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We introduce an equilibrium formulation of the functional renormalization group (fRG) for inhomogeneous
systems capable of dealing with spatially finite-ranged interactions. In the general third-order truncated form of
fRG, the dependence of the two-particle vertex is described by O(N4) independent variables, where N is the
dimension of the single-particle system. In a previous paper [Bauer et al., Phys. Rev. B 89, 045128 (2014)],
the so-called coupled-ladder approximation (CLA) was introduced and shown to admit a consistent treatment
for models with a purely onsite interaction, reducing the vertex to O(N2) independent variables. In this work,
we introduce an extended version of this scheme, called the extended coupled ladder approximation (eCLA),
which includes a spatially extended feedback between the individual channels, measured by a feedback length
L, using O(N 2L2) independent variables for the vertex. We apply the eCLA in a static approximation and at
zero temperature to three types of one-dimensional model systems, focusing on obtaining the linear response
conductance. First, we study a model of a quantum point contact (QPC) with a parabolic barrier top and on-site
interactions. In our setup, where the characteristic length lx of the QPC ranges between approximately 4–10 sites,
eCLA achieves convergence once L becomes comparable to lx . It also turns out that the additional feedback
stabilizes the fRG flow. This enables us, second, to study the geometric crossover between a QPC and a quantum
dot, again for a one-dimensional model with on-site interactions. Third, the enlarged feedback also enables the
treatment of a finite-ranged interaction extending over up to L sites. Using a simple estimate for the form of
such a finite-ranged interaction in a QPC with a parabolic barrier top, we study its effects on the conductance
and the density. We find that for low densities and sufficiently large interaction ranges the conductance develops
additional features, and the corresponding density shows some fluctuations that can be interpreted as Friedel
oscillations arising from a renormalized barrier shape with a rather flat top and steep flanks.
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I. INTRODUCTION

The functional renormalization group (fRG) is a well
established tool for studying interacting many-body systems
[1–6]. This technique treats interactions using an RG-enhanced
perturbation theory and is known to provide an efficient
way to treat correlations. In particular, fRG can be used
to treat spatially inhomogeneous systems, represented by a
discretized model with N sites. For example, about N ∼ 102

sites are required to represent the electrostatic potential of
a quasi-one-dimensional point contact in a manner that is
sufficiently smooth to avoid finite-size effects [7]. The cor-
responding two-particle vertex has O(N4) ∼ 108 independent
spatial components. To make numerical computations feasible,
simplifying approximations have to be made to reduce the
number of components used to describe the vertex. Such
a scheme, called the coupled-ladder approximation (CLA),
was proposed in Ref. [7] for the case of on-site interactions.
Bauer, Heyder, and von Delft (BHD) [8] supplied a detailed
description of the CLA, which is in principle applicable to
systems of arbitrary dimensionality. The CLA is implemented
within the context of generic, third-order-truncated fRG,
meaning that all vertices with three and higher particle number
are set to zero throughout the whole flow. In this paper,
we generalize this scheme to be able to treat finite-ranged
interactions. Since the central aim of our scheme is to extend
the spatial range over which information is fed back into the
RG flow, we call our scheme the extended coupled-ladder
approximation (eCLA).

The basic idea of the CLA, and by extension the eCLA,
lies in reducing the number independent components of the
vertex by decomposing it into several interaction channels and
then establishing a consistent approximation by controlling
the amount of feedback between the individual channels.
This strategy follows that used in Refs. [4,9] in the context
of the single-impurity Anderson model. For a model with
short-ranged interactions, this approach reduces the number
of independent quantities in the vertex to order ∼O(N2).
From a perturbative point of view, this treatment is exact
in second order in the interaction and amounts to summing
up approximate contributions from a large class of diagrams,
including mutual feedback between the different interaction
channels. The eCLA generalizes the CLA by extending spatial
feedback between the channels. As a control parameter for this
extended feedback we introduce a feedback length L, where
L = 0 corresponds to the previous approximation scheme
used by BHD, while L = N − 1 includes the full fRG flow
in second order. L thus serves as a control parameter for
the number of independent spatial components of the vertex,
which scales as ∼O(N2L2). Moreover, the longer-ranged
feedback allows us also to treat interactions with finite range
up to LU sites (with LU � L) in a manner that is exact to
second order in the interaction.

In this paper, we present a detailed account of the eCLA,
and apply it to two one-dimensional (1D) fermionic systems,
modeled to describe the lowest 1D subband of a quantum
point contact (QPC) or a quantum dot (QD), respectively. We
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develop the eCLA for systems described by a Hamiltonian of
the form

Ĥ =
∑
ij,σ

hσ
ij d

†
iσ djσ + 1

2

∑
ij,σσ ′

Uij n̂iσ n̂jσ ′(1 − δij δσσ ′), (1)

where hσ and U are real, symmetric matrices, d
†
jσ creates

an electron in single particle state j with spin σ (=↑ , ↓ or
+,−, with σ̄ =−σ ), and njσ = d

†
jσ djσ . In the context of the

applications presented here, we refer to the quantum number j

as the “site index.” Our eCLA scheme requires the interaction
to have a finite range LU � L, such that

Uij = 0 if |i − j | > LU. (2)

Models of this form, but with on-site interactions (Uij = Uδij ),
have been used to study both QPC and QD systems [7]. To
describe a QPC, hσ

ij is taken to represent a one-dimensional
tight-binding chain, with a potential barrier with parabolic
top, whereas for a QD, it is chosen to represent a double-
barrier potential. The noninteracting physics of both models
is well known, whereas the effect of interactions, espe-
cially for the QPC, are still a topic of ongoing discussions
[10–12]. For the QPC, the conductance is quantized [13–15]
in units of the conductance quantum GQ = 2e2/h, but shows
an additional shoulder at approximately 0.7GQ. This regime,
in which other observables show anomalous behavior too
[16–18], is commonly known as the “0.7-anomaly.” The latter
has been studied in [7] using a model of the above form,
with purely on-site interactions. However, to examine the
effect of gate-induced screening in a QPC, one needs to
consider finite-ranged interactions. This goal serves as the
main motivation for developing the eCLA put forth in this
paper.

We remark that the QD and QPC models considered
here provide a meaningful testing ground for the eCLA,
since lowest-order perturbation theory would not yield an
adequate treatment of the correlation effects expected to occur:
the Kondo effect for QDs and the 0.7-anomaly for QPCs.
Although some aspects of the latter can be understood in terms
of a simple Hartree picture [7], the interaction strength needed
to yield phenomenological behavior typical of the 0.7-anomaly
is sufficiently large that lowest-order perturbation theory is
inadequate.

The numerical results presented here were all obtained
using the eCLA in a static approximation, which neglects
the frequency-dependence of the two-particle vertex (after
which the approach no longer is exact to second order).
Nevertheless, BHD have shown that for a QPC model with
on-site interactions, the CLA with a static approximation leads
to reasonable results for the conductance step shape, though
it does produce some artifacts regarding the pinch-off gate
voltage when the interaction strength is increased. We find
the same to be true for the static eCLA, with the artifacts
becoming more pronounced with increasing interaction range,
but the step shape behaving in a physically reasonable manner.

We use the eCLA for three studies of increasing complexity.
(i) We present static eCLA results for a QPC model with
short-ranged interaction and successively increase the feed-
back length L. This systematically improves the treatment
of RG feedback between the various fRG channels, and

for sufficiently large L converges to the full solution of
the generic, third-order-truncated static fRG. For the models
we consider here, where the characteristic length lx of the
parabolic QPC potential barrier varies between approximately
4–10 sites, we find that convergence in L is achieved once
L becomes comparable to lx . For such systems, the eCLA
scheme thus speeds up the calculation relative to the full
generic, third-order-truncated static fRG by a factor of 103,
without any loss of accuracy. (ii) Furthermore, it turns out that
the eCLA’s enhanced feedback leads to a more stable fRG
flow than the CLA scheme, since each interaction channel acts
more strongly to limit the tendencies other channels might
have to diverge during the fRG flow. This enables us to study
the geometric crossover between a QPC and a QD where the
barrier top stays close to the chemical potential. This setup
features a high local density of states (LDOS) at the chemical
potential, and as a result turns out to be intractable when using
the CLA without enhanced feedback [19]. In contrast, the
eCLA is able to treat this challenging crossover very nicely.
(iii) Finally, we illustrate the potential of the eCLA to deal
with finite-ranged interactions in a setting where the physics
of screening comes into play, namely, a QPC model with
an interaction whose range extends over up to N sites. The
purpose of this study is mainly methodological, i.e., we do not
aim here to achieve a fully realistic treatment of screening in a
QPC. Nevertheless, the results are interesting: for a sufficiently
long ranged interaction and sufficiently low density, there
exists a parameter regime where we find additional features in
the conductance and corresponding 2kF density fluctuations
within the QPC.

The paper has three main parts. The first part (Sec. II)
develops our improved eCLA feedback scheme. The second
part (Sec. III) studies its consequences for QPC and QD
models with on-site interaction, focusing on the effects of
increasing the feedback length L. Finally, the third part
(Sec. IV) is devoted to finite-ranged interactions. We estimate
the approximate form and strength of the interaction to be
used for a 1D depiction of a QPC and show some preliminary
results for the conductance and density profile of such a system
depending on the screening properties. A detailed study of the
physics of long-ranged interactions in QPCs is beyond the
scope of this work and left as a topic of future investigation.

II. fRG FLOW EQUATIONS

Before we introduce our new eCLA scheme, we give a short
overview over the general idea and the usual approximations
made in fRG. Since numerous detailed treatments of fRG
are available, and since our work builds on that of BHD, the
discussion below is very brief and structured similarly to that in
Ref. [8]. The basic idea of fRG is to introduce a flow parameter
� in the bare propagator of the theory in such a way that for
� = �i = ∞, the structure of the resulting vertex functions
are very simple. With our choice for � (described later) all but
the two-particle vertex will vanish,

γ
�i

2 = v γ �i

n = 0 (n �= 2), (3)

where v is the bare vertex. For the final value of the flow
parameter � = �f = 0, one recovers the full bare propagator
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and hence the full theory:

G�
0 → G0, with G�i

0 = 0, G�f

0 = G0 . (4)

The RG flow is described by a hierarchy of coupled differential
equations for the one particle irreducible (1PI) n-particle vertex
functions γn,

d

d�
γ �

n = F
(
�,G�

0 ,γ �
1 , . . . ,γ �

n+1

)
. (5)

Integrating this system from � = �i to � = 0 yields in
principle a full description of all interaction vertices. In
practice, one can of course not treat an infinite hierarchy of
flow equations and has to truncate it at some point. In our
form of third-order truncated fRG, we incorporate the one-
and two-particle vertex into the flow, but set all vertices with
three or more particles to zero

d

d�
γn = 0 (n � 3) . (6)

We thus retain only the flow of the self-energy, � = −γ1, and
the flow of the two-particle vertex γ2. This differential equation
can then be solved numerically, using a standard Runge-Kutta
method. As we will see shortly, the flow of the vertex consists
of three different parquetlike channels, which are coupled to
the flow of the self-energy and also directly to each other. This
simultaneous treatment moderates competing instabilities in
an unbiased way.

In principle, the form of the fRG flow equations depends
on the choice of the flow parameter, even if in most cases
they take the form stated below. In our work, we choose the
� dependence of the bare propagator to take the form of an
infrared cutoff

G�
0 (ωn) = �T (|ωn| − �)G0(ωn), �i = ∞, �f = 0. (7)

We use the Matsubara formalism with the frequencies ωn

defined to be purely imaginary,

ωn = iT π (2n + 1),

and �T is a step function broadened on the scale of tempera-
ture.

Using this cutoff, one can derive the fRG equations in
the standard way, see, e.g., Refs. [5,20] or Ref. [21] for
a diagrammatic derivation. The resulting equation for the
one-particle vertex is given by

d

d�
γ �

1 (q ′
1,q1) = T

∑
q ′

2,q2

S�
q2,q

′
2
γ �

2 (q ′
2,q

′
1; q2,q1), (8)

where qi is a shorthand for all quantum numbers and the
fermionic Matsubara frequency associated with the legs of
a vertex, and the full- and single-scale propagators are defined
via

G� = [[
G�

0

]−1 − ��
]−1

, (9a)

S� = G�∂�

[
G�

0

]−1G�, (9b)

respectively. The structure of the vertex consists naturally of
three different parquetlike channels

γ �
2 = v + γ �

p + γ �
x + γ �

d , (10)
where v is the bare vertex and we refer to γ �

p , γ �
x , and γ �

d

as the particle-particle channel (P ), and the exchange (X) and
direct (D) part of the particle-hole channel. These quantities
are defined via their flow equations

d

d�
γ �

2 = d

d�

(
γ �

p + γ �
x + γ �

d

)
, (11)

and the initial conditions γ �i
p = γ �i

x = γ
�i

d = 0. The explicit
form of the flow equations is

d

d�
γ �

p (q ′
1,q

′
2; q1,q2) = T

∑
q ′

3,q3,q
′
4,q4

γ �
2 (q ′

1,q
′
2; q3,q4)S�

q3,q
′
3
G�

q4,q
′
4
γ �

2 (q ′
3,q

′
4; q1,q2), (12a)

d

d�
γ �

x (q ′
1,q

′
2; q1,q2) = T

∑
q ′

3,q3,q
′
4,q4

γ �
2 (q ′

1,q
′
4; q3,q2)

[
S�

q3,q
′
3
G�

q4,q
′
4
+ G�

q3,q
′
3
S�

q4,q
′
4

]
γ �

2 (q ′
3,q

′
2; q1,q4), (12b)

d

d�
γ �

d (q ′
1,q

′
2; q1,q2) = −T

∑
q ′

3,q3,q
′
4,q4

γ �
2 (q ′

1,q
′
3; q1,q4)

[
S�

q4,q
′
4
G�

q3,q
′
3
+ G�

q4,q
′
4
S�

q3,q
′
3

]
γ �

2 (q ′
4,q

′
2; q3,q2) . (12c)

At this point, the channels have a full feedback between them.
Later on, however, we will control the amount of feedback
between channels by the feedback length L.

A. Frequency parametrization

Since we have energy conservation at each vertex,

γ1(q ′
1,q1) ∝ δn′

1n1
,

γ2(q ′
1,q

′
2; q1,q2) ∝ δn′

1+n′
2n1+n2

,
(13)

we can parametrize the frequency dependence of the self-
energy with one frequency, and of the vertex with three
frequencies. A detailed discussion of the frequency structure
is given in Refs. [4,8,9], and since we proceed analogously,
we will be very brief here. A convenient choice for the
parametrization of the vertex frequency structure is given in
terms of the three bosonic frequencies [7]

� = ωn′
1
+ ωn′

2
= ωn1

+ ωn2
, (14a)

X = ωn′
1
− ωn2

= ωn1
− ωn′

2
, (14b)

� = ωn′
1
− ωn1

= ωn2
− ωn′

2
. (14c)
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In order to keep notation short, the frequency information is
separated from the site and spin quantum numbers:

γ2(j ′
1σ

′
1ωn′

1
,j ′

2σ
′
2ωn′

2
; j1σ1ωn1

,j2σ2ωn2
)

= δn′
1+n′

2n1+n2
γ2(j ′

1σ
′
1,j

′
2σ

′
2; j1σ1,j2σ2; �,χ,�). (15)

For convenience, we have here also listed the fermionic
frequencies in terms of the bosonic ones:

ωn′
1
= 1

2 (� + X + �) , ωn′
2
= 1

2 (� − X − �) , (16a)

ωn1
= 1

2 (� + X − �) , ωn2
= 1

2 (� − X + �) . (16b)

B. Coupled-Ladder approximation

The basic idea of the CLA scheme was introduced in
Refs. [4,9] for the frequency parametrization of the single-
impurity Anderson model and was further developed for
inhomogeneous Fermi systems with on-site interaction in
Ref. [7]. Here we will go one step further and extend
this scheme to treat interacting models with two-particle
interactions of finite range, using an idea similar to the singular
mode fRG approach introduced in [22]. There, the vertex
structure in momentum space was decomposed into fermion
bilinears that interact via exchange bosons and it was shown
that this decomposition admits a systematic approximation
by an expansion using form factors. Here, we will proceed
similar in position space, introducing “short indices” k,l that
will control the extent of our approximation and act similar to
the mentioned form factor expansion.

In the case of third-order truncated fRG, BHD introduced
two different approximation schemes. The simpler “static
second-order fRG” (sfRG2) neglects the frequency depen-
dence of the vertex; the more elaborate “dynamic second-order
fRG” (dfRG2) includes the frequency dependence of the vertex
within a channel approximation, reducing this dependence
from the generic O(N3

f ) to O(Nf ), where Nf is the number of
used frequencies. In the case of the on-site model, it turned out
that static compared to dynamic fRG produces some artifacts
concerning the pinch-off point of the conductance of a QPC
but yields essentially the same shape for the conductance steps
as dynamic fRG. For this reason and since it is a factor of
Nf cheaper, we will only compute the static fRG flow in
our numerical work. Nevertheless, we will derive here the
full dynamic flow equations, and in principle, it should be no
problem to implement these too.

The dfRG2 scheme exploits the fact that the bare vertex
consists of a density-density interaction

v(j ′
1σ

′
1,j

′
2σ

′
2; j1σ1,j2σ2)

= δ
LU

j1j2
Uj1j2

[
(1 − δj1j2

)δσ1σ2
+ δσ1σ̄2

]
×(

δj ′
1j1

δj ′
2j2

δσ ′
1σ1

δσ ′
2σ2

− δj ′
1j2

δj ′
2j1

δσ ′
1σ2

δσ ′
2σ1

)
, (17)

and parametrizes the vertex in terms of O(N2L2
UNf) inde-

pendent variables. Here, δ
LU

j1j2
=1 if |j1 − j2| � LU and is

otherwise set to zero.

Using this vertex, we can now consider a simplified version
of the vertex flow equation (12), where the feedback of the
vertex flow is neglected: on the r.h.s. we replace γ �

2 → v.
If the feedback of the self-energy were also neglected, this
would be equivalent to calculating the vertex in second-order
perturbation theory. As a consequence, all generated vertex
contributions have one of the following structures:

P kl
jiσσ′(Π) := γΛ

p (jσ, j+k σ′; iσ, i+l σ′; Π)

O(v2)
�

Π − ωn′

jσ

j + k σ′
ωn′

Π − ωn′′
σ

σ′
ωn′′

iσ

i + l σ′
ωn

Π − ωn

,
(18a)

P̄ kl
jiσσ′(Π) := γΛ

p (jσ, j+k σ′; iσ′, i+l σ, Π)

O(v2)
�

Π − ωn′

jσ

j + k σ′
ωn′

Π − ωn′′
σ

σ′
ωn′′

iσ′

i + l σ
ωn

Π − ωn

,
(18b)

Xkl
jiσσ′(X) := γΛ

x (jσ, i+l σ′; iσ, j+k σ′; X)

O(v2)
�

X + ωn′

jσ

j + k σ′
ωn′

X + ωn′′
σ

σ′
ωn′′

iσ

i + l σ′
ωn

X + ωn

,
(18c)

X̄kl
jiσσ′(X) := γΛ

x (jσ, i+l σ′; iσ′, j+k σ; X)

O(v2)
�

X + ωn′

jσ

j + k σ
ωn′

X + ωn′′
μ

μ
ωn′′

iσ′

i + l σ′
ωn

X + ωn

,
(18d)

Dkl
jiσσ′(Δ) := γΛ

d (jσ, i+l σ′; j+k σ, iσ′; Δ)

O(v2)
�

jσ j + k σ

iσ′ i + l σ′
ωn

ωn′

ωn + Δ

Δ + ωn′

μ Δ + ωn′′μωn′′
,

(18e)

D̄kl
jiσσ′(Δ) := γΛ

d (jσ, i+l σ′; j+k σ′, iσ; Δ)

O(v2)
�

jσ j + k σ′

iσ i + l σ′
ωn

ωn′

ωn + Δ

Δ + ωn′

σ Δ + ωn′′σ′ωn′′
,

(18f)

These terms depend only on a single bosonic frequency.
The upper indices kl are taken to run over the range

−L � k,l � L , (19)
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where the control parameter L sets the “spatial feedback
range.” The bounds on the lower indices depend on the upper
indices: if one of the site indices of γ2 lies outside the region
[−N ′,N ′] where N ′ is defined by N = 2N ′ + 1, γ2 is zero.
Therefore i,j run between

max(−N ′, − N ′ − l) � i � min(N ′,N ′ − l), (20)

max(−N ′, − N ′ − k) � j � min(N ′,N ′ − k). (21)

Analogously to BHD, we now feed back all those terms
on the right-hand side (r.h.s.) of the flow equation (12), which
conserve the site and spin structure indicated in Eq. (18). As a
first consequence, each vertex quantity is fully fed back into its
own flow equation. Secondly, the feedback between different
quantities is restricted to those site indices that have the
appropriate structure. Furthermore, to avoid frequency mixing,
the feedback to a given channel from the other two channels
is restricted to using only the static, i.e., zero-frequency
component of the latter.

This scheme can be expressed by the replacement

γ2 → γ̃a (22)

on the r.h.s. of channel a = p,x,d in Eq. (12) where γ̃a is
defined as

γ̃p(j ′
1σ

′
1,j

′
2σ

′
2; j1σ1,j2σ2,�)

= δL
j ′

1j
′
2
δL
j1j2

γ2(j ′
1σ

′
1,j

′
2σ

′
2; j1σ1,j2σ2; �,0,0), (23a)

γ̃x(j ′
1σ

′
1,j

′
2σ

′
2; j1σ1,j2σ2,X)

= δL
j ′

1j2
δL
j ′

2j1
γ2(j ′

1σ
′
1,j

′
2σ

′
2; j1σ1,j2σ2; 0,X,0), (23b)

γ̃d (j ′
1σ

′
1,j

′
2σ

′
2; j1σ1,j2σ2,�)

= δL
j ′

1j1
δL
j ′

2j2
γ2(j ′

1σ
′
1,j

′
2σ

′
2; j1σ1,j2σ2; 0,0,�). (23c)

C. Symmetries

As can readily be checked, these flow equations respect the
following symmetry relations:

Gσ�
ij (ωn) = Gσ�

ji (ωn) = [
Gσ�

ij (−ωn)
]∗

, (24a)

�σ�
ij (ωn) = �σ�

ji (ωn) = [
�σ�

ij (−ωn)
]∗

, (24b)

P kl
jiσσ ′(�) = P lk

ijσσ ′(�) = P
(−k)(−l)
(j+k)(i+l)σ ′σ (�),

P̄ kl
j iσσ ′(�) = P̄ lk

ijσ ′σ (�) = P̄
(−k)(−l)
(j+k)(i+l)σ ′σ (�),

P kl
jiσσ ′(�)= −P̄ −kl

j+kiσ ′σ (�) = −P̄
k(−l)
j (i+l)σσ ′ (�),

Pσσ = P̄σσ , (25a)

Xkl
jiσσ ′(X) = Xlk

ijσσ ′(X) = [
X

(−k)(−l)
(j+k)(i+l)σ ′σ (X)

]∗
,

X̄kl
j iσσ ′(X) = X̄lk

ijσ ′σ (X) = [
X̄

(−k)(−l)
(j+k)(i+l)σσ ′(X)

]∗
,

Xσσ = X̄σσ , (25b)

X = −D̄ , X̄ = −D , (25c)

P kl
jiσσ ′(�) = [

P kl
jiσσ ′ (−�)

]∗
,

Xkl
jiσσ ′(X) = [

Xkl
jiσσ ′(−X)

]∗
,

X̄kl
j iσσ ′(�) = [

X̄kl
j iσσ ′(−�)

]∗
. (25d)

As a result, all relevant information is contained in a small
number of independent frequency-dependent block matrices,
which we define as follows:

P � =P �
↑↓,P �

σ = P �
σσ ,

X� =X�
↑↓, (26)

D� =D�
↑↓,D�

σ = D�
σσ ,

where the superscript � signifies a dependence on the flow
parameter.

The flow equations for these matrices can be derived starting from Eq. (12). The replacement (22) restricts the internal quantum
numbers on the r.h.s. of the flow equation q3, q4, q ′

3, and q ′
4 according to the definitions (18):

Ṗ kl�
ji (�) = γ̇ �

p (j↑,j+k↓; i↑,i+l↓; �)

= T
∑

j ′i ′k′l′,n

[
γ̃ �

p (j↑,j+k ↓; i ′↑,i ′+l′↓; �)S↑�

i ′j ′ (ωn)G↓�

i ′+l′j ′+k′(�−ωn)γ̃ �
p (j ′↑,j ′+k′↓; i↑,i+l↓; �),

+ γ̃ �
p (j↑,j+k ↓; i ′↓,i ′+l′↑; �)S↓�

i ′j ′ (ωn)G↑�

i ′+l′j ′+k′(�−ωn)γ̃ �
p (j ′↓,j ′+k′↑; i↑,i+l↓; �)

]
, (27a)

Ṗ kl�
jiσ (�) = γ̇ �

p (jσ,j+kσ ; iσ,i+lσ ; �)

= T
∑

j ′i ′k′l′,n

γ̃ �
p (jσ,j+k σ ; i ′σ,i ′+l′σ ; �)Sσ�

i ′j ′ (ωn)Gσ�
i ′+l′j ′+k′(�−ωn)γ̃ �

p (j ′σ,j ′+k′σ ; iσ,i+lσ ; �), (27b)

Ẋkl�
ji (X) = γ̇ �

x (j↑,i+l ↓; i↑,j+k ↓; X)

= T
∑

i ′j ′l′k′,n

γ̃ �
x (j↑,i ′+l′ ↓; i ′↑,j+k ↓; X)

[
S↑�

i ′j ′ (ωn+ X)G↓�

j ′+k′i ′+l′ (ωn) + S↓�

j ′+k′i ′+l′(ωn)G↑�

i ′j ′ (ωn+ X)
]

× γ̃ �
x (j ′↑,i+l ↓; i↑,j ′+k′ ↓; X), (27c)
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Ḋkl�
jiσσ ′(X) = γ̇ �

d (jσ,i+l σ ′; j+k σ,iσ ′; �)

= −T
∑

i ′j ′l′k′
n,σ ′′

γ̃ �
d (jσ,i ′+l′ σ ′′; j+k σ,i ′σ ′′; �)

[
Sσ ′′�

i ′+l′j ′+k′(ωn)Gσ ′′�
i ′j ′ (ωn+�) + Gσ ′′�

i ′+l′j ′+k′(ωn)Sσ ′′�
i ′j ′ (ωn+�)

]

× γ̃ �
d (j ′σ ′′,i+l σ ′; j ′+k′ σ ′′,iσ ′; �). (27d)

The initial conditions are

P �i = P �i

σ = X�i = D
�i

σσ ′ = 0 . (28)

These equations can be compactly written in block-matrix form:

d

d�
P �(�) = P̃ �(�) · Wp�(�) · P̃ �(�), (29a)

d

d�
P �

σ (�) = P̃ �
σ (�) · Wp�

σ (�) · P̃ �
σ (�), (29b)

d

d�
X�(X) = X̃�(X) · Wx�(X) · X̃�(X), (29c)

d

d�
D�

σσ ′(�) = −
∑
σ ′′

D̃�
σσ ′′(�) · Wd�

σ ′′ (�) · D̃�
σ ′′σ ′(�) , (29d)

where “·” denotes a block-matrix multiplication:

[A · B]kl
j i =

∑
j ′k′

Akk′
jj ′B

k′l
j ′i (30)

and we have introduced the definitions

P̃ kl�
ji (�) = γ̃ �

p (j↑,j+k↓; i↑,i+l↓; �)

= δjiδklUjj+k + P kl�
ji (�) + δL

ji+lδ
L
ij+kX

(i+l−j )(j+k−i)�
ji (0) + δL

ij δ
L
j+ki+lD

(i−j )(j+k−i−l)�
j (i+l)↑↓ (0), (31a)

P̃ kl�
jiσ (�) = γ̃ �

p (jσ,j + kσ ; iσ,i + lσ ; �)

= δjiδklUjj+k − δk,−lδ(j+k)iUji + P kl�
jiσ (�) − δL

i+lj δ
L
j+kiD

(i+l−j )(j+k−i)�
jiσ (0) + δL

ij δ
L
j+ki+lD

(i−j )(j+k−i−l)�
j (i+l)σ (0), (31b)

X̃kl�
ji (X) = γ̃ �

x (j↑,i + l↓; i↑,j + k↓; X)

= δjiδklUjj+k + Xkl�
ji (X) + δL

i+lj δ
L
j+kiP

(i+l−j )(j+k−i)�
ji (0) + δL

ij δ
L
j+ki+lD

(i−j )(i+l−j−k)�
j (j+k)↑↓ (0), (31c)

D̃kl�
jiσσ ′(�) = γ̃ �

d (jσ,i + lσ ′; j + kσ,iσ ′; �)

= δ0kδ0lUji − δσσ ′δjiδklUjj+k + Dkl�
jiσσ ′(�) + δL

i+lj δ
L
j+kiP

(i+l−j )(i−j−k)�
j (j+k)σσ ′ (0) + δL

ij δ
L
j+ki+lX

(i−j )(i+l−j−k)�
j (j+k)σσ ′ (0), (31d)

which account for the interchannel feedback contained in
equation (22). Note that Eq. (31d) is not fully expressed in
terms of the definitions (26). This can only been done once
σ and σ ′ are specified explicitly and then leads to three
independent equations. Wp, Wx , and Wd each represent a
specific bubble, i.e., a product of two propagators summed
over an internal frequency:

W
lk,p�

ij (�) = T
∑

n

[
S↑�

ij (ωn)G↓�

i+lj+k(�−ωn)

+S↓�

i+lj+k(ωn)G↑�

ij (�−ωn)
]
, (32a)

W
lk,p�

ijσ (�) = T
∑

n

[
Sσ�

ij (ωn)Gσ�
i+lj+k(�−ωn)

]
, (32b)

W
lk,x�
ij (X) = T

∑
n

[
S↓�

i+lj+k(ωn)G↑�

ij (ωn+X)

+G↓�

j+ki+l(ωn)S↑�

ij (ωn+X)
]
, (32c)

W
lk,d�
ijσ (�) = T

∑
n

[
Sσ�

i+lj+k(ωn)Gσ�
ij (ωn+�)

+Gσ�
i+lj+k(ωn)Sσ�

ij (ωn+�)
]
. (32d)

D. eCLA versus CLA and the role of D↑↓

Let us now recapitulate the similarities and differences
between our new eCLA method to the previous CLA method
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FIG. 1. The linear conductance g = G/GQ of a QPC as a
function of gate voltage, plotted for the cases with and without
feedback of D↑↓ in an intermediate parameter regime for four
equidistant magnetic fields. Note that the difference between the two
cases is suppressed with increasing the magnetic field.

used in Ref. [8]. There, only on-site models were considered
and the guiding idea for approximations in the fRG flow
was to include only those vertex structures that are already
generated in second order in the interaction. Therefore it was
sufficient to consider only an on-site feedback between the
individual channels, i.e., the feedback range was the same
as the interaction range. In the development of the eCLA,
we followed the same idea, but found it to be advantageous
to separate the feedback length L from the actual range
of the interaction LU . To be exact in second order, L has
to be chosen at least as large as LU . However, it can be
chosen also larger than LU , and thus enables us to study
the importance of the neglected higher-order terms. If L is
chosen exactly equal to LU , we are in principle back at the
original idea to include only vertex structures in the flow
which are already generated in second order of the interaction.
However, there is one exception to the last statement; for purely
on-site interactions (LU = 0), the contributions of D↑↓ and
P σσ to the vertex are of third and fourth order, respectively.
In Ref. [8], they were therefore neglected, consistent with
the policy of keeping only structures generated in second
order. In the present paper, however, our implementation does
not explicitly distinguish between LU = 0 and LU > 0 and
includes the D↑↓ and P σσ contributions regardless of the
values of LU and L, even for LU = L = 0. To be specific,
for LU = L = 0, our present flow scheme keeps P σσ = 0
but leads to a finite contribution of D↑↓. Consequently, our
results for LU = L = 0 differ slightly from those obtained in
Refs. [7,8], and the difference is a measure of the magnitude
of the third-order D↑↓ contribution. In Fig. 1, we compare the
dependence of the QPC conductance on the magnetic field for
a model with purely on-site interactions (defined in Sec. III
below) for both CLA and eCLA with L = 0. The difference
is most noticeable for B = 0 in the region of the 0.7-anomaly,
i.e., in the regime where interactions influence the conductance
most strongly, but even here the difference is not very big. (Of
course, this holds only in intermediate parameter regimes, i.e.,
in regimes where both the eCLA and the CLA are convergent.)

E. The flow equation of the self-energy

Using the above definitions, the flow equation of
the self-energy, Eq. (8), can be written explicitly

as

d

d�
�σ�

ji (ωn) = − T
∑

k,σ ′,n′

{∑
l

Sσ ′�
i+l,j+k(ω′

n)
[
Ui(i+l)δlkδji

− Uij δk,−lδj (i+l)δσσ ′ + P kl�
jiσσ ′(ωn + ω′

n)

+ Xkl�
jiσσ ′(ωn − ω′

n)
]

+
∑
i2

Sσ ′�
i2,i2+k(ω′

n)D(i−j )k�

ji2σσ ′ (0)

}
, (33)

where the l,k summation is restricted to |l|,|k| � L, whereas
the sum over i2 runs over the whole interacting region. To
summarize, dfRG2 is defined by the flow equations (29) and
(33), together with the definitions (9), (18), (26), (31), and (32).

F. Restrictions for actual computations

In our actual computations, we restrict ourself to the case
of zero temperature and use so called static fRG, meaning
that we treat the vertices as frequency independent. The
zero-temperature limit enables us to transform the summation
over discrete Matsubara frequencies into continuous integrals
along the imaginary axis, and the �T in Eq. (7) is a sharp step
function. Using this, we are able to apply Morris’ lemma [23],
which enables us to simplify the integral expressions contain-
ing the single-scale propagator S in the flow equations (27):
under integration over ω, the following relations hold:

S�(iω)
T =0= δ(|ω| − �)G̃�(iω), (34a)

G̃�(iω) = [[G0(iω)]−1 − ��(iω)]−1, (34b)

S�
i,j (iω1)G�

k,l(iω2)
T =0= δ(|ω1| − �)�(|ω2| − �)

× G̃�
i,j (iω1)G̃�

k,l(iω2) . (34c)

The static fRG approximation treats the vertex quantities
γ �

p , γ �
x , γ �

d as frequency independent, setting the bosonic
frequencies �, X, and � to zero. Via Eq. (8), this automatically
implies that the self-energy is frequency independent, too.
In the case of QPC models with on-site interaction, this
approximation was compared with results of the frequency
dependent fRG scheme, the so-called “dynamic fRG” and
was seen to yield reasonable results for the zero-frequency
Green’s function at zero temperature. However, for models
with finite-ranged interactions, we find more pronounced static
fRG artifacts (described in Sec. IV), which might be improved
by the use of the dynamical method. This is a topic for
future research. We stress here that it should in principle be
straightforward to implement the dynamical method. The main
restriction is simply the effort in computation time, which
scales like the number of used frequencies, Nf , which in
Ref. [7] is typically of the order 102.

G. Numerical implementation

In a numerical implementation, the flow will start at a value
�i which is usually chosen as large, but is not infinite. For �i

large enough, one can show [5] that the flow of the self-energy
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from � = ∞ to � = �i results in a value of γ
�i

1 given by

γ
�i

1 (q ′
1,q1) = −1

2

∑
q

v(q,q ′
1; q,q1) . (35)

This is then used as the initial condition for γ1 in the numeric
fRG flow. The initial condition for the vertex γ2, given by
Eq. (3), stays the same.

In the case of sfRG2, the vertices and the self-energy only
depend on �. In order to carry out the resulting integration, we
mapped the domain of the flow parameter � ∈ [0,∞) onto the
finite domain x ∈ [0,1) by using the substitution � = x

1−x
, cf.

Ref. [8]. To integrate the resulting flow, we followed Dormand-
Prince [24], using a fourth-order Runge-Kutta method with
adaptive step-size control.

For static fRG, the computationally most expensive step is
the block-matrix multiplication of Eq. (29), which scales as
O(N3L3). In dynamic fRG schemes with nonfrequency cutoff
(e.g., with hybridisation flow [4]), for intermediate N � 102

most of the calculation time is spent on the bubble integrals
of Eq. (32), whose calculation time scales as O(N2L2Nf ),
where Nf is the number of bosonic frequencies. Since the
numerical cost for this calculation (for the system sizes used
in our setup) is comparable to the block-matrix multiplication
of Eq. (29), it might be possible to implement the eCLA within
those schemes, too.

III. RESULTS: ON-SITE INTERACTIONS

Having derived our eCLA scheme in the last section, we
are now able to apply it to the two models of primary interest
here, namely the QPC and the QD. In the present section, we
study purely on-site models,

Uij = δijU , (36)

where we treat the strength U of the interaction as a tunable and
space-independent parameter, which is suppressed smoothly
to zero at the ends of the interacting region. The focus
of this section lies on comparing our results to the ones
obtained previously by BHD to explore the consequences
of the improved feedback for a well-studied example. If not
otherwise specified, plots in this section are calculated with
μ = 0, i.e., with half-filled leads.

A. Models for QPC and QD

Our interest lies in the low-energy physics of a QPC or a
QD. For this reason, we consider only the lowest subband of
a QPC, or a QD coupled to one-dimensional leads. We use a
one-dimensional model Hamiltonian of the same form as used
in Refs. [7,8,19]:

Ĥ =
∑
jσ

[
Eσ

j n̂jσ − τ (d†
jσ dj+1σ + H.c.)

] +
∑

j

Uj n̂j↑n̂j↓.

(37)

It describes an infinite tight-binding chain with constant lattice
spacing a, constant hopping amplitude τ , on-site interaction
Uj , and on-site potential energy Eσ

j = Vj − σB
2 . Here, Vj will

be used to model the smooth electrostatic QPC or QD potential
defined by gates (as described below and illustrated in Fig. 2),

FIG. 2. Typical QPC and QD barrier shapes, controlled via the
parameters, εF , Vg , N ′, and, for the QD, Vs and js . For these plots,
both μ and the barrier top lie were chosen to lie below the center of the
bulk band, which we take as reference energy where ω = 0. The case
of half-filled leads, used for most of our calculations, corresponds to
choosing μ = 0.

and the Zeeman energy B accounts for a uniform external
magnetic field parallel to the 2DEG. We take Uj and Vj to be
nonzero only within a (single or double) “barrier region” of
N = 2N ′ + 1 sites centered around j = 0, containing the QPC
or QD. The rest of the chain represents two noninteracting
leads with bandwidth 4τ , chemical potential μ, bulk Fermi
energy εF = 2τ + μ, and effective mass m∗ = �

2/(2τa2)
(defined as the curvature of the dispersion at the band bottom
in the bulk). Adopting the convention in Ref. [8], we choose
the center of the bulk band as energy origin. In order to arrive
at a discrete QPC potential Vj , we start with a continuous QPC
potential

V (x) =
{

(Vg + εF ) exp
(−γ 2(x/Lbar)2

1−(x/Lbar)2

)
, |x| � Lbar,

0, |x| > Lbar,
(38)

where 2Lbar is the whole barrier length and Vg controls the
barrier height, measured with respect to (w.r.t.) εF . Near the
barrier top, the potential (38) can be expanded as

V (x) = Vg + εF − 1

2

m∗

�2
�2

xx
2 + O(x4) , (39)

where the curvature parameter �x is given by

�x = γ
�

Lbar

√
2(Vg + εF )

m∗ . (40)

It has units of energy and serves as a characteristic energy
scale for the QPC. It also defines a characteristic length scale
for the QPC barrier top:

lx = �/
√

2m∗�x = a
√

τ/�x. (41)

The dimensionless parameter γ in the exponent of Eq. (38)
can be used to vary the barrier curvature [Eq. (40)] without
changing the barrier height. Through most of Sec. III, we will
keep γ = 1 constant and consider only gate-voltages small
compared to εF , such that the curvature can be assumed
to be independent of Vg . However, when studying eCLA
convergence properties (Fig. 4), and when dealing with longer-
ranged interactions in Sec. IV, we will need to choose γ �= 1.

We discretize the QPC potential (38) by choosing a number
of sites N and setting the lattice spacing a = 2Lbar/N , to arrive
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at

Vj = V (j · a) =
{

(Vg + εF )e
−γ 2 (j/N ′ )2

1−(j/N ′ )2 , |j | � N ′,
0, |j | > N ′.

(42)

The resulting barrier shape given by Eq. (42) is plotted in
Fig. 2(a). The leading behavior around the maximum at j = 0
is quadratic and the same as in Ref. [8]:

Vj = Vg + εF − �2
x

4τ
j 2 + O(j 4), (43)

and the curvature can be expressed through the discrete

quantities as �x = γ
2
√

τ (εF +Vg )

N ′ . For our on-site studies,
where Vg is only varied in a small region around Vg = 0,

we use the approximation �x = γ
2
√

τεF

N ′ . In order to avoid
discretization artifacts, the discretization length a should be
chosen significantly smaller than lx . In our actual computations
for the QPC with on-site interactions, we use a ratio lx/a

varying between approximately 4–10 sites.
To model a QD, we use a potential that can be tuned

smoothly from the QPC shape described above to a double-
barrier structure, as shown in Fig. 2(b). The discretization
procedure is analogous to the QPC and we state here only the
resulting discrete dot potential, which is the same as used in
Refs. [7,19]:

Vj =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, ∀ |j | � N ′,

(Vs + εF )
[
2
( |j | −N ′

js−N ′
)2 − ( |j |−N ′

js−N ′
)4]

,

∀ j0 � |j | � N ′,
Vg + εF + �̄2

xj
2

4τ
sgn(Vs − Vg), ∀ 0 � |j | <j0.

(44)

We can vary the dot width via js , and the depth of the
quadratic well in the middle via Vs and Vg . These choices
determine the values of j0 and �̄x in order to make the
potential continuously differentiable. Of course, this is just one
convenient way to model the dot structure, and the qualitative
behavior of the physical results does not depend on the specific
implementation.

For the on-site interaction, we use both for the QPC and the
QD the form used by BHD [7]:

Uj = Ue−(j/N ′)6/[1−(j/N ′)2]. (45)

It is almost constant and equal to U in the center of the QPC
and drops smoothly to zero at the flanks of the barrier region.

B. Physical behavior of the models

We now briefly summarize the physics of these models,
which was already discussed in great detail by BHD in
Refs. [7,19]. Our main handle for tuning the QPC potential
is the gate voltage Vg , which controls the height of the barrier.
If the barrier top lies well above the chemical potential, the
QPC is closed. Lowering the barrier, the QPC opens up and
the linear conductance g increases smoothly from 0 to 1 in
the region of gate voltages 0 � Vg � �x , where �x is the
curvature of the QPC introduced above. Additionally, the width
of the conductance step, i.e., the gate-voltage interval in which
the conductance increases from zero to one, is also set by �x .

The general shape of the conductance curve for a parabolic
barrier in the absence of interactions is a step described by
a Fermi function, as was shown by Büttiker in Ref. [15]. If
one switches on on-site interactions, the conductance curve
becomes asymmetric and flattens increasingly at the top. This
effect can be traced back to the fact that when the barrier top
drops below the chemical potential as the QPC is being opened
up, the maximum in the LDOS just above the barrier top (called
van Hove ridge in Ref. [7]) is aligned with the chemical
potential, thereby strongly enhancing interaction effects. It
turns out that the effective on-site interaction strength is in fact
given by

U eff
j = U · A0

j (μ), (46)

where

A0
j (ω) = − 1

π
ImG0

jj (ω + i0+) (47)

is the noninteracting local density of states per site. Near the
barrier center, the resulting U eff scales like U/

√
�xτ .

In the QD case, we can vary the width and depth of the
middle well, [cf. Figs. 6(d) and 6(e) below]. Typically, we want
to study the crossover between QPC and QD, thus we start out
with a QPC setup and lower the potential of the central region
to change the geometry to a QD model. The characteristic
physics of the quantum dot is determined by the structure of the
discrete levels of the bound states in the well. This quantization
leads to a conductance peak whenever such a level crosses the
chemical potential and the dot gets filled by one electron more.
In the interacting case, the degenerate levels split on a scale of
the interaction strength U . However, there is a further effect:
the odd valleys, i.e., the regions between the peaks where the
dot contains an odd number of electrons, become conductance
plateaus with GQ ≈ 1. This behavior reflects the occurrence
of the Kondo [25] effect since the singly occupied dot level
behaves like a localized spin coupled to a fermionic bath.

In this work, we will apply our eCLA first to the same
type of on-site models of QPCs as used by BHD [7,8,19]
and analyse the resulting effects. Importantly, we find that in
comparison to the CLA used previously, the eCLA yields an
improved stability of the fRG flow in the case of large bare
LDOS at the chemical potential. This improvement allows us
to additionally study the QPC-QD crossover, which involves
a very high LDOS due to the flat barrier top that occurs in this
transition. Using the CLA, it had not been possible to study
this transition when the barrier top lies close to the chemical
potential μ, since the CLA equations did not converge. Due
to this problem, in the real-space approach chosen by Heyder
et al. [19], it was not possible to study dots which contain just
a few electrons. Since our new feedback scheme significantly
ameliorates the convergence problem, we are now able to study
the crossover from a QPC to a QD, which is just occupied by
a single electron. This will be shown in Sec. III D.

C. Increasing the feedback length

Let us now study the influence of the feedback length L on
the zero-temperature linear conductance [26],

g = 1

2

∑
σ

|2πρσ (μ + i0+)Gσ
−N ′N ′(μ + i0+)|2 . (48)
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FIG. 3. Linear conductance g calculated using the static eCLA for five equidistantly chosen magnetic fields B between 0 and �x/2. (a)–(c)
Conductance at fixed U/

√
�xτ = 3.0 and four values of L. (d)–(f) Conductance at fixed L = 5, for three values of U/

√
�xτ .

Here, ρ(ω) is the density of states at the boundary of a semi-
infinite tight-binding chain; two such chains represent the two
one-dimensional noninteracting leads, coupled to the central
interacting region. Let us first look at the QPC case. We are
interested in the shape of the conductance trace as a function of
applied gate voltage and how this shape changes with external
parameters, such as an applied magnetic field.

For pure on-site interactions, it is natural to choose the
feedback length L = 0. This is what has been done in
Refs. [7,8,19,27], and the results have been discussed therein
in detail. Here, we will allow a nonzero L, although the actual
interaction is purely on-site. This implies that a certain class of
additional third-order terms will be generated during the RG
flow which introduce a better coupling between the channels
in the sense of the feedback in Eq. (23). For L → N , the
third-order truncated static fRG scheme is recovered fully
regarding the spatial structure of the two-particle vertex (but
not for its frequency structure, since we are using the static
approximation). Figures 3(a) to 3(c) show the conductance
G as a function of gate voltage Vg for different values of
magnetic field B, calculated at fixed U and different values
of feedback parameters L. Increasing the latter from L = 0 to
L = 3, cf. Fig. 3(b), leads to quantitative but not qualitative
changes in the shape of the conductance curves—the main
effect is that the width of the B-induced subplateau decreases.
In this regard, increasing L has a qualitatively similar effect
to decreasing U (at L = 0), cf. Figs. 3(d) to 3(f). Note,
though, that increasing L hardly affects the Vg position of
the conductance step, whereas decreasing U does shift the
step slightly towards higher Vg values, as expected physically
due to the lowering of the Hartree barrier. Increasing the
feedback beyond L = 5 does not lead to any significant
quantitative changes, as can be seen in Fig. 3(c) where L = 5
(black line) is directly compared with L = 8 (red dashed
line). Hence, for the present model, convergence is reached
for L � 5. In general, this value depends on the strength of
interaction U , and more importantly on the actual shape of the
barrier.

In Fig. 4, we study the convergence behavior as function
of the feedback length L more thoroughly, for four different
values of the geometric length scale lx/a [Eq. (41)], which
is the width of the region where the LDOS is enhanced. To
determine the convergence behavior, we first chose a large
value Llarge (here Llarge = 21) for which maxVg

|gLlarge (Vg) −
gLlarge−1(Vg)| is smaller than 10−4, i.e., for which we can
assume that the conductance is converged against its limit.
We then plot

�gL := max
Vg

|gL(Vg) − gLlarge (Vg)| (49)

as a function of L. For our purposes, as for the plots in Fig. 3,
we will regard that the conductance as being converged when
�gL � 0.5 × 10−2. In Fig. 4, this criterion is indicated by the
dashed line. The inset shows the smallest L (named LC) for
which the conductance is converged as a function of lx/a.
We see that for all models under our consideration LC is
comparable to lx/a. Due to this convergence, the number
of vertex components can safely be reduced from O(N4)

FIG. 4. Convergence behavior of the conductance for different
values of lx/a, where �gL is defined in Eq. (49). The parameters for
the lx/a = 3.8 data are the same as in Fig. 3. For the larger lx values
the chemical potential was chosen as μ = −1.7 and the parameter γ

was varied. The inset shows the dependence of LC on lx .
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to O(N2L2), where L ≈ lx/a. It would be interesting to
investigate if this number can be reduced even further, a next
possible candidate being O(NL3), by studying the structure of
the vertex in more detail. This is, however, beyond the scope
of this work and we leave this question for further research.

The extended feedback between the channels becomes
increasingly important with increasing interaction strength.
For L = 5, the eCLA yields meaningful, converged results for
interaction values for which the L = 0 flow obtained by CLA
is divergent. This is the case for U � 4

√
�xτ . Figures 3(d) to

3(f) show the conductance for such large values of interaction
and L = 5. The qualitative behavior is unchanged w.r.t. smaller
values of the interaction, and the quantitative strength of the
impact of the interaction increases continuously, in that the
width of the spin-split subplateau increases with U .

To shed light on the effect of the enhanced coupling between
the channels, we now analyze the resulting two-particle vertex
quantitatively, by studying its extremal value

γ ext
2 = max

q ′
1q

′
2q1q2

|γ2(q ′
1,q

′
2; q1,q2)|, (50)

where the q’s stand here both for site and spin indices.
Furthermore, we identify the two most contributing parts to
these value as

γ ext
x = max

j ′
1j

′
2j1j2

γx(j ′
1↑,j ′

2↓; j1↑,j2↓),

γ ext
p = min

j ′
1j

′
2j1j2

γp(j ′
1↑,j ′

2↓; j1↑,j2↓) . (51)

Note that we used the minimum in the definition of γ ext
p ,

since the γp contribution is mainly negative, whereas γx is
dominated by its positive part. Figure 5 shows these quantities
and the conductance as a function of Vg for L = 0 and 5.
The main message of this figure is that for intermediate
interaction strength (solid black curves) the flow converges
for both L = 0 (left column) and L = 5 (right column) and
yields qualitatively the same results for the conductance in
Figs. 5(a) and 5(b). If, however, one increases the interaction
strength further (red solid curves) the flow for L = 0 starts
to diverge [Figs. 5(c) and 5(e)] and the values of physical
observables computed from it become wrong, reflected for
example in the kink of the red conductance curve in Fig. 5(a).
A good measure for the behavior of the flow is the maximum
value of the two-particle vertex, plotted in Figs. 5(c) and 5(d).
We see that the kink in the conductance curve corresponds
to a very large value of γ ext

2 /U = 58.2 [lying outside of the
range of Fig. 5(c)]. In contrast, for L = 5, γ ext

2 as well as the
conductance stay well behaved and, in fact, the flow converges
without problems [Figs. 5(b) and 5(d)]. In order to shed light
on this stabilizing effect of the enhanced feedback, we show in
Figs. 5(e) and 5(f) the P ↑↓ and X↑↓ part of the channels, which
constitute the contributions to γ ext

2 with the largest moduli.
In the case of intermediate interaction (black curves) the X

and P contributions are of the same order of magnitude but
differ in their relative sign. If one looks at the completely
uncoupled channels, i.e., the pure ladder contributions (cf. the
study in Ref. [8]) and increases the interaction strength, the
X channel is the first one to diverge. Our interpretation of
the stabilizing effect is now as follows. Since the channels are
coupled, a slight increase in the modulus of the X channel

FIG. 5. Conductance and vertex quantities calculated for the two
feedback lengths L = 0 (left column) and L = 5 (right column)
with three different effective interaction strengths U/

√
�xτ , at zero

magnetic field.

leads via the feedback to a slight increase of the modulus of
the P channel, and due to their relative sign difference they
partially cancel, so that the resulting additional contribution
to γ2 is small. If the effective interaction becomes too strong,
this ameliorating effect eventually breaks down and the flow
diverges. In the L = 5 case, we take much more feedback
between the individual channels into account than for L = 0
and it is therefore reasonable that the divergence point of the
flow is shifted toward larger effective interactions.

D. Crossover between a closed QPC and a QD

As we have seen above, the increase of the feedback length
L leads to a more stable fRG flow in regions for high LDOS,
corresponding to a large effective interaction strength. This
stabilization effect enables us to study parameter regimes
that have been hard to treat with previous fRG schemes.
We illustrate this below for a situation known to suffer from
fRG divergence problems, namely the crossover from a QPC
to a QD. In Ref. [19], it was found that when using the
CLA (called “fRG2” there), the fRG flow for this transition
suffers from divergences if the flat barrier top is too close to
the chemical potential. For this reason, it was not possible
for fRG2 to smoothly describe how the dot filling increases
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FIG. 6. The crossover from a QPC to a QD. (a) The conductance as a function of gate-voltage Vg , calculated for several magnetic fields
(black solid lines: B = 0, 1, 2, 3 × 10−4, black dashed lines: B = 6, 9, 12 × 10−4) with feedback length L = 20. Colored symbols indicate
the conductance values obtained with smaller feedback lengths. (b) and (c) Noninteracting LDOS (color scale) and barrier shape (solid white
curve) for the two gate voltages marked by the left and right vertical arrows in (a), respectively. Horizontal white dashed lines indicate the
chemical potential μ. (d), (e) The electron density per site nj again computed for the two gate voltages indicated in (a). Summing nj over all
sites between the two density minima yields ndot = 1.01 and 2.98.

with decreasing Vg , and the region where no or only a few
electrons occupy the dot remained inaccessible within the
CLA. The eCLA enables us now to study precisely this
interesting region. [In Ref. [19], this regime was treated instead
using a simpler fRG scheme without vertex flow (“fRG1”).
Although this did qualitatively produce the Kondo physics
that is expected if the QD occupancy is odd, Ref. [19] argued
that fRG1 is generically less reliable than fRG2. For example,
for a QPC geometry, it underestimates the skewing of the
zero-temperature conductance step that is characteristic for the
0.7-anomaly. For this reason, the detailed studies of QD-QPC
crossovers performed in Ref. [19] were all limited to deep dots,
studied using fRG2.]

In Fig. 6(a), we show the conductance curve for the
crossover between a closed QPC and a QD, in which the first
two bound state levels cross the chemical potential as the dot
is made deeper. This level structure is illustrated in Figs. 6(b)
and 6(c) where we show the noninteracting LDOS of the dot
structure for the two gate voltages indicated by the black
markers in Fig. 6(a). Both of these gate voltages lie within
regions where the sharp LDOS maximum associated with a
bound state near ω = μ causes convergence problems if the
feedback length L is small, but not if L is chosen sufficiently
large, which is possible within the eCLA.

When varying the gate voltage, we can see Kondo plateaus
in the conductance arising in the Vg regions where the
occupation of the dot is odd. This is illustrated in Figs. 6(d)
and 6(e), where we show the site-resolved density, again for
the two Vg values indicated in (a). We see that the electrons are
localized within the QPC, which here had a width of 20 sites.
When the densities within the QPC are integrated, we indeed
obtain approximately one electron for the first plateau and
three electrons for the second plateau. These Kondo plateaus,
caused by Kondo screening of the dot spin, get suppressed with
increasing magnetic field since the spin degeneracy is broken.
This suppression happens in the first and second Kondo plateau
for magnetic fields on the scale ∼1 × 10−4τ (solid black

lines), and ∼3 × 10−4τ (dashed black lines), respectively. A
quantitative extraction and analysis of the Kondo scales of the
setup is beyond the scope of this paper. Our main purpose
here is to illustrate that the finite-ranged feedback of eCLA
enables us to treat a parameter regime which was not accessible
with previous fRG schemes and produces qualitatively correct
Kondo physics. To outline this, we have indicated in Fig. 6(a)
how the range of convergence increases with increasing L

from 0 to 30. We see that the L = 0 method is only convergent
in the parameter regimes where the occupancy of the dot is
even and hence the conductance is small. By increasing L

from 0 over 5 to 10, we see that also the conductance plateaus
become more and more visible. At L = 20, the whole Kondo
plateau is accessible. Upon further increasing the feedback
up to L = 30 (not shown here), we find that the conductance
results for L = 20 are already properly converged.

IV. FINITE-RANGED INTERACTIONS

In this section, we consider a model of a QPC with an
interaction whose range extends over up to N sites, in contrast
to the purely on-site interaction studied in Sec. III. The purpose
of this study is to illustrate the potential of the eCLA to deal
with finite-ranged interactions in a setting where the screening
of a longer-ranged interaction comes into play, and to take
a first step towards exploring the physical consequences of
screening. We should emphasize, though, that we do not aim
here to achieve a fully realistic treatment of screening in a QPC.
That would require including higher-lying transport modes
(we consider just the lowest-lying one), which would go well
beyond the scope of the present paper.

Our model is described by the following Hamiltonian:

Ĥ =
∑
ijσ

[
Eσ

j n̂jσ −τ (d†
jσ dj+1σ + H.c.)

]
+ 1

2

∑
i,j,σ,σ ′

Uij n̂iσ n̂jσ ′ (1 − δij δσσ ′). (52)
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Here, Eσ
j is chosen as described in Sec. III, and Uij can differ

from zero for all sites with separation |i − j | < LU , where LU

determines the bare interaction range. Note that we now also
have a bare interaction between electrons with the same spin,
which was absent in the on-site case. In the previous section,
the interaction strength was controlled by a single value U

[cf. Eq. (45)] and treated as a tunable parameter, whose strength
was varied by hand. However, now Uij is a matrix with N2

parameters, and we need to specify its form explicitly. For
this, we start with a continuous 3D model of a QPC, and for
the Hilbert spaces associated with transverse motion in the y

and z directions, we reduce the dimensionality down to one,
by taking into account only the ground states of the respective
confining potentials, cf. Ref. [28]. In this way, we arrive at a
continuous effective theory in 1D for the x direction, which
in a last step is discretized using a finite difference method,
already applied by BHD in Ref. [8]. We use the resulting
model to compute the conductance and the density profile of
a QPC, and study their dependence on the screening effects of
the long-ranged interaction and the geometric dimensions of
the QPC.

A. Derivation of a one-dimensional Hamiltonian

We start from the Hamiltonian Ĥ = Ĥ0 + Ĥ1 with

Ĥ0 =
∑

σ

∫
d3r�̂†

σ (r)

(
VQPC(r) − �

2

2m
∇2

)
�̂σ (r),

Ĥ1 = 1

2

∑
σ1,σ2

∫
d3r1

∫
d3r2U (r1 − r2)

× �̂†
σ1

(r1)�̂†
σ2

(r2)�̂σ2 (r2)�̂σ1 (r1), (53)

where the fermionic field �̂†
σ (r) creates an electron with spin

σ at the continuous position variable r. The interaction is of
screened Coulomb form with screening length ls and relative
dielectric constant κ , which is given in ESU-CGS units by

U (r1 − r2) = e2

κ

(
1

|r1 − r2| − 1√|r1 − r2|2 + l2
s

)
, (54)

cf. Hirose et al. [29]. This interaction form results from taking
image charges on the top gate into account, which is positioned
at a distance of ls/2 above the 2DEG. We use a QPC potential
given by

VQPC(x,y,z) =
[
αV (x) + m∗ �y(x)2

�2

y2

2

]
�(z), (55)

with �y(x) = 2βV (x), and m∗ = 0.067me is the effective
mass of GaAs. The function �(z) ensures the confinement
to the 2DEG and the one-dimensional potential V (x) which
enters here is the same as that used in our on-site-model
studies, Eq. (38). The QPC potential VQPC has a saddlelike
form: it defines a quadratic confinement in y direction with
a positive curvature �y(x) that decreases with increasing
|x|, whereas the curvature in x direction is negative, with
magnitude �x . The confinement in y-direction disappears
for |x| → ∞, where V (x) = 0. For the coefficients α and
β, we impose the condition α + β = 1, which turns out to
ensure that the effective one-dimensional potential resulting
from eliminating the y and z directions is precisely V (x). We

specify the transverse curvature at the center of the QPC to be
�y = �y(0), thereby fixing the parameter β = �y

2V (0) .
We now project onto the ground state subspace for the

transverse directions. With this step, taken for the sake of
simplicity, we ignore all transport modes except the one
contributing to the first conductance step. For a truly realistic
description of screening, the higher-lying modes would have
to be taken into account, too. This would lead to stronger
screening and an effective interaction of shorter range than
that obtained below.

Concretely, we thus represent our quantized fields as

�̂σ (r) = φx(y)ϕ(z)ψ̂σ (x). (56)

Here, φx(y) and ϕ(z) are the normalized ground state wave
functions of the confining potentials in the y and z directions,
respectively,

ϕ(z) =
√

δ̃(z), (57)

φx(y) = 1

(2π )1/4
√

ly(x)
e−y2/(4l2

y (x)), (58)

and the operator ψ̂σ (x) creates an electron in a state with wave
function δ(x)φx(y)ϕ(z). In our 2DEG setup, δ̃(z) is a peak of
weight one, very narrow compared to the scales in x and y

directions, whereas φx(y) is the ground state of a harmonic
oscillator with characteristic length

ly(x) = �√
2m∗�y(x)

. (59)

With this, we arrive at an effective 1D continuous theory
described by the effective 1D Hamiltonian

Ĥeff =
∑

σ

∫
dxψ̂†

σ (x)

[
�

2m
∂2
x + (α + β)V (x)

]
ψ̂σ (x)

+
∑
σ1,σ2

∫
dx1dx2

U (x1,x2)

2
ψ̂†

σ1
(x1)ψ̂†

σ2
(x2)ψ̂σ2(x2)ψ̂σ1(x1).

(60)

We now choose α + β = 1 as stated above, thus ensuring
that the resulting effective one-dimensional potential is indeed
given by V (x). The matrix elements of the interaction are given
by

U (x1,x2)

= e2

κ

√
1

2π
(
l2
y(x1) + l2

y(x2)
)

×
{

exp

[
(x1 − x2)2

4
(
l2
y(x1) + l2

y(x2)
)]

K0

[
(x1 − x2)2

4
(
l2
y(x1) + l2

y(x2)
)]

− exp

[
(x1 − x2)2 + l2

s

4
(
l2
y(x1) + l2

y(x2)
)]

K0

[
(x1 − x2)2 + l2

s

4
(
l2
y(x1) + l2

y(x2)
)]}

.

(61)

For a typical 2DEG of GaAs-AlGaAs, the relative dielectric
constant has the value κ ≈ 12.9. K0 is the modified Bessel
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function of second kind in zeroth order. It diverges logarith-
mically when its argument approaches zero.

In order to discretize our 1D continuous theory along the
x direction, we set x := a · j and replace the continuous field
ψ̂σ (x) by the discrete set of operators djσ , where a is the lattice
spacing and j the site index. This results in a Hamiltonian of
the form (52). Treating the second derivative in the kinetic
term using a finite difference method, the single-particle part
of the Hamiltonian takes the form H0 = ∑

ijσ hσ
ij , with

hσ
ij =

(
Vi − σB

2

)
δij − τ (δi,i+1 + δi,i−1), (62)

where Vi is just the discretized version of the effective
1D potential, B is the magnetic field, and τ = �

2

2m∗a2 is the
hopping matrix element. We define a discretized form of the
interaction by

Uij :=U (ai,aj ), if i �= j ; (63)

Uii := 1

a2

∫ a(i+1/2)

a(i−1/2)
dx1

∫ a(i+1/2)

a(i−1/2)
dx2U (x1,x2), (64)

where we treat the on-site case separately, since U (x1,x2)
has an integrable singularity as x1 approaches x2. The above
treatment presupposes that the transverse wave functions do
not change significantly on a scale set by a. If a is much
smaller than the characteristic length of the electrostatic
potential, the above discretization scheme correctly captures
the physical behavior of the continuous theory while reg-
ularizing the short distance of the interaction, with Uii =
− e2

κ
√

πly (ai) ln[a/ly(ai)] + O(1) for a → 0.
Having arrived at the discretized Hamiltonian (52), let

us take a final look at the parameters that characterize our
system. From the dimensionful constants �, e2/κ , and m∗,
one can construct an intrinsic length scale [ �

2

m∗e2 κ] ≈ 10 nm

and intrinsic energy scale [ m∗e4

2�2κ2 ] ≈ 5.5 meV. It is possible
to express all our model’s length and energy scales in terms
of these two dimensionful constants. However, it is often
convenient to be able to relate quantities like the gate-voltage
dependence of the conductance or the spatial resolution of
the density directly to the geometry of the QPC. For this
reason, we introduce in our studies below for each QPC a
characteristic energy scale �̄x , and a corresponding length
scale l̄x = �/

√
2m∗�̄x , which we measure in absolute units

and which characterize the mean geometry of the QPC barrier.
Concretely, we will take for �̄x the curvature of the bare
barrier at the renormalized conductance pinch-off gate voltage
V

po
g , where the conductance just begins to increase from zero

(and the barrier height is εF + V
po
g ). All the other geometric

quantities are then specified relative to �̄x . To be specific,
we will characterize our QPC by the following rescaled
dimensionless quantities (denoted by tildes):

(i) �̃x = �̄x

meV
, (ii) Ṽg = Vg

�̄x

, (iii) �̃y = �y(0)

�̄x

,

(iv) l̃s = ls

l̄x
, (v) L̃bar = Lbar

l̄x
, (vi) x̃ = x

l̄x
,

(vii) �̃′′
y = l̄2

x

�̄x

[
∂

∂2
x

�y(x)

]
x=0

. (65)

FIG. 7. (a) Distance dependence of the bare interaction Ũ (0,̃x)
between an electron located at the QPC center and one at x̃, plotted on
a logarithmic scale, for three values of l̃s . The dashed black line shows
the limit of l̃s → ∞ and the dots on the lowest curve (red) illustrate the
chosen discretization points for the case N = 61. (b) Ũ (0,̃x) (central
peak) and Ũ (̃xs = 4.5,̃x) (side peak), plotted for l̃s = 2.15 on a linear
scale for both negative and positive x̃ values.

�̃x describes the longitudinal barrier curvature in units of meV,
Ṽg the normalized gate voltage, �̃y the transverse curvature
at the barrier center, l̃s the screening length, L̃bar the total
barrier length which controls the behavior of the flanks, x̃

the longitudinal coordinate, and �̃′′
y the x dependence of the

transverse curvature at the barrier center. Note that if one
chooses to specify �̃x , �̃y , �̃′′

y , l̃s , and L̃bar, this implicitly
also fixes εF : its value has to be chosen in such a way that the
resulting curvature at pinchoff has the specified value �̃x .

It is instructive to express the interaction U (x1,x2) of
Eq. (61) in terms of the rescaled dimensionless parameters. If
we define Ub = e2/(κl̄x), the dimensionless ratio Ũ (̃x1 ,̃x2) =
U (x1,x2)/Ub depends only on the dimensionless parameters
(65) (ii)–(vii), but not on �̄x . Thus the dependence of the
interaction strength (in absolute units) on the longitudinal
curvature �̄x of the QPC is fully encapsulated in Ub. The
corresponding dimensionless parameter

Ũb = Ub/�̄x =
√

2m∗e2

κ�

1√
�̄x

(66)

characterizes the effective on-site interaction strength at the
barrier center for the present long-ranged interaction model,
and plays a role analogous to the parameter U eff

0 = U · A0
0(μ)

of Eq. (46) (which likewise scales as 1/
√

�̄x) for the on-site
interaction model of Sec. III. Evidently, Ũb increases with
decreasing �̄x , implying that interactions become ever more
important the smaller the curvature of the barrier top. Typical
values for Ũb for the plots below range between 4.2 and 4.9.

The spatial structure of the long-ranged interaction for
typical choices for the physical parameters is shown in Fig. 7.
In Fig. 7(a), we plotted the dimensionless ratio Ũ (0,x̃) =
U (0,̃x · l̄x)/Ub for three values of the rescaled screening
length l̃s , as a function of positive x̃ = x/l̄x . This ratio is
independent of �̄x itself, but increases significantly with
increasing screening length. In (b), we again show Ũ (0,̃x)
(central peak) and for comparison also Ũ (̃xs ,̃x) = U (̃xs · l̄x ,̃x ·
l̄x)/Ũb for fixed x̃s = 4.5 as a function of x̃, where the x̃ range
contains now the whole QPC. Due to the reflection symmetry
of our system about the QPC center, Ũ (0,̃x) is a symmetric
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FIG. 8. QPC conductance step shape for three choices of the
number of discretization points N (with maximal feedback length
L = N − 1), for two QPCs with different curvatures. We used the
following parameters, in absolute units [cf. Eqs. (38) and (61)]. In
(a), γ = 0.85, εF = 13.89 meV, �y = 2.35 meV, Lbar = 146.11 nm,
and ls = 46.17 nm; and in (b), γ = 0.85, εF = 11.00 meV, �y =
2.00 meV, Lbar = 158.24 nm, and ls = 50.00 nm. The insets zoom
into the range g ∈ [0.8,1.05] and plot g as a function of Vg − V po

g to
align the pinchoffs. When expressed in terms of the dimensionless
parameters of Eq. (65), the parameter choices in (a) and (b) differ
only in �̃x . For example, for the middle N = 61 curves (green),
we obtain for panel (a) A = {�̃x = 1.23, �̃y = 1.91, L̃bar = 6.79,

�̃′′
y = −0.060, l̃s = 2.15}, and for panel (b), B = {�̃x = 1.05,

�̃y = 1.91, L̃bar = 6.79, �̃′′
y = −0.060, l̃s = 2.15}.

function of x̃. In contrast, Ũ (̃xs ,̃x) is an asymmetric function
of x̃ around the point x̃ = x̃s , decreasing more quickly when
x̃ − x̃s becomes large positive than large negative, because the
transverse potential is wider in the former case. This widening
of the transverse potential is also the reason why Ũ (̃xs ,̃x) as
a function of x̃s − x̃ with fixed x̃s is in general smaller than
Ũ (0,̃x) as a function of x̃.

B. Discretization dependence

We begin our treatment of long-ranged interactions by
investigating to what extent our results depend on the number
of discretization points N with all other parameters held
fixed. Figure 8 shows this dependence for two QPCs whose
parameters were chosen to yield somewhat different ranges
of �x curvatures. The first point to notice involves the Vg

value of the conductance pinchoff: whereas in the absence of
interactions it occurs near Vg = 0, turning on our long-ranged
interactions shifts it towards the left, i.e., towards a larger
gate voltage. This behavior is unphysical, since for any fixed
Vg at which the density is nonzero, turning on interactions
should generate a Hartree barrier that causes the conductance
to decrease, not increase. We suspect that this unphysical
behavior is an fRG artefact, possibly due to our use of the
static approximation. We leave the issue of exploring what will
happen when using a dynamic version of our eCLA as a topic
for future study. We remark, however, that similar unphysical
shift artifacts where encountered in Ref. [8] when comparing
various different fRG methods that treated the details of
the vertex flow in somewhat different ways. Nevertheless,
although the V

po
g values of the conductance curves in Ref. [8]

depended on methological details, the overall shape of the

FIG. 9. QPC conductance curves at fixed N , calculated with
feedback length L = N − 1 for several values of the interaction
cutoff LU (solid lines), and with L = 15 for LU = 10 (dashed
line). The QPC parameters were chosen as in Fig. 8(b). Note
that while convergence in L is rapid, the conductance becomes
independent of the cutoff length only for LU > 40. Furthermore, for
LU � lx/a ≈ 4.4, we recover the conductance shape of short-ranged
interactions.

conductance steps were essentially the same, i.e., when plotted
as functions of Vg − V

po
g , they coincided. We find a similar

trend here: if we increase N , V
po
g increases, because changing

N slightly changes the strength and shape of the interaction
function Uij , causing corresponding changes in V

po
g and �̄x ;

however, the shape of the conductance steps in Figs. 8(a) and
8(b) seems at least qualitatively convergent when N increases
[cf. insets in (a) and (b)], despite the N dependence of the step’s
position. For the remainder of this paper we will therefore only
address the overall shape of the conductance step.

In Figs. 8(a) and 8(b), we expressed all parameters in
terms of absolute units. In most of the remaining plots
where physical properties are discussed, we use instead
the more convenient dimensionless quantities introduced in
Eq. (65) (and denoted by tildes). We have also extracted
these dimensionless parameters for Figs. 8(a) and 8(b) and
summarized them for further use in the parameter sets A and
B given in the caption of Fig. 8.

In Fig. 8, we used the maximal feedback length L = N − 1
to fully take interactions over the whole QPC into account.
However, due to numerical costs, this limited the number of
sites that could be treated to N � 71. For this reason, we have
also explored using a cutoff length LU for the interaction range,
setting Uij = 0 for |i − j | > LU . The resulting conductance
curves for different LU are shown in Fig. 9. We first note
that when the cutoff length LU becomes smaller than the
characteristic length lx/a ≈ 4.4 of the QPC, we recover
the conductance shape for short-ranged interactions. This
behavior is analogous to that obtained in Fig. 10 below, when
reducing the screening length ls below lx . Furthermore, we
find rapid convergence when increasing L beyond LU for a
fixed N ; for example, Fig. 9 contains two curves for LU = 10,
one computed with L = 60 (solid), the other with L = 15
(dashed), which essentially coincide. However, the shape of the
conductance step becomes independent of LU only for rather
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FIG. 10. (a) and (b) The conductance curves corresponding to
the interactions depicted in Fig. 7(a), for two different QPC mean
curvatures �̃x = 1.2 and 1.0, respectively. The arrows at the right
(red) l̃s = 0.86 and the left (blue) l̃s = 2.15 curve in (b) indicate the
gate voltages Ṽg = −1.43 and Ṽg = 3.73 at which the density profiles
in Figs. 11(a) and 11(b) were calculated, respectively.

large values of LU , implying that the tail of the long-ranged
interaction actually matters significantly. Therefore, we did
not pursue using LU < N any further and for the remainder of
this work show only data obtained without interaction cutoff
and with full feedback length, L = N − 1.

C. Effects of long-ranged interactions on QPC properties

After these technical considerations, let us now study how
the fact that the interaction range is not zero affects the QPC
properties. For this, we first briefly discuss the dependence of
our finite-ranged interaction on the given physical parameters
and then study the resulting consequences on the conductance
and the density. As pointed out earlier, this study does not
aim to achieve a fully realistic description of screening in a
QPC, but rather serves as a first illustration of the potential of
the eCLA for treating a model with reasonably long-ranged
interactions.

Figures 10(a) and 10(b) show, for two different values
of the curvature �̃x , respectively, three conductance curves
corresponding to the three choices of l̃s used in Fig. 7(a). For
both choices of �̃x , we obtain an on-site-like conductance step
shape when l̃s is small. When l̃s is increased, i.e., when the
amount of screening is reduced, the step shape acquires some
additional features, such as the emergence of a “preplateau” at
a value of g slightly lower than 1, followed by a much slower
increase towards 1 in Fig. 10(a). These features are more
pronounced for the longer QPC (i.e., smaller curvature) of
Fig. 10(b), where the conductance quickly reaches a preplateau
around g � 0.8 and thereafter increases much more slowly.

In order to explore the origin of this behavior, we show
in Figs. 11(a) and 11(b) two density profiles (thin lines),
calculated, respectively, for two fixed parameter choices from
Fig. 10(b), indicated in the latter by the right (red) marker for
l̃s =0.86, Ṽg =−1.43 and the left (blue) marker for l̃s =2.15,
Ṽg =3.73. In Fig. 11(b), for which the rescaled screening
length l̃s is larger, we observe three qualitative changes relative
to Fig. 11(a). First, the flanks of the density profile are
somewhat steeper. Second, the spatial region in which the
density is low has become wider. And third, in this low-density
region the density shows some weak density oscillations that
are absent in Fig. 11(a).

FIG. 11. Density profiles (thin lines) calculated for two fixed
parameter choices from Fig. 10, indicated for panels (a) and (b) by the
right and left arrows in Fig. 10(b), respectively. For comparison, the
thick lines depict (a vertically rescaled version of) the imaginary part
of the interacting single-particle propagator at the chemical potential,
A0,̃x = − 1

πl̄x
Im GR

0,̃x(ω = 0). Horizontal dashed lines indicate where
A0,̃x = 0. In (b), the distance between the two density maxima
(marked by the dashed vertical lines) is λ = 3.62l̄x . This agrees well
with two estimates of λF /2, either from the distance between the two
central zeros of A0,̃x finding λF /2 = 3.82l̄x or from the mean density
n̄ in the center of the QPC (shaded region) finding λF /2 = 3.55l̄x .

The first two features suggest that the long-range interac-
tions have generated a renormalized barrier whose shape has
a flatter top and steeper flanks than the bare parabolic barrier.
This flattening occurs because the bare density is larger in
the flanks than near the center, hence the upward Hartree-type
shift of the barrier potential, which is proportional to the bare
density, is larger in the flanks than near the center. The upward
renormalization in the flanks becomes stronger the larger the
interaction range, because then the upward Hartree-type shift
at a given site is determined by a weighted average of the
density over a range of nearby sites (whose extent is set by the
screening length), and since the bare density profile is convex,
the sites in the flanks contribute more strongly.

To shed further light on the third feature, namely the weak
density oscillations in the low-density region, we compare
their oscillation period with estimates for the “local Fermi
wavelength” λF at the QPC center, which can be extracted from
either the interacting Green’s function or the mean density
in the center of the QPC. To illustrate the first method, the
thick lines in Figs. 11(a) and 11(b) indicate the oscillatory
behavior of A0,̃x = − 1

πl̄x
Im GR

0,̃x(ω = 0). For a homogeneous
system, the Green’s function oscillates with period λF , and
likewise we can here define an effective λF /2 in the middle
of the QPC by taking the distance between the two central
zeros of the thick line. For Fig. 11(b), the position of these
zeros is in good agreement with the position of the density
maxima of the QPC (indicated by the two dashed vertical
lines), whereas the density in Fig. 11(a) shows no features on
the scale of λF . An alternative way to extract an effective λF

is to calculate the mean density n̄ in the center of the QPC
between the two density maxima (shaded region in Fig. 11),
and use λF = 2π/kF = 4/n̄. For Fig. 11(b), the first method
yields λF /2 = 3.82l̄x , and the second λF /2 = 3.55l̄x , which
are both in reasonable agreement with each other and the
distance λ = 3.62l̄x between the two density maxima. Thus we
conclude that the period of the density oscillations observed
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FIG. 12. Study of two QPCs with different L̃bar, for three choices
of �̃x . The other dimensionless parameters were chosen the same
as in B [cf. caption of Fig. 8]. (a) and (b) Conductance as function
of gate voltage and (c)–(h) density as function of position and gate
voltage. While the conductance changes its shape for both QPCs, the
shorter one (b) shows stronger features, preeminently a shoulder in the
conductance step. In the density, both QPCs show the development of
oscillations with approximate wavelength λF /2, which is determined
by the Green’s function as in Fig. 11 and indicated by the distance
between the black lines. In the last plots (g) and (h), the density
oscillations transition at smaller gate voltages from two to three
maxima. The cut along the dashed white line in (f) is precisely the
density profile plotted in Fig. 11(b).

here can be associated with λF /2, or equivalently wave number
2kF .

In Fig. 12, we examine this behavior more systematically,
using two QPCs having a comparatively long screening length
of l̃s = 2.15, but which differ slightly in L̃bar, i.e., in their
total barrier length. For both QPCs, the conductance step
[Figs. 12(a) and 12(b)] changes its shape with decreasing
curvature �̃x and for the right QPC with smaller L̃bar develops
additional pronounced features in the plateau region. In
Figs. 12(c)–12(h), we show the corresponding densities (color
scale) as functions of gate voltage and longitudinal position,
and find that with decreasing curvature �̃x the density develops
oscillations. The period of these oscillations is again set by
λF /2, which is indicated in Figs. 12(c)–12(h) by the distance
between the black lines. While for the right QPC the two
density maxima follow very accurately the black lines, in the
left QPC they lie slightly further apart than λF /2. The reason

FIG. 13. (a)–(c) Barrier shapes (dashed lines) and corresponding
noninteracting densities (solid lines) for almost open QPCs with
(a) a parabolic barrier top, (b) a flat barrier top with wide flanks,
(c) and a flat barrier top with steep flanks. (d)–(f) Density profiles
corresponding to these three barrier shapes, plotted as functions of
position and gate voltage. In these plots, λF /2 is again indicated
by the distance between the black lines. The flat barrier top with
steep flanks of panel (c) yields pronounced Friedel oscillations in the
density profile shown in (f), which resemble the density oscillations
caused by the long-range interaction in the open regime of the QPCs
of Figs. 12(e)–12(h). This suggests that for the latter, the renormalized
barriers have a rather flat tops with steep flanks.

for this might be that the left QPC is slightly longer (L̃bar is
larger), giving the electrons in the center more space to form
the two repelling density maxima, but not enough space to fit a
third density maximum into the available region. In summary,
we find that when increasing the geometric proportions of the
QPC compared to the scale set by the interactions, i.e., when
decreasing �̃x , the conductance develops additional features
in the plateau region, and simultaneously density oscillations
arise on a scale set by λF /2.

We interpret the 2kF density oscillations seen in Fig. 11(b)
as Friedel oscillations generated by the inhomogeneity induced
by the renormalized QPC potential. A similar interpretation
was envoked in Iqbal et al. [30] where they also found a
wavelength λF /2, or equivalently a wave number of 2kF , for
their spin polarized, emergent localized states (ELS) obtained
from SDFT calculations in long QPCs.

To support this interpretation, we show in Figs. 13(a)–13(c)
some density profiles (solid lines) obtained for a QPC model
of noninteracting electrons traversing a QPC, comparing three
different barrier shapes (dashed lines): (a) a parabolic top,
(b) a flat top with a slow transition to broad flanks, and (c)
a flat top with a rather quick transition to steep flanks. For
a given gate voltage, the overall shape of the density profile
mirrors that of the barrier top for all three cases. Moreover,
pronounced additional density oscillations arise for case (c).
Panels (d) to (f) show the corresponding evolution of such
density profiles with gate voltage. For gate voltages where
the QPC is sufficiently open that the density in the center is
not very low, the density oscillations seen in Figs. 13(c) and
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FIG. 14. Interacting LDOS in the static approximation [Eq. (67)],
shown as function of position and energy (color scale), for three
different values of the screening length l̃s . Solid white lines show
the bare potential Vj and dashed white lines Vj + �jj , as functions
of position. The physical parameters used for this plot correspond
to those of Fig. 10(b), with the gate voltage was set to Ṽg = −1.91
in (a), Ṽg = −1.43 in (b), and Ṽg = 3.73 in (c). (The latter two
correspond to the red and blue markers in Fig. 10.) The shape of the
band bottom reflects that of the renormalized barrier. (The fact that
the renormalized barrier top lies below the bare barrier top in (c) is
due to the artifact of static fRG discussed in Sec. IV B.)

13(f) are reminiscent, respectively, of those seen in Figs. 11(b)
and 12(c)–12(h) for QPCs with interactions whose range is
longer than the characteristic QPC length (i.e., with l̃s > 1).
This supports the interpretation offered above that such QPCs
indeed have renormalized barriers with rather flat tops and
steep flanks. However, for higher gate voltages where the QPC
is beginning to close off and the density in the center becomes
very low, we see a qualitative difference between the density
profiles shown in Fig. 13(f) and those of Figs. 12(c)–12(h): the
former shows a weak density maximum, whereas the latter do
not, because in the regime of very low densities, the Hartree-
type renormalization of the barrier shape is not yet strong
enough to generate a flattish barrier top.

To further explore our hypothesis concerning the occur-
rence of a renormalized barrier with a flattened top and steep
flanks, we have studied the influence of the screening length,
l̃s , on the interacting LDOS in the static approximation,

Aj (ω) = − 1

π
Im Gjj (ω + i0+) = − 1

π
Im[ω − h0 − �]−1

jj ,

(67)

where h0
ij = δijVj − τ [δi,j+1 + δi,j−1] is the bare single-

particle Hamiltonian, and �ij is the static self-energy at
the end of the RG flow [31]. Figure 14 shows the LDOS
(color scale) as a function of position and energy, for three
values of the screening length, l̃s . We interpret the shape
of the effective band bottom as indicative of the shape of
the effective barrier. We observe that with increasing l̃s , the
effective barrier top indeed does become strikingly flat over
an extended region of space centered on the middle of the
QPC, ending in rather steep flanks, as anticipated above.

For comparison, solid white lines show the bare potential
Vj with its parabolic top. Moreover, dashed white lines
show Vj + �jj , to illustrate the contribution of the diagonal
elements of the self-energy to the renormalization of the
potential barrier. However, while Vj + �jj does show a trend
toward barrier flattening with increasing screening length, for
the largest l̃s value [Fig. 14(c)], it leads to a shallow local
minimum at x̃ = 0, reminiscent of a QD-like barrier shape.
To correctly capture the shape of the band bottom, which
shows no such local minimum, the off-diagonal elements of
the self-energy have to be taken into account, too. This is
done when computing the LDOS according to Eq. (67), which
involves inverting the entire matrix ω − h0 − � before taking
diagonal elements. The above results show that long-range
interactions can have a rather striking flattening effect on
the effective barrier shape, and that long flat barriers lead to
interesting density oscillations. It would thus be interesting to
study the geometric crossover from a QPC to a homogeneous
wire obtained by making the QPC length l̄x very long, or
by using flat-topped bare barriers of increasing width. In a
paper by Schulz [32], concerning Wigner crystal physics in
1D, it was predicted that in a homogeneous 1D model with
long-ranged Coulomb interactions in the low-density limit,
the density-density correlator 〈ρ(x)ρ(0)〉 contains both 2kF

and 4kF oscillations. The latter decay more slowly with x,
and are argued by Schulz to lead to a Wigner crystal in a
homogeneous system. During the aforementioned geometric
crossover from a QPC to a long wire, well-developed 4kF

density oscillations can be expected to emerge, which could
be regarded as precursors for the formation of a Wigner
crystal. A systematic study of this behavior would be extremely
interesting, but falls beyond the scope of this paper and is
left for future study. In particular, future work would have to
incorporate screening also due to higher transport channels,
leading to a shorter-ranged interaction, so that the effects
discussed above would likely turn out to be somewhat less
pronounced than found here.

V. CONCLUSION AND OUTLOOK

Building on previous works [7,8], we have introduced
an improved approximation scheme for third-order truncated
fRG. We use an extended coupled ladder approximation
(eCLA), splitting the fRG-flow into three channels depending
on the internal index structure. When treated independently,
each of these channels behaves as in the random phase
approximation. The complexity of the eCLA scheme depends
on the amount of feedback admitted between the individual
channels. For the frequency dependence, we only used static
feedback between the channels. In order to control the amount
of feedback in the spatial structure, we have introduced the
feedback length L. In the case L = 0, we get the minimal
feedback between the channels, corresponding to the CLA of
previous works [8], whereas for L → N − 1 we recover the
full spatial vertex flow in second order.

For actual computations, we restricted ourselves to static
fRG, i.e., in addition to using only a static feedback between
the channels we also neglected the frequency dependence
of the vertices altogether. In this additional approximation,
we calculated the zero-temperature Green’s function at the
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chemical potential, which is the relevant quantity in order to
compute the linear conductance of the system.

We first applied our new method to a QPC model with
on-site interactions, which has extensively been studied in
the past. Here, we observed that the longer-ranged feedback
leads to a quantitative but not qualitative change as long as
both methods are convergent for the respective parameters. In
particular, we observed for barriers with characteristic lengths
between 4–10 sites that convergence in L is achieved onces L

becomes comparable to lx . Additionally, we observed that the
enhanced feedback stabilizes the fRG flow and therefore leads
also to convergence in parameter regimes which could not be
studied with the L = 0 method. To illustrate this increased
stability, we studied QPC-QD crossovers analogous to those
discussed by Heyder et al. in Ref. [19] using the CLA.
There, the convergence of the fRG flow suffers especially
from the high LDOS at the chemical potential that occurs
during the crossover when the barrier top becomes flat in an
extended region close to the chemical potential. Our stabilized
flow, however, enabled us to study this type of transition. In
particular, we succeeded to study regimes of very shallow
dots, containing only a few electrons, and observed the Kondo
plateau in the conductance expected for such dots.

Finally, in order to test the full potential of our im-
proved feedback, we applied it to a QPC with finite-ranged
interactions. The most striking observation was that for a
relatively flat QPC in the regime of low density and sufficiently
long-ranged interactions, the conductance reaches a preplateau
somewhat below g = 1 (before slowly climbing towards
g = 1), accompanied by the onset of oscillations in the density.
The wavelength of these density oscillations was determined to
be approximately λF /2, admitting an interpretation as Friedel
oscillations arising from a renormalized barrier shape with
a rather flat top and steep flanks. This behavior is consistent
with that observed by Iqbal et al. [30] in SDFT calculations for
their emergent localized states (ELS) in a spin-polarized QPC.

It would be of great interest to explore these type of effects
more systematically in the future, within a more realistic model
that incorporates the effects of higher transport modes when
deriving the effective screened interaction for the lowest-lying
transport mode. In particular, the geometric crossover between
a QPC potential and a homogeneous quantum wire, expected to
show Wigner crystallization, could be explored in this fashion.
However, it remains to be seen whether fRG will be able
to cope with the truly homogeneous limit; such a study will
presumably also have to employ tools more powerful than
fRG, such as the density matrix renormalization group.

By way of an outlook to future technical fRG developments,
let us remark that it would be desirable to find ways of avoiding
an fRG artifact that is present in our results: upon turning on a
long-ranged interaction, the position of the conductance step
shifts not to smaller gate voltages, as physically expected,
but to larger ones. We suspect that this artefact results from
our use of static fRG. A next possible step to remedy this
problem could be to change from static to dynamic fRG, i.e.,
to implement the frequency dependence of the vertices. More-
over, it would also be possible to use our enhanced feedback
scheme in the context of Keldysh fRG, which is additionally
able to treat the temperature dependence and nonequilibrium
behavior of QPCs. This would be numerically challenging
since the Keldysh scheme in the L = 0 implementation is
already very costly by itself. However, one might profit from
the fact that the most expensive part of the Keldysh calculation
scales with O(L2), and not with O(L3) as in our case. Work in
that direction is currently in progress.
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