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We extend a recently developed Fermi liquid (FL) theory for the asymmetric single-impurity Anderson model
[C. Mora et al., Phys. Rev. B 92, 075120 (2015)] to the case of an arbitrary local magnetic field. To describe the
system’s low-lying quasiparticle excitations for arbitrary values of the bare Hamiltonian’s model parameters, we
construct an effective low-energy FL Hamiltonian whose FL parameters are expressed in terms of the local level’s
spin-dependent ground-state occupations and their derivatives with respect to level energy and local magnetic
field. These quantities are calculable with excellent accuracy from the Bethe ansatz solution of the Anderson
model. Applying this effective model to a quantum dot in a nonequilibrium setting, we obtain exact results for
the curvature of the spectral function, cA, describing its leading ∼ ε2 term, and the transport coefficients cV and
cT , describing the leading ∼V 2 and ∼T 2 terms in the nonlinear differential conductance. A sign change in cA

or cV is indicative of a change from a local maximum to a local minimum in the spectral function or nonlinear
conductance, respectively, as is expected to occur when an increasing magnetic field causes the Kondo resonance
to split into two subpeaks. Surprisingly, we find that the fields BA and BV at which cA and cV change sign are
parametrically different, with BA of order TK but BV much larger. In fact, in the Kondo limit cV never vanishes,
implying that the conductance retains a (very weak) zero-bias maximum even for strong magnetic field and that
the two pronounced finite-bias conductance side peaks caused by the Zeeman splitting of the local level do not
emerge from zero-bias voltage.

DOI: 10.1103/PhysRevB.95.165404

I. INTRODUCTION

The Kondo effect, arising from the exchange interaction
between a localized spin and delocalized conduction band, is
characterized by a crossover between a fully screened singlet
ground state and a free local spin at energies well above the
Kondo temperature scale TK . One of the most striking signa-
tures of the Kondo effect is the occurrence of a sharp resonance
near zero energy in the zero-temperature local spectral function
A(ε), which splits apart into two subresonances when a local
magnetic field B is applied. Consequences of this Kondo peak
and its field-induced splitting have been directly observed in
numerous experimental studies of quantum dots tuned into the
Kondo regime, where it causes a zero-bias peak in the nonlinear
differential conductance G(V ), which splits into two subpeaks
with increasing field. Indeed, the observation of a field-split
zero-bias peak has come to be regarded as one of the hallmarks
of the Kondo effect in the context of transport through quantum
dots [1–7].

A minimal model for describing such experiments [8–11] is
the two-lead, nonequibrium, single-impurity Anderson model,
describing a “dot” level with local interactions that hybridizes
with two leads at different chemical potentials. Within the
framework of this model (and its Kondo limit), numerous
numerical and approximate analytical studies have explored
the field-induced splitting of the Kondo peak in A(ε) and

of the zero-bias peak in G(V ) [12–28]. However, no exact,
quantitative description exists for how these splittings come
about [29]. For example, it is natural to expect that the
emergence of split peaks is accompanied by a change of
the curvatures ∂2

ε A(ε)|ε=0 and ∂2
V G(V )|V =0 from negative

to positive [30]. A quantitative theory should yield exact
results for the values of the “splitting fields,” say BA and
BV , respectively, at which these curvatures change sign. This
information would be useful, for example, as benchmarks
against which future numerical work on the nonequilibrium
Anderson model could be tested.

In the present paper, we use Fermi liquid (FL) theory
to compute these quantities exactly within the context of
the two-lead, single-impurity Anderson model, for arbitrary
particle-hole asymmetry. We develop an exact FL description
of the low-energy regime where both the temperature T and the
source-drain voltage V are much smaller than a crossover scale
E∗, while the magnetic field B and the local level energy εd

can be arbitrary. (In the local-moment regime at zero field, E∗
corresponds to the Kondo temperature TK ). Though our theory
does not capture the full shape of A(ε) for arbitrary ε or G(V )
for arbitrary V , it does describe their curvatures at zero energy
and voltage, respectively, for arbitrary values of B and εd .

Specifically, we compute two FL coefficients c̃A and
cA characterizing the zero-energy height and curvature of
the spectral function, respectively, and two FL transport
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coefficients cT and cV characterizing the curvatures of the
conductance as function of temperature T and bias voltage V ,
as well as the splitting fields BA, BT , and BV at which cA, cT ,
and cV vanish, respectively. In the Kondo limit in which the
Anderson model maps onto the Kondo model, we find the
universal ratios BA/TK = 0.75073 and BT /TK = 1.54813,
where the Kondo temperature TK is defined from the zero-field
spin susceptibility.

More generally, we find that throughout the local-moment
regime the splitting fields BA and BT are of order TK ,
as expected from previous studies. Unexpectedly, however,
the field BV where the zero-bias conductance maximum
changes into a minimum turns out to be much larger, namely
BV ∼ √

U�, were U is the local Coulomb cost for double
occupancy and � the local level width. Accordingly, BV

becomes infinitely large in the Kondo limit of U/� → ∞.
Indeed, we show explicitly that in this limit cV remains
positive up to arbitrarily large fields. This unexpected result
implies that the “natural” expectation expressed above, namely
that the emergence of the two finite-bias peaks observed in
G(V ) for B � TK goes hand in hand with the emergence
of a zero-bias minimum, is in fact incorrect: for the Kondo
model, no zero-bias minimum ever appears in the conductance,
regardless of field strength. However, the curvature of G(V )
around zero rapidly tends to zero with increasing field so that
for practical purposes G(V ) looks completely flat at small
voltages in large-field limit.

It should be stressed that the persistence of a very weak
zero-bias maximum with increasing field does not contradict
the emergence of two pronounced finite-bias maxima, which
can be described analytically at large V/TK � 1 [12,31]: these
can coexist with the very weak local maximum at zero bias.
It does show, however, that the two finite-bias peaks cannot
emerge from zero bias but must appear at finite voltage (see
Sec. III C). For the Anderson model, where cV does turn neg-
ative at sufficiently large fields, our results imply that the two
finite-bias conductance peaks appear long before the central
zero-bias maximum has shrunk and flattened sufficiently to
change into a minimum. We therefore conclude that in the
field range B ∈ [TK,

√
U�] the nonlinear conductance should

actually exhibit three local maxima, with two pronounced side
peaks emerging from the flanks of an increasingly weaker and
flatter central maximum, with a very small curvature.

FL theories for quantum impurity systems have been
originally introduced by Nozières [32] with phenomenological
quasiparticles, and by Yamada and Yosida on a diagrammatic
basis [33]. Later these theories were extended to orbital
degenerate Anderson models [34–39], or extended in a renor-
malized perturbation theory [30,40–44]. They have also been
extended to higher order terms in the low-energy perturbative
expansion [45,46]. The FL approach used here to obtain the
above results builds on a recent formulation by some of the
present authors of a Fermi liquid theory for the single-impurity
Anderson model [47], similar in spirit to the celebrated FL
theory of Nozières for the Kondo model [32]. One useful
feature of FL approaches [32,47–57] is that they provide exact
results for the nonlinear conductance in out-of-equilibrium
settings, albeit only in the limit that temperature and voltage
are small compared to a characteristic FL energy scale E∗.
For example, in Ref. [47], we obtained exact results for the

differential conductance and the noise of the Anderson model
for arbitrary particle-hole asymmetry [47], but zero magnetic
field. The FL parameters of this effective theory were written in
terms of ground-state properties which are computable semi-
analytically using Bethe ansatz, or numerically via numerical
renormalization group (NRG) calculations [58–60]. We here
extend this FL approach to arbitrary magnetic fields. This
enables us to obtain exact results for the low-energy behavior of
the spectral function and the nonlinear conductance for any B

and εd , and to explore the crossovers from the strong-coupling
(screened-singlet) fixed point to the weak-coupling (free-spin)
fixed point of the Anderson model as functions of both these
parameters.

Our work is based on the fact that the Kondo ground state
remains a Fermi liquid at finite magnetic field, as has been
demonstrated by NRG in Ref. [61]. There the Korringa-Shiba
relation on the spin susceptibility was shown to hold at
arbitrary field, indicating that the low-energy excitations above
the ground state are particle-hole pairs, as predicted by FL
theory. Indeed, for both the Kondo and the Anderson models,
there is a fundamental difference between a nonvanishing local
magnetic field and other perturbations such as temperature or
voltage. Electrons conserve their spin after scattering and are
thus not sensitive to the chemical potential of the opposite spin
species. At zero temperature and bias voltage, there is no room
for inelastic processes, regardless of the value of the magnetic
field, hence scattering remains purely elastic even when the
Kondo singlet is destroyed due to the applied field. In contrast,
increasing temperature or voltage open inelastic channels by
deforming the Fermi surfaces of itinerant electrons.

The rest of the paper is organized as follows. Section II
develops our FL theory for the asymmetric Anderson model
at arbitrary local magnetic field and shows how the FL
parameters can be expressed in terms of local spin and
charge susceptibilities. In Sec. III, we exploit the effective
FL Hamiltonian to evaluate the curvature parameters cA, cT ,
and cV and the magnetic fields BA, BT , and BV at which
these curvatures change sign. This is done first at particle-hole
symmetry, then for general particle-hole asymmetry. Our
findings are summarized in Sec. IV.

II. FERMI LIQUID THEORY

A. Anderson model

The single-impurity Anderson model is a prototype model
for magnetic impurities in bulk metals or for quantum dot
nanodevices, and more generally for studying strong correla-
tions in those systems. It describes an interacting spinful single
level tunnel-coupled to a Fermi sea of itinerant electrons. Its
Hamiltonian takes the form

H =
∑
σ,k

εkc
†
kσ ckσ +

∑
σ

εdσ n̂dσ

+Un̂d↑n̂d↓ + t
∑
k,σ

(c†kσ dσ + d†
σ ckσ ). (1)

Here, d†
σ creates an electron with spin σ in a localized level with

occupation number n̂dσ = d†
σ dσ , spin-dependent energy εdσ =

εd − σB/2, local magnetic field B, and Coulomb penalty U

for double occupancy. c
†
kσ creates an electron with spin σ
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and energy εk in a conduction band with linear spectrum and
constant density of states ν0 per spin species. The local level
and conduction band hybridize, yielding an escape rate 2� =
2πν0t

2.
We will denote the ground-state chemical potential for

electrons of spin σ by μ0σ . Although μ0↑ and μ0↓ are
usually taken equal, they formally are independent parameters
that can be chosen to differ, because the model contains
no spin-flip terms, hence spin-up and spin-down chemical
potentials have no way to equilibrate. In this paper, we will
consider only the limit of infinite bandwidth [62]. Then μ0↑
and μ0↓ constitute the only meaningful points of reference for
the model’s single-particle energy levels. Thus ground-state
properties can depend on εdσ and μ0σ only in the combination
εdσ − μ0σ , implying that they are invariant under shifts of
the form

εdσ → εdσ + δμσ , μ0σ → μ0σ + δμσ . (2)

In Ref. [47], this invariance was exploited for spin-independent
shifts (δμσ = δμ) when devising a FL theory around the
point B = 0. Here we will exploit the fact that the invariance
holds also for spin-dependent shifts to generalize the FL
theory to arbitrary B. Having made this point, we henceforth
take μ0↑ = μ0↓ = 0 (but for clarity nevertheless display μ0σ

explicitly in some formulas). The model’s zero-temperature,
equilibrium properties are then fully characterized by U , �, εd ,
and B.

B. General strategy of FL theory à la Nozières

Despite exhibiting strong correlations by itself, the ground
state of the Anderson model (1) is a Fermi liquid for all
values of U , εd , �, and B. A corresponding FL theory
à la Nozières was developed in [47] for small fields. We
now briefly outline the general strategy used there, suitably
adapted to accommodate arbitrary values of B. Details follow
in subsequent sections.

The low-energy behavior of a quantum impurity model
with a FL ground state can be understood in terms of weakly
interacting quasiparticles, characterized by their energy ε, spin
σ , distribution function nσ (ε), and the phase shift δσ (ε,nσ ′ )
experienced upon scattering off the screened impurity. At
zero temperature, the quasiparticle distribution reduces to a
step function, n0

μ0σ
(ε) = θ (μ0σ − ε), and the phase shift at

the chemical potential, denoted by δ0σ = δσ (μ0σ ,n0
μ0σ ′ ), is a

characteristic property of the ground state. It is related to the
impurity occupation function, ndσ = 〈n̂dσ 〉, via Friedel’s sum
rule, δ0σ = πndσ . Likewise, derivatives of δ0σ with respect
to (w.r.t.) εd and B are related to the ground-state values
of the local charge and spin susceptibilities. The ground-
state dependence of local observables such as ndσ and their
derivatives on the model’s bare parameters U , �, εd , and B is
assumed to be known, e.g., from Bethe ansatz or numerics.

The goal of a FL theory is to use such ground-state
information to predict the system’s behavior at nonzero but low
excitation energies. The weak residual interactions between
low-energy quasiparticles can be treated perturbatively using a
phenomenological effective Hamiltonian, HFL, whose form is
fixed by general symmetry arguments. The coupling constants
in HFL, together with δ0σ , are the “FL parameters” of

the theory. The challenge is to express these in terms of
ground-state properties, while ensuring that the theory remains
invariant under the shifts of Eq. (2). To this end, HFL is
constructed in a way that is independent of μ0σ : it is expressed
in terms of excitations relative to a reference ground state with
distribution n0

ε0σ
and spin-dependent chemical potentials ε0σ

chosen at some arbitrary values close to but not necessarily
equal to μ0σ . The FL parameters are then functions of U ,
�, and the energy differences εdσ − ε0σ . Importantly, and in
keeping with their status of depending only on ground-state
properties, they do not depend on the actual quasiparticle
distribution functions nσ , which are the only entities in the
FL theory that depend on the actual chemical potential and
temperature.

HFL is used to calculate δσ (ε,nσ ′) for a general quasiparticle
distribution nσ ′ , to lowest nontrivial order in the interactions.
The result amounts to an expansion of the phase shift in powers
of ε − ε0σ and δnσ = nσ − n0

ε0σ
, which are assumed small.

Since the reference energies ε0σ are dummy variables on which
no physical observables should depend, this expansion must
be independent of ε0σ . This requirement leads to a set of so-
called “Fermi liquid relations” between the FL parameters,
which can be used to express them all in terms of various local
ground-state observables, thereby completing the specification
of HFL. Finally, HFL is used to calculate transport properties
at low temperature and voltage.

C. Low-energy effective model

The phenomenological FL Hamiltonian has the form

HFL =
∑

σ

∫
ε

ε b†εσ bεσ + Hα + Hφ + . . . (3a)

Hα = −
∑

σ

∫
ε1,ε2

[
α1σ

2π
(ε1 + ε2 − 2ε0σ )

+ α2σ

4π
(ε1 + ε2 − 2ε0σ )2

]
b†ε1σ

bε2σ , (3b)

Hφ =
∫

ε1,...,ε4

[
φ1

π
+ φ2↑

4π
(ε1 + ε2 − 2ε0↑)

+ φ2↓
4π

(ε3 + ε4 − 2ε0↓)

]
: b

†
ε1↑bε2↑b

†
ε3↓bε4↓ : . (3c)

It is a perturbative low-energy expansion involving excita-
tions with respect to a reference ground state with chemical
potentials ε0σ and distribution function n0

ε0σ
(ε) = θ (ε0σ − ε).

The dummy reference energies ε0σ should be chosen close
to μ0σ for this expansion to make sense. Here, b†εσ creates a
quasiparticle in a scattering state with spin σ and excitation
energy ε − ε0σ relative to the reference state; it already
incorporates the zero-temperature phase shift δ0σ . Moreover,
: : denotes normal ordering w.r.t. the reference state, with

: b†εσ bεσ : ≡ b†εσ bεσ − n0
ε0σ

(ε) . (4)

Hα and Hφ describe elastic and inelastic scattering processes,
respectively. Their formal structure can be justified using
conformal field theory and symmetry arguments [45,63,64],
summarized in Supplementary section S-IV of Ref. [47]. They
contain the leading and subleading terms in a classification
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of all possible perturbations according to their scaling dimen-
sions, which characterize their importance at low excitation
energies with respect to the reference state. The coupling
constants in HFL, together with the zero-energy phase shifts
δ0σ , are the model’s nine FL parameters, which we will
generically denote by γ ∈ {δ0σ ,α1σ ,α2σ ,φ1,φ2σ }.

In the wide-band limit considered here, all FL parameters
depend on the model parameters only in the form

γ = γ (U,�,εdσ − ε0σ ) , (5)

because the chemical potential ε0σ of our reference ground
state is the only possible point of reference for the local
energies εdσ . Writing ε0σ = ε0 − σB0/2, we thus note that
all FL parameters satisfy the relations

− ∂ε0γ = ∂εd
γ , − ∂B0γ = ∂Bγ . (6)

The form of HFL in Eq. (3) is similar to that used in Ref. [47],
but with two changes, both due to considering B �= 0. First,
because the magnetic field breaks spin symmetry, some FL
coefficients are now spin dependent, namely, those that occur
in conjunction with excitation energies of the form (ε − ε0σ ).
Second, since the FL theory of Ref. [47] was developed around
the point B = 0, the FL parameters there were taken to be
independent of field, and the system’s response to a small field
was studied by explicitly including a small Zeeman term in
HFL. In contrast, in the present formulation the FL parameters
are functions of B that explicitly incorporate the full magnetic-
field dependence of all ground-state properties, hence our HFL

does not need an explicit Zeeman term.
To conclude this section, we note that the form of HFL

presented above can be derived by an explicit calculation in
a particular limiting case: the Kondo limit of the Anderson
Hamiltonian where it can be mapped onto the Kondo Hamil-
tonian, studied in the limit of very large magnetic field. By
doing perturbation theory in the spin-flip terms of the Kondo
Hamiltonian, one arrives at effective interaction terms that
have precisely the form of Hα and Hφ above. This calculation,
presented in detail in Appendix A, is highly instructive,
because it elucidates very clearly how the reference energies
ε0σ enter the analysis and how the relations (5) and (6) come
about.

D. Relating FL parameters to local observables

Having presented the general form of HFL, the next step
is to express the FL parameters in terms of ground-state
observables. The corresponding relations are conveniently
derived by examining the elastic phase shift of a single
quasiparticle excitation [54]. We suppose that the system
is in an arbitrary state, not too far from the ground state,
characterized by the spin-dependent number distribution
〈b†εσ bε′σ 〉 = nσ (ε)δ(ε − ε′), with arbitrary nσ (ε). The elastic
phase shift of a quasiparticle with energy ε and spin σ scattered
off this state is obtained from the elastic part Hα , in addition
to the Hartree diagrams inherited from Hφ , thus δσ (ε,nσ ′ ) =
δ0σ − π∂〈Hα + Hφ〉/∂nσ (ε). One finds the expansion

δσ (ε,nσ ′ ) = δ0σ + α1σ (ε − ε0σ ) + α2σ (ε − ε0σ )2

−
∫

ε′

[
φ1 + 1

2
φ2σ (ε − ε0σ ) + 1

2
φ2σ̄ (ε′ − ε0σ̄ )

]
× δnσ̄ (ε′). (7)

Due to the normal ordering prescription for Hφ , all terms
stemming from the latter involve the difference between the
actual and reference distribution functions, δnσ̄ = nσ̄ − n0

ε0σ̄
,

where σ̄ denotes the spin opposite to σ . Now, though
expansion (7) depends on ε0σ both explicitly and via the
FL parameters γ (U,�,εdσ − ε0σ ), these dependencies have
to conspire in such a way that the phase shift is actually
independent of ε0σ . Thus the following conditions must be
satisfied:

∂ε0δσ (ε,nσ ′ ) = 0, ∂B0δσ (ε,nσ ′) = 0. (8)

Inserting Eq. (7), setting the coefficients of the various terms
in the expansion (const., ∼(ε − ε0σ ), ∝ ∫

δnσ̄ ) to zero and
exploiting Eq. (6), we obtain a set of linear relations among
the FL parameters, to be called “Fermi liquid relations:”

∂δ0σ

∂εd

= φ1 − α1σ ,
∂δ0σ

∂B
= σ

2
(φ1 + α1σ ), (9a)

∂α1σ

∂εd

= 1

2
φ2σ − 2α2σ ,

∂α1σ

∂B
= σ

2

(
1

2
φ2σ + 2α2σ

)
, (9b)

∂φ1

∂εd

= −1

2
(φ2↑ + φ2↓),

∂φ1

∂B
= 1

4
(φ2↑ − φ2↓). (9c)

They are important for three reasons. First, for fixed
values of the model parameters, they ensure by construction
that δσ (ε,nσ ′ ) is invariant under spin-dependent shifts of the
dummy reference energies ε0σ . Second, for fixed values of
ε0σ , they ensure that for any distribution nσ ′ with well-defined
chemical potentials μσ ′ , the function δσ (ε,nσ ′ ) is invariant, up
to a shift in ε, under simultaneous spin-dependent shifts [cf.
Eq. (2)] of the physical model parameters εdσ ′ and μσ ′ , say by
δμσ ′ = δμ − 1

2σ ′h:

δσ (ε + δμσ ,nσ ′)|εdσ ′+δμσ ′ ,μσ ′+δμσ ′ = δσ (ε,nσ ′ )|εdσ ′ ,μσ ′ . (10)

Conversely, an alternative way to derive Eq. (9) is to impose
Eq. (10) as a condition on the expansion (7). (Verifying this is
particularly simple at zero temperature, e.g., using nσ ′ = n0

μ0σ
).

In the parlance of Nozières [32], Eq. (10) is the “strong univer-
sality” version of his “floating Kondo resonance” argument,
applied to the Anderson model. Pictorially speaking, for each
spin species the phase shift function “floats” on the Fermi sea
of corresponding spin: if the Fermi surface μσ and local level
εdσ for spin σ are both shifted by δμσ , the phase shift function
δσ (ε,nσ ′ ) shifts along without changing its shape.

Third, the Fermi liquid relations, in conjunction with
Friedel’s sum rule, can be used to link the FL parameters
to ground-state values of local observables. To this end, we
henceforth set ε0σ = μ0σ and focus on the case of zero
temperature with ground-state distribution n0

μ0σ
. Then only

the first term in Eq. (7) survives when writing down Friedel’s
sum rule for the phase shift at the chemical potential:

δσ

(
μ0σ ,n0

μ0σ ′
) = δ0σ = πndσ . (11)

165404-4



AT WHICH MAGNETIC FIELD, EXACTLY, DOES THE . . . PHYSICAL REVIEW B 95, 165404 (2017)

Let nd = ∑
σ ndσ and md = 1

2

∑
σ σndσ denote the average

local charge and magnetization, respectively, and let us
introduce corresponding even and odd linear combinations
of the spin-dependent FL parameters, to be denoted without
or with overbars, e.g., α1 = 1

2

∑
σ α1σ and α1 = 1

2

∑
σ σα1σ .

Then we have nd = 2δ0/π and md = δ0/π . By differentiating
these relations with respect to εd and B, we obtain various
local susceptibilities, which can be expressed, via the derivates
occurring in Eq. (9), as linear combinations of FL parameters:

χc = −∂nd

∂εd

= 2

π
(α1 − φ1) , (12a)

χs = ∂md

∂B
= 1

2π
(α1 + φ1) , (12b)

χm = −∂md

∂εd

= ∂nd

∂B
= α1

π
, (12c)

∂χc

∂εd

= −∂2nd

∂εd
2

= − 4

π

(
α2 − 3

4
φ2

)
, (12d)

∂χs

∂B
= ∂2md

∂B2
= 1

2π

(
α2 + 3

4
φ2

)
, (12e)

∂χm

∂εd

= −∂2md

∂εd
2

= ∂2nd

∂B∂εd

= − 2

π

(
α2 − φ2

4

)
, (12f)

∂χm

∂B
= ∂2nd

∂B2
= − ∂2md

∂εd∂B
= 1

π

(
α2 + φ2

4

)
. (12g)

Equation (12c) reproduces a standard thermodynamic
identity, and implies similar identities for higher derivates,
∂χm/∂εd = −∂χc/∂B and ∂χm/∂B = −∂χs/∂εd . By invert-
ing the above relations, we obtain the FL parameters in terms
of local ground-state susceptibilities:

α1

π
= χs + 1

4
χc,

α2

π
= 3

4

∂χm

∂B
− 1

16

∂χc

∂εd

, (13a)

φ1

π
= χs − 1

4
χc,

φ2

π
= ∂χm

∂B
+ 1

4

∂χc

∂εd

, (13b)

α1

π
= χm,

α2

π
= 1

2

∂χs

∂B
− 3

8

∂χm

∂εd

, (13c)

φ2

π
= 2

∂χs

∂B
+ 1

2

∂χm

∂εd

, (13d)

implying that φ2 = −∂εd
φ1 and φ2 = 2∂Bφ1. These equations

are a central technical result of this paper. Those for the even
FL parameters α1,2 and φ1,2 are equivalent to the ones obtained,
for zero field, in Ref. [47]. The expressions for α1 and φ1 have
been shown [47] to be equivalent to the relation

4χs

(gμB)2
+ χc = 6γimp

π2k2
B

, (14)

(physical units have been reinstated in this equation) between
the spin/charge susceptibilities and the impurity specific heat
coefficient γimp [42]. This relation in fact derives from Ward
identities [33,34] associated with the U(1) symmetry of the
model. We expect that the other expressions in Eq. (13)
also originate from Ward identities involving higher-order
derivatives.

Equations (13) can be checked independently in two limits:
for a noninteracting impurity, and at large magnetic field in the
Kondo model, see Appendix A for the latter. The former case,
U = 0, reduces to a resonant level model in which spin and
charge susceptibilities are easily obtained. We have verified
that they give φ1 = φ2σ = 0, so that the interaction Hφ = 0
in Eq. (3) vanishes, and that the phase shift expansion (7)
reproduces that expected for the resonant level model.

All of the susceptibilities introduced above are calculable
exactly by Bethe ansatz, and hence the same is true for all
the FL parameters. In the particle-hole symmetric case, εd =
−U/2, semianalytical expressions for the local charge and
magnetization have been derived with the help of the Wiener-
Hopf method. A comprehensive review on this approach can be
found in Ref. [64] and we summarize the resulting analytical
expressions in Ref. [65]. They have been used to produce
Figs. 1 to 4 below with excellent accuracy.

Away from particle-hole symmetry, where the Wiener-Hopf
method is not applicable, the Bethe ansatz coupled integral
equations (see Eqs. (S3a) and (S3b) in the Supplemental
Material [65]) have to be solved numerically. This direct
method is used in Figs. 6 and 7. In Fig. 4, we have verified that
at particle-hole symmetry it agrees nicely with the accurate
Wiener-Hopf solution.

To conclude this section, we briefly discuss some spe-
cial cases, for future reference. (i) Zero magnetic field.
Equations (13) for the odd FL parameters yield zero for B = 0,

α1 = α2 = φ2 = 0 , (15)

since md is an antisymmetric function of B.
(ii) Particle-hole symmetry. At εd = −U/2, we have

nd = 1, δ0σ = π
(

1
2 + σmd

)
, α1 = α2 = φ2 = 0, (16)

for any B. The three FL parameters vanish since nd − 1 is an
antisymmetric function of εd − U/2, implying the same for
χm and ∂χc/∂εd , so that both vanish at εd = −U/2.

(iii) Kondo limit. If the limit U/� → ∞ is taken at
particle-hole symmetry while maintaining a finite Kondo tem-
perature, local charge fluctuations are frozen out completely
and the Anderson model maps onto the Kondo model. All
susceptibilities involving derivatives of nd with respect to εd

vanish, namely χc = χm = ∂εd
χc = ∂εd

χs = ∂Bχc = 0, so that
Eq. (16) are supplemented by

α1

π
= φ1

π
= χs,

4α2

π
= φ2

π
= 2

∂χs

∂B
. (17)

Since χs and ∂χs/∂B are strictly positive and negative,
respectively, the same is true for α1,φ1 and α2,φ2.

(iv) Kondo limit at large fields. In the limit B � TK

of the Kondo model, its Bethe ansatz solution yields the
following results for the leading asymptotic behavior of the
magnetization and its derivatives, with βr = π

8 (B/TK )2:

md = 1

2
− 1

2 ln βr

, χs = 1

B (ln βr )2
, (18a)

∂χs

∂B
= − 1

B2 (ln βr )2
. (18b)

Thus all the FL parameters in Eq. (17) vanish asymptoti-
cally in the large-field limit.
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E. Characteristic FL energy scale

As mentioned repeatedly above, the FL approach only holds
for excitation energies sufficiently small, say |ε − μ0σ | � E∗,
that all terms in expansion (7) for δσ (ε,nσ ′ ) − δ0σ are small. In
the local moment regime of the Anderson model, the FL scale
E∗ can be associated with the Kondo temperature TK , but in
the present context we need a definition applicable in the full
parameter space of the Anderson model. Following Ref. [47],
we define E∗ in terms of the FL coefficient of the leading term
in expansion (7),

E∗ = π

4α1
= 1

4χs + χc

, (19)

and TK in terms of the zero-field spin susceptibility,

TK = 1

4χB=0
s

. (20)

While both definitions involve some arbitrariness, they are
mutually consistent, in that the zero-field value of E∗ equals
TK in the Kondo limit U/� → ∞, where we have

EB=0
∗ = TK, EB�TK∗ = 1

4B(ln βr )2 . (21)

More generally, EB=0
∗ and TK are roughly equal throughout

the local-moment regime where χc � 0, i.e., for U � � and
−U + � � εd � −�. In this regime, TK is well described by
the analytic formula (af) [47,66,67]

T
(af)
K =

√
U�

2 eπ( �
2U

− U
8� )ex2

, (22)

where x = (εd + U/2)
√

π/(2�U ) measures the distance to
the particle-hole symmetric point. At the latter, T

(af)
K |x=0

can be derived analytically from the Bethe ansatz equations
for χB=0

s [64]. The factor ex2
, familiar from Haldane’s RG

treatment of the Anderson model [66], phenomenologically
includes the effect of particle-hole asymmetry. Throughout
the local moment regime, Eq. (22) yields excellent agreement
with a direct numerical evaluation of Eq. (20) via the Bethe
ansatz equations for χB=0

s (see Fig. 6 below).

III. SPECTRAL FUNCTION AND NONLINEAR
CONDUCTANCE

A. General results

For the remainder of this paper, we consider a single-level
quantum dot with symmetric tunnel couplings to left and right
leads with chemical potentials ±eV/2, described by the two-
lead, single-level Anderson model. The nonlinear conductance
of this system can be expressed by the Meir-Wingreen formula
as [68]

G(V,T ) = ∂V

e

h

∫
ε

[fL(ε) − fR(ε)]A(ε) . (23)

Here, fL/R(ε) = [e(ε∓eV/2)/T + 1]−1 are the distribution func-
tions of the left and right leads, A(ε) = ∑

σ Aσ (ε) is
the local spectral function with spin components Aσ (ε) =
−πν0 ImTσ (ε), and Tσ (ε) is the T matrix for spin σ conduction
electrons scattering off the local level. A FL calculation of the
low-energy behavior of Aσ (ε) and G(V,T ) has been performed
in detail at zero magnetic field in Ref. [47], following similar
studies in Refs. [38,53,55,56]. The strategy of the calculation

is rather straightforward. First, one introduces even and odd
linear combinations of operators from the two leads. The odd
ones decouple, resulting in an effective one-lead Anderson
model for a dot coupled to the even lead, whose low-energy
behavior is described by the Hamiltonian HFL introduced
above. Then, in the spirit of the standard Landauer-Büttiker
formalism [69], the current operator is expanded over a
convenient single-particle basis of scattering states accounting
for both the lead-dot geometry and the FL elastic phase shifts.
Interactions between electrons stemming from Hφ are included
perturbatively when calculating the average current in the
Keldysh formalism [70].

The calculation described above trivially generalizes to the
case of nonzero field, since the two spin components give
separate contributions to the current. The results from Ref. [47]
for the low-energy expansion of the conductance can thus be
directly taken over, modified merely by supplying FL parame-
ters with spin indices. A corresponding low-energy expansion
for the spectral function can then be deduced via Eq. (23). We
now present the results obtained in this manner, starting with
the T matrix and spectral function, since these form the basis
for understanding the resulting physical behavior.

For the T matrix, written as the sum of elastic and inelastic
contributions, the results of Ref. [47] (Supplementary section
S-V) imply

T el
σ (ε) = − i

2πν0
(1 − e2iδσ (ε)), (24a)

T inel
σ (ε) = − ie2iδ0σ

2πν0
φ2

1

[
ε2 + (πT )2 + 3

4
(eV )2

]
. (24b)

Here, T el
σ (ε) is determined by the phase shift δσ (ε) obtained

from Eq. (7) using nσ (ε) = 1
2 [fL(ε) + fR(ε)] as quasiparticle

distribution function for the even lead:

δσ (ε) = δ0σ + α1σ ε + α2σ ε2 − 1
12φ2σ

[
(πT )2 + 3

4 (eV )2
]
.

(25)

Note that the inelastic T matrix has the same dependence on
temperature and bias, which occur only in the combination
(πT )2 + 3

4 (eV )2 [71].
This is significant, since it implies that knowing the spectral

function’s leading temperature dependence in equilibrium suf-
fices to deduce its leading bias dependence in nonequilibrium.
The spectral function, expanded to second order in ε, T , and
eV , can thus be written as [72]

A(ε) = A0 + A1ε − C̃A

[
1
3 (πT )2 + 1

4 (eV )2
] − CAε2, (26)

with expansion coefficients

A0 =
∑

σ

sin2(δ0σ ), A1 =
∑

σ

α1σ sin(2δ0σ ), (27a)

C̃A = −
∑

σ

[
3

2
φ2

1 cos(2δ0σ ) − 1

4
φ2σ sin(2δ0σ )

]
, (27b)

CA = −
∑

σ

[
<

(
α2

1σ + 1

2
φ2

1

)
cos(2δ0σ ) + α2σ sin(2δ0σ )

]
.

(27c)

These results hold for all values of U , �, εd , and B.
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Inserting Eq. (26) into (23) and using the relations

∂V

∫
ε

[fL − fR]ε2 = e

[
1

3
(πT )2 + 1

4
(eV )2

]
,

∂V

∫
ε

[fL − fR]

[
1

3
(πT )2 + 1

4
(eV )2

]
= e

[
1

3
(πT )2 + 3

4
(eV )2

]
, (28)

one obtains an expansion for the conductance of the form

G(V,T ) = G̃ − (2e2/h)[CT T 2 + CV (eV )2]. (29)

Here, G̃ = 1
2A0G0 is the zero-temperature, linear conduc-

tance, G0 = 2e2/h is the conductance quantum, and the
expansion coefficients of the quadratic terms are

CT = 1
6π2(C̃A + CA) , CV = 1

8 (3C̃A + CA) . (30)

The four C coefficients introduced above all have dimensions
of (energy)−2. If we express them as

C̃A = c̃A

E2∗
, CX = cX

E2∗
, X = A,V,T , (31)

where E∗ is the FL scale of Eq. (19), the resulting four c

coefficients are dimensionless, with cT and cV corresponding
to the coefficients calculated in Ref. [47]. For asymmetric
couplings to the leads [73–75], not considered here, the
conductance also contains a term linear in V , as also discussed
in Ref. [55], where the same formalism has been applied.

Equations (27) instructively reveal which role the various
FL parameters play in determining the shape of the local
spectral function A(ε) at the chemical potential, characterized
by its “height” A(0), slope A1 and curvature C̃A. The ground-
state phase shifts δ0σ fix the height at zero temperature and
bias, A0. The elastic couplings α1σ and α2σ of Hα affect
only the slope and curvature, but not the height. The inelastic
couplings φ1 and φ2σ of Hφ determine the leading effect of
temperature and bias on the height via C̃A, while φ1 also
contributes to the curvature CA. Moreover, via the sine and
cosine factors the relative contributions of all terms depend
sensitively on the ground-state phase shifts δ0σ , and hence
can change significantly when these are tuned via changing
parameters such as B or εd .

B. Spectral function at particle-hole symmetry

When the single-level, two-lead Anderson model is tuned
into the local moment regime, the local spectral function
exhibits a Kondo peak that splits with magnetic field. Cor-
respondingly, the nonlinear conductance exhibits a zero-bias
peak that likewise splits with increasing field. Our goal is to
use FL theory to study the peak splittings of both the spectral
function and the nonlinear conductance in quantitative detail.
For this purpose, we will focus on the particle-hole symmetric
point in this subsection and the next, leaving particle-hole
asymmetry to Sec. III D.

We begin with a qualitative discussion, based on the
results of numerous previous studies of the local moment
regime [12,31,49,76–80]. At zero field, the two components
of the local spectral function, A↑ and A↓, both exhibit a
Kondo peak at zero energy. An increasing field weakens

these peaks and shifts them in opposite directions. When their
splitting exceeds their width, which happens for B of order
TK , then A = A↑ + A↓ develops a local minimum at zero
energy, implying that CA changes from positive to negative.
We will denote the “splitting field” where CA = 0 by BA. [For
B � TK the subpeaks in A↑,↓ are located at ε � ±B, modulo
corrections of order ∓B/ ln(B/TK ) [12,79,80]]. An increasing
temperature or bias always weakens the Kondo peaks in Aσ ,
thus reducing the zero-energy spectral height A(0) (“height
reduction”), so that we expect C̃A to be a decreasing but strictly
positive function of B.

To study this behavior quantitatively, we specialize the
results of the previous section to the case of particle-hole
symmetry using Eq. (16), obtaining

A0 = 2 cos2(πmd ) , (32a)

C̃A = 3φ2
1 cos(2πmd ) − 1

2φ2 sin(2πmd ) , (32b)

CA = (
2α2

1 + φ2
1

)
cos(2πmd ) + 2α2 sin(2πmd ) . (32c)

Figure 1 shows the B dependence of c̃A = E2
∗C̃A and

cA = E2
∗CA for several values of U/�. (We multiply by the

B-dependent scale E2
∗ [cf. Eq. (31)], since this better reveals

the large-field behavior, for reasons explained below). For
comparison, we have also used NRG [81] to compute the
equilibrium spectral function (not shown) for the Anderson
model at finite magnetic field. The C̃A and CA values obtained
by fitting its zero-energy height and curvature, shown as open
circles in the inset of Figs. 1(a) and 1(b), respectively, agree
very well with our FL predictions (solid lines). This serves as
independent confirmation that our FL theory is sound.

The main finding of Fig. 1 is that with increasing field, c̃A

remains positive, whereas cA changes sign, as expected from
our qualitative discussion. Thus our FL approach reproduces
the field-induced splitting of the Kondo peak in the spectral
function. Moreover, we find [Fig. 1(c)] that the scale for the
splitting field BA is universal, in the usual sense familiar from
many aspects of Kondo physics in the Anderson model: the
ratio BA/TK is of order unity and depends only weakly on
U/�, tending to a constant value in the Kondo limit U/� →
∞. Its limiting value, namely BA/TK = 0.75073, agrees with
previous numerical estimates [76,77] and with our own NRG
calculation.

Perhaps somewhat less expected is the fact that the
large-field behavior of c̃A and cA changes significantly with
increasing U/�. To understand their behavior in the Kondo
limit U/� → ∞, we first consider that of C̃A and CA, for
which Eqs. (32) and (17) yield{

C̃A

CA

}
= 3α2

1 cos(2πmd ) ∓ 2α2 sin(2πmd ) , (33)

with zero-field values (indicated by a superscript K for “fully
developed Kondo effect”) of

C̃K
A = CK

A = 3π2

16

1

T 2
K

(B = 0) , (34a)

and asymptotic large-field behavior [obtained via (18)]{
C̃A

CA

}
= ± π2

B2(ln βr )4
ln βr (B � TK ) . (34b)
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(b)

FIG. 1. Low-energy properties of the spectral function at particle-
hole symmetry. (a) The normalized height coefficient c̃A/c̃K

A and (b)
curvature coefficient cA/cK

A of the local spectral function at particle-
hole symmetry, plotted as functions of magnetic field [in units of TK ,
as defined in Eq. (20)], for three values of the interaction parameter
U/�, including the Kondo limit U/� = ∞ [given by Eq. (35)].
The insets of (a) and (b), respectively, show C̃A/C̃K

A and CA/CK
A as

functions of B/TK , calculated from our FL predictions [Eq. (32)]
(solid lines), and by computing the spectral function via NRG and
extracting its zero-energy height and curvature (open circles). The
sign change for CA signals the splitting of the Kondo resonance into
two resonances due the breaking of the Kondo singlet by the magnetic
field. (c) The characteristic field BA where CA vanishes, plotted in
units of TK as function of U/�. In the Kondo limit U/� → ∞ it
approaches the value BA/TK = 0.75073.

This confirms that CA is negative at large fields while C̃A

remains positive. They have equal magnitudes in both the
limits B = 0 and B � TK , changing in scale from ∼ 1/T 2

K

to becoming negligibly small, ∼ 1/[B2(ln βr )3]. We now also
see why it is useful to study the C coefficients in the normalized
form c = E2

∗C of Eq. (31), as done in Fig. 1: E2
∗ increases with

B and in the large-field limit [see (21)] compensates the small
prefactor in Eq. (34b). Correspondingly normalized, Eqs. (33)

and (34) yield{
c̃A/c̃K

A

cA/cK
A

}
= cos(2πmd ) ∓ ∂Bχs

3πχ2
s

sin(2πmd ) , (35)

with zero-field values and large-field behavior given by

c̃K
A = cK

A = 3π2

16
, (B = 0), (36a){

c̃A/c̃K
A

cA/cK
A

}
= ±1

3
ln βr (B � TK ) . (36b)

The ± ln βr term in Eq. (36b) explains the behavior of the
Kondo limit curves (thick solid) in Figs. 1(a) and 1(b).

As a consistency check, we note that inserting the Kondo-
limit coefficients C̃K

A and CK
A of Eq. (34a) into Eq. (26) for

A(ε) yields the low-energy expansion of the spectral function
of the spin- 1

2 Kondo model at B = 0. Indeed, the result so
obtained,

AK (ε) = 2 − 3π2

16

[
ε2 + 1

3 (πT )2 + 1
4 (eV )2

]
T 2

K

, (37)

is consistent with previous studies of the Kondo model for
V = 0 [32,39,49,64] [see for example Eq. (4) of Ref. [39],
where the coefficients of this expansion, called cε and c′

T there,
were checked numerically using NRG].

For completeness, we mention that the opposite limit of
weak interactions yields, for εd = U = 0:

c̃A = 0, cA = π2

8

�2 − 3B2/4

�2 + B2/4
. (38)

C. Conductance at particle-hole symmetry

We now turn our attention to transport properties, and
again begin with a qualitative discussion. The behavior of the
local spectral function discussed in the preceding subsection
fully determines, via the Meir-Wingreen formula (23), that of
the nonlinear differential conductance. At zero field G(V,T ),
studied as function of V , exhibits a peak around zero bias,
which weakens with temperature, and which splits with
increasing field. The details of these changes are governed
by a sensitive interplay of two effects: increasing temperature
or bias from zero (i) on the one hand weakens the Kondo
peaks, thus causing a height reduction of A(0), but (ii) on
the other hand widens the energy window over which the
spectral function is probed, set by the fL − fR factor in
the Meir-Wingreen formula (“window widening”). Whereas
height reduction tends to reduce the conductance, window
widening can either reduce or enhance it, depending on
whether A(ε) has a maximum or minimum around zero, as
is the case for small or large fields, respectively. For small
fields, height reduction and window widening act together to
reduce the conductance when T or V are increased from zero.
For large fields, however, they counteract each other, and if
window widening dominates, the conductance will increase
with T or V .

The interplay of height reduction (governed by c̃A) and
window widening (governed by cA) is quantified by Eq. (30):
as c̃A and cA decrease with increasing field, with c̃A remaining
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FIG. 2. FL transport properties at particle-hole symmetry and
U/� = 5, plotted as functions of B/TK . Left axis: Normalized FL
transport coefficients cV /cK

V (thick solid line) and cT /cK
T (thick dashed

line). The field BT where cT changes sign is of order TK (slightly
larger but comparable to BA), whereas the field BV where cV changes
sign is much larger, of order

√
U�. Right axis: Normalized zero-

temperature linear conductance G̃/G0 = cos2(πmd ) [from Eq. (32a)]
(thin solid line).

positive and cA turning negative, cT and cV will decrease too,
but turn negative only if the contribution from cA (window
widening) outweighs that from c̃A (height reduction). We will
denote the “splitting fields” at which cT or cV equal zero by
BT or BV , respectively. Since in Eq. (30) the relative weight of
c̃A to cA is three times larger in cV than in cT , the influence of
height reduction compared to window widening is larger for
cV than for cT . The general behavior of these two coefficients,
and that of the corresponding splitting fields BV and BT , can
thus differ significantly.

In the noninteracting limit, where c̃A = 0, cT , cV and cA

are proportional to each other for all fields, cV = 3
4π2 cT =

1
4cA, implying splitting fields of BT = BV = (2/

√
3)� [see

Eq. (38)]. At this field value, the magnetization equals 1
6 and

the zero-temperature linear conductance is G̃ = 3
2e2/h, i.e., 3

4
of the unitary value G0 = 2e2/h.

With increasing U/�, the behavior of cT and cV becomes
increasingly dissimilar. This is already evident in Fig. 2, which
shows the B dependence of G̃, cT and cV for U/� = 5. With
increasing field, G̃ is smoothly suppressed on a field scale set
by TK , while cT and cV both decrease and change sign, albeit
at rather different field scales: BT is of order TK (slightly larger
but comparable to BA), whereas BV is of order

√
U�, which

is much larger than TK . The large-field values reached by cT

and cV for B � √
U� are also different. For U/� not too

large (�5, as in Fig. 2), they correspond to the empty-orbital
asymptotic forms found in Ref. [47],

ceo
T = −π4

16
, ceo

V = −3π2

64
. (39)

A systematic study of the splitting fields BT and BV as
functions of U/� yields the results shown in Fig. 3. They
differ strikingly. On the one hand, the splitting field BT shown
in Fig. 3(a) remains of order TK for all values of U/�. This
implies that BT is universal in the same sense as BA, although

FIG. 3. Interaction dependence of splitting field properties at
particle-hole symmetry, plotted as functions of U/�. (a) Splitting
field BT at which cT vanishes (left axis, thick line), shown in
units of TK , and the normalized zero-temperature linear conductance
at that field, G̃(BT )/G0 (right axis, thin line). (b) The splitting
field BV at which cV vanishes, shown in units of both TK (left
axis, thick line, log scale) and

√
U� (right axis, thin line, linear

scale). For strong interactions U � �, we find BV = 0.679
√

U�,
implying that BV � BT . In the absence of interaction U = 0, the
Kondo temperature extracted from Eq. (20) is TK = π�/2, hence
BV /TK = 4

π
√

3
� 0.735.

the dependence on U/� is somewhat stronger for BT /TK than
for BA/TK in Fig. 1(c). In contrast, the splitting field BV shown
in Fig. 3(b) exhibits nonuniversal behavior, crossing over from
order TK to order

√
U� as U/� increases from � 1 to �1.

For fields as large as
√

U�, i.e., well above the value BA � TK

where the peak splitting of the spectral function becomes
discernible, charge fluctuations are not small, suggesting that
for large interactions the sign change in cV is driven not
by Kondo physics but by the onset of charge fluctuations.
Consequently, we expect that in the Kondo limit U/� → ∞,
where charge fluctuations are strictly suppressed, cV will never
change sign, implying BV = ∞. This is indeed the case, as
seen in Fig. 4, which shows the evolution of cV as function
of field for a series of increasing U/� values, including the
Kondo limit.

In the Kondo limit, Eqs. (30), (33), and (34) yield

cT /cK
T = cos(2πmd ), (40a)

cV /cK
V = cos(2πmd ) − ∂Bχs

6πχ2
s

sin(2πmd ), (40b)
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FIG. 4. Evolution of cV during the crossover to the Kondo limit.
(a) The normalized FL transport coefficient cV /cK

V , plotted as a
function of B/TK for several values of U/�, including the Kondo
limit (thick solid line). For the latter, cV is strictly positive for all
magnetic fields. The direct integration of the coupled Bethe ansatz
equations, Eq. (S3a) and (S4b) [65], performed here for U/� = 20
(BAE, open dots), is in very good agreement with the corresponding
Wiener-Hopf solution (dashed line). All curves with large U/�

(�10) initially collapse onto a universal scaling curve as function
of increasing B/TK , but for large B eventually bend downward and
change sign. (b) Same as (a), but plotted as function of B/

√
U�.

Now a scaling collapse sets in at magnetic fields larger than
√

U�,
which is thus seen to be the field scale beyond which cV changes
sign. Together, these two panels show that as long as B is smaller
than the high-energy scale

√
U� of the Anderson model, cV shows

universal behavior, governed by a single scale TK and characteristic
of the Kondo model, and in this Kondo regime, cV remains strictly
positive.

with zero-field values and large-field behavior given by

cK
T = π4

16
, cK

V = 3π2

32
, (B = 0), (41a)

cT = −cK
T , cV = cK

V

1

6
ln βr, (B � TK ). (41b)

Thus cT changes sign when the magnetization crosses md =
1
4 , in which case the zero-temperature linear conductance is
G̃ = 1

2G0, half the unitary value. The corresponding magnetic
field, obtained from Bethe ansatz in the Kondo limit, is
BT /TK = 1.54813. In contrast, cV does not change sign
and remains positive in the large-field limit, indeed implying
BV = ∞. This, and the fact that BA < BT , can be understood

by comparing Eqs. (35) and (40): the (∂Bχs/χ
2
s ) term that

yields ln βr at large fields is strictly negative for cA, absent
for cT and strictly positive for cV . Note that Eq. (41b) implies
that the unnormalized coefficients CT and CV both vanish
in the large-field limit, as 1/[B2(ln βr )4] and 1/[B2(ln βr )3],
respectively.

According to the above analysis the value of the zero-
temperature linear conductance at the temperature splitting
field, G̃(BT ), decreases from 3

4G0 to 1
2G0 when U/� increases

from zero to infinity. This is illustrated by the red thin line in
Fig. 3(a).

Let us summarize the two most striking features found
above: (i) The splitting field BV is not universal, crossing
over from order TK to order

√
U� as U/� increases past 1.

Thus contrary to initial expectations, the field BV where the
zero-bias maximum turns into a minimum is parametrically
different from the field BA � TK where the Kondo resonance
in the spectral function splits. (ii) In the Kondo limit CV ,
though decreasing towards zero with increasing field, never
becomes negative, hence the conductance maximum at zero
bias, though shrinking and flattening to the point of becoming
undiscernable, never changes into an actual minimum, no
matter how large the field. The cause of these features is
that increasing U/� strongly tilts the interplay between
bias-induced height reduction of A(0) and window widening
in favor of the former.

How can these findings be reconciled with the well-
established fact that for the Kondo model (i.e., the U/� → ∞
limit of the Anderson model) the nonlinear conductance
at large magnetic field shows two well-defined “large-bias”
peaks at eV � ±B [modulo corrections of order ln(B/TK )]?
First note that the occurrence of large-bias conductance
peaks, found by perturbative calculations in 1/ ln(V/TK ) for
V/TK � 1 [12,31], does not contradict our analysis, which is
limited to the opposite regime of small bias. Nevertheless, as
large-bias peaks are absent at zero or small field, it is interesting
to speculate how they emerge when the field is turned on.
They cannot emerge near V � 0 from a field-induced splitting
of the zero-bias peak into two subpeaks that drift apart with
increasing field, because that would contradict our finding (ii)
that no zero-bias minimum ever appears. Instead, we expect
that once the field increases well past TK , two conductance
shoulders will emerge near finite eV � ±B in the flanks
of the zero-bias peak, which subsequently develop into two
well-defined local maxima as the magnetic field is further
increased, while the zero-bias peak shrinks and flattens but
remains a local maximum throughout. However, the latter will
become very weak, since CV → 0 when B → ∞, as shown
in Fig. 5. We thus expect a plot of G(V ) versus V at large B to
show two finite-bias maxima separated by a valley, whose
curvature, positive in the flanks of the two maxima, turns
negative near V = 0, but is so small in magnitude there that for
practical purposes the valley will appear to be flat at its center.

For the Anderson model with U � �, where BV is
not infinite but large, we expect a similar scenario: with
increasing field the zero-bias conductance maximum initially
weakens without splitting; once B passes TK , two additional
finite-bias peaks emerge from the flanks of the central
peak, near eV � ±B, while the zero-bias maximum keeps
shrinking and flattening; and much later, when B finally
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FIG. 5. The coefficient CV = cV /E2
∗ , plotted as a function of

B/TK for different interaction strengths U/�, in units of CK
V =

cK
V /T 2

K , with cK
V defined in Eq. (41a). In contrast to cV from Fig. 4(a),

CV is strongly suppressed in the regime B > TK (even for U/� � 1),
because for large fields the spin susceptibility becomes very small and
hence E∗ very large [cf. Eq. (21)]. Inset: the normalization factor CK

V ,
plotted as function of U/� in units of 1/�2 (black points indicate the
U/� values from the main plot). CK

V shows an exponential increase
with U/TK , caused by an exponential decrease in TK . The growth in
CK

V is counteracted by the fact that the voltage window in which our FL
analysis applies decreases exponentially, since the FL expansion (29)
of the conductance requires V � TK .

passes BV ∼ √
U�, the zero-bias maximum turns into a

minimum and only the two large-bias peaks remain. Thus
the appearance of two finite-bias side peaks does not go hand
in hand with the appearance of a zero-bias minimum, but well
precedes it.

To conclude this section, we remark that our conclusion
that BV = ∞ in the Kondo limit disagrees with Ref. [30],
where renormalized perturbation theory (RPT) for the case of
particle-hole symmetry yielded a finite value for BV in the
Kondo limit [see the discussion after their Eqs. (19) and (27)].
Their results differ from ours also for finite values of U/�;
for example, for U/� = 4π they find 1

2BV � 0.584TK [after
their Eq. (27)], whereas we find BV � 0.679

√
U� [see our

Fig. 3(b)]. In Ref. [30], the coefficients playing the roles of
our α2σ and φ2σ are computed perturbatively in terms of the
renormalized parameters of RPT (the same three parameters
are also used at zero magnetic field [41]), and are therefore
approximate. As noted in the concluding section of Ref. [47],
it is not clear whether this RPT approach contains enough
parameters to accurately evaluate BV .

To try to identify the origin of the disagreement, we have
expressed our FL parameters in terms of the RPT parameters
needed in general to characterize the local impurity Green’s
function (see Appendix B). This can be done by simply
expanding the RPT spectral function to second order in ε,
T , and eV and equating the result to our Eqs. (26) and (27).
The resulting equations (B8) provide a RPT-FL dictionary
that relates the RPT parameters to our FL parameters. Since
the latter are computable exactly via the Bethe ansatz, this
dictionary provides a number of exact constraints on the RPT

parameters. We were not able to ascertain that the expressions
provided in Ref. [30] for their RPT parameters satisfy these
constraints. We suspect that at finite magnetic field or out of
particle-hole symmetry, the second-order RPT (perturbative
in the renormalized interaction U ) becomes approximate for
the calculation of the coefficients α2 and φ2 [82]. However,
we would like to suggest a converse strategy: one could set
up a RPT whose input parameters are computed exactly by
Bethe ansatz via the RPT-FL dictionary in Appendix B. Doing
so would be an interesting goal for future work, since RPT
offers the welcome prospect of smoothly linking the exact FL
description of the impurity’s low-energy behavior to a descrip-
tion, albeit approximate, that is also useful at higher energies.

D. cV away from particle-hole symmetry

Finally, let us examine the behavior of the transport
coefficient cV away from particle-hole symmetry. We consider
only εd/U > − 1

2 (from which the opposite case follows by
particle-hole symmetry). The quantum dot is in a strongly
correlated Kondo singlet state as long as the dot is in the
local-moment regime (−U/2 � εd � −�). As εd crosses
over through the mixed-valence regime (|εd | < �) into the
empty-orbital regime (εd � �), Kondo correlations die out
completely. In the previous section, we showed that cV

changes sign at particle-hole symmetry for splitting fields
BV of the order of

√
U� [see Fig. 3(b)]. Our aim here is

to study the evolution of BV as εd/U is tuned through the
transition from the local-moment regime to the empty-orbital
regime. The numerical results reported below were obtained
by numerically solving the Bethe ansatz equations for the
Anderson model [64,83] in the form reported in Ref. [65].

Figure 6(a) shows a color-scale plot of cV for a large, fixed
interaction of U/� = 20, plotted as function of field B and
level energy εd . Figure 6(b) shows the same data as function
of B along several fixed values of εd . We find that throughout
the local-moment regime, an increasing field yields an initial
minimum for cV as function of B around field values that
distinctly follow the εd dependence of the Kondo temperature
TK of Eq. (20) (grey triangles). The latter is well approximated
by the analytic formula T

(af)
K of Eq. (22) (black solid line) and

coincides with the FL scale E∗ of Eq. (19) at B = 0 (grey
squares), with deviations only in the empty orbital regime
(εd � �). Just as in the previous section, we observe an actual
change of sign for cV (indicated by black dots) only at fields
BV much higher than TK . Close to particle-hole symmetry BV

scales as
√

U� [cf. Fig. 3(b)], crossing over to values of order
� when approaching the empty orbital regime.

The behavior of cV is strongly modified as soon as the
renormalized level increases past the Fermi surface (εd � �)
and the charge on the dot changes from 1 to 0, so that Kondo
correlations are completely absent. For low magnetic fields,
cV is negative and with increasing field evolves through a
double sign change with a positive-valued peak in between,
see Figs. 6 and 7. This behavior can be understood as
follows. At zero magnetic magnetic field, the dot is empty
and in a cotunneling regime [84], so that its conductance
increases when the bias increases from zero. This explains
why cV is found to be negative for small fields in Fig. 6.
With increasing field, the local level is Zeeman split. When
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FIG. 6. (a) Transition from the local-moment regime to the
empty-orbital regime for the transport coefficient cV /cK

V , shown using
a color scale, as a function of the magnetic field B and the level
energy εd , at U/� = 20, a convenient value to highlight features
related to Kondo physics. The solid line shows the prediction for
the Kondo scale of the analytic formula (22) for T

(af)
K , the grey

triangles the numerical evaluation of TK as defined in Eq. (20) and the
grey squares the numerical evaluation of E∗ in Eq. (19) for B = 0.
All these quantities show a nice agreement as long as εd < 0. The
black points signal when cV = 0 and changes sign. The light-colored
regions correspond to positive values of cV . (b) Same quantity cV /cK

V

as in (a), now shown along the cuts marked in (a) by grey dashed
lines, and plotted as a function of B/EB=0

∗ on a logarithmic scale.
The numbers above the data points give the corresponding values of
εd/U (increasing as colors turn from light to dark). The solid line
corresponds to the analytical result for cV at particle-hole symmetry
derived from the Wiener-Hopf solution [65] [see also Fig. 4(a)].
Throughout the local-moment regime in which Kondo correlations
occur (εd � −�), cV shows a local minimum around fields of order
TK , and changes sign only at a much larger field, BV � TK . For
εd � 0, cV develops a double sign change with a peak in between,
which reflects a field-induced resonance between the empty- and
singly occupied dot states (see Fig. 7).

the empty and singly occupied states come into resonance,
the conductance develops a well-pronounced zero-bias peak
with a negative curvature, explaining why cV goes through a
positive-valued maximum. The resonance condition at which
this happens is that the spin-up Zeeman energy B/2 matches

FIG. 7. Magnetic-field dependence of (a) cV in units of cK
V and (b)

CV = cV /E2
∗ in units of 1/�, in the mixed-valence and empty-orbital

regimes. Both are plotted as functions of B/� on a linear scale, for
several values of εd/� (given by numbers above the data points,
increasing as colors turn from light to dark). Black solid curves display
analytical predictions derived in perturbation theory, showing good
agreement with the numerical results (symbols). The peaks in cV and
CV reflect the field-induced resonance between the empty and singly
occupied dot states. Vertical solid lines indicate the predicted values of
the resonance field, B = 2ε̃d , where the renormalized level position ε̃d

is given by Eq. (42) (and α � 1.62 therein); for comparison, vertical
dashed lines indicate the bare values, B = 2εd . Note that the nontrivial
B dependence exhibited by CV in (b) is as pronounced as that of cV

in (a). The reason is that near the resonance field B � 2ε̃d , both the
spin and charge susceptibilities are large, ensuring that E∗ remains
small.

the renormalized level position ε̃d , which differs from εd due
to virtual processes involving doubly occupied intermediate
dot states. A perturbative calculation following Haldane [66]
yields [85]

ε̃d = εd + �

π
ln

εd + U

αεd

, (42)

where α is a constant of order one. For the choice α � 1.62,
the resonance field values B = 2ε̃d , indicated by vertical solid
lines in Fig. 7, indeed match the observed peak positions for
cV rather well.
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For εd > �, the full dependence of cV on the magnetic field
can be well captured analytically by second-order perturbation
theory in the dot-lead hybridization [86], using the spin-down
state of the dot as virtual intermediate state. Appendix C
presents corresponding results for ndσ as function of the bare
level position εd and Zeeman field B, from which cV can be
obtained using the formulas of Sec. II. Using the substitution
εd → ε̃d in the final results, one obtains the solid curves for
cV shown in Fig. 7, which agree nicely with our numerical
results (symbols). In the limit εd � �, where the spin-down
state can be totally neglected, the shape of the cV peak can
be computed by considering a single noninteracting resonant
level. The result is

cV

cK
V

= 1

3

�2 − 3
(

1
2B − εd

)2

�2 + (
1
2B − εd

)2 , (43)

which is peaked symmetrically around the resonance field B =
2εd .

In the mixed-valence and empty-orbital regimes, the non-
trivial B-dependence exhibited by cV is equally well visible in
CV = cV /E∗2, see Fig. 7(b) (in contrast to the Kondo regime,
where CV rapidly approaches zero for B � TK , cf. Fig. 5).
The reason is that in the mixed-valence and empty-orbital
regimes the FL scale E∗ does not become very large with
increasing B, because both the spin and charge susceptibilities
χs and χc are sizable, ensuring that E∗ remains small [cf.
Eq. (19)]. In fact, both susceptibilities become maximal,
and E∗ minimal, in the regime near near B � 2ε̃d where
the empty and singly occupied dot states are in resonance.
This can be checked analytically in the εd � � limit,
where the perturbative approach presented in Appendix C
yields

E∗ = π

2�
[(εd − B/2)2 + �2] , (44)

which is minimal at the bare resonance field B = 2εd . The
fact that CV is large in the mixed-valence and empty-orbital
regimes suggests that these regimes would be particularly
suitable for the purposes of benchmarking numerical methods
for solving the nonequilibrium Anderson model against the
exact results obtained by our FL approach.

IV. SUMMARY AND CONCLUSIONS

We extended the FL framework of Ref. [47] to the
single-impurity Anderson model at finite magnetic field where
low-energy properties can be calculated in the whole phase
diagram. Using a generalization of the “floating Kondo
resonance” argument of Nozières, we expressed all parameters
of the low-energy effective FL Hamiltonian in terms of the
zero-temperature local occupation functions ndσ and their
derivatives with respect to level energy and magnetic field,
and evaluated these using precise Bethe ansatz calculations.
Focussing on strong interaction, zero temperature and particle-
hole symmetry where the Kondo singlet forms, we obtained
exact results for the magnetic-field dependence of c̃A and cA,
two parameters that characterize the zero-energy height and
curvature of the equilibrium spectral function, respectively. Di-
rect NRG computations of the spectral function quantitatively

confirm our FL results for c̃A and cA, thereby establishing the
soundness of our FL theory. We also computed the splitting
field BA at which cA changes sign, signaling the onset of a
field-induced splitting of the equilibrium Kondo peak, and find
that BA is of order TK throughout the local-moment regime,
as expected.

We next performed exact calculations of the FL transport
coefficients cT and cV at particle-hole symmetry but for
arbitrary magnetic fields. In the local-moment regime, we find
that cT changes sign at a field BT of order TK , as expected,
but cV changes sign only at a parametrically larger field BV of
order

√
U�. This unexpected result implies that the emergence

of finite-bias side peaks in the nonlinear conductance at
field scales of order TK (reflecting the peak splitting of
the spectral function) is not accompanied by a simultaneous
change of the zero-bias maximum into a minimum—the latter
change occurs only at much larger fields, of order

√
U�,

indicative of the onset of charge fluctuations. In the Kondo
model, which does not account for charge fluctuations at
all, the zero-bias maximum, though becoming increasingly
flat with increasing field, never turns into a minimum, no
matter how large the field. The fact that the splitting field
BV for the conductance is so much larger than the splitting
field BA for the spectral function implies that the zero-bias
curvature of the nonlinear conductance is not a good diagnostic
tool for the field-induced splitting of the spectral function,
contrary to initial expectations. The reason is that this zero-bias
curvature results from an interplay of two effects, namely
a bias-induced reduction in the zero-energy height A(0) of
the spectral function, which tends to reduce the conductance,
and a bias-induced widening of the transport window, which
tends to increase the conductance if the spectral function is
split. The former effect turns out to outweigh the latter for all
fields up to the scale

√
U�, where charge fluctuations begin to

contribute.
Finally, we also calculated the magnetic-field dependence

of cV throughout the crossover from the local-moment through
the mixed-valence into the empty-orbital regime. Throughout
the former, the behavior of cV is qualitatively similar to
that found at particle-hole symmetry. However, it changes
dramatically upon entering the empty orbital regime: there
cV is negative at zero magnetic field, but with increasing
field traverses a positive-valued peak at twice the renormalized
level energy, B � 2ε̃d , arising from a spin-polarized resonance
between the empty and singly occupied dot states.

It would be an interesting challenge for experimental studies
of nonequilibrium transport through quantum dots to check
our peak-splitting predictions by detailed measurements of
the nonlinear conductance as function of bias voltage and
field. Since the specifics of our peak-splitting predictions are
model dependent, it would be important to strive for a faithful
implementation of the single-level Anderson model, requiring
a small dot with a very large level spacing, and to make the
ratio U/� as large as possible.

To conclude, we have used exact tools to address the
question posed in the title of our paper, coming to the surprising
conclusion that it has two qualitatively very different answers,
depending on whether one studies the spectral function or
the nonlinear conductance. On a quantitative level, our work
establishes exact benchmark results against which any future
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numerical work on the nonequilibrium properties of the
Anderson model can be tested.
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APPENDIX A: KONDO MODEL AT LARGE
MAGNETIC FIELD

In this appendix, we perform a consistency check of the FL
theory of the main text by considering the Kondo model in the
large-field limit B � TK . To this end, we derive an effective FL
Hamiltonian from the Kondo Hamiltonian by doing second-
order perturbation theory in spin-flip scattering. This yields
explicit expressions, in terms of the bare parameters of the
Kondo model, for the FL parameters δ0σ , αjσ and φjσ , and
hence, via the FL relations (13), also for md , χs and ∂χs/∂B.
Satisfyingly, the latter expressions turn out to fully agree with
corresponding Bethe ansatz results in the large-field limit.

A standard mapping exists between the Anderson model
Eq. (1) and the Kondo model HK = −B Sz + ∑

σ,k εkc
†
kσ ckσ +

Hex with the spin-exchange interaction

Hex = J S · s, (A1)

where s = ∑
kk′σσ ′ c

†
kσ

τ σσ ′
2 ck′σ ′ denotes the local spin of con-

duction electrons and τ σσ ′ is a vector composed of the Pauli
matrices. The mapping holds at particle-hole symmetry, where
ν0J = 8�/(πU ), and for energies well below the charging
energy U . The impurity then hosts exactly one electron with
spin S.

The FL Hamiltonian of Eq. (3) can be derived perturbatively
at large magnetic fields B � TK . A strong magnetic field
polarizes the impurity and a perturbation expansion with
respect to the impurity in the spin up state |↑〉 can be
formulated. The result is a perturbative Hamiltonian Hpert =
H1 + H2 + . . . written as a series with increasing powers of J ,
and in which the impurity spin has disappeared. The leading
order H1 is simply obtained by averaging the exchange Kondo
term over the spin-up state,

H1 = 〈↑|Hex|↑〉 = J

4

∑
σ,k,k′

σc
†
kσ ck′σ , (A2)

corresponding to a spin-selective potential scattering term in-
ducing the phase shifts δ0↑ = π − πν0J/4 and δ0↓ = πν0J/4.
The next order, H2, arises from virtual impurity spin-flip
process in which an electron-hole pair (with opposite spins) is
excited. It is obtained by using the standard Schrieffer-Wolff
technique, with the outcome

H2 = −J 2

8

∑
{ki }

1

B + ε3 − ε4
c
†
k1↓ck2↑c

†
k3↑ck4↓ + H.c. (A3)

In order to compare this result with the FL form of Eq. (3), we
normal order the two equal-spin pairs of operators in Eq. (A3)

with respect to a reference ground state with spin-dependent
chemical potentials ε0σ = − 1

2σB0 close to μ0σ = 0 (in the
Kondo limit, where εd = −∞, there is no need to use ε0 �= 0):

ck2↑c
†
k3↑ = − : c

†
k3↑ck2↑ : + δk3,k2θ (ε2 − ε0↑), (A4a)

c
†
k1↓ck4↓ = : c

†
k1↓ck4↓ : + δk1,k4θ (ε0↓ − ε1). (A4b)

Inserting these expressions into Eq. (A3) yields, up to a
constant term, H2 = Hα + Hφ , with

Hα = J 2ν0

8

∑
σ,k1,k2

σ ln

[
D

B − B0 + σ (ε1 − ε0σ )

]
c
†
k1σ

ck2σ

+ H.c., (A5)

Hφ = J 2

8

∑
{ki }

: c
†
k3↑ck2↑c

†
k1↓ck4↓ :

B − B0 + (ε3 − ε0↑) − (ε4 − ε0↓)

+ H.c., (A6)

where D is the high-energy cutoff of the Kondo model. Hα

describes elastic potential scattering. It can be expanded by
assuming (ε1,2 − ε0σ ) � B − B0. The zeroth order gives the
first logarithmic correction to the zero-energy phase shifts,{

δ0↑
δ0↓

}
=

{
π

0

}
∓ πν0J

4
∓ π (ν0J )2

4
ln

(
D

B − B0

)
. (A7)

Changing from wave vector to energy summations, the first and
second orders obtained from Eq. (A5) reproduce precisely [87]
Hα in Eq. (3), with ᾱ1 = 0, α2 = 0 and

α1

π
= (ν0J )2

4(B − B0)
,

α2

π
= − (ν0J )2

8(B − B0)2
. (A8)

Next, expand Hφ to first order in (ε3,4 − ε0σ )/(B − B0). The
result coincides with Hφ in Eq. (3), with φ2 = 0,

φ1

π
= (ν0J )2

4(B − B0)
,

φ2

π
= − (ν0J )2

2(B − B0)2
. (A9)

Equations (A7) to (A9) are the main results of this appendix.
They explicitly give all the FL parameters in terms of the
bare parameters of the Kondo model and the dummy reference
energies ε0σ = − 1

2σB0, illustrating explicitly that the latter
occur only in the combination B − B0 [cf. Eq. (5)]. It is
easy to verify explicitly that Eqs. (A7) to (A9) satisfy the
FL relations (9) (in the latter, all derivatives w.r.t. εd vanish in
the Kondo limit). Moreover, the above derivation clarifies the
underlying reason for why the FL parameters necessarily must
be mutually interrelated: they arise as expansion coefficients of
the actual physical Hamiltonian in the large-field Kondo limit,
namely H2 of Eq. (A3), whose functional form fully fixes all
terms in the expansion H2 = Hα + Hφ + . . . .

Equations (A7) to (A9) can also be used to test our
predictions (17) for how the FL parameters are related to
susceptibilities. To this end, we remove the dependence on
the dummy reference energy by setting it to ε0σ = μ0σ = 0 [as
done in Eq. (11)]. Then, we directly compute the magnetization
and spin susceptibility at large magnetic field. The Bethe ansatz
solution provides a universal expression for the magnetization
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of the Kondo model,

md = 1

2
− 1

2π3/2

∫ ∞

0
dt

sin(πt)(βrt)−t

t
�

(
1

2
+ t

)
, (A10)

where the ratio βr = π
8 (B/TK )2 � 1

e
is written in terms of

the Kondo temperature TK extracted from the zero-field spin
susceptibility [Eq. (20)]. At large magnetic fields, Eq. (A10)
can be expanded in powers of 1/ ln βr . Noting that (we use
that TK ∼ D e−1/ν0J )

2

ln βr

� ν0J

1 + ν0J ln(B/D)
� ν0J + . . . , (A11)

we also find an expansion for ν0J � 1. At large magnetic
fields, one obtains

md = 1

2
− ν0J

4
, χs = (ν0J )2

4B
,

∂χs

∂B
= − (ν0J )2

4B2
.

(A12)
Inserting these susceptibilities into Eq. (17) for the FL
parameters, we recover Eqs. (A8), (A9), which serves as
a nice consistency check for Eq. (17). [Eq. (A12) for md

does not strictly approach 1
2 in the limit B → ∞, because

the calculation is perturbative in ν0J ]. In summary, in this
appendix we explicitly derived the FL Hamiltonian at large
magnetic field and checked the FL relations advertised in this
paper.

APPENDIX B: RPT-FL DICTIONARY

It is instructive to relate the FL parameters introduced in
this work to the parameters that are used in renormalized
perturbation theory (RPT) [30,40–42,44] to parametrize the
low-energy behavior of the retarded local Green’s function of
the impurity, Gdσ (ω) = 1/[ω − �σ (ω)]. If ω, T , and eV are so
small that the impurity self-energy may be expanded to second
order in these variables, this correlator can be expressed in the
form

Gdσ (ω) = z̃σ

ω − ε̃dσ + i�̃σ + R̃σ + iĨσ

. (B1)

All parameters carrying tildes are understood to be functions
of magnetic field. z̃σ = [1 − ∂ω�′

σ (0)]−1 is the quasiparticle
weight, ε̃dσ = [εdσ + �σ (0)]z̃σ the renormalized position of
the local level with spin σ , and �̃σ = z̃σ� its renormalized
width. R̃σ and Ĩσ are the real and imaginary parts of −�(2)

σ z̃σ ,
coming from the second-order term in the self-energy, which
we parametrize as

R̃σ = R̃ωσω2 + R̃V σ

[
1
3 (πT )2 + 1

4 (eV )2
]
, (B2a)

Ĩσ = Ĩωσ

[
1
3ω2 + 1

3 (πT )2 + 1
4 (eV )2

]
, (B2b)

where R̃ωσ , R̃V σ , and Ĩωσ are constants independent of ω, T ,
and eV . The imaginary part of the second-order self-energy
can only depend on the combination of energy, temperature
and bias stated in Eq. (B2b), because it is governed by
the second-order term of the inelastic T matrix, which
we know to depend only on this combination [Eq. (24b)].
The corresponding real part, however, requires two separate
coefficients for its energy dependence and its temperature
and voltage dependence [Eq. (B2a)], because the former also

receives a contribution from the elastic T matrix, but the latter
does not.

The spin-resolved version of the FL spectral function
discussed in the main text is normalized such that Aσ (0) = 1
for the symmetric Anderson model at T = V = B = 0. It is
related to the imaginary part of the local Green’s function by
Aσ (ω) = −(π�) 1

π
ImGσ (ω), hence [from Eq. (B1)]:

Aσ (ω) = �̃σ (�̃σ + Ĩσ )

(ω − ε̃dσ + R̃σ )2 + (�̃σ + Ĩσ )2
. (B3)

When this expression is expanded in the form of the spin-
resolved versions of Eq. (26),

Aσ (ω) = A0σ + A1σ ω − C̃Aσ

[
1
3 (πT )2 + 1

4 (eV )2
] − CAσω2,

(B4)

and the expansion coefficients are expressed in terms of

ρ̃σ = − 1

π
ImGdσ (0) = �̃σ /π

�̃2
σ + ε̃2

dσ

, (B5)

sin(δ0σ ) = �̃σ√
�̃2

σ + ε̃2
dσ

, cos(δ0σ ) = ε̃dσ√
�̃2

σ + ε̃2
dσ

, (B6)

one readily obtains

A0σ = sin2(δ0σ ) , (B7a)

A1σ = πρ̃σ sin(2δ0σ ) , (B7b)

C̃Aσ = −πρ̃σ [R̃V σ sin(2δ0σ ) + Ĩωσ cos(2δ0σ )], (B7c)

CAσ = −πρ̃σ

[
R̃ωσ sin(2δ0σ ) + 1

3 Ĩωσ cos(2δ0σ )
]

+ (πρ̃σ )2[4 sin2(δ0σ ) − 3] . (B7d)

By comparing Eq. (B7) to the expressions (27) of the main
text, we can express all the FL parameters in terms of RPT
parameters. Eqs. (B7b) and (B7c) imply

α1σ = πρ̃σ , φ1 =
√

2
3πρ̃σ Ĩωσ , φ2σ = −4πρ̃σ R̃V σ .

(B8a)

Inserting these into Eq. (27c) and solving for α2σ , we find

α2σ = (πρ̃σ )2 cot(δ0σ ) + πρ̃σ R̃ωσ . (B8b)

Equations (B8) constitute a useful dictionary that relates the
RPT parameters, which characterize the impurity dynamics,
to the FL parameters, which characterize the quasiparticle
dynamics.

In conjunction with Eq. (13), the RPT-FL dictionary can be
used to express the RPT parameters in terms of local ground-
state susceptibilities; they can thus be computed exactly via
the Bethe ansatz. Moreover, if alternative strategies (e.g.
NRG) are used to compute the RPT parameters, then the
relations (15) to (18) between various FL parameters that hold
for certain special cases (zero field, or particle-hole symmetry,
or the Kondo limit), suitably transcribed using the RPT-FL

165404-15
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dictionary, provide useful consistency checks on the RPT
parameters.

APPENDIX C: PERTURBATION RESULTS IN THE
εd � � LIMIT

The FL coefficients needed to derive the spectral coef-
ficients c̃A,cA and transport coefficients cV ,cT , depend on
the zero-temperature dot occupation functions ndσ and their
derivatives with respect to the level energy εd and magnetic
field B. Deep in the empty-orbital regime, where εd � �, the
leading corrections to the noninteracting occupations,

n0
d↑ = 1

2 − 1
π

arctan
[(

εd − 1
2B

)
/�

]
, (C1)

can be computed perturbatively in the dot-lead hybridization,
using the spin-down state of the dot as intermediate state (see
also Ref. [86]), with the result

nd↑ = n0
d↑ − �

π

Un0
d↑

(
1 − n0

d↑
)(

U + εd + 1
2B

)(
εd + 1

2B
) , (C2a)

nd↓ = �

π

(
1 − n0

d↑
εd + 1

2B
+ n0

d↑
εd + U + 1

2B

)
. (C2b)

All FL parameters can be straightforwardly computed from
these expressions using Eqs. (12) and (13). To compare with
the numerical results in Fig. 7, we substitute εd → ε̃d [cf.
Eq. (42)] in the final result for cV .
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