every pixel has a value

4.1 Algorithm 18

between 0 for white and 1 for black El We then choose the simple local feature map

% (a) = [eos(G ;). sin(5a;) (37)
for the input «; from pixel j. Thus the full picture is represented by a tensor product of this local
vector for each pixel according to equation (36). Even though in our implementation only this
feature map was tested, it would be interesting to try other higher dimensional (d > 2) local feature
maps, corresponding to higher spin models, to investigate what role they play in performance and
optimization cost of the model. For a more detailed discussion see Ref. [11, Appendix BJ.

4.1.2 MPS approximation

For classification we generalize the decision function in Eq. to a set of functions indexed by
a label [,
fl@) =W o). (38)

An input z is then classified by choosing the label I for which |f!(x)| becomes maximal. The
quantity that depends on the label [is the weight vector W! which will be viewed as a tensor
of order N + 1 with N, - dV components, where N7, is the number of labels. To regularize and
optimize this tensor efficiently it is decomposed into a matrix product state of the form

WSllSQ...SN = Z A?;A?;az e Als;]qjilaj e A?571 * (39)
{a}

The exponentially large set of components is approximated by a much smaller set of parameters
whose number only grows polynomially with the size of the input space El The compact graphical

notation of is shown in Fig.

I
C) =
[T [[[1 1

Figure 11: Graphical notation of the approximation of the weight tensor W' by a matrix product
state (see Eq.) The label index [is placed on an arbitrary tensor of the MPS and can be moved
to another location.

The parameter controlling the MPS approximation is the bond dimension m of the virtual

indices a;. Just like an RBM can approximate any distribution with a sufficiently large number
of hidden units (see Ch. , an MPS can represent any tensor for a sufficiently large m [30]. In
physics application m is typically set between 10 and 10,000 and it is desirable to set it as large
as possible since a larger bond dimension means more accuracy. In Eq. the label index [is
put on the j* tensor but this choice is arbitrary. In fact, the index can be moved to any other
tensor of the MPS through a singular value decomposition similar to the procedure explained in
without changing the overall W',
In our example, the MPS is initialized as a chain of N tensors filled with random numbers between
0 and 1, where N equals the number of pixels. The label index I was put on the N** tensor of
the chain and the MPS is brought into left-canonical form through a series of SVDs. The bond
dimension m is chosen between 10 and 120.

2TIn the actual data the values range from 0 for white to 255 for black. They are divided by 255 for the feature
map.
30nly if we impose a cut-off dimension m.

4.1 Algorithm 19

4.1.3 Sweeping algorithm for optimizing weights

The core of our algorithm is a mechanism inspired by the DMRG algorithm used in physics. The
algorithm “sweeps” back and forth along the MPS iteratively minimizing the cost function C' by
updating the tensors locally in a two-site update. The cost function C' in our classification task is
the quadratic cost

1, ifi=1L

Nt
1 l l 2 : l) n
= — n) — 6 s th 6 = s 40
2 nz::lzl:(f (@n) =0L,) b L 0, otherwise (40)

where Np is the number of training inputs and L,, is the known correct label for training input n.
For our optimization we could also choose a one-site update where we only vary one tensor at a
time, however, the procedure where two adjacent tensors are varied at the same time turns out to
be much more convenient here. This does not only enable us to adaptively change the MPS bond
dimension but also offers a convenient way to permute the label index [through the network.
Let us now consider the details of this two-site update procedure. Assume we have moved the
label index [to the j* tensor A% . This particular tensor shares the j** bond with the (j 4 1)
tensor Ay, ,. These two are then ‘contracted to form a single bond tensor by contracting over «;,

Al 25105 A% +1 = B~ sl (41)
+

SjSj+1

The much simpler graphical notation can be seen in Fig. In analogy to the gradient descent

l l
7 J+1 j J+1

Figure 12: Forming the bond tensor B by contracting the two tensors on sites j and j + 1.

step used in machine learning, we now compute the derivative of the cost function C' with respect
to the bond tensor B! to iteratively update the components of the MPS. Since we only update
two sites at a time, we can use a localized approach. Therefore each training input @, is projected
through the fixed local projection of the MPS shown in Fig. This results in a &, with four
indices as shown on the right-hand side of the same figure.

3806630s- 60064

Figure 13: Projecting a training input into the MPS basis at bond j.

A detailed discussion about how these projected inputs are efficiently calculated and stored in

our code can be found later in Ch. [£1.4] Here we will concentrate on the update of the bond

tensor B'. Given the projected input ®,,, the local de(:181on function can be efficiently computed
combining ®,, and the current bond tensor B! (see Fig. |14) as

flaa)= D Y BIST (@350, (42)

Qj—10G+1 SjS5+1

Analogous to the gradient descent algorithm discussed in detail in [2.3.1] the leading order

4.1 Algorithm 20

[
B = i fl (Xn)

o

n

Figure 14: Computing the local decision function in terms of the projected input D,,.

update to the bond tensor is then computed as

oC
l e
AB = OBl
N ’
T ’ ’ 8fl (:Ijn)
_ Ul
~ 2 2O =) g (13)
NT ~
= (5lL *fl(a:n))q)n
n=1

IS YR @, - '(x)
*PQ® 4

Figure 15: Gradient of the bond tensor B'.

The resulting object AB! (see Fig. [15) has the same index structure as the bond tensor B'.
In analogy to the gradient descent update, we now add this small update to B! (see Fig.

oC

l 1 l ! l

with « being the analogon to the step size used to control convergence. As in the case of machine
learning, the step size in our application is set following empirical observations and its effect on
the algorithm is discussed in detail in Ch.

l l l

Il
+

124 l l
B B abB
Figure 16: Gradient descent-like update of the bond tensor B! with step size a.

After the update, the bond tensor B has to be decomposed into separate tensors to restore the
original form of the MPS and to be able to apply the algorithm again to the next bond. Assume
we are moving from left to right in our optimization process and the next bond to be optimized
is the (j + 1)**. We then compute a singular value decomposition of B! as shown in figure or
explicitly given by ,

Byt = 3 U Sal Vi (45)
aloy

4.1 Algorithm 21

In this way, we restore the MPS form and at the same time move the label index I one site to the
right onto the (j 4 1)*" tensor. In order to fully restore the MPS, we define Us, = A;j as the new

tensor at site j and SVslj+1 = Angl to be the new tensor on site j + 1.

Figure 17: Restoration of MPS form and translation of label index ! through a SVD.

The collective dimension of B! can increase through the contraction of the two initial MPS

tensors to one bond tensor and the subsequent SVD. Starting from two initial tensors of size
dj_l de dej Xdl and dj de+1 Xd5j+1, the matrix dimension of B! is dj_l 'dj'dsj de'dj+1 'd8j+1 'dl.
Carrying out an exact SVD the two resulting new MPS tensors therefore have a larger bond
dimension. Keeping track of the increasing bond dimension throughout the sweep quickly becomes
unfeasible.
Therefore it is crucial to control the dimension of the resulting tensors. We use the optimal
approximation (see Ch. [3.3.1)) of B! keeping only the m largest singular values in S and discarding
the rest along with the corresponding columns of U and V. If all of the MPS tensors to the left
and the right of the bond tensor are in canonical form, then the truncation of B! is globally optimal
for the entire MPS [11]. In our application, this is the case since our initial state is left-canonical
per construction.

4.1.4 Data block initialization

Proceeding to the next bond, it would be highly inefficient to perform the full projection of each
input vector from scratch, as shown in Fig. [I3] Therefore, we have to find a way to store and
compute the local projections of the input data efficiently along the way, since they have to be
constantly updated to the current local basis.

We start by initializing the data storage. The first entry is formed by simply contracting the first
A-tensor with the corresponding input mapped trough the feature map. The next entry is then
obtained by first performing the same contraction between the A-tensor and the mapped input
on that site and then contracting the result with the tensor formed on the first site (see Fig.
step 1). This procedure is iterated site-by-site and the resulting blocks for every site are saved in
a cell array until only two sites are left (see Fig. step 2).

1 1 l

S [|
D ' = ! RS
1 _’ ' _’ .
! 0 ooe ! N T eeo i
v N ' ' "
[N ' . L '¢'~
g i
o ' [.
J d =2
Dot ' e

Figure 18: Initialization of the local projections of the input data.

The two remaining sites N — 1 and N are updated and decomposed into two separate tensors
through the SVD procedure described above. The N** tensor is then contracted with its corre-
sponding input ®*¥ to form the first element of a block on the right. The relevant block on the
left side has already been calculated before and can be restored from the data storage (see Fig.
step (1)). During optimization, the block tensor is then iteratively updated and moved through
the MPS chain. The block on the right is updated iteratively using the procedure shown in figure
while the block on the left is recycling the blocks saved in the data storage (see Fig. step

4.2 The MNIST dataset 22

(2)). This procedure is iterated until only two sites are on the left (see step (3)). Now the sweeping
direction is reversed and the procedure is performed analogously in the opposite direction.

1 l 1 1

(3) (2) . (M
ol A o ’-'~ n‘ " 'a‘.‘

Figure 19: Sweeping algorithm from right to left closely resembling DMRG with one block growing
at the expense of the other block with two sites in between.

This sweeping algorithm exhibits clear analogies to DMRG. The projected inputs are obtained
and updated in a similar form, as the local Hamiltonian projections occurring in the DMRG al-
gorithm. Also sweeping occurs in the same fashion and dimensionality can similarly be controlled
through SVD.

This way of computing the projected input allows the cost of each local step of the algorithm
to remain independent of the size of input space, which allows the total algorithm to scale only
linearly with input space size.

4.1.5 Normalization

To avoid the occurrence of very high or small coefficients in the tensors that could cause numerical
instabilities in the algorithm, normalization is necessary. After performing the update of the
bond tensor B! the singular value spectra in the SVD are divided by the trace, tr(STS). This
normalization is inspired by the physical application of MPS where a normalized SVD spectrum
typically yields (¥|¥) = 1. Additionally, after every step of the data block update, the blocks are
normalized by dividing each component by the largest entry.

4.2 The MNIST dataset

We test the algorithm of Ref. [11] using a standard benchmark test for machine learning: the
recognition of handwritten digits from the MNIST dataset ﬂ The Modified National Institute of
Standards and Technology database consists of 60,000 training and 10,000 testing images. It was
created from two databases from the US National Institute of Standards and Technology contain-
ing handwritten digits collected from Census Bureau employees and from high-school students.
To get results independent of the choice of training set the two databases where then mixed 50/50
to form the new modified dataset. The training and test sets contain examples from roughly 250
different writers each. The two sets of writers are disjoint to ensure the system being tested can
recognize digits from people whose writing it did not see during training.

4see http://yann.lecun.com/exdb/mnist/ , the official home of the database and [31]

4.2 The MNIST dataset 23

9

1 1
5 5
10 10 i
%8 b 3 R 3 3
I 1 I
25 25 bt I 1 1
5 15 5 s 15 %5 5 15 25 5 1525 5 15 25 2 61014 2 61014
1 4 3
5 5
10 10 10 10 10
15 15 15 15 15
20 20 20 20 20 it 1 1 1
25 25 25 25 2! 1 1 bt
5 1525 5 1525 5 1525 5 15 25 5 15 25 2 61014 2 61014
5 3 6 3 6
0 0 ~ B 8 0
1 1 1 1 1
15 H 5 B 15 15
20 20 20 20 20 1 1
25 25 25 1 1 1
5 1525 5 1525 5 1525 5 15 25 5 15 25 2 61014 2 61014
2 8 6 8 6
5 5
10 10 10 10 10
15 15 15 15 15 i
20 20 20 20 20 1 1 J B
25 25 25 i i i
5 1525 5 1525 5 1525 5 15 25 5 15 25 2 61014 2 61014
0 9 1 9 1
5 5 5 5
10 10 10 10 10 e
15 15 15 15 15
20 20 20 20 20 1 1 1
25 25 25 25 25 1. i ¥ 1 1
5 1525 5 1525 5 1525 5 15 25 5 15 25 2 61014 261014 261014 2 61014 2 61014
(a) Original Data (b) Downscaled Data

Figure 20: First 25 digits of the MNIST Dataset with correct labels over every image. Original (left)
and downscaled (right) as used in our application.

The original grayscale pictures were size normalized to fit a 20x20 pixel box while keeping their
aspect ratio constant and then centered in a 28x28 pixel image by computing the center of mass
of the pixels and translating that point to the center (see Fig. .

To reduce computation time, we downscaled the images to 14x14 pixels (see Fig. by averaging
over clusters of four pixels. The pixels are labeled in a “zig-zag” ordering which on average keeps
spatially neighboring pixels as close to each other as possible in the MPS representation [IT].

5 Discussion 24

5 Discussion

Using the sweeping algorithm described in the last chapter to optimize the weights, we now explore
the performance and the convergence properties with respect to changes in different numerical pa-
rameters. In particular, we tested the sensitivity of the algorithm with respect to the number
of sweeps, the step size a and the bond dimension m. To measure convergence we use test and
training error rates, which are defined as the fraction of misclassified images, when checking with
the test image set and the set of images the MPS was trained with, respectively.

The algorithm converges quickly in the number of sweeps over the MPS and typically only requires
two or three sweeps after which test error rates only vary slightly. This is to some extend similar
to the original paper. However, while Stoudenmire achieves "test error rates changing only hun-
dredths of a percent“[11] p.5] after two or three sweeps, our results sometimes still show changes of
tenths of a percent, for a MPS trained with 60,000 images. At a bond dimension of m = 120, with
suboptimal a = 107% (see minimum in Fig. [23)), test error rates as low as 3.5% were achieved. This
is not far from the reported 0.97% in the original paper [I1], and with the possible improvements
of the algorithm discussed in the following, similar error rates might well be achieved. We will
also discuss various uncertainties and possible sources of error in our algorithm.

5.1 Normalization

During early testing of the algorithm it became necessary to introduce some kind of normalization
as the entries of the MPS tensors would grow rapidly which eventually let the algorithm fail.
Therefore all components of the data blocks were divided by the biggest entry after every update
of the data blocks. That way the convergence of the algorithm was restored but the normaliza-
tion remains somewhat arbitrary and it remains unclear how it influences the performance of the
algorithm and needs to be investigated further.

Additionally the SVD spectrum was normalized during each update for the same reason. Here we
took the inspiration for the normalization from the physical application of MPS where a normal-
ized SVD spectrum typically yields (¥|¥) = 1. From this thought we decided to normalize the
spectrum by the trace, which lead to good convergence and seemed natural due to the reasoning
from physics.

5.2 Bond dimension

As in the original work, test error rates decrease rapidly with the maximum bond dimension m.
Fig. illustrates this dependency of the error rates for an MPS trained with 20,000 training
images and tested on 10,000 test images with step size & = 0.001. The two lines are errors from
testing with training and with test data. Fig. suggest that the error recognizing the
training data is higher than the error classifying unknown test data. This counterintuitive result
could be caused by the fact that the system has not completely converged after five sweeps or due
to numerical instabilities of our implementation.

5.3 Step size 25

dependence of error rates on bond dimension
T T T T

0.6
—test error

05 | —train error |
04+
s
203
)

0.2 -

Ol L L L L

0 10 20 30 40 50

bond dimension

Figure 21: Dependence of the error rates on the bond dimension m after five sweeps. The MPS was
trained with 20,000 training images and tested on 10,000 test images with step size v = 0.001.

5.3 Step size

Something that is not discussed in detail in Ref. [I1] is the strong dependence of the results on the
choice of the step size . This parameter has a strong influence on the error rates achieved and
is purely empirical. As can be seen in Fig. the step size changes the error rates greatly and
has a clear minimum at o = 10~* for a training set of 20,000 images. However, the optimal value
for a changes with the size of the training sample, making it necessary to determine the optimal
« every time the sample size is changed (see Fig. .

dependence of error rates on step size

—testerror |]
—train error

dependence of error rates on step size

—test error
—train error

. 027 ., 0.07

Q Q

2 £ 0.06

2015 9005

(3] [}
0.04

01} 0.03
‘ ‘ 0.02 w ‘
10°° 10°° 10 1073 10°° 10°° 107 1073
step size step size

Figure 22: Dependence of error rates on parameter « for different bond dimensions m after 5 sweeps.
The MPS was trained with 20,000 training images and tested on 10,000 test images.

5.4 Additional remarks 26

05 dependence of error rates on step size

—test error
—train error

error rates
) o
w B

o
[N

Ol L L
1078 10°° 1074 1072
step size

Figure 23: Dependence of error rates on parameter o for an MPS trained with 60,000 training images
and tested on 10,000 test images after 5 sweeps with bond dimension m = 20.

Note that for some values of «, the error rates increase despite reaching already low values in
earlier sweeps. For instance, the data presented in Fig. shows a local maximum for o = 104
after five sweeps. The test error rate after one sweep is as low as 18.4% before increasing to 38.48%
in the second and eventually 41.27% in the fifth and last sweep. The convergence of the algorithm
is therefore lost. It is thus very important to stress the high dependence of the algorithm on this
empirical parameter.

5.4 Additional remarks

The optimization used here represents the gradient descent step, where B! was updated by simply
adding o AB!, which is not the optimal update scheme for such a optimization problem. Here it is
mainly employed for simplicity and its similarity to standard supervised learning techniques (see
Ch. 2.31). In fact, the conjugate gradient descent method would improve performance [I1] and
could be implemented in a straightforward way. However, this is beyond the scope of this thesis.
The one dimensional mapping of the two dimensional images of handwritten digits might not
be ideal to capture the correlations between pixels. Even though MPS are optimized for one-
dimensional patterns of correlations they still offer powerful performance for a two-dimensional
system such as the images we are dealing with [32]. However, while an MPS can still approximate
power-law decays over quite long distances [I1I] the choice of tensor network may also influence
the efficiency of the algorithm. Other two-dimensional networks might offer superior modeling
capacity, e.g. a MERA (multi-scale entanglement renormalization ansatz) network [26], which can
explicitly model power-law decaying correlations or Projected Entangled Pair States (PEPS) [25],
which are explicitly designed for two-dimensional systems. It would be interesting to investigate
this further and find the best tensor network for a given task.

As mentioned above, it is not necessary to truncate with respect to a fixed bond dimension. One
key advantage of the MPS representation is that the bond dimension can be chosen adaptively
based on some threshold. In this way, a variable number of singular values larger than some
threshold are kept depending on how much entanglement (i.e., correlations) is in the system. This
feature enables us to compress the MPS form of W' as much as possible while still ensuring an
optimal decision function [II]. However, we found that the typical singular value spectra (see
Fig. are not decreasing fast enough to find an suitable threshold that does not exceed our
computational limitations. For an optimal representation the SVD spectra of the MPS would have
to decrease exponentially. A couple of test were performed with different thresholds but none of
them had any success. Either the MPS bond dimensions exploded during the first sweep or so few
singular values were kept that error rates became very high.

5.4 Additional remarks

1 2

107 ‘ ‘ 107 ‘ ‘

0 00 200 0 100 200

0 3 0 4
; \) \
107 ‘ ‘ 107 ‘ ‘

0 100 200 0 00 200

0 S 0 6
; \) \
107 ‘ ‘ 107 ‘ ‘

0 100 200 0 100 200

0 ! 0 8
§ \] \
107 ‘ ‘ 107 ‘ ‘

0 100 200 0 100 200

: : : 10
107 ‘ ‘ 107 ‘ ‘

0 100 200 0 00 200

Figure 24: Normalized singular value spectrum before truncation at the 100*" site of the MPS
recorded over five sweeps for a bond dimension of m = 120. Each row represents one sweep, with
the left panels being the sweep from the right side of the chain to the left side and the right panels
being the sweep back.

6 Conclusion 28

6 Conclusion

In this thesis, we studied recent developments in the field of computational condensed matter
physics, where it becomes increasingly popular to combine machine learning with well-established
tensor network techniques. To this end, we first discussed some background knowledge about
machine learning and neural networks and elaborated on the basis of a specific class of tensor
networks, so-called matrix product states (MPS). Then we introduced a quantum-inspired tensor
network approach to multi-class supervised learning tasks. While the one-dimensional MPS ansatz
worked well even for the two-dimensional MNIST handwritten digit data, much work remains to
determine the optimal tensor network for a given domain. Other tensor networks may be more
suitable and offer superior performance, such as PEPS, which are explicitly designed for two-
dimensional systems. Also finding the optimal set of parameters, especially the best step size
a requires more work and tests. It would be helpful to understand the effects of the applied
normalization and the regularization through the tensor network parametrization.

Still, the representation of the weights of a neural network as a tensor network has many interesting
implications. Most notably, it enables non-linear kernel learning with a cost that scales only linear
with training set size for optimization, and is independent of the training set size for evaluation,
while still using a very expressive feature map (the dimension of feature space scales exponetially
with the size of the input space). It could also prove extremely useful for issues of interpretability,
since tensor networks are composed of linear operations only.

There is also much room to improve our optimization algorithm through standard approaches
known from machine learning, such as batch-learning or adaptive learning rates. Another simple
ways of improving the algorithm would be implementing a conjugate gradient descent update
instead of our gradient descent inspired update of the bond tensor B'. It would be very interesting
to investigate the possibility to apply unsupervised learning techniques to initialize the tensor
network.

We are convinced there is great potential in investigating the power of tensor networks for machine
learning tasks and vice-versa exploring the use of neural networks in physical applications in the
future.

A Code 29

A Code

This is the main code used in this thesis. It starts off by initializing the different input values,
converting them for the compiler and setting up different parameters like file names etc.

Then it initializes the MPS and the feature maps for both training and test data before imple-
menting the right and left sweeps for optimization. Finally it contracts the MPS to classify the
test and training data and check the error rates.

1 | function [mps,spec,dev,trainerror,testerror] = mps_mnist(Ntrain,DB,Nsweep,alpha,
Ntest)

2 |%<Description>

3 %

4 |%<Input>

5 |% Ntrain: [scalar] Number of training examples (max 60.000)

6 |% DB: [scalar] bond dimension m (max m= 120)

7 |% Nsweep: [scalar] number of (rl—Llr) sweeps

8 |% alpha: [scalar] empirical step size parameter the gradient update

9 |% Ntest: [scalar] number of test examples for verification (max 10.000)

10 |%

11 |%<Output>

12 |% mps: [cell] minimized matrix product state

13 |% spec: [cell] svd spectra for the 2nd and 100th site of the mps

14 |% dev: [vector] (1xNsweep) reduction of global cost in respective sweep

15 |% trainerror: [vector] classification error for training data

16 |% testerror: [vector] classification error for test data

17 | %

18 |% last edited D.Maier Jul6,2017

19

20

21 | %% converting input for compiler

22 |if isdeployed %take care of command line arguments

23 if ischar(Ntrain), Ntrain = str2num(Ntrain); end

24 if ischar(DB), DB = str2num(DB); end

25 if ischar(Nsweep), Nsweep = str2num(Nsweep); end

26 if ischar(alpha), alpha = str2num(alpha); end

27 if ischar(Ntest), Ntest = str2num(Ntest); end

28 |end

29

30 |%% reading MNIST dataset

31 |disptime('reading MNIST dataset');

32 |train = csvread('mnist_train.csv', 0, 0); % read train.csv

33 |test = csvread('mnist_test.csv', 0, 0); % read test.csv

34

35 |% downscaling to 14x14

36 |disptime('downscaling dataset');

37 |tr = train;

38 | te = test;

39 [train = zeros(size(tr,1),197);

40 |test = zeros(size(te,1),197);

41 |train(:,1) = tr(:,1);

42 |test(:,1) = te(:,1);

43 |%resizeing training pictures

44 |[for i = l1l:size(tr,1)

45 ibig = reshape(tr(i, 2:end), [28,28]);

A Code 30

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

65
66
67

68
69
70
71
72
73
74
75
76
7

78
79
80
81

82
83
84
85
86
87
88
89
90
91
92
93
94
95

ismall = imresize(ibig,1/2);
ismall = reshape(ismall,[1,196]);
train(i,2:end) = ismall;

end

%sresizeing test oictures

for i = 1:size(te,1)
ibig = reshape(te(i, 2:end), [28,28]);
ismall = imresize(ibig,1/2);
ismall = reshape(ismall,[1,1961]);
test(i,2:end) = ismall;

end

%% Setting inputs

train = train(1l:Ntrain,:); %cutting train and test examples to size

test = test(1l:Ntest,:);

imglen = 14; %sdefining image length do the downscaled 14x14 pixels

spec = cell(2,Nsweepx2); %initializing cell for the two spectra

trainerror = ones(1,Nsweep); %initializing vectors for errors of with training
and test data

testerror = ones(1,Nsweep);

D = DB; %bond dimension m , paper: max m= 120, truncate to fixed
dimension
d = 2; % dimension of feature map

% feature map
ftype = 'Normal';

% setting labels

labels = [0,1,2,3,4,5,6,7,8,9];

1 = size(labels,2);

% ouputting parameters for easier identification in the log file

parameters={'Ntrain',Ntrain; 'DB',DB; 'Nsweep', Nsweep; 'alpha',alpha; 'Ntest', Ntest;
"imglen',imglen};

parameters

%% Setting folder name etc.
folder=sprintf('results/mps_mnist/alphafinal/Ntrain%iDB%iNsweep%ialpha%.gNtest%i
',Ntrain,DB,Nsweep,alpha,Ntest);
filename=strcat(folder, '/results.mat');
if ~exist(filename, 'file')
mkdir(folder);
savedexist=0;
else
savedexist=1;
end

%% Beginning of the actual algorithm

%% setting up MPS
disptime('Initializing with random MPS');

A Code 31

96

97

98

99
100
101
102
103
104
105
106
107
108
109

120
121
122
123

124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141

142
143
144

mps randommps_1N(imglen”~2,D,d,l); %initializing MPS with index 1 on last site

N

mps prepareM(mps,DB, 'twosite L'); %preparing MPS to be left—normalized with 1
still on last site

for i = 1l:imglen™2—-1
[mps{i},mps{i+1}]=prepare_twosite L(mps,i,DB, 'lr");

end

%% calculating feature map
disptime('Calculating feature map for training'); %mapping training inputs
fm = cell(Ntrain,imglen”2);
for i = 1:Ntrain
for j= 1l:imglen”2
fm{i,j} = featuremap2(ftype,d,train(i,j+1));
end
end
disptime('Calculating feature map for testing'); %mapping test inputs
ft = cell(Ntest,imglen™2);
for i = 1:Ntest
for j= 1l:imglen”2
ft{i,j} = featuremap2(ftype,d,test(i,j+1)); %j+1 beause first entry is
label
end
end

%% initializing data storage from left >> right
disptime('Initializing data storage —>"');
data = cell(Ntrain,imglen”2);
for i = 1:Ntrain
data{i,1} = contract(fm{i,1},2,2,mps{1,1},3,3); %contracting first entry
[1,1,D]
data{i,1l} = permute(data{i,1},[1,3,2]); % [1,D]
data{i,1} = data{i,1}/max(abs(data{i,1}(:))); %normalize through max
end
%initializing the rest of the chain (except last 2, they are not needed)
for j = 2:(imglen™2 — 2)
for i = 1:Ntrain
data{i,j} = updateData(mps,fm,data,i,j—1,'lr");
end
end

%% Sweeps
%initializing cost starage with some arbitrary value
cstore = cell(size(mps));
for i = 1l:size(cstore,?2)
cstore{l,i} = 100000;
end

dev = zeros(1l,Nsweep); % initializing vector tracking developement of cost over
sweeps

for itS = (1:Nsweep)
costold = cstore; %backing up old cost

A Code 32

145
146
147
148
149

150
151
152

153
154
155

156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171

172
173
174
175

176
177

178
179
180
181
182
183
184
185
186
187
188
189
190
191
192

% right sweep (right—left)
disptime(['rl <<— sweep #',sprintf('%i/%i',[itS Nsweep])]);
for j = imglen™2:—-1:2
supdating mps locally
[mps{1,j},mps{j—1},cstore,spec] = updateBSVD(mps,j,DB, 'rl',fm,cstore,train,
data, spec,itS,alpha); % initializing last entry for sweep back
if j == imglen™2
for i = 1:Ntrain
data{i,imglen™2} = contract(fm{i,imglen~2},2,2,mps{1l,imglen"2},3,3);
%scontracting first entry [1,1,D]
data{i,imglen”2} permute(data{i,imglen~2},[1,3,2]); % [1,1,D]
data{i,imglen”2} squeeze(data{i,imglen”™2}); %[1,D]
data{i,imglen”2} data{i,imglen”2}/max(abs(data{i,imglen™2}(:))); %
normalize

end
%supdating data
else
for 1 = 1:Ntrain
data{i,j} = updateData(mps,fm,data,i,j+1,'rl");

end
end
end

% left sweep (left—right)
disptime(['lr —> sweep #',sprintf('%si/%i',[itS Nsweep])]);

for j = 1:imglen™2-1

[mps{1,j},mps{j+1},cstore,spec] = updateBSVD(mps,j,DB, 'Lr',fm,cstore,
train,data, spec,itS,alpha);
%sinitializing first entry
if j ==
for i = 1:Ntrain
data{i,1} = contract(fm{i,1},2,2,mps{1,1},3,3); %contracting
first entry [1,1,D]

data{i, 1} = permute(data{i,1},I[1,3,2]); % [1,D]
data{i,1l} = data{i,1l}/max(abs(data{i,1}(:))); %normalize through
max
end
%supdating data

else
for i = 1:Ntrain
data{i,j} = updateData(mps,fm,data,i,j—1,'lr");

end

end
end
%sevaluating cost difference
cd = 0;
for i = 1:size(cstore,?2)

cd = cd + (costold{l,i}—cstore{l,i});
end
dev(1l,itS) = cd;

A Code 33

193

194
195
196
197
198
199
200

201
202
203
204
205
206
207
208
209
210

212

220
221
222
223
224
225
226
227
228
229

230
231
232
233
234
235
236
237
238
239
240

disptime(['In sweep #', sprintf('%si/%i', [1itS Nsweep]),' the total cost has
been reduced by:',sprintf('si',cd)]);

%% contracting MPS with test data for check of error rates
disptime('contracting MPS with test data—=");

cont = cell(Ntest,imglen”2);
for i = 1:Ntest

cont{i,1} = contract(ft{i,1},2,2,mps{1,1},3,3); %contracting first entry
[1,1,D]
cont{i,1} = squeeze(cont{i,1}); % [D,1]
cont{i, 1} = permute(cont{i,1},[2,1]1); %[1,D]
cont{i,1} = cont{i,1}/max(abs(cont{i,1}(:)));
end

for i = 1:Ntest
for j = 2:imglen™2-1
cont{i, j}= updateData(mps,ft,cont,i,j—1,'lr");

end
end
for i = 1:Ntest
last = contract(ft{i,imglen”2},2,2,mps{1l,imglen~2},4,3); %contracting last
entry [1,D,1,1]
cont{i,imglen”2} = contract(cont{i,imglen™2—-1},2,2,1ast,4,2); % [1,1,1]
cont{i,1} = cont{i,imglen"2};
cont{i, 1} = squeeze(cont{i,1});
cont{i, 1} cont{i,1l}/max(abs(cont{i,1}(:)));
end

%% comparing with test data

disptime('comparing results to correct answers');

correct = test(:,1)+1;

results = zeros(Ntest,1);

for i = 1:Ntest
results(i,1l) = find(cont{i,1} == max(cont{i,1}));

end

answers = correct ==results;

testerror(1l,itS) = l-sum(answers)/Ntest;

disptime(['Test examples correctly classified: ',sprintf('%i/%i', [sum(answers)
Ntestl]), ' trained with: ',sprintf('%si',size(train,1)),' training examples.
1);

%% comparing with training results

correct2 = train(:,1)+1;

= contract(mps{imglen~2—1},3,2,mps{imglen~2},4,1); % size(B) = [D1l,d,1,d,1]
= permute(B,[1,3,2,4,51);% [D1,1,d,d,1]

@ W

f = cell(Ntrain,1);
for i = 1:Ntrain

f{i} = B;
f{i} = squeeze(f{i}); %squeeze to [D,d,d,1]
f{i} = contract(f{i},4,1,data{i,imglen"2—-2},2,2); %scontract with left

wing

A.1 TUpdate function 34

241
242
243
244

245
246
247
248
249
250
251
252
253

254
255
256
257

f{i} = squeeze(f{i}); %squeeze to [d,d,1]
f{i} = contract(f{i},3,1,fm{i,imglen"2},2,2); %scontract next bottom leg
f{i} = squeeze(f{i}); %squeeze to [d,1]
f{i} = contract(f{i},2,1,fm{i,imglen™2—-1},2,2); %contract last bottom
leg —[1,1]
end
results2 = zeros(Ntrain,1);
for i = 1:Ntrain
results2(i,1) = find(f{i,1} == max(f{i,1}));
end
answers2 = correct2 ==results2;

trainerror(1l,itS) = l1-—sum(answers2)/Ntrain;
disptime(['Training examples correctly classified: ',sprintf('%i/%i', [sum(
answers2) Ntrainl)1);

%saving results [mps,spec;dev,trainerror,testerror]
save(filename, 'mps', 'spec','dev', 'trainerror', 'testerror', 'parameters');
end

A.1 Update function

© 00 N O L

10
11
12
13
14
15

16
17
18
19
20
21
22
23
24
25
26
27
28

function [A,R,cstore,spec] = updateBSVD(mps,id,DB, direction,fm,cstore,train,
data, spec,itS,alpha)

%<Description>

% function [A,R,cstore,spec] = updateBSVD(mps,id,DB, direction,fm,cstore,train,
data, spec)

%s<Input>

% mps: [array] the entire mps

% id: [scalar] index of tensor to be updated

% DB : [scalar] bond dimension for truncation

% direction : [char array] Must be either 'lr' or 'rl'. Determines the

% direction for the canonical form.

%fm: [array] mapped input data

%cstore: [array] cost storage

%train: training data (this is given to cost.m as the correct labels)

%data: [array] storage of left and right 'blocks' (this is also handed to cost.m
)

%sspec: [array] cell with svd spetra

%1itS: [scalar] iteration of sweeps (to put spectrum into correct place in spec)

%alpha: [scalar] empirical step size for update

%

o° o

< Qutput >

A : [tensor] The canonical form of input tensor M.

R : [tensor] Tensor to be transformed next. (indec 1 is moved)
%scstore: [array] cost storage with minimized cost

%sspec: [array] cell with svd spetra

sWritten by D.Maier (Jun08,2017) edited Jun26,2017

o°

o°

switch direction
case 'lr'

A.1 TUpdate function 35
29 M = mps{id};

30 N = mps{id+1}; % M e N

31 [D1,~,d,1]= size(M); % D1 — o — D2 D3 —o — D4

32 [~,D4,~]= size(N); % |d |d

33

34

35 %sform two—site tensor B

36 B = contract(M,4,2,N,3,1); % size(B) = [D1,d,1,D4,d]
37 B = permute(B,[1,4,2,5,31);% [D1,D4,d,d, 1]

38

39 %% update here

40 costold = cstore{l,id};

41 [cstore{l,id}, delB] = cost(B,data,fm,id, 'lr',train(:,1));
42 if cstore{l,id} < costold %only update if cost is lowered
43 B = B + alphaxdelB;

44 else

45 cstore{l,id} = costold;

46 end

47

48 %% svd and truncation

49 B = permute(B,[1,3,2,4,5]1);% size(B) = [D1,d,D4,d,1]
50 B = reshape(B, [D1lxd,D4xdx1]);

51 if isempty(DB) %no DB input, no truncation

52 [A,S,R]=svd(B, 'econ');

53 ds = size(S,1);

54

55 R =R'";

56 S = S/trace(SxS);

57 if id == % putting svd spectrum into cell for later plotting
58 spec{l,2*itS—1} = diag(S);

59 elseif id == 100

60 spec{2,2*itS—1} = diag(S);

61 end

62 %reshape to final form

63 A = reshape(A,[D1,d,ds]); %D1,d = o — ds
64 A = permute(A,[1,3,2]); % — (]|d)

65 R = Sx*R; %[ds,D4xdx1]

66 R = reshape(R,[ds,D4,d,11);

67

68 else %truncation

69 [A,S,R]=svd(B, 'econ');

70 R =R';

71 ds = size(S,1);

72 S = S/trace(SxS);

73

74 if id == % putting svd spectrum into cell for later plotting
75 spec{l,2*itS—1} = diag(S);

76 elseif id == 100

7 spec{2,2*itS—1} = diag(S);

78 end

79

80 if ds <=DB %no truncation

81 %sreshape to final form

82 A = reshape(A,[D1,d,ds]); %D1,d = 0o — ds

A.1 TUpdate function

36

83 A = permute(A,[1,3,2]); % —> (|d)
84 R = Sx*R; %[ds,D4xdx1]

85 R = reshape(R, [ds,D4,d,1]1);

86

87 else %truncation

88 A = A(:,1:DB); %[D1xd,DB]

89 S = S(1:DB,1:DB);

90 R = R(1:DB,:);

91 %sreshape to final form

92 A = reshape(A,[D1,d,DB]); %D1,d = o — DB
93 A = permute(A,[1,3,2]); % — (|d)
94 R = SxR; %[DB,D4xdx*1]

95 R = reshape(R, [DB,D4,d,1]1);

96 end

97 end

98

99 case 'rl'

100 M = mps{id};

101 N = mps{id—1}; % N |t M
102 [~,D2,d,1]= size(M); % D3 — o — D4 D1 —o — D2
103 [D3,~,~]= size(N); % |d |d

104 B = contract(N,3,2,M,4,1); % size(B) = [D3,d,D2,d,1]
105 B = permute(B, [1,3,2,4,5]); %[D3,D2,d,d, 1]

106

107 %% update here

108 costold = cstore{l,id};

109 [cstore{l,id}, delB] = cost(B,data,fm,id, 'rl',train(:,1));
110 if cstore{l,id} < costold %only update if cost is lowered locally
111 B = B + alphaxdelB;

112 else

113 cstore{l,id} = costold;

114 end

115

116 %% svd and truncation

117 B = permute(B, [1,3,5,2,4]); %[D3,d,1,D2,d]

118 B = reshape(B, [D3xdx1,D2xd]);

119 if isempty(DB) %no DB input, no truncation
120 [R,S,A]=svd(B, 'econ');

121 A=A";

122 S = S/trace(SxS);

123 if id == % putting svd spectrum into cell for later plotting
124 spec{l,2*itS} = diag(S);

125 elseif id == 100

126 spec{2,2*itS} = diag(S);

127 end

128 DB = size(S,1);

129 %sreshape to final form

130 A = reshape(A, [DB,D2,d]);

131 R = RxS;

132 R = reshape(R, [D3,d,1,DB]);

133 R = permute(R,[1,4,2,31);

134

135 else %truncation

136 [R,S,A]l=svd (B, 'econ');

A.2 Cost function

137 A=A';
138
139 ds = size(S,1);
140 S = S/trace(SxS);
141
142 if id == % putting svd spectrum into cell for later plotting
143 spec{1,2xitS} = diag(S);
144 elseif id == 100
145 spec{2,2*itS} = diag(S);
146 end
147
148 if ds <=DB %no truncation
149 %sreshape to final form
150 A = reshape(A,[ds,D2,d]); % ds —o= D2xd
151 R = RxS;
152 R = reshape(R,[D3,d,1,ds]);
153 R = permute(R,[1,4,2,3]);
154
155 else %truncation
156 R = R(:,1:DB); %[D1xd,DB]
157 S = S(1:DB,1:DB);
158 A = A(1:DB,:);
159 %sreshape to final form
160 A = reshape(A, [DB,D2,d]);
161 R = RxS;
162 R = reshape(R,[D3,d,1,DB]);
163 R = permute(R,[1,4,2,3]);
164 end
165 end
166
167 otherwise
168 error('ERR: '‘'direction'' should be either ''lr'' or ''ril''.");
169 |end
A.2 Cost function
1 | function [cost,grad] = cost(B,data,fm,id,direction, label)
2 |%<Description>
3 |% cost function
4 |%<Inputs>
5 |% B: [tensor] rank 5 tensor being optimized (D,D,d,d,1)
6 |% labels: [cell array]: Ntrain x 1 vector with correct labels
7 |% data: [cell array] with left right blocks (Ntrain x #sites)
8 |% fm: [cell array]
9 |% id: [scalar] index of site being optimized
10 |% direction: [string] direction we are going
11
12 | %<Outputs>
13 |% cost: [scalar]
14 |% grad: [tensor] to update B
15 |%written by D.Maier(Junll,2017)
16
17 | [Ntrain,N] = size(data);
18 | f = cell(Ntrain,1);

A.2 Cost function 38
19 |del = cell(Ntrain,1);
20 | cost = 0;
21 |grad = zeros(size(B));
22 |[D1,D2,d,~,~] = size(B);
23
24 |switch direction
25 case'lr’
26 for i = 1:Ntrain
27 if id == N-1
28 f{i} = B;
29 else
30 f{i} = contract(B,5,2,data{i,id+2},2,1); %scontract with
right wing
31 end
32 f{i} = squeeze(f{i}); %ssqueeze to [D,d,d,1]
33
34 if id ~=1
35 f{i} = contract(f{i},4,1,data{i,id—1},2,2); %contract with
left wing
36 f{i} = squeeze(f{i}); %squeeze to [d,d,1]
37 end
38 f{i} = contract(f{i},3,1,fm{i,id+1},2,2); %scontract next
bottom leg
39 f{i} = squeeze(f{i}); %squeeze to [d,1]
40 f{i} = contract(f{i},2,1,fm{i,id},2,2); %contract last
bottom leg —[1,1]
41
42 del{i,1} = zeros(10,1);
43
44 del{i,1}(label(i,1)+1,1) = 1; %Kronecker 1,L_n +1
to map 0 to 1...
45 del{i} = (f{i} — del{i}); %difference [10,1]
46 cost = cost + 0.5xdel{i}'=*del{i}; %calculate total
cost
a7
48 %% calculate gradient
49 % del[10,1], data{left}[1xD1], data{right}[D2x1] ,fm[1xd]
50
51 if id == %sleftmost entry , left bit is 1
52 a = mkron(—del{i},data{i,id+2}, fm{i,id+1}, fm{i,id}); %[10xD2
,dxd]
53 a = reshape(a,[1,10,D2,d,d]);
54 a = permute(a,[1,3,4,5,2]); %a [1,D,d,d,1]
55 elseif id == N-1 %rightmost entry , right bit is 1
56 a = mkron(—del{i},data{i,id—1},fm{i,id+1}, fm{i,id}); %[10,D1
*d*d]
57 a = reshape(a,[10,D1,1,d,d]);
58 a = permute(a,[2,3,4,5,1]);
59 else %all others
60 a = mkron(—del{i},data{i,id+2},data{i,id—1},fm{i, id+1}, fm{i,
id}); %[10%D2,D1xdxd]
61 a = reshape(a,[10,D2,D1,d,d]);
62 a = permute(a,[3,2,4,5,1]1);

63

end

A.2 Cost function 39

64
65 grad = grad + a;
66 end
67
68 case 'rl'
69 for 1 = 1:Ntrain
70 if id == N
71 f{i} = B;
72 else
73 f{i} = contract(B,5,2,data{i,id+1},2,1); %contract with
right wing
74 end
75 f{i} = squeeze(f{i}); %squeeze to [D,d,d,1]
76 if id ~= 2
77 f{i} = contract(f{i},4,1,data{i,id—2},2,2); %contract with
left wing
78 f{i} = squeeze(f{i}); %squeeze to [d,d,1l]
79 end
80 f{i} = contract(f{i},3,1,fm{i,id},2,2); %contract next bottom
leg
81 f{i} = squeeze(f{i}); %ssqueeze to [d,1]
82 f{i} = contract(f{i},2,1,fm{i,id—1},2,2); %contract last bottom
leg —[1,1]
83
84 del{i,1} = zeros(1,10);
85 del{i,1}(1,label(i,1)+1) = 1; %Kronecker 1,L_n +1 to
map 0 to 1...
86 del{i} = (f{i} — del{i}"); sdifference [10,1]
87 cost = cost + 0.5xdel{i}"'xdel{i}; %calculate total cost
88
89 %% calculating gradient
90
91 if id == %leftmost entry , left bit is 1
92 a = mkron(—del{i},data{i,id+1},fm{i,id}, fm{i,id—1}); %[10xD2,dx*d
]
93 a = reshape(a,[1,10,D2,d,d]);
94 a = permute(a,[1,3,4,5,2]); %a [1,D2,d,d, 1]
95 elseif id == N %rightmost entry , right bit is 1
96 a = mkron(—del{i},data{i,id—2},fm{i,id}, fm{i,id—1}); %[10,D1xdx*d
]
97 a = reshape(a,[10,D1,1,d,d]);
98 a = permute(a,[2,3,4,5,11);
99 else %all others
100 a = mkron(—del{i},data{i,id+1},data{i,id—2},fm{i, id}, fm{i, id—1})
5 %[10%D2,D1xd=*d]
101 a = reshape(a,[10,D2,D1,d,d]);
102 a = permute(a,[3,2,4,5,11);
103 end
104
105 grad = grad + a;
106 end
107 otherwise
108 error('ERR: ''direction'' should be either ''lr'' or '"'rl''.');
109 |end

A.3 Data block update function 40

A.3 Data block update function

1 | function UD = updateData(mps,fm,data,i,j,direction)

2 |%<Description>

3 |% function that updates data blocks

4 |% [left—o—]—0—0—[—0—right]

5 |% — [left]l-o—o0—[—0—0—right] ('rl') or [left—0o—0—]-0—0—[—right] ('lr")
6 |%

7 | %<Input>

8 |% mps: [cell array]

9 |% fm : [vector] to contract physical index of mps

10 |% data [cell arrayl]

11 |% 1,j: [scalar] index of the data cell to be updated

12 |% direction: [string] direction the block is growing

13 |%

14 |%<Output>

15 |% UD : [cell] updated data cell

16 |%

17 |%Written by D.Maier(Junl3,2017)

18

19 |DC = data{i,j}; % [1,D] or [D,1]

20 |% (DC : [cell] data cell to be updated)

21

22

23 |switch direction

24 case 'lr'

25 next = contract(fm{i,j+1},2,2,mps{1,j+1},3,3); %[1,D,D]

26 next = permute(next,[2,3,1]1); %[D,D]

27 UD = contract(DC,2,2,next,2,1); %[1,D]

28 UD = UD/max(abs(UD(:))); %normalization
29 case 'rl'

30 next = contract(fm{i,j—1},2,2,mps{1,j—1},3,3); %[1,D,D]

31 next = permute(next,[2,3,1]); %[D,D]

32 UD = contract(next,2,2,DC,2,1); %[1,D]

33 UD = UD/max(abs(UD(:))); %normalization
34 otherwise

35 error('ERR: '‘'direction'' should be either ''lr'' or ''ril''.");
36 |end

A.4 Additional functions

Additional functions like contract.m, to contract two tensors, or featuremap2.m, to compute the
feature map , were used but are not appended here as they do not contain any important
information for the algorithm and were just used for convenience.

REFERENCES 41

References

[1] M. Rupp, A. Tkatchenko, K.-R. Miiller, and O. A. von Lilienfeld, “Fast and Accurate Mod-
eling of Molecular Atomization Energies with Machine Learning,” Phys. Rev. Lett., vol. 108,
p- 058301, Jan. 2012.

[2] J. C. Snyder, M. Rupp, K. Hansen, K.-R. Miiller, and K. Burke, “Finding Density Functionals
with Machine Learning,” Phys. Rev. Lett., vol. 108, p. 253002, June 2012.

[3] G. Pilania, K. R. Whittle, C. Jiang, R. W. Grimes, C. R. Stanek, K. E. Sickafus, and B. P.
Uberuaga, “Using machine learning to identify factors that govern amorphization of irradiated
pyrochlores,” July 2016.

[4] L.-F. Arsenault, A. Lopez-Bezanilla, O. A. von Lilienfeld, and A. J. Millis, “Machine learning
for many-body physics: The case of the Anderson impurity model,” Phys. Rev. B 90, 155136
(2014), Nov. 2014.

[5] M. H. Amin, E. Andriyash, J. Rolfe, B. Kulchytskyy, and R. Melko, “Quantum Boltzmann
Machine,” Jan. 2016.

[6] J. Carrasquilla and R. G. Melko, “Machine learning phases of matter,” May 2016.

[7] P. Mehta and D. J. Schwab, “An exact mapping between the Variational Renormalization
Group and Deep Learning,” Oct. 2014.

[8] Y. Levine, D. Yakira, N. Cohen, and A. Shashua, “Deep Learning and Quantum En-
tanglement: Fundamental Connections with Implications to Network Design.,” CoRR,
vol. abs/1704.01552, 2017.

[9] J. Chen, S. Cheng, H. Xie, L. Wang, and T. Xiang, “On the Equivalence of Restricted
Boltzmann Machines and Tensor Network States,” Jan. 2017.

[10] G. Carleo and M. Troyer, “Solving the Quantum Many-Body Problem with Artificial Neural
Networks,” Science 855, 602 (2017), June 2016.

[11] E. M. Stoudenmire and D. J. Schwab, “Supervised Learning with Quantum-Inspired Tensor
Networks,” Advances in Neural Information Processing Systems 29, 4799 (2016), May 2017.

[12] S. S. Haykin, Neural networks and learning machines. Upper Saddle River, NJ: Pearson
Education, third ed., 2009.

[13] F. Rosenblatt, Principles of Neurodynamics. Spartan, New York, 1962.

[14] W.S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous activity,”
Bulletin of Mathematical Biophysics, vol. 5, pp. 115-133, 1943.

[15] M. Nielsen, “Neural Networks and Deep Learning.” http://
neuralnetworksanddeeplearning.com, 2017. Accessed: 2017-06-30.

[16] D. H. Ackley, G. E. Hinton, and T. J. Sejnowski, “A Learning Algorithm for Boltzmann
Machines,” Cognitive Science, vol. 9, pp. 147-169, 1985.

[17] N. L. Roux and Y. Bengio, “Representational Power of Restricted Boltzmann Machines and
Deep Belief Networks.,” Neural Computation, vol. 20, no. 6, pp. 1631-1649, 2008.

[18] A. Cichocki, “Tensor Networks for Big Data Analytics and Large-Scale Optimization Prob-
lems,” Aug. 2014.

[19] A. Novikov, M. Trofimov, and I. Oseledets, “Exponential Machines,” Nov. 2016.

http://neuralnetworksanddeeplearning.com
http://neuralnetworksanddeeplearning.com

42

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

R. T. J. F. Trevor Hastie, The Elements of Statistical Learning: Data Mining, Inference, and
Prediction. Springer Series in Statistics, Springer, 2 ed., 2013.

G. Hinton, “A practical guide to training restricted Boltzmann machines,” Momentum, vol. 9,
no. 1, p. 926, 2010.

R. Orus, “A Practical Introduction to Tensor Networks: Matrix Product States and Projected
Entangled Pair States,” Annals of Physics 849 (2014) 117-158, June 2014.

G. Evenbly and G. Vidal, “Tensor network states and geometry,” J Stat Phys (2011) 145:891-
918, June 2011.

J. C. Bridgeman and C. T. Chubb, “Hand-waving and Interpretive Dance: An Introductory
Course on Tensor Networks,” J. Phys. A: Math. Theor. 50 223001 (2017), May 2017.

F. Verstraete and J. I. Cirac, “Renormalization algorithms for Quantum-Many Body Systems
in two and higher dimensions,” July 2004.

G. Vidal, “Class of Quantum Many-Body States That Can Be Efficiently Simulated,” Phys.
Rew. Lett., vol. 101, p. 110501, Sep 2008.

U. Schollwoeck, “The density-matrix renormalization group in the age of matrix product
states,” Annals of Physics 826, 96 (2011), Jan. 2011.

S. R. White, “Density matrix formulation for quantum renormalization groups,” Phys. Rewv.
Lett., vol. 69, pp. 2863-2866, Nov 1992.

S. R. White, “Density-matrix algorithms for quantum renormalization groups,” Phys. Rev. B,
vol. 48, pp. 10345-10356, Oct 1993.

F. Verstraete, D. Porras, and J. I. Cirac, “DMRG and periodic boundary conditions: a
quantum information perspective,” Phys. Rev. Lett. 93, 227205 (2004), Apr. 2004.

P. J. Grother, “NIST Special Database 19 Handprinted Forms and Characters Database,”
1995.

E. M. Stoudenmire and S. R. White, “Studying Two Dimensional Systems With the Density
Matrix Renormalization Group,” Annual Review of Condensed Matter Physics, 3: 111-128
(2012), Aug. 2011.

43

44

Erklarung

Hiermit erklére ich, die vorliegende Arbeit selbsténdig verfasst zu haben und keine anderen als die
in der Arbeit angegebenen Quellen und Hilfsmittel benutzt zu haben.

Miinchen, 26.07.2017

David Maier

	Introduction
	Machine learning
	Artificial neurons
	The perceptron
	The sigmoid neuron

	Architecture of neural networks
	Learning
	Gradient descent
	Backpropagation

	Basic neural networks
	Boltzmann machines
	Deep neural networks

	Current research
	Problems with machine learning
	Overfitting
	Starting values

	Tensor networks and matrix product states
	Tensor network theory
	Graphical notation for tensor networks
	Tensors
	Tensor operation

	Matrix product states
	Singular value decomposition
	Decomposing arbitrary states into a MPS

	MPS framework for machine learning
	Algorithm
	Encoding input data
	MPS approximation
	Sweeping algorithm for optimizing weights
	Data block initialization
	Normalization

	The MNIST dataset

	Discussion
	Normalization
	Bond dimension
	Step size
	Additional remarks

	Conclusion
	Code
	Update function
	Cost function
	Data block update function
	Additional functions

