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Open Wilson chains for quantum impurity models: Keeping track of all bath modes
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When constructing a Wilson chain to represent a quantum impurity model, the effects of truncated bath modes
are neglected. We show that their influence can be kept track of systematically by constructing an “open Wilson
chain” in which each site is coupled to a separate effective bath of its own. As a first application, we use the method
to cure the so-called mass-flow problem that can arise when using standard Wilson chains to treat impurity models
with asymmetric bath spectral functions at finite temperature. We demonstrate this for the strongly sub-Ohmic
spin-boson model at quantum criticality where we directly observe the flow towards a Gaussian critical fixed
point.

DOI: 10.1103/PhysRevB.95.121115

A quantum impurity model describes a discrete set of
degrees of freedom, the “impurity”, coupled to a bath of
excitations. For an infinite bath this is effectively an open sys-
tem. However, the most powerful numerical methods for solv-
ing such models, Wilson’s numerical renormalization group
(NRG) [1,2] and variational matrix-product-state (VMPS)
generalizations thereof [3–6], actually treat it as closed: The
continuous bath is replaced by a so-called Wilson chain, a
finite-length tight-binding chain whose hopping matrix ele-
ments tn decrease exponentially with site number n, ensuring
energy-scale separation along the chain. This works well for
numerous applications, ranging from transport through nanos-
tructures [7,8] to impurity solvers for dynamical mean-field
theory [9–11]. However, replacing an open by a closed system
brings about finite-size effects. Wilson himself had anticipated
that the effect of bath modes neglected during discretization
might need to be included perturbatively “to achieve rea-
sonable accuracy”, but concluded that “this has proven to
be unnecessary” for his purposes (see p. 813 of Ref. [1]).
By now, it is understood that finite-size effects often do
matter. They hamper the treatment of dissipative effects
[12], e.g., in the context of nonequilibrium transport [13]
and equilibration after a local quench [14]. Moreover, even
in equilibrium, they may cause errors when computing the
bath-induced renormalization of impurity properties [15–17].
Indeed, finite-size issues constitute arguably the most serious
conceptual limitation of approaches based on Wilson chains.

Here, we set the stage for controlling finite-size effects by
constructing “open Wilson chains” (OWCs) in which each site
is coupled to a bath of its own. The resulting open system
implements energy-scale separation in a way that, in contrast
to standard Wilson chains (SWCs), fully keeps track of all
bath-induced dissipative and renormalization effects. The key
step involved in any renormalization group (RG) approach,
namely, integrating out degrees of freedom at one energy scale
to obtain a renormalized description at a lower scale, can then
be performed more carefully than for SWCs. We illustrate this
by focusing on renormalization effects, leaving a systematic
treatment of dissipative effects on OWCs for the future.

A SWC is constructed by logarithmically discretizing
the bath and tridiagonalizing the resulting discrete bath
Hamiltonian to obtain a tight-binding chain, with the impurity
coupled to site n = 0 [1,2]. Properties at temperature T

are calculated using a chain of finite length NT , chosen
such that its smallest energy scale matches the temperature
tNT

� T (kB = 1). However, since sites n > NT are neglected,
the contribution of the corresponding truncated bath modes
(TBMs) to the renormalization of impurity properties is
missing [17]. For example, for a local level linearly coupled
to a bath with an asymmetric bath spectrum, this coupling
generates a physical shift in the level energy. When this
shift is computed using a SWC of length NT , the result
contains a temperature-dependent error. Hence, the use of
SWCs generically leads to qualitative errors in the temperature
dependence of renormalized model parameters, called the
“mass-flow problem” [16,17]. Quantitative errors persist even
for T → 0, when NT → ∞, because constructing a SWC
actually involves neglecting TBMs at every site.

The mass-flow problem is particularly serious when tar-
geting a quantum critical point, where it causes errors for
critical exponents describing finite-temperature properties at
the critical point. This has been studied in some detail for
the dissipative harmonic oscillator (DHO) and the sub-Ohmic
spin-boson model (SBM). For both, SWCs are unable to
even qualitatively describe the temperature dependence of the
local susceptibility χ (T ) at criticality [15–17]. Both involve
Gaussian criticality of φ4 type and hence a bosonic mode
whose excitation energy vanishes at the critical fixed point.
The finite-temperature RG flow in its vicinity cannot be
correctly described using finite-length SWCs because the
erroneous mass dominates over physical interaction effects.
Summarizing, methods based on SWCs produce systematic
quantitative errors for all impurity problems with asymmetric
baths, and they fail even qualitatively in addressing Gaussian
criticality and other phenomena with zero modes.

Here, we show that these issues can be addressed using
OWCs: The bath coupled to each site of the OWC induces
an energy shift for that site that can be computed exactly and
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FIG. 1. (a) Impurity model. (b) Initialization. (c) Open Wilson
chain (OWC). (d) Renormalized Wilson chain (RWC).

used to define a “renormalized Wilson chain” (RWC). The
ground-state properties of a RWC of length NT mimic the
finite-T properties of the original model in a way that is free
from mass-flow problems. We demonstrate this explicitly by
using VMPS techniques [6] on RWCs to compute χ (T ) for
the DHO and SBM. We also compute the energy-level flow of
the SBM; it unambiguously reveals flow towards a Gaussian
fixed point with a dangerously irrelevant interaction term.

Model. We consider a generic single-band impurity model
with Hamiltonian H = Himp[b†timp] + Hbath, where Hbath

describes the bath, and Himp the impurity and its coupling to
the bath via normalized bath operators b† and b, with coupling
constant timp [Fig. 1(a)]. The free (timp = 0) dynamics of b†,
generated by Hbath, is encoded in the free retarded correlator
Gbath(ω) = 〈〈b|b†〉〉ω, which is uniquely characterized by its
spectral function Abath(ω) = − 1

π
ImGbath(ω). The impurity

dynamics is therefore fully determined onceHimp and the “bath
spectrum”, �bath(ω) = |timp|2Abath(ω), have been specified.

Continued-fraction expansion. One well-known way of
mapping an impurity model to a chain is to iteratively construct
a continued-fraction expansion (CFE) for Gbath [18]. Our main
idea is to do this in a way that zooms in on low energies
without discarding high-energy information. Our construction
involves a sequence of retarded correlators GX

n (ω), with
X = S or F , describing the effective “slow” (low-energy)
or “fast” (high-energy) bath modes of iteration step n, with
spectral functions AX

n (ω) = − 1
π

ImGX
n (ω) having unit weight∫

dωAX
n (ω) = 1. We initialize our CFE construction with

GS
−1 = Gbath [Fig. 1(b)]. Starting with n = 0, we iteratively

use GS
n−1, describing the low-energy modes of the previous

iteration, as input to define a new retarded correlator Gn and
its retarded self-energy �n,

Gn(ω) = GS
n−1(ω) = 1/[ω − εn − �n(ω)], (1)

with εn = ∫
dω ωAn(ω) [19]. Then we split this self-energy

into low- and high-energy parts by writing it as

�n(ω) = �S
n (ω) + �F

n (ω), �X
n (ω) = ∣∣tXn

∣∣2GX
n (ω). (2)

Here, the corresponding retarded correlators GS/F
n are defined

by choosing their rescaled spectral functions |tS/F
n |2AS/F

n

to represent the low- and high-energy parts of �n(ω) =
− 1

π
Im �n, with tXn chosen such that AX

n has unit weight
(see Sec. S-1 A of Ref. [19] for details). To be explicit,
we write �n = �S

n + �F
n , with �X

n (ω) = wX
n (ω)�n(ω). The

splitting functions w
S/F
n (ω) are defined on the support of �n,

take values in the interval [0,1], satisfy wS
n (ω) + wF

n (ω) = 1,
and have weight predominantly at low/high energies. Then

we write the split bath spectra as �X
n (ω) = |tXn |2AX

n (ω), with

“couplings” tXn chosen as |tXn |2 = ∫
dω �X

n (ω), and define new

retarded correlators via GX
n (ω) = ∫

dω̄
AX

n (ω̄)
ω−ω̄+i0+ , also fixing

�X
n (ω) via Eq. (2).
Iterating, usingGS

n as input to compute new correlatorsGX
n+1

while retaining the self-energy �F
n , we obtain a sequence of

exact CFE representations for Gbath. That of depth 2, e.g., reads

Gbath(ω) = 1

ω − ε0 − �F
0 (ω) − |tS0 |22

ω−ε1−�F
1 (ω)− |tS1 |2

ω−ε2−�2(ω)

.

To ensure energy-scale separation, we choose AX
n (ω) such that

the CFE parameters decrease monotonically, max{|εn|,|tSn |} �
max{|εn−1|,|tSn−1|}/	, with 	 > 1 [20].

Open Wilson chain. We now use the CFE data (εn,t
X
n ,GX

n )
to represent the original bath in terms of a chain with N + 1
sites, each coupled to a bath of its own, and site 0 coupled to
the impurity (site −1) [Fig. 1(c)]. This OWC is constructed
such that the free (timp = 0) correlator of site 0 is exactly equal
to the depth-N CFE found above, i.e., G0 = Gbath, implying
that the chain and original bath have the same effect on the
impurity.

The key point is that each CFE step of writing GS
n−1(ω)

in the form Gn(ω) = 1/[ω − εn − �n(ω)] can be implemented
on the level of the Hamiltonian: It corresponds to replacing
the bath represented by GS

n−1, say, Sn−1, by a new site n, with

energy εn and normalized site operators f
†
n and fn , which is

linearly coupled to a new bath that generates the self-energy
�n. In the present case, the latter is split into low- and high-
energy contributions, �S

n + �F
n . We can generate these by

linearly coupling the new site with couplings tSn and tFn to
two new baths, say, Sn and Fn, via normalized bath operators
b
†
Sn,bSn and b

†
Fn,bFn, that are governed by bath Hamiltonians

HX
n chosen such that 〈〈bXn|b†Xn〉〉ω equals the GX

n (ω) found
above (see Sec. S-1 A of Ref. [19] for details). For the next
iteration, we retain the fast bath Fn, but replace the slow bath
Sn by a new site n + 1 coupled to new baths Sn+1 and Fn+1, etc.
This leads to replacing H by HOWC

N = HSWC
N + HTBM

N , with

HSWC
N = Himp

f +
N∑

n=0

εnf
†
n fn +

N−1∑

n=0

(
f

†
n+1t

S
n fn + H.c.

)
,

HTBM
N =

N∑

n=0

(
b
†
Fnt

F
n fn + H.c.

) +
N∑

n=0

HF
n

+ (
b
†
SN tSNfN + H.c.

) + HS
N , (3)

and Himp
f = Himp[f †

0 timp]. This chain Hamiltonian is depicted
schematically in Fig. 1(c). HSWC

N has the structure of a SWC,
while HTBM

N describes the couplings to all fast baths Fn�N ,
and of the last site N to its slow bath SN . These “fast and last
slow” baths Fn and SN constitute TBMs, since a SWC neglects
them. By instead using an OWC, we can keep track of their
influence, namely, to shift, mix, and broaden the eigenstates
of those subchains to which they couple. Equation (3), which
represents an impurity model in terms of a Wilson chain that
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still is a fully open system, is the first main result of this Rapid
Communication.

Renormalized Wilson chain. For concrete numerical calcu-
lations, we need to approximate an OWC by a RWC that can
be treated using standard NRG or VMPS methods, while still
including information about the TBMs. To this end, we replace
HOWC by HRWC [Fig. 1(d)], a Hamiltonian of the same form as
HSWC (without fast or last baths), but with each on-site energy
εn shifted to

ε̃n = εn + δεF
n + δnN δεS

N , δεX
n = Re

[
�X

n (0)
]
. (4)

For the CFE of Gbath = GS
−1 = G0, this amounts to replacing

the slow and fast self-energies by the real parts of their
zero-frequency values [21]. Therefore, Re[�bath(0)], the real
part of the zero-frequency self-energy of Gbath, is reproduced
correctly [22], irrespective of the length N of the RWC used to
calculate Gbath. (Since the imaginary parts of all self-energies
are neglected, dissipative effects are not included.) If the
original bath spectrum is symmetric, �bath(ω) = �bath(−ω), as
often happens for fermionic models, then δε

S/F
n = 0. However,

for an asymmetric bath function [e.g., �bath(ω < 0) = 0, as is
the case for bosonic baths], these shifts are in general nonzero.

We will henceforth consider two types of RWCs, labeled by
C1 or C2 [23]. A C1 chain includes only fast shifts (δεS

N = 0);
this turns out to lead to results qualitatively similar to those
obtained using a SWC constructed by discretizing the original
bath logarithmically, as done by Wilson, and tridiagonalizing
the bath Hamiltonian Hbath. A C2 chain includes both the
fast and slow shifts from Eq. (4), thus correctly reproducing
Re[�bath(0)].

Dissipative harmonic oscillator. As a first example, con-
sider a DHO with Hamiltonian Himp

DHO + Hbath, where

Himp
DHO = �a†a + 1

2 (a + a†)[ε + timp(b + b†)] (5)

describes an “impurity” oscillator with bare frequency � and
displacement force ε, linearly coupled to a bosonic bath. The
bath spectral function has the form

�bath(ω) = 2αω1−s
c ωs, 0 < ω < ωc, (6)

where s > −1, α characterizes the dissipation strength, and
ωc is a cutoff frequency, henceforth set to unity. This model
is exactly solvable. The static impurity susceptibility at
temperature T , defined by χ(T ) = d〈a+a†〉T

dε
|
ε=0

, turns out to be

temperature independent and given by [17] χexact(T ) = 1/�r,
where �r = � + Re[Gbath(ω = 0)] can be interpreted as the
renormalized impurity frequency, reduced relative to the bare
one by the coupling to the bath. It vanishes at the critical
coupling αc = s�/(2ωc), beyond which the model becomes
unstable.

When χ (T ) is computed numerically for α < αc using
NRG to perform thermal averages on SWCs of length NT , one
does not obtain a constant but a temperature-dependent curve
[15–17]. We find the same using NRG on C1-RWCs of length
NT (Fig. 2, circles). The reason is the neglect of the TBMs as-
sociated with sites n > NT : Their contribution to the renormal-
ization shift Re[Gbath(ω = 0)] in �r is missing. The approach
developed above offers a straightforward cure: We simply
compute χ (T ) using C2-RWCs of length NT , thus incorpo-
rating the energy shift induced by the remaining TBMs via

10 10 10 10 10
0

10
0

10
1

10

10
3

10

T=

cNRG C1 exact

FIG. 2. DHO susceptibility χ (T ) as function of temperature,
computed by NRG on C1-RWCs (circles) and by VMPS on C2-RWCs
(squares), for α = 0.1, 0.19, 0.199, and 0.1999 (from bottom to top).
Solid lines show exact results.

the slow-mode shift for site NT . Since the latter substantially
affects the low-energy spectrum, these calculations require
VMPS methods (see Secs. S-2 B and S-2 C of Ref. [19] for
details). They yield T -independent χ values (Fig. 2, squares),
in excellent agreement with the exact ones (Fig. 2, solid lines).

We remark that SWCs constructed using previous dis-
cretization schemes [24–26] either strongly over- or under-
estimate the critical coupling αc, reflecting the presence of
discretization artifacts. In contrast, our C2-RWCs yield αc

values that match the analytic results almost perfectly (see
Sec. S-3 D of Ref. [19]). Thus, our RWC construction
constitutes a general, new discretization scheme free of the
discretization artifacts of previous schemes.

Spin-boson model. Next, we consider the SBM, which is
not exactly solvable. In its Hamiltonian Himp

SBM + Hbath,

Himp
SBM = − 1

2�σ̂x + 1
2 σ̂z[ε + timp(b + b†)] (7)

describes a spin- 1
2 “impurity” (σ̂i being Pauli matrices) linearly

coupled to a bosonic bath, with �bath(ω) again given by Eq. (6).
ε and � denote the bias and the tunnel splitting of the impurity
spin, respectively.

For the sub-Ohmic case (0 < s < 1), increasing α at
zero temperature drives the SBM through a quantum phase
transition (QPT) from a delocalized to a localized phase (with
〈σ̂z〉0 = 0 or �= 0, respectively). According to a quantum-
to-classical correspondence (QCC) argument [15,16,27], this
QPT belongs to the same universality class as that of
a classical one-dimensional Ising chain with long-ranged
interactions [28]. Thus, the critical exponents characterizing
the QPT follow mean-field predictions for s � 0.5 and obey
hyperscaling for 0.5 < s < 1. The QCC predictions were
confirmed numerically using Monte Carlo methods [29] or
sparse polynomial bases [30].

In contrast, verifying the QCC predictions using NRG
turned out to be challenging. Initial NRG studies [15] yielded
non-mean-field exponents for s < 0.5, but were subsequently
[16,17] found to be unreliable, due to two inherent limitations
of NRG. The first was a too severe NRG truncation of Hilbert
space in the localized phase; it was overcome in Ref. [6] by
using a VMPS approach involving an optimized boson basis
[31–33] on a SWC, which reproduced QCC predictions for
critical exponents characterizing zero-temperature behavior.
The second NRG limitation was the mass-flow problem:
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FIG. 3. (a) Critical exponent x for the sub-Ohmic SBM, as a
function of s, computed by VMPS using RWCs of type C1 (circles)
and C2 (squares). Examples of χ (T ) curves used to extract these
exponents are shown in (b) for s = 0.3 and (c) for s = 0.6. Error bars
in (a) are derived by varying the fitting ranges, e.g., as indicated by
dark and light shading in (b) and (c).

For exponents describing finite-temperature critical behavior
at α = αc, it causes NRG on SWCs to yield hyperscaling
results not only for 0.5 < s < 1 (correct) but also for s < 0.5
(incorrect). For example, consider the susceptibility χ (T ) =
d〈σ̂z〉T

dε
|
ε=0

, which scales as χ (T ) ∝ T −x at the critical coupling
αc. The QCC predicts x = 0.5 for s < 0.5 and x = s for
0.5 < s < 1. In contrast, past NRG calculations yielded x = s

throughout the interval 0 < s < 1 [16,17,24]. We recover the
latter behavior if we compute χ (T ) via VMPS calculations
on length-NT C1-RWCs [Fig. 3(a), circles]. In contrast, if we
use length-NT C2-RWCs instead, the results for x [Fig. 3(a),
squares] agree well with QCC predictions, showing that the
mass-flow problem has been cured.

Critical energy-level flow diagrams. The reason why the
sub-Ohmic SBM shows qualitatively different critical behavior
for 0.5 < s < 1 and s � 0.5 is that the critical fixed point
is interacting for the former but Gaussian for the latter
[17]. To elucidate the difference, Fig. 4 shows energy-level
flow diagrams, obtained by plotting the rescaled lowest-
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FIG. 4. Energy-level flow diagrams for the sub-Ohmic SBM with
s = 0.6 (left column) and s = 0.4 (right column), computed by
VMPS techniques [5,19] on C1-RWCs (top row) and C2-RWCs
(bottom row). Dashed lines depict flow to delocalized (α < αc) or
localized fixed points (α > αc), and solid lines depict critical flow
(α = αc). For the latter, the C2 flow in (d) is characteristic of a
Gaussian fixed point.

lying energy eigenvalues of length-N Wilson chains, 	NEj ,
as functions of N . For s = 0.6 (left column), having an
interacting critical fixed point for which mass-flow effects are
not relevant, the critical level flows for RWCs of type C1 and
C2 are qualitatively similar [Figs. 4(a) and 4(b)], becoming
stationary independent of N for large N , in a manner familiar
from fermionic NRG.

In contrast, for s = 0.4 (right column), having a Gaussian
fixed point for which mass-flow effects do matter, the critical
C1 and C2 level flows are very different: Whereas the C1
flow becomes stationary [Fig. 4(c)] (an artifact of neglecting
slow-mode shifts), the low-lying C2 levels all flow towards
zero [Fig. 4(d)], causing the level spacing to decrease towards
zero, too. This striking behavior, inaccessible when using
SWCs, is characteristic of a Gaussian fixed point: It implies
that the fixed-point excitation spectrum contains a zero-
energy bosonic mode. Remarkably, our C2-RWCs yield a
quantitatively correct description of the critical spectral flow
for 0 < s < 0.5: It follows a power law 	nEj ∝ εκ

n with
κ = (2s − 1)/3, in perfect agreement with the prediction
from controlled perturbative RG for a φ4-type theory with
a dangerously irrelevant quartic coupling (see Sec. S-4 D of
Ref. [19]).

Conclusions and outlook. Open Wilson chains are repre-
sentations of quantum impurity models that achieve energy-
scale separation while fully keeping track of the effects of
bath modes, by iteratively replacing them by a sequence of
separate baths at successively lower-energy scales, one for
each chain site. Starting from such a fully open system,
the effects of these baths can be included systematically.
We have taken the first step in that direction, using the
bath-induced energy shift for each site to define a renormalized
Wilson chain. Remarkably, this simple scheme is sufficiently
accurate to yield renormalized impurity properties free from
the long-standing mass flow problem. The next step, namely,
integrating out each site’s bath more carefully, should lead
to a description of dissipative effects on Wilson chains, as
required for nonequilibrium situations. For example, the effect
of bath Fn on the eigenstates of a length-n subchain could be
treated using some simple approximation capable of mixing
and broadening the eigenlevels (e.g., an equation-of-motion
approach with a decoupling scheme). This is left for future
work.

Finally, we note that our iterative construction of renor-
malized Wilson chains constitutes a well-controlled new
discretization scheme that offers progress on two further fronts,
unrelated to finite-size effects but relevant, e.g., when using
NRG or DMRG as impurity solvers for dynamical mean-field
theory [9–11,34], or to study multi-impurity models [35].
First, it avoids the discretization artifacts known to arise when
conventional schemes [1,24–26] are used to treat strongly
asymmetric bath spectra. Second, it can be generalized
straightforwardly to treat multiflavor models having nondi-
agonal bath spectral functions (see Sec. S-1 B of Ref. [19]).
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