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Abstract

We introduce a family of many-body quantum states that describe interacting spin one-half hard-core 
particles with bosonic or fermionic statistics on arbitrary one- and two-dimensional lattices. The wave 
functions at lattice filling fraction ν = 2/(2m + 1) are derived from deformations of the Wess–Zumino–
Witten model su(3)1 and are related to the (m + 1, m + 1, m) Halperin fractional quantum Hall states. We 
derive long-range SU(2) invariant parent Hamiltonians for these states which in two dimensions are chiral 
t–J–V models with additional three-body interaction terms. In one dimension we obtain a generalisation 
to open chains of a periodic inverse-square t–J–V model proposed in [25]. We observe that the gapless 
low-energy spectrum of this model and its open-boundary generalisation can be described by rapidity sets 
with the same generalised Pauli exclusion principle. A two-component compactified free boson conformal 
field theory is identified as the low-energy effective theory for the periodic inverse-square t–J–V model.
© 2017 Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Two-dimensional conformal field theory (CFT) is a valuable tool for the analysis of a large 
class of strongly correlated quantum systems in one and two spatial dimensions. CFT may be 
used to describe the gapless edge modes of two-dimensional systems with chiral topological 
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order such as quantum Hall samples [1–3] and chiral spin liquids [4,5]. Moreover, the low-
energy effective theory for quantum critical systems of spins or fermions on one-dimensional 
lattices links the critical exponents of correlation functions to the scaling dimensions of a CFT. 
As first noted by Moore and Read [6] CFT may furthermore be used to construct the many-body 
wave functions for the ground state and elementary quasi-hole excitations in the two-dimensional 
bulk of fractional quantum Hall (FQH) systems. In a similar spirit it was suggested to use the 
correlation functions of conformal fields to define many-body wave functions for one- and two-
dimensional lattice states [7–10]. These states are referred to as infinite matrix product states 
(MPS) due to a formal similarity to usual MPS constructed from finite-dimensional matrices. 
For infinite MPS wave functions constructed from a rational CFT, long-ranged lattice parent 
Hamiltonians can be derived that possess the infinite MPS as their exact ground state [7,11]
(there exist alternative ways of deriving similar parent Hamiltonians, see, e.g., Refs. [12,13]). 
On one-dimensional chains with periodic or open boundary conditions one thus obtains quan-
tum critical chains [7,9,11,14–17] such as the Haldane–Shastry (HS) model [18,19], whereas on 
generic two-dimensional lattices the construction yields chiral topological states [8,20,21]. In 
most but not all cases, the CFT characterising these one- or two-dimensional phases is closely 
related to the theory which defines the many-body wave functions of the infinite MPS.

The clarification and elucidation of the phase diagram of cuprate high-temperature supercon-
ductors is one of the biggest and most long-standing open problems in theoretical condensed 
matter physics [22]. These systems are usually studied using the t–J model [23] which is the 
strong-coupling limit of the single-band Hubbard model and describes itinerant spin one-half 
fermions without double occupancy of any lattice site that interact through spin exchange. On 
one-dimensional chains, the Hubbard and t–J models are gapless quantum critical Tomonaga–
Luttinger liquids [24] whose low-energy effective CFT can be constructed from free-boson 
theories. In 1992 Ha and Haldane introduced certain long-range t–J –V models with mod-
ified density-density interaction for bosonic or fermionic particles defined on periodic one-
dimensional chains without double occupancy and with interaction strengths decaying as the 
inverse square chord distance [25]. They constructed a set of low-energy eigenstates with lattice 
wave functions very similar to the spin-singlet (m + 1, m + 1, m) Halperin FQH state [26] which 
is the most natural generalisation to spin-unpolarised systems of the Laughlin state [3] at filling 
1/(m + 1). Since the lattice analogue of the simplest bosonic Laughlin state at filling 1/2 is just 
the ground state of the SU(2) HS model, the infinite MPS construction based on the CFT su(2)1
provides a direct relation between the spin-polarised FQH state and the one-dimensional lattice 
model for spin one-half particles without holes. One may ask whether a similar connection exists 
between spin-singlet Halperin FQH samples and the one-dimensional quantum critical t–J –V

models from Ref. [25] for hole-doped spin one-half systems.
In this paper we identify a two-dimensional chiral CFT such that the infinite MPS derived 

from this theory essentially provides this link between Ha and Haldane’s inverse-square t–J –V

models and the Halperin spin-singlet FQH wave function. From the correlator of fields from 
this CFT we construct on arbitrary one- and two-dimensional lattices a spin-singlet state at lat-
tice filling fraction 2/(2m + 1) with a Jastrow wave function identical to the (m + 1, m + 1, m)

Halperin state. We derive long-range SU(2) invariant parent Hamiltonians for this infinite MPS 
on generic lattices which describe interacting spin one-half hard-core bosons (fermions) for odd 
(even) values of m. In two dimensions, we thereby obtain a chiral t–J –V model with additional 
three-body interaction terms. In one-dimension the result provides a generalisation of Ha and 
Haldane’s model to chains with open boundary conditions, whereas the parent Hamiltonian on 
periodic chains differs from the inverse-square t–J –V model only by an additional term that 
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explicitly breaks time reversal symmetry. Using Monte-Carlo calculations we analyse the entan-
glement entropy and correlation functions in the Halperin infinite MPS on periodic and open 
chains and find that the states are quantum critical and described by a low-energy CFT with cen-
tral charge c = 2. Moreover, we observe that the distinct energy levels in the gapless finite-size 
spectrum of Ha and Haldane’s inverse-square t–J –V model and its open-boundary generalisa-
tion can be described by rapidity sets similarly to the HS model [18] but with a generalised Pauli 
exclusion principle [27]. From the finite-size scaling of the resulting analytic expressions for the 
energy and momentum of the low-energy states we extract the conformal dimensions of the pri-
mary fields in the low-energy CFT of the periodic model. We identify the action of a toroidally 
compactified two-component free boson CFT [28] whose partition function on the torus precisely 
agrees with the observed spectrum of scaling dimensions in the periodic t–J –V model.

The paper is organised as follows. In Sec. 2, we define an infinite MPS from a CFT of two free 
bosons and use the algebraic structure of this theory to construct lattice operators that annihilate 
the state on arbitrary one- and two-dimensional lattices. In Sec. 3, we analyse the nature of the 
infinite MPS, first by deriving the form of its wave function on different lattices and then by 
numerically studying the entanglement entropy and two-point correlation functions on periodic 
and open chains. In Sec. 4, explicit expressions for the infinite MPS parent Hamiltonians in 
one and two dimensions are provided. Furthermore, we suggest a description for the finite-size 
spectrum of the periodic and open inverse-square t–J –V Hamiltonians in terms of rapidity sets, 
derive the lowest scaling dimensions of the periodic models and identify a two-component free 
boson CFT matching the periodic t–J –V models. Finally, we conclude the paper by mentioning 
some possible directions for future research in Sec. 5.

2. Constructing models for spin one-half hardcore particles from free-boson CFTs

2.1. Infinite MPS for spin one-half hard-core bosons or fermions

We consider interacting hard-core particles of species ↑ or ↓ and with bosonic or fermionic 
statistics moving on a lattice � = {zi ∈ C|i = 1, . . . , N} embedded into the complex plane. Each 
lattice site can be either empty |0〉 or occupied by a particle |σ 〉 of species σ =↑, ↓, whereas 
double-occupancy configurations are excluded from the Hilbert space. We propose an ansatz 
state

|ψ〉 =
∑

μ1,...,μN=0,↑,↓
ψ(μ1, . . . ,μN ; z1, . . . , zN) |μ1, . . . ,μN 〉 (1)

defined by a lattice wave function

ψ(μ1, . . . ,μN ; z1, . . . , zN) = 〈
Aμ1(z1) · · ·AμN (zN)

〉
(2)

which is the expectation value of a product of conformal fields Aμ evaluated at the positions of 
the lattice sites z1, . . . , zN . Just as for translation-invariant MPS, the operator Aμi inserted at the 
ith position in the correlation function giving the coefficient of the state |μ1, . . . ,μN 〉 depends 
only on the configuration |μi〉 of the ith lattice site. Since the Hilbert space of a two-dimensional 
CFT is infinite-dimensional, (1) is sometimes referred to as an infinite MPS. It is fully determined 
by a choice of three conformal fields A0,↑,↓, one for each local basis state. In previous work it 
was established that infinite MPS characterising systems of spin one-half particles without holes 
are based on the CFT su(2)1 [7]. Moreover, systems of spin-less particles at filling fractions 
ν = 1/q less than unity can be described by infinite MPS derived from vertex operators of a 
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Table 1
Representation of the local Hilbert space and local operator algebra of a system of spin 
one-half hardcore particles in terms of primary fields and currents of a c = 2 free boson 
CFT. For m odd (even) the CFT maps to the bosonic (fermionic) lattice system.

Local lattice operator or state Conformal field h

S3 J 3
1 = − i√

2
∂φ1 1

S± J±
1 = ±χ↑χ↓e∓i

√
2φ1 1

1 − 2m+1
2 n J2 = i

√
2m+1

2 ∂φ2 1

dσ Bσ = χ0χσ e
isσ

1√
2
φ1

e
i

√
2m+1

2 φ2 m+1
2

|0〉 A0 = χ0e
−i 2√

2(2m+1)
φ2 1

2m+1

|σ 〉 Aσ = χσ e
isσ

1√
2
φ1

e
i 2m−1√

2(2m+1)
φ2 m−1

2 + 1
2m+1

chiral free boson compactified at radius 
√

q [15]. In order to describe spin one-half particles at 
filling fractions less than unity we combine these two observations and consider the family of 
chiral vertex operators

Aμ(z) = χμeisμφ1(z)/
√

2 ei((2m+1)nμ−2)φ2(z)/
√

2(2m+1) (3)

parametrised by an integer number m ∈ N. Here, the parameters n0 = 0, n↑,↓ = 1 and s0 = 0, 
s↑,↓ = ±1 characterise the occupation number and spin of a single site in the three different 
basis states. The operators (3) are elements of a CFT with central charge c = 2 of two chiral 
real massless free bosons φ1, φ2 compactified at the radii R1 = √

2 and R2 = √
2(2m + 1) that 

describe the spin and charge degree-of-freedom of the hard-core particles, respectively. This CFT 
contains six current operators that define a closed chiral algebra with respect to which the vertex 
operators Aμ form the three components of a primary field (we use the term ‘current’ for the 
elements of a chiral algebra irrespective of whether their conformal dimension is h = 1 [29]). 
The only singular term in the operator product expansion (OPE) of any one of these currents 
OCFT with the fields Aμ is given by

OCFT(z)Aμ(w) = −
∑
ν

(O)μν

z − w
Aν(w), (4)

where (O)μν is the representation matrix of a single-site linear operator of the hardcore-particle 
lattice system (see Appendix A for an explanation of the normalisation convention). In this sense, 
each CFT current is linked to a local lattice operator and the algebraic structure of the free-boson 
CFT reflects the structure of the local Hilbert space and operator algebra of the lattice system. 
The resulting map between the conformal fields and the lattice operators or states is summarised 
in Table 1. Denoting by d†

σ the operator that creates a hard-core boson or fermion of species σ , 
the lattice SU(2) spin generators Sa = 1

2

∑
α,β=↑,↓ d†

ασ a
αβdβ for a = 1, 2, 3 and S± = S1 ± iS2

correspond to the currents J 3
1 (z) = −(i/

√
2)∂φ1(z) and J±

1 (z) = ±χ↑χ↓e∓i
√

2φ1(z) that form 
an su(2)1 Kač–Moody algebra in the sector of the first boson φ1. On the other hand, the U(1) 

current J2(z) = i

√
2m+1

2 ∂φ2(z) of the second boson φ2 is associated with the particle number 

operator n = d
†
d + d

†
d . Finally, the particle annihilation operators dσ are represented by two 
↑ ↑ ↓ ↓
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currents Bσ (z) = χ0χσ e
sσ i 1√

2
φ1(z)

e
i

√
2m+1

2 φ2(z) that mix the sectors of both free bosons. The ver-
tex operators are multiplied by representations of anti-commuting Klein factors {χμ, χν} = 2δμν

in terms of Majorana fermions χ†
μ = χμ which ensure the correct statistical phase for the confor-

mal currents and primaries: Whereas J a
1 , J2 with conformal dimension h = 1 commute with the 

primaries Aμ, the currents Bσ with conformal dimension h = (m + 1)/2 (anti-)commute with 
the two components A↑,↓ of non-zero particle number for odd (even) m. Hence, the algebraic 
structure of the CFT corresponds to a bosonic (fermionic) lattice system for odd (even) m. A spe-
cial case that has been covered in previous work [16,17] arises for m = 1, when all currents have 
conformal dimension h = 1 and correspond to six of the eight generators of the Wess–Zumino–
Witten (WZW) model su(3)1 where Aμ form the three components of the WZW primary field 
associated with the fundamental representation of su(3).

2.2. Null fields

The Hilbert space of the CFT generated by the currents OCFT when acting on the primary Aμ

contains null states that have vanishing overlap with all other states. Since the wave function (2)
is given as the expectation value of product of primary fields the null states and their associated 
null fields may be used to derive operators which annihilate the infinite MPS and which can be 
combined to form a parent Hamiltonian [11]. The simplest null fields for the infinite MPS (1) are 
obtained by an expansion of the product OCFT(z)Aμ(w) to order (z − w)0. In the su(2)1 sector 
of the first boson φ1 there exist four null fields at the first Virasoro level [11]. For the derivation 
of SU(2) invariant parent Hamiltonians it is convenient [11] to consider three linear combinations 
which are labelled by a vector index a = 1, 2, 3 and are given as

λa(w) = 1

2πi

∮
Cw

dz

z − w
[J a

1 (z)
∑

α=↑,↓
Aα(w)

+ i
∑

b,c=1,2,3

εabcJ
c
1 (z)

∑
α,β=↑,↓

1

2
(σ b)βαAα(w)]. (5)

Here, Cw is an integration contour that circles the point w once in the positive sense. In addition, 
we find four null fields that involve degrees-of-freedom from both φ1 and φ2

ωσ (w) = 1

2πi

∮
Cw

dz

z − w

[
Bσ (z)A0(w) − (sσ J 3

1 (z) − J2(z))A
σ (w)

]
, (6a)

ησ (w) = 1

2πi

∮
Cw

dz

z − w
Bσ (z)Aσ (w). (6b)

There are two further operators

ζ σ (w) = 1

2πi

∮
Cw

dz

z − w
B−σ (z)Aσ (w) (6c)

which are null fields of all CFTs with m ≥ 2.
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2.3. Operators annihilating the lattice Halperin state

In this subsection we follow Ref. [11] and compute operators that annihilate the infinite 
MPS (1) on arbitrary one- or two-dimensional lattices. The simplest descendant fields generated 
by the action of the currents OCFT ∈ {J a

1 , J2, Bσ } on the primary Aμ are linear combinations

φ(w) =
∑
λ

φλ(w) =
∑
λ

1

2πi

∮
Cw

dz fλ(z;w) Oλ
CFT(z)Aαλ(w) (7)

with a meromorphic scalar function fλ(z; w) = ∑
n≤−1 cλ,n(z−w)n and αλ ∈ {0, ↑, ↓} for all λ. 

We denote by Oλ
i the linear operator on the lattice site i that is associated with the current Oλ

CFT
according to Table 1. We assume that it is possible to find a local basis state |β〉 ∈ {|↑〉 , |↓〉 , |0〉}
such that for every term in the linear combination (7) the local lattice operator Qλ = |β〉 〈αλ| is 
bosonic (fermionic) for bosonic (fermionic) Oλ. Below we show that whenever φ is a null field, 
the state (1) is annihilated for any value j ∈ {1, . . . , N} by the operator

�j ≡
∑
λ

�λ
j ≡

∑
λ

∑
k(=j)

fλ(zk; zj )Qλ
jOλ

k =
∑
λ

∑
k(=j)

fλ(zk; zj )(|β〉 〈αλ|)j Oλ
k , (8)

where we denote by j1, . . . , jn (= i1, . . . , ik) the set of indices j1, . . . , jn ∈ {1, . . . , N} \
{i1, . . . , ik}. The null fields (5) and (6) are of the form (7) with fλ(z; w) ∝ 1/(z − w). More-
over, for each of these fields it is possible to find a basis vector |β〉 ∈ {|↑〉 , |↓〉 , |0〉} such that 
the grading of the operators Oλ and Qλ is identical for all terms λ appearing in its definition. 
Therefore we can use the result (8) to construct their associated lattice operators which annihi-
late the infinite MPS. These operators will be used in Sec. 4 to build parent Hamiltonians for the 
state (1).

As a first step in the calculation relating the null field (7) and the lattice operator (8)
we insert the component φλ(zj ) in place of the operator Aμj (zj ) into the wave function (2)
at position zj . The integral over z that appears in the null field then acts on the integrand 
f (z; zj )〈Oλ

CFT(z)Aμ1(z1) · · ·AμN (zN)〉|μj =αλ which is holomorphic everywhere except in the 
points z = zk for k = 1, . . . , N , where it has poles. Using the theorem of residues, the integral 
along the curve Czj

circling zj may be transformed into the sum of a positive integral over a 
circle with infinite radius and integrals with negative orientation circling the points z = zk for 
k = j , such that

〈Aμ1(z1) · · ·Aμj−1(zj−1)φλ(zj )A
μj+1(zj+1) · · ·AμN (zN)〉

= (−1)2hλ

∑j−1
l=1 n(μl)

× lim
R→∞

1

2πi

∮
|z|=R

dz fλ(z; zj ) 〈Oλ
CFT(z)Aμ1(z1) . . .AμN (zN)〉∣∣

μj =αλ

− (−1)2hλ

∑j−1
l=1 n(μl)

×
∑

k(=j)

1

2πi

∮
Czk

dz fλ(z; zj )〈Oλ
CFT(z)Aμ1(z1) · · ·AμN (zN)〉∣∣

μj =αλ
. (9)

Here, hλ is the conformal dimension of the field OCFT such that the phase factors in (9) account 
for the minus signs that appear when a fermionic current Bσ is commuted past a primary Aσ

associated with a non-zero number of particles. Explicit evaluation of the integrand in the second 
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line of (9) following (A.2) and (A.3) shows that it decays faster that |z|−2; hence the integral 
vanishes in the limit R → ∞. The integrals over Czk

can be simplified using the OPE (4) of the 
product Oλ

CFT(z)Aμk (zk). Since the function fλ(z; zj ) is holomorphic in the vicinity of a point 
zk with k = j only the first singular term ∝ (z − zk)

−1 of the OPE contributes to the integral and 
we find

〈Aμ1(z1) · · ·Aμj−1(zj−1)φλ(zj )A
μj+1(zj+1) · · ·AμN (zN)〉

= (−1)2hλ

∑j−1
l=1 n(μl)

∑
k(=j)

(−1)
2hλ

∑k−1
l=1 n(μl)|μj =αλ fλ(zk, zj )

×
∑
μ

(Oλ)μkμ〈Aμ1(z1) · · ·Aμ(zk) · · ·AμN (zN)〉∣∣
μj =αλ

. (10)

Here, the second phase factor appears because the current Oλ
CFT needs to be commuted past 

the primaries Aμ1(z1) · · ·Aμk−1(zk−1) before the OPE can be applied. The constraint μj = αλ

in (10) can be incorporated by acting on the infinite MPS with the operator Qλ
j which annihilates 

all configurations for which the j th site is not in the state αλ. After summing the contributions 
of all configurations |μ1, . . . ,μN 〉, (10) thus implies that

�λ
j |ψ〉 =

∑
k(=j)

f (zk; zj )Qλ
jOλ

k |ψ〉 =
∑
{μi }

δμj β〈Aμ1(z1) · · ·φλ(zj ) · · ·AμN 〉 |μ1, . . . ,μN 〉 .

(11)

The phase factors in (10) are compensated by minus signs that appear when the operators 
Qλ

j , Oλ
k are commuted past the particle creation operators contained in the many-body basis 

states |μ1, . . . ,μN 〉. This cancellation is possible because bosonic (fermionic) local lattice op-
erators are represented by bosonic (fermionic) CFT currents and since the grading of Qλ is 
identical to that of Oλ. Since β is identical for all terms in (8), after a summation over λ all terms 
on the left side of (11) contain the expectation value 〈Aμ1(z1) · · ·φ(zj ) · · ·AμN 〉. This correlation 
function is identically zero whenever φ is a null field of the CFT such that the infinite MPS is 
annihilated by the operator (8).

2.4. Global symmetries of the infinite MPS

The Ward identities for the currents OCFT generating the CFT used to define the conformal 
wave function (2) determine the behaviour of the infinite MPS under certain global symmetries 
such as the spin or particle number. If OCFT denotes one of the currents J a

1 , J2 or Bσ , the integral 
along a curve at infinity over its expectation value with any product of primaries Aμ vanishes,

0 = lim
R→∞

1

2πi

∮
|z|=R

dz 〈OCFT(z)Aμ1(z1) . . .AμN (zN)〉. (12)

For the currents J±
1 and Bσ this follows by scaling arguments from the explicit expression (A.2)

for the expectation value of a product of vertex operators, whereas in case of J 3
1 , J2 it is a direct 

consequence of the U(1) Ward identity (A.3) for the two free bosons φ1, φ2 [30]. In analogy 
to the calculation presented above in Sec. 2.3, we can use the theorem of residues to deform 
the integration contour at infinity to a sum over curves with opposite orientation circling the 
points zj for j = 1, . . . , N . Each of these integrals can be evaluated using the OPE (4). The 
introduction of an operator Qλ is not necessary here since the correlator in (12) is not subject 
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to any constraint of the form μj = αλ. After summing over all contributions |μ1, . . . ,μN 〉 the 
identity (12) thus implies that the infinite MPS is annihilated by Otot = ∑N

j=1 Oj , where O is the 
lattice operator associated to the current OCFT according to Table 1. When applied to the three 
su(2)1 currents J a

1 of the boson φ1 this result implies that the infinite MPS (1) transforms in the 
singlet representation of the total SU(2) spin operators, Sa

tot |ψ〉 = 0. In particular this shows that 
all configurations in the infinite MPS have the same number of particles of either spin species. 
For the U(1) current J2 of the second free boson φ2, we obtain that the infinite MPS contains a 
fixed number of particles M that is related to the number of lattice sites by the filling fraction1

ν = M

N
= 2

2m + 1
. (13)

Finally, for the currents Bσ we find that the infinite MPS (1) is annihilated by the sum 
∑N

j=1 djσ

of all annihilation operators of either spin species.

3. Halperin states on one- and two-dimensional lattices

3.1. Many-body wave function

Since it is the expectation value of a product of free boson vertex operators the lattice wave 
function (2) can be evaluated explicitly using (A.2) to give

χμ1 · · ·χμN

N∏
i=1

(−1)(ni−1)(i−1)

N∏
i=1

(fN(zi))
ni

∏
1≤i<j≤N

(zi − zj )
1
2 si sj + 2m+1

2 ninj . (14)

The function fN(zi) = ∏N
j=1,j =i (zi − zj )

−1 has a closed analytic form for certain one-
dimensional lattices [11]. In order to eliminate from the wave function (14) any explicit reference 
to the coordinates of the unoccupied lattice sites, we represent the configuration μ1, . . . , μN by 
the list of sites x1, . . . , xM/2 ∈ {1, . . . , N} occupied by particles of species ↑ and the list of sites 
y1, . . . , yM/2 ∈ {1, . . . , N} occupied by particles of species ↓. The uniqueness of this notation 
is ensured by demanding that x1 < x2 < . . . < xM/2 and y1 < y2 < . . . < yM/2. The product of 

Klein factors can be reordered to give 
∏

i (−1)(i−1)(ni−1)χ
N0
0 χ

N↑
↑ χ

N↓
↓ sgn(x1, . . . , xN↑ , y1, . . . ,

yN↓) up to a configuration-independent factor. Here, sgn denotes the sign function that gives 
a minus sign whenever there is a particle of species ↓ on a lattice site with index yj that is 
lower yj < xi than the index xi of a site occupied by a particle of species ↑. In particular, the 

Klein operator χN0
0 χ

N↑
↑ χ

N↓
↓ is the same for every basis state |μ1, . . . ,μN 〉 with a non-vanishing 

contribution to the infinite MPS and will henceforth be dropped.2 This justifies our approach 
of representing the Klein factors as Majorana fermions [31,32]. The exponent of the last factor 
in (14) is equal to m +1 if both site i and site j are occupied by particles of the same species, m if 

1 This can also be seen explicitly from the invariance of the infinite MPS wave function (2) under the global U(1) 
symmetry of the boson φ2, which implies that the correlator vanishes unless the sum of all phases 

∑N
i=1[(2m + 1)nμi

−
2] = 0, or in other words (2m + 1)M − 2N = 0 for any configuration with non-zero weight.

2 More formally, we choose some vector |v〉 of the Klein Hilbert space with 〈v|χN0
0 χ

N↑
↑ χ

N↓
↓ |v〉 = 0 and take the 

expectation value in the infinite MPS wave function (2) w.r.t. the tensor product |v〉 ⊗ |0〉, where |0〉 denotes the CFT 
vacuum state.
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they are occupied by particles of different species and vanishes if either site is empty. Therefore 
the hole coordinates naturally cancel from this term and the wave function (2) becomes

(
sgn(x1, . . . , xM/2, y1, . . . , yM/2)

)m+1
M/2∏
i=1

[
fN(zxi

)fN(zyi
)
]

×
∏

1≤k<l≤M/2

[
(zxk

− zxl
)m+1(zyk

− zyl
)m+1] M/2∏

k,l=1

(zxk
− zyl

)m. (15)

The last three factors are precisely the Jastrow part of the wave function for an (m + 1, m + 1, m)

double layer Halperin FQH state [26] where the positions {zi} of the particles are restricted 
to the lattice �. Since the exchange of the positions of two identical particles introduces a 
sign (−1)m+1, the wave function describes bosonic particles for odd m and fermionic parti-
cles for even m. Note that the sign 

(
sgn(x1, . . . , xN↑ , y1, . . . , yN↓)

)m+1 in (15) can be absorbed 
by switching to a Hilbert space basis for which the creation operators are ordered according to 
the species of particle they create.

3.1.1. Halperin states on a two-dimensional lattice
The similarities between the Halperin wave function and the lattice wave function (15) extend 

beyond the Jastrow part if the lattice � is genuinely two-dimensional and can be embedded 
into a disc {z ∈ C| |z| < R} with radius R in such a way that the area of the region closest to 
any lattice site zj is the same for all lattice sites. In this case, fN(zj ) converges to e−|zj |2/4 ×
e
−i�[∑k(=j) log(zj −zk)] in the thermodynamic limit N → ∞ [15]. This convergence is fast enough 

that the approximate expression can be used even for moderately large lattices [15]. Hence, the 
wave function of the infinite MPS in the thermodynamic limit is given by

e− 1
4

∑M/2
i=1 [|zxi

|2+|zyi
|2] ∏

1≤k<l≤M/2

(zxk
− zxl

)m+1
∏

1≤k<l≤M/2

(zyk
− zyl

)m+1
M/2∏
k,l=1

(zxk
− zyl

)m

(16)

up to phase factors that may be absorbed into the definition of the many-body basis. This is the 
expression for a double-layer (m + 1, m + 1, m) Halperin FQH state where the positions of the 
particles are restricted to lie on the lattice �. By analogy with the continuum Halperin states we 
expect that the infinite MPS (1) on two-dimensional lattices is a chiral spin liquid with Abelian
anyonic excitations.

3.1.2. Wave function on the uniform periodic chain
If the system is defined on a uniform chain � = {zj = e2πij/N |j = 1, . . . , N} with periodic 

boundary conditions one may show that fN(zj ) = zj /N and the infinite MPS wave function 
becomes

M/2∏
i=1

zxi
zyi

∏
1≤k<l≤M/2

(zxk
− zxl

)m+1
∏

1≤k<l≤M/2

(zyk
− zyl

)m+1
M/2∏
k,l=1

(zxk
− zyl

)m (17)

up to phase factors that may be absorbed into the definition of the many-body basis states. This 
wave function has eigenvalue e2πi(−m+1)/(2m+1) under a lattice translation by one site along the 
circle. For m ≥ 2, it therefore has a non-vanishing momentum and is not invariant under time 
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reversal. In 1992, Ha and Haldane studied lattice wave functions for spin one-half bosons or 
fermions on a uniform periodic chain without double occupancy which differ from (17) only in 
the first factor 

∏M/2
i=1 z

J↑
xi

z
J↓
yi

[25]. They showed that these states are gapless low-energy eigen-
states of the inverse-square t–J –V Hamiltonian

Hm = π2

N2
P

[∑
i =j

sin−2 ( π

N
(i − j)

)[∑
σ

c
†
iσ cjσ + 2m2 + m

4
ninj + m�Si · �Sj

]]
P, (18)

in the sector of vanishing z-component of the total spin and filling fraction ν = 2/(2m + 1)

provided that the positive integers J↑, J↓ satisfy 0 ≤ Jσ ≤ m +1 and −1 ≤ J↑ −J↓ ≤ 1 [25]. For 
odd m the Hamiltonian (18) has a non-degenerate ground state given by the state with parameters 
J↑ = J↓ = (m + 1)/2 [25]. On the other hand, for m even the states with J↑ = J↓ = m/2 and 
J↑ = J↓ = m/2 + 1 are degenerate ground states [25]. Hence for m = 1 the infinite MPS is 
the ground state of the Hamiltonian (18) which at this parameter value is identical to the SU(3) 
Haldane–Shastry (HS) model in agreement with previous work [16,17] linking infinite MPS 
based on the WZW model su(n)1 to the SU(n) HS model. For m ≥ 2, the infinite MPS on a 
uniform periodic chain is one of the low-energy states of the inverse-square t–J –V model (18)
and differs from the ground state by local unitary transformations. Hence, diagonal observables 
such as the entanglement entropy and S3-spin or density correlation functions are identical in the 
two states.

3.1.3. Wave function on the uniform open chain
One-dimensional quantum critical spin chains with open boundary conditions can be de-

scribed by infinite MPS defined on lattices � = {uj = cos θj |θj ∈ [0, π] ∀j = 1, . . . , N} [9]. The 
parent Hamiltonian of the su(n)1 infinite MPS is a uniform open SU(n) HS model when defined 
on three types of uniform open chains obtained as projections onto the real axis of uniform peri-
odic chains [9] and moreover remains integrable on a two-parameter family of open chains [33]. 
We study the Halperin infinite MPS on the uniform open chain of type I that is given by the set of 
angles θj = π(j − 1/2)/N and for which one finds fN(uj ) = (−1)j+1(2N/2N) sin θj [9]. Since 
this expression is real the infinite MPS (1) on a uniform type-I open chain is invariant under time 
reversal. As expected, it reduces to the ground state of the open uniform SU(3) HS model for 
m = 1.

3.2. Properties of the states on one-dimensional lattices

On one-dimensional lattices the Halperin infinite MPS (1) is expected to describe a quantum 
critical Luttinger liquid based on its relation to the gapless SU(3) HS model for m = 1 and the 
properties of infinite MPS derived from other CFTs [11,14,16,17]. In this subsection, we present 
numerical results for the entanglement entropy and two-point correlation functions that confirm 
the criticality of the states and in the case of periodic boundary conditions allow us to determine 
the central charge and certain scaling dimensions characterising the low-energy Luttinger CFT.

3.2.1. Renyi entanglement entropy
The leading term in the nth Renyi entanglement entropy (REE) S(n)(�) = (1 − n)−1 log Trρn

�

of a quantum critical chain depends on the central charge c of the low-energy effective CFT in a 
universal fashion [34–37]
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Fig. 1. Second REE S(2)(�) of the first � sites in the Halperin infinite MPS for m = 1, 2, 3 and system sizes N =
99, 100, 105 obtained from Monte Carlo computations. (a): The data for uniform periodic chains is fit against the leading 
order term (19). (b): Results on the type-I uniform open chain. The data for m = 1 is fit against the sum of (19) and 
(20) with κ = 2kF , ω = 0 and optimal parameter values c = 1.68, c′

2 = 1.28, 4NF(�/N)/π = −0.29, � = 0.61. For 
m = 2, 3 the oscillations have a complicated phase structure that cannot be reproduced by a single sub-leading term (20), 
but the mean of the data is well described by (19) with c = 2. The dashed lines are guides to the eye.

S
(n)
log (�) = c

6η

(
1 + 1

n

)
log

[
ηN

π
sin

π�

N

]
+ c′

2. (19)

Here, ρ� is the reduced density matrix of the first � lattice sites, N is the total number of lattice 
sites in the chain, c′

2 is a non-universal constant and η = 1(2) for periodic (open) boundary 
conditions at the edges of the system. There are many systems both with periodic and open 
boundary conditions in which the leading CFT prediction (19) is obscured by subleading terms 
with large and possibly oscillating amplitudes. Some of these corrections decay with a critical 
exponent related to the scaling dimension of a relevant or irrelevant operator in the low-energy 
effective CFT [38–41]. The sub-leading contribution to the nth REE associated with a primary 
field of scaling dimension � is expected to be [39,41]

S(n)(�) = F
( �

N

)
cos(κ� + ω)

[
2ηN

π
sin

π�

N

]−2�/(η n)

, (20)

where F is an a-priori unknown function believed to be universal and κ and ω are model-
dependent parameters determining the frequency and phase of oscillations, respectively. In 
single-component Luttinger liquids, the leading contribution (20) decays with a critical expo-
nent � = K equal to the Luttinger parameter K [39]. To the best of our knowledge it is not 
fully clear which primary fields contribute to the REE in this way for more complicated criti-
cal systems. It was observed by a comparison of different models that the dominant correction 
of the form (20) appears to be associated with the energy operator [40,41], whereas studies in 
SU(n) critical chains found evidence of contributions associated with all primary fields of the 
low-energy CFT [42].

We computed the second REE in the Halperin infinite MPS (1) using the Monte Carlo 
Metropolis algorithm and the replica trick [7,15,43]. The results for the three lowest values 
m = 1, 2, 3 on the uniform periodic chain and the type-I uniform open chain are displayed in 
Fig. 1. For both periodic and open boundary conditions sub-leading oscillatory terms at m dif-
ferent frequencies 2qkF are visible in the Fourier transform of the REE, where q = 1, . . . , m
and kF = π/(2m + 1) is the Fermi momentum. This indicates that the low-energy CFT describ-
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ing the infinite MPS contains primary fields with at least m different scaling dimensions. For 
m = 1 in particular there are signatures of only one oscillation frequency 2kF ; this is in agree-
ment with analytical results, since the CFT su(3)1 describing the SU(3) HS model [44] has two 
non-trivial primary fields with identical scaling dimensions �su(3)1 = 2/3. For periodic bound-
ary conditions the amplitude of these oscillatory terms is small, such that the numerical data is 
very well described by the leading CFT prediction (19) with the central charge c and the constant 
c′

2 as free parameters. We obtain values of c that are very close to c = 2 which is the expected 
result for the SU(3) HS at m = 1 and furthermore agrees with the central charge of the free-
boson CFT used to construct the Halperin infinite MPS (1). For open boundary conditions the 
amplitude of the sub-leading oscillatory terms in the REE is much greater, in accordance with 
observations by other authors in different critical quantum chains [38,42]. The numerical data 
corresponding to the open boundary SU(3) HS model m = 1 is well described by the sum of 
the leading CFT prediction (19) and a sub-leading oscillatory contribution (20) with constant F . 
This yields the value c = 1.68 for the central charge, which is rather far from the expected result 
c = 2 for su(3)1. The discrepancy may be due to additional non-oscillatory finite-size corrections 
that are not contained in our fit function. However, the best-fit value for the scaling dimension 
�f it = 0.61 is very close to the analytical result �su(3)1 = 2/3. For m = 2 and m = 3 the REE 
displays oscillations without any clear phase structure which cannot be described by a single 
term (20). Nonetheless, there is a qualitative agreement between the mean of the numerical data 
and the leading CFT prediction (19) with central charge c = 2.

3.2.2. Spin and density correlation functions
Correlation functions in critical systems decay algebraically with critical exponents that are 

related to the scaling dimensions of primary fields in the low-energy effective CFT. At long dis-
tances and to leading order in the inverse system size, the two-point spin 〈S3

0S3
i 〉 and density 

〈n0ni〉 correlation functions in a periodic critical chains as well as the nearest-neighbour correla-
tion functions 〈S3

i S3
i+1〉 and 〈nini+1〉 in a open critical chains are expected to be of the form [45]

A0 + A1 × cos
(
2qkF i

)[
sin

πi

N

]−2�/η

. (21)

Here, η = 1(2) for periodic (open) boundary conditions, A0 and A1 are non-universal constants, 
q ∈ N is an integer and � is the scaling dimension of a primary field in the low-energy effective 
CFT. For the periodic spin correlation function 〈S3

0S3
i 〉 we extend (21) by an additional non-

oscillatory term A2[sin πi
N

]−2 that is expected to appear in any SU(2) symmetric model since the 
bosonised expression for the spin operator contains the su(2)1 currents with scaling dimension 
� = 1 [46]. As evident from Fig. 2 the spin and density correlation functions in the Halperin 
infinite MPS are well described by the scaling form (21). Due to the extended SU(3) symme-
try both the spin and density correlators in the periodic SU(3) HS model at m = 1 oscillate at 
frequency 2kF and decay with the same critical exponent 1.33 ≈ 2�su(3)1 = 4/3, in complete 
agreement with analytical results [44]. For m ≥ 2, the dominant terms in the spin and density 
correlation function for periodic boundary conditions oscillate at different frequencies 2kF and 
4kF , respectively. The best-fit value for the critical exponent of the density correlator is very 
close to the value 4/(2m + 1), indicating that the density operator is associated to a primary field 
of conformal dimension h = 1/(2m + 1). Similarly, the observed critical exponent of the leading 
oscillatory term in the spin correlation functions is very close to 2(m + 1)/(2m + 1) such that 
we expect the bosonised expression for the SU(2) spin to contain a primary field with conformal 
dimension h = (m + 1)/(2(2m + 1)). The nearest-neighbour spin 〈S3S3 〉 and density 〈nini+1〉
i i+1
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Fig. 2. Numerical data from Monte Carlo computations for the spin and density correlation functions in the Halperin 
infinite MPS with fits as described in the main text. (a), (b): Density and spin correlation function for m = 2 on a 
periodic uniform chain with N = 100 sites. The fit parameters for the spin correlation function are A0 = 0, A1 = 0.0011, 
A2 = −2.7 × 10−4, � = 0.598. (c), (d): Density and spin correlation function for m = 3 on a periodic uniform chain 
with N = 105 sites. The fit parameters for the spin correlation function are A0 = 0, A1 = 0.0010, A2 = −2.4 × 10−4, 
� = 0.569. (e), (f): Nearest-neighbour density and spin correlation function for m = 1 on a type-I open uniform chain 
with N = 99 sites.

correlation functions in the open SU(3) HS model on a uniform type-I chain obey the scaling 
form (21) with critical exponent 0.66 ≈ �su(3)1 = 2/3. For m ≥ 2, the correlation functions in 
the infinite MPS on open uniform chains display oscillations without any clear phase structure 
that prevent us from extracting any critical exponents.

4. Models for interacting spin one-half hardcore particles from free-boson CFTs

In this section we derive self-adjoint, particle-number conserving and SU(2) invariant parent 
Hamiltonians for the Halperin infinite MPS (1). On generic two-dimensional lattices, the parent 
Hamiltonian contains long-range two- and three-body interaction terms. For one-dimensional 
chains we obtain a two-body Hamiltonian that generalises the inverse-square t–J –V models (18)
studied by Ha and Haldane. Our results demonstrate which interactions stabilise the many-body 
state (1) on different one- and two-dimensional lattices. Furthermore, in one dimension the de-
termination of the nature of the elementary excitations above the ground state completes the 
identification of the phase described by the infinite MPS.

4.1. Parent Hamiltonians for the infinite MPS

The computation of parent Hamiltonians is based on the existence of lattice operators an-
nihilating the infinite MPS such as the operators �j derived in Sec. 2.3 above. Indeed, any 
convex combination of positive operators �†

j�j defines a parent Hamiltonian since the infi-
nite MPS is an eigenstate of the lowest eigenvalue E0 = 0. Meaningful parent Hamiltonians 
that describe all degrees-of-freedom in the system and possess the correct symmetry properties 
are obtained by an appropriate choice of �j . The operators annihilating the infinite MPS that 
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Table 2
Operators annihilating the infinite MPS that are used in the construction of parent Hamiltonians on different lattices. For 
a generic lattice including the periodic chain with lattice sites zj we use the abbreviation wjk ≡ (zj + zk)/(zj − zk). 
For an open chain � = {uj = cos θj |θj ∈ [0, π ] ∀j = 1, . . . , N} we define zj = e

iθj , wjk = (zj + zk)/(zj − zk) and 
wjk̄ = (zj + z̄k)/(zj − z̄k). The operators D′σ

j
and D′′σ

j
annihilate the infinite MPS only for m ≥ 2.

Null field Two-dimensional lattice, periodic chain Open chain

λa �′a
j =

∑
k(=j)

wjk[nj Sa
k + iεabcS

b
j Sc

k ] �′′a
j =

∑
k(=j)

(wjk + wjk̄)[nj Sa
k + iεabcS

b
j Sc

k ]

ωσ

�′σ
j = (m − 1)njσ +

∑
k(=j)

wjk[d†
jσ

dkσ

− njσ

(
(m + 1

2
)nk + sσ S3

k − 1
)]

�′′σ
j =

∑
k(=j)

(wjk + wjk̄)[d†
jσ

dkσ

− njσ

(
(m + 1

2
)nk + sσ S3

k − 1
)]

ησ C′σ
j =

∑
k(=j)

wjk djσ dkσ C′′σ
j =

∑
k(=j)

(wjk + wjk̄) djσ dkσ

ζσ (m ≥ 2)
D′σ

j =
∑

k(=j)

wjk djσ dk,−σ D′′σ
j =

∑
k(=j)

(wjk + wjk̄) djσ dk,−σ

are derived according to the prescription (8) from the null fields (5) and (6) are of the form 
�j = ∑

λ

∑
k(=j)(1/(zk − zj ))Qλ

jOλ
k where Oλ, Qλ ∈ {dσ , Sa, n} are local lattice operators. 

Due to the existence of various discrete Fourier sums for the quantity wjk ≡ (zj + zk)/(zj − zk)

we construct the parent Hamiltonian on generic two-dimensional lattices and periodic chains 
from the operators �′

j ≡ ∑
λ

∑
k(=j) wjkQλ

jOλ
k − ∑

λ Qλ
jOλ

j . These annihilate the infinite MPS 

since 2zj /(zk − zj ) = −1 − wjk and 
∑N

j=1 Oj |ψ〉 = 0 as discussed in Sec. 2.4. The operators 
obtained in this way from the null fields (5) and (6) are listed in the second column of Table 2.

4.1.1. Parent Hamiltonian on two-dimensional lattice
For m = 1, the infinite MPS possesses an extended SU(3) symmetry and a parent Hamiltonian 

on generic lattices that captures all degrees-of-freedom has been found in previous work [16,17]. 
We focus on the case m ≥ 2 for which an SU(2) invariant and particle-number conserving parent 
Hamiltonian that describes itinerant interacting hard-core particles is given by

H =
∑

a=1,2,3

U†
a

[ N∑
j=1

∑
σ=↑,↓

[(
�′σ

j

)†
�′σ

j + (
C′σ

j

)†
C′σ

j + (
D′σ

j

)†
D′σ

j

]]
Ua

= 3(m − 1)2ntot +
∑
j

μjnj +
∑
k =j

[
tjk

∑
σ=↑,↓

d
†
jσ dkσ + Vjknjnk + Jjk

�Sj · �Sk

]

+
∑′

j,k,l

[
g

(1)
jklnjnknl + g

(2)
jklnl

�Sj · �Sk + g
(3)
jklnl

∑
σ=↑,↓

d
†
kσ djσ

+ g
(4)
jkl

�Sl ·
∑

α,β=↑,↓
d

†
kα(�σ)αβdjβ

]
. (22)

Here, the symbol 
∑′

j,k,l denotes a sum over pairwise different indices i, j, k ∈ {1, . . . , N}
and Ua = exp[i π

2 Sa
tot] for a = 1, 2, 3 refers to the global spin rotations by π/2 around the 

x-, y- and z-axes. Although the positive operators 
∑

σ=↑,↓
(
�′σ

j

)†
�′σ

j , 
∑

σ=↑,↓
(
C′σ

j

)†
C′σ

j and ∑ (
D′σ )†

D′σ do not commute with the total spin operators, the linear combination (22) of 
σ=↑,↓ j j
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their images under the rotations Ua is invariant under global SU(2) transformations. The Hamil-
tonian (22) is a non-local t–J –V like model with additional long-range three-body interaction 
terms. Specifically, the locally varying single-body potential μj , kinetic hopping parameter tjk , 
density-density coupling Vjk and spin-exchange coupling Jjk are given by

μj = 3(m − 1)
∑

k(=j)

(wjk − wjk) + 6
∑

k(=j)

|wjk|2 + 3
∑

k =l(=j)

wjkwjl, (23a)

tjk = 3(m − 1)(wjk − wjk) + 6|wjk|2 + 3
∑

l(=j,k)

(wjkwjl + wkjwkl + wlkwlj ), (23b)

Vjk = 6(m2 − m − 1

2
)|wjk|2

− 3(m + 1

2
)
[
(m − 1)(wjk + wjk) +

∑
l(=j,k)

(wjkwjl + wklwkj )
]
, (23c)

Jjk = −2(m − 1)(wjk + wjk) + 2(2m − 1)|wjk|2 − 2
∑

l(=j,k)

(wjkwjl + wklwkj ), (23d)

whereas the three-body couplings are g(1)
jkl = (m + 1

2 )(wjkwjl + wkjwkl + wlkwlj ), g
(2)
jkl =

wjkwjl + (2m + 1)(wljwlk + wklwkj ), g
(3)
jkl = −3(m + 1

2 )(wjkwjl + wklwkj ) and g
(4)
jkl =

−(wjkwjl + wklwkj ). On generic lattices the two-body coupling constants are not real such 
that the model (22) explicitly breaks time reversal. The parent Hamiltonian (22) of the infinite 
MPS is unphysical due to its long-range interaction terms. Nonetheless, it may still be relevant 
for realistic physical systems provided that it can be deformed into a local Hamiltonian without 
crossing a phase boundary. In this case, the universal properties of the infinite MPS characterise 
the ground state of the physical model. For many other CFTs short-range physical models in the 
same phase as the long-ranged infinite MPS parent Hamiltonians have been found [11,16,20,47]. 
We leave the corresponding analysis for the Halperin infinite MPS for future work and instead 
focus on the low-energy properties of the parent Hamiltonians on one-dimensional chains.

4.1.2. Parent Hamiltonian on periodic chains
On a possibly non-uniform periodic chain � = {zj = eiϕj |ϕj ∈ [0, 2π) ∀j = 1, . . . , N} the 

parent Hamiltonian (22) can be simplified drastically thanks to the existence of numerous dis-
crete Fourier sums. In particular, all three-body terms reduce to two-body terms or can be 
removed by the addition and subtraction of operators annihilating the infinite MPS. As we show 
in Appendix B, the infinite MPS for all m ≥ 1 is an eigenstate of the SU(2) invariant two-body 
Hamiltonian

H pbc = π2

N2

[1

6

∑
a=1,2,3

N∑
j=1

∑
σ=↑,↓

U†
a

[(
�′σ

j

)†
�′σ

j − m
(
C′σ

j

)†
C′σ

j − (m − 1)
(
D′σ

j

)†
D′σ

j

]
Ua

+ 1

2
(m + 1)

N∑
j,k=1

∑
σ=↑,↓

d
†
jσ dkσ + 2m

9

∑
a=1,2,3

N∑
j=1

(�a
j )

†�a
j

]
+ E

pbc
0

= π2

N2

[∑(
sin

1

2
(ϕj − ϕk)

)−2[−nj +
∑

d
†
jσ dkσ + 2m2 + m

4
njnk + m �Sj · �Sk

]

j =k σ=↑,↓
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+
∑
j =k

wjk(bj − bk)[nj − 2m + 1

4
njnk − 1

3
�Sj · �Sk]

+ (m − 1)
∑
j =k

wjk

∑
σ=↑,↓

d
†
jσ dkσ

]
(24)

with energy

E
pbc
0 = π2

N2

[1

6

(
m + 1

2

)2
M(M − 1)(M − 2) − 1

6
M(N − 1)(N − 2) − (

m2 + 3

4
+ N

2

)
M

+ 1

8
(4m2 + 4m + 1)M2

]
. (25)

Here, the overall factor π2/N2 ensures that the couplings remain finite in the thermodynamic 
limit and we introduced bj ≡ ∑

k(=j) wkj for j = 1 . . . , N . Up to an additional chiral hopping 

term 
∑

j =k wjk

∑
σ d

†
jσ dkσ that is proportional to (m − 1), the Hamiltonian (24) defines an 

extension to non-uniform periodic chains of the inverse-square t–J –V model (18) discussed by 
Ha and Haldane. For a uniform periodic chain with ϕj = 2πj/N one may show that bj = 0 and 
the infinite MPS is an eigenstate of

π2

N2

[∑
j =k

sin−2 ( π

N
(j − k)

)(∑
σ

d
†
jσ dkσ

+ 2m2 + m

4
njnk + m �Sj · �Sk

)
+ (m − 1)

∑
j =k

wjk

∑
σ

d
†
jσ dkσ

]
(26)

with energy

π2

N2

[1

6

(
m+ 1

2

)2
M(M−1)(M−2)− 1

6
M(N −1)(N −2)−(m2 + 3

4
)M+ 1

8
(4m2 −1)M2

]
.

(27)

The Hamiltonian (26) is exactly equal to Ha and Haldane’s model (18) except for the chiral 
hopping term which vanishes for m = 1 and for higher m ensures that there is a unique ground 
state with non-zero momentum, in contrast to the time-reversal invariant model (18). Due to the 
subtraction of the positive terms 

∑
a,j,σ U

†
a

[
m
6 (C′σ

j )†C′σ
j + m−1

6 (D′σ
j )†D′σ

j

]
Ua in (24) we cannot 

prove rigorously that (26) is bounded below by the energy (27). However, for m = 1 it is known 
from other work [16,25,44,48] that the infinite MPS is indeed the exact ground state of (26), 
which is just the SU(3) HS model. Exact diagonalisation in small systems shows that the infinite 
MPS is the exact ground state of (26) also for m = 2, 3 and we expect that this persists in the 
thermodynamic limit and for higher values of m.

4.1.3. Parent Hamiltonian on open chains
The open chain � = {uj = cos θj |θj ∈ [0, π] ∀j = 1, . . . , N} can be understood as the projec-

tion onto the real axis of the periodic chain �̃ = {zj = eiθj , zj̄ = e−iθj |j = 1, . . . , N}. In order 
to make use of the Fourier sum identities for periodic chains, we construct the parent Hamilto-
nian on open chains from the operators �′′

j = −(zj − z̄j )�j = − 
∑

λ

∑
k(=j)((zj − z̄j )/(uk −

uj ))Qλ
jOλ

k = ∑
λ

∑
k(=j)(wjk + wjk̄)Qλ

jOλ
k that depend on the angles θj through the functions 

wij = (zi + zj )/(zi − zj ) and w ¯ = (zi + z̄j )/(zi − z̄j ). The operators annihilating the Halperin 
ij
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infinite MPS on open chains derived in this way from the null fields (5) and (6) are summarised 
in the third column of Table 2. In Appendix B we show that for all m ≥ 1 the infinite MPS on 
open chains is an eigenstate of the SU(2) invariant two-body Hamiltonian

H obc = π2

N2

[1

6

∑
a=1,2,3

N∑
j=1

∑
σ=↑,↓

U†
a

[
(�′′σ

j )†�′′σ
j − m(C′′σ

j )†C′′σ
j

− (m − 1)(D′′σ
j )†D′′σ

j

]
Ua

+ 2m

N∑
j,k=1

∑
σ=↑,↓

d
†
jσ dkσ + 2m

9
ma=1,2,3

N∑
j=1

(�′′a
j )†�′′a

j

]
+ Eobc

0

= π2

N2

[
−

∑
j =k

[
wjk(cj − ck) + wjk̄(cj + ck)

] [2m + 1

4
njnk + 1

3
�Sj · �Sk − nj

]

+
∑
j =k

[
sin−2 θj − θk

2
+ sin−2 θj + θk

2

]

× [2m2 + m

4
njnk + m�Sj · �Sk +

∑
σ=↑,↓

d
†
jσ dkσ − nj

]]
(28)

with energy

Eobc
0 = π2

N2

[2

3

(
m + 1

2

)2
M(M − 1)(M − 2) +

(
m2 + 7

2
m + 3

2

)
M(M − 1)

− 1

2
(2m + 1)M(M − 2) − 2(N − 1)NM − 2(N − 2)M − 7

2
M − 3m

2
M

]
, (29)

where cj ≡ wj̄j + ∑
k(=j)(wkj + wk̄j ). The Hamiltonian (28) is a time-reversal invariant 

generalisation of Ha and Haldane’s inverse-square t–J –V model (18) to non-uniform one-
dimensional chains with open boundary conditions. On a type-I uniform open chain we have 
wjk(cj − ck) + wjk̄(cj + ck) = 0 [9] such that the Hamiltonian (28) simplifies to

π2

N2

∑
j =k

[
sin−2 π(j − k)

2N
+ sin−2 π(j + k − 1)

2N

]

×
[2m2 + m

4
njnk + m �Sj · �Sk +

∑
σ

d
†
jσ dkσ − nj

]
. (30)

The relative strength of the hopping parameter, density-density interaction and spin exchange in 
the open-boundary parent Hamiltonian (30) are the same as in the periodic model (18) studied 
by Ha and Haldane. However, the coupling constants tjk, Vjk and Jjk are proportional not to just 
the inverse square |zj − zk|−2 of the chord distance between zj and zk , but instead to the sum 
|zj − zk|−2 + |zj − z̄k|−2 of the inverse square chord distances between zj and zk as well as zj

and the mirror image z̄k . This is akin to the modification of the inverse-square coupling strength 
in the HS model due to open boundaries [49,50]. Similarly to the periodic case we are at the 
present time unaware of any way to show analytically that the infinite MPS is the ground state 
of the Hamiltonian (30) for m ≥ 2 due to the subtraction of positive operators in (28). However, 
for m = 1 we know that this is the case thanks to the connection to the SU(3) open-boundary HS 
model [9] and we have confirmed by exact diagonalisation that (30) is bounded below by Eobc

0
for m = 2, 3.
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4.2. Inverse-square t–J –V models as two-component Luttinger liquids

4.2.1. Rapidity description for low-energy spectrum of periodic and open models
Exact diagonalisation of the t–J –V models (18), (26) and (30) on periodic and open chains 

shows that the spectrum of all three Hamiltonians contains many eigenvalues which are ratio-
nal in units of π2/N2 (see Fig. 3 for the low-energy spectra on a chain with N = 14 sites 
and filling fraction ν = 2/7). For Ha and Haldane’s periodic Hamiltonian (18) and the parent 
Hamiltonian (30) on type-I uniform chains, the number of rational eigenvalues that are lower in 
energy than the first irrational eigenvalue increases with growing system size N such that in the 
thermodynamic limit we expect the entire low-energy spectrum to consist of rational eigenval-
ues. We observed that the low-lying rational eigenvalues of these two models at filling fraction 
ν = 2/(2m + 1) and vanishing total spin S3

tot are described by rapidity sets obeying the same 
generalised Pauli exclusion principle. A rapidity set v ≡ {m1, m2, . . . } for a system of size N is 
a collection of non-identical integers m1 < m2 < · · · in the range mi ∈ [1, . . . , N ]. The rapidity 
set v may be represented by the corresponding occupation number sequence (n1, . . . , nN) with 
nj ∈ {0, 1} and nj = 1 (nj = 0) if there is (not) a rapidity mi in v such that mi = j . For periodic 
and open boundary conditions, we assign to the rapidity set v the energy

E
pbc
v = 2

π2

N2

∑
i

mi(mi − N) + Ẽpbc(m,N), (31a)

Eobc
v = 2

π2

N2

∑
i

(m2
i − N2), (31b)

where Ẽpbc(m, N) = 2N(32m3 + 4m2(N2 − 6N − 1) + 4m(2N2 + 3N − 7) − 3(N2 − 4N +
3))/(3(2m + 1)3) is a term that depends only on N and m. Up to an overall factor of 2, the 
rapidity dispersion relations are hence the same as for the periodic and open HS model [9,49,51]. 

Fig. 3. Lowest eigenvalues and their degeneracy as obtained from exact diagonalisation of the models discussed in the 
main text on a chain with N = 14 sites at filling fraction 2/7 corresponding to m = 3. (a): Spectrum of Ha and Haldane’s 
inverse-square t–J –V model (18) including the assignment of the rapidity sets vk and wl corresponding to primary 
fields. Due to finite-size effects the energy of v3 and w2 is greater than that of some descendant states. (b): Spectrum of 
the infinite MPS parent Hamiltonian (26) on periodic chains. (c): Spectrum of the infinite MPS parent Hamiltonian (30)
on open chains including the rapidity sets corresponding to the three lowest levels. In units of π2/N2 the ground state 
energies are EHal

0 = −16, Epbc
0 = −32, Eobc

0 = −1164.
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For periodic boundary conditions the total lattice momentum associated to the rapidity sequence 
v is proportional to the sum of the rapidities

Pv = 2π

N

[∑
i

mi mod N
]

(32)

in complete analogy to the periodic HS model [51]. In the sector of vanishing total spin S3
tot

and filling fraction ν = 2/(2m + 1) the distinct energy and momentum eigenvalues of Ha and 
Haldane’s inverse-square t–J –V model (18) and its open-boundary generalisation (30) corre-
spond precisely to those obtained from all rapidity sets obeying the following generalised Pauli 
principle: Firstly, between any two occupied rapidity orbitals there must lie at least m − 1 empty 
orbitals such that mi+1 −mi ≥ m, and secondly, out of any 2m +1 successive orbitals at most two 
can be occupied, i.e. mi+2 −mi ≥ 2m +1. As expected, for m = 1 this reduces to the well-known 
generalised Pauli principle mi+2 − mi ≥ 3 characterising the SU(3) HS model [51].

In the thermodynamic limit, the lowest-lying states in Ha and Haldane’s periodic model (18)
are associated with the 2m + 1 rapidity sets

vk = (0k 1 0m−1 1 0m 1 0m−1 1 0m · · ·1 0m−1 1 0m−k), (33a)

wl = (0l 1 0m 1 0m−1 1 0m 1 0m−1 · · ·1 0m 1 0m−1−l), (33b)

where k = 0, . . . , m, l = 0, . . . , m − 1 and the symbol 0i indicates i successive entries that are 
equal to zero. These rapidity sets have energy and momentum eigenvalues

Evk
= Ev0 + 2π2

N

2

2m + 1
[k2 − (m − 1)k], (34a)

Ewl
= Ev0 + 2π2

N

2

2m + 1
[1 + l2 − (m − 2)l], (34b)

Pvk
= 2kF (m + 2 + 2k), (34c)

Pwl
= 2kF (m + 2 + 2l + 1). (34d)

Hence, vk (wl) describes the configuration of lowest energy in which 2k (2l + 1) hard-core 
particles were shifted from the right branch to the left branch of the single-particle dispersion 
relation compared to v0. They correspond precisely to the low-energy eigenstates constructed by 
Ha and Haldane for the model (18) in terms of their Jastrow wave functions [25]. In particular, 
the ground state for a bosonic system with m odd is described by the rapidity set v(m−1)/2, 
whereas in the fermionic case the two rapidity sets vm/2−1 and vm/2 have the same lowest energy. 
Gapless excitations derived from the low-energy states vk and wl are associated with shifts of 
single rapidities at the edges of the sequence. Fig. 3(a) illustrates the assignment of the rapidity 
sequences vl and wk to the low-lying levels in the spectrum of Ha and Haldane’s model at m = 3
on a chain with N = 14 sites.

Up to a shift of the ground state energy the low-energy spectrum of the infinite MPS parent 
Hamiltonian (26) is similar to that of Ha and Haldane’s model (see Fig. 3(b)). However, due to 
the absence of time reversal symmetry the degeneracies of the low-lying excited states in Ha and 
Haldane’s model are partially lifted, leading to the appearance of low-lying irrational eigenvalues 
that cannot be described using rapidity sets.

The ground state of the open-boundary model (30) is associated for all m with the rapidity se-
quence vobc

0 = (1 0m−1 1 0m 1 0m−1 1 0m · · ·1 0m−1 1 0m). The low-lying excitations are obtained 
by a finite number of shifts of single rapidities to the right by one orbital compared to vobc. If k
0



20 A. Hackenbroich, H.-H. Tu / Nuclear Physics B 916 (2017) 1–27
such shifts have been performed, the excitation energy scales as 4kπ2/N + O(N−2) such that 
all these excitations are gapless in the thermodynamic limit.

The generalised Pauli principle proposed above is identical to a (k, r) admissibility condition 
of the kind proposed in Ref. [52] for SM/2 ⊗ SM/2 symmetric Jack polynomials with k = 1 and 
r = m + 1 and when neglecting the spin dressing of partitions. It is known that the Jack poly-
nomial eigenstates of the spin-less Calogero–Sutherland model [53–55] are also eigenstates of 
the HS model with rational eigenvalues (see for instance Ref. [56]). Based on the similarities 
between the generalised Pauli principle described above and the (1, m + 1) admissibility condi-
tion one may thus conjecture that the SM/2 ⊗SM/2 symmetric Jack polynomial eigenstates of the 
spinful Calogero–Sutherland model [56] are also eigenstates of Ha and Haldane’s inverse-square 
t–J –V model (18). In addition we expect that the excited state wave functions of the infinite 
MPS parent Hamiltonian can be obtained by the insertion into the CFT correlator of additional 
CFT fields evaluated at 0 and ∞ [57].

4.2.2. Determination of scaling dimensions for the periodic model
The low-energy physics of the quantum critical inverse-square t–J –V model (18) on a peri-

odic chain with N sites is described by a continuum CFT on a (1 + 1)-dimensional space–time 
cylinder with periodic boundary conditions and length Na in the spatial direction, where a is the 
lattice spacing. The Hilbert space of this CFT consists of states at left- and right-moving Virasoro 
levels n, n̄ ∈ N which are descended from primary states with chiral and anti-chiral conformal 
dimensions h, h̄. In units where the lattice spacing is a = 1 and h̄ = 1, the energy and momentum 
of these states is given by

E(h, h̄, n, n̄) = ε∞N − uπc

6N
+ 2πu

N
(h + h̄ + n + n̄), (35a)

P(h, h̄, n, n̄) = 2π

N
(h − h̄ + n − n̄). (35b)

Here, u is the characteristic velocity of the system, c is the central charge and ε∞ is the av-
erage ground state energy per unit length in the thermodynamic limit. Since the primary states 
in the Luttinger CFT of (18) are associated with the rapidity sets vk and wl we can compare 
the exact expressions (34) for their energy and momentum with the CFT predictions (35) to ex-
tract their conformal dimensions h = h̄. Single-particle excitations above the primary states with 
momentum difference �P = ±2π/N correspond to descendants at Virasoro level n = 1, n̄ = 0
(n = 0, n̄ = 1) and are described by shifts of single rapidities at the right (left) end of the sequence 
towards the right (left). Since all these states have excitation energies �E = 2π2/N +O(1/N2), 
the low-energy effective theory of the Hamiltonian (18) has a single characteristic velocity u = π ; 
in particular there is no spin-charge separation.

For bosonic systems with odd values of m we identify the identity Verma module h =
h̄ = 0 with the non-degenerate ground state v(m−1)/2. Then, the rapidity sets v

k≡(m−1)/2+k̃
and 

w
l≡(m−2)/2+l̃

correspond to primary fields of conformal dimension

h
k̃
= (2k̃)2

4(2m + 1)
, (36a)

h
l̃
= 1

4
+ (2l̃)2

4(2m + 1)
, (36b)

where k̃ ∈ {−(m − 1)/2, −(m − 1)/2 + 1, . . . , (m − 1)/2 + 1} and l̃ ∈ {(m − 2)/2, (m − 2)/2 +
1, . . . , (m − 2)/2 + 1} run in integer steps. For the SU(3) HS model at m = 1 this gives three dif-
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ferent primary states with conformal dimensions h
k̃=0 = 0 and h

k̃=1 = 1/3 = h
l̃=0 as expected 

from su(3)1. Note that this procedure cannot be used to extract the central charge of the low-
energy effective CFT for the inverse-square t–J –V model since the Hamiltonian (18) contains 
long-range interactions and the scaling of the ground state energy in critical non-local models 
generally violates the CFT prediction (35a) [16,17].

For the fermionic models with even m the identification of the identity module correspond-
ing to h = h̄ = 0 is not straightforward due to the double degeneracy of the ground state of 
Ha and Haldane’s model (18). Indeed, the naive assignment of the identity module to either 
vm/2−1 or vm/2 gives incorrect results since the predicted list of conformal dimensions does 
not include the value h = (m + 1)/(2(2m + 1)) derived in Sec. 3.2 from the critical exponent 
of the spin correlation function. Instead, we suggest to enlarge the set of states by considering 
also sets of rapidities with half-integer values mi ∈ [3/2, . . . , N + 1/2] and the same gener-
alised exclusion principle and dispersion relation as described above for integer-valued rapidity 
sets. This leads to the appearance of 2m + 1 additional low-energy states corresponding to the 
occupation number sequences (33) and with energies and momenta given by the expressions 
on the LHS of (34) after the replacement k �→ k + 1/2 and l �→ l + 1/2. The collection of 
low-energy states for both integer and half-integer rapidities contains a unique configuration of 
lowest energy that is associated with the half-integer rapidity set described by the occupation 
number sequence vm/2−1. After the identification of this state with the identity Verma module 
h = h̄ = 0, the enlarged set of low-energy states corresponds to primary fields with conformal 
dimensions given by (36), where k̃ ∈ {−(m − 1)/2, −(m − 1)/2 + 1/2, . . . , (m − 1)/2 + 3/2}
and l̃ ∈ {(m − 2)/2, (m − 2)/2 + 1/2, . . . , (m − 2)/2 + 3/2} now run in half-integer steps. In 
particular, the conformal dimension h

l̃=±1/2 = (m + 1)/(2(2m + 1)) agrees with the critical ex-
ponent observed in the spin correlation function. Since the rapidities mi correspond to spinon 
quasi-momenta we expect that half-integer rapidity sets describe a system that is coupled to an 
external gauge field of flux φ = 1/2, or equivalently, subject to anti-periodic boundary conditions 
for the fermionic particles [58,59]. Actually, it is already known that the presence of such flux 
sector in the fermionic picture is essential for completing the CFT operator contents in quantum 
critical Ising and XY chains. For Ha and Haldane’s fermionic t–J –V model (18), we have made 
an attempt to find a twisted version in the presence of flux, with a further requirement that its 
low-energy spectrum with flux φ = 1/2 is given by the half-integer rapidity sets, but so far we 
have not yet found a solution.

4.2.3. Action description for low-energy effective CFT of bosonic periodic model
Since the CFT that describes the low-energy physics of the periodic inverse-square t–J –V

model (18) has central charge c = 2 we expect it to be a theory of a two-component massless 
free boson X = (X1, X2) compactified on a two-dimensional torus. On a two-dimensional word-
sheet parametrised by Euclidean coordinates xμ with μ = 0, 1, the most general such theory is 
described by the Euclidean action [28]

SE = 1

4π

∫
dx0dx1[Gab∂μXa∂μXb + iBabεμν∂μXa∂νX

b], (37)

where Gab and Bab are real symmetric and anti-symmetric matrices, respectively. In the case 
without orbifolding when both bosonic fields obey periodic boundary conditions the partition 
function of this theory on a world-sheet torus can be evaluated explicitly and yields the spectrum 
of scaling dimensions [28]
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�
(
n,w, {NL

nL
}, {NR

nR
}) = pT

L · G · pL + pT
R · G · pR +

∑
nL>0

nLNL
nL

+
∑
nR>0

nRNR
nR

(38)

where

pL,R = 1

2
[G−1(n − B · w) ± w]. (39)

Here, n = (n1, n2)
T and w = (w1, w2)

T are the winding numbers of the two-component boson 
field around the two non-contractible loops of the torus and the collection of integer numbers 
{NL

nL
}, {NR

nR
} specifies the descendant level. For odd (even) values of m the low-lying scal-

ing dimensions in the spectrum (38) for the choice Gab = (
m+1 m
m m+1

)
/2 and Bab = ( 0 1

−1 0

)
/2

correspond precisely to the conformal dimensions (36) with k̃ ∈ {−(m − 1)/2, −(m − 1)/2 +
1, . . . , (m − 1)/2 + 1} and l̃ ∈ {(m − 2)/2, (m − 2)/2 + 1, . . . , (m − 2)/2 + 1} (k̃ ∈ {−(m −
1)/2, −(m − 1)/2 + 1/2, . . . , (m − 1)/2 + 3/2} and l̃ ∈ {(m − 2)/2, (m − 2)/2 + 1/2, . . . , (m −
2)/2 + 3/2}) that are derived from the integer (integer and half-integer) rapidity sets introduced 
above. As expected, for m = 1 the matrix G is proportional to the inverse of the Cartan matrix 
of su(3) [28]. This completes the identification of the low-energy effective CFT for Ha and Hal-
dane’s periodic model (18). The fermionic model with m = 2 may be related to certain N = 4
superconformal field theories [60].

5. Conclusion

Starting from deformations of the CFT su(3)1 we proposed a series of many-body states 
parametrised by a natural number m that describe systems of interacting spin one-half hard-core 
bosons (fermions) for odd (even) m and whose wave functions have a Jastrow part identical to 
that of the (m + 1, m + 1, m) Halperin FQH state. We derived SU(2) invariant parent Hamiltoni-
ans for these states on arbitrary one- and two-dimensional lattices. On two-dimensional lattices 
the wave function corresponds precisely to the (m + 1, m + 1, m) Halperin state with the posi-
tions of the particles restricted to the lattice sites, while the parent Hamiltonian is a long-range 
chiral t–J –V model with additional three-body interaction terms which is expected to possess 
Abelian anyonic excitations in analogy with the continuum system. On one-dimensional chains 
with periodic (open) boundary conditions the parent Hamiltonian contains only two-body terms 
and for m = 1 reduces to the periodic (open) SU(3) HS model. We were thus able to gener-
alise a periodic inverse-square t–J –V model proposed and studied in Ref. [25] to chains with 
open boundary conditions, whereas the parent Hamiltonian on periodic chains agrees with the 
former model up to an additional chiral hopping term. The distinct low-lying eigenvalues in the 
finite-size spectrum of the time-reversal invariant periodic inverse-square t–J –V model and its 
open-boundary generalisation are rational and can be described by rapidity sets with the same 
generalised Pauli exclusion principle. We extracted the conformal dimensions of several primary 
fields in the low-energy effective CFT of the periodic model and identified a two-component 
compactified free-boson theory with the same spectrum of scaling dimensions.

There are several interesting questions that could be addressed in future work. Firstly, it may 
be possible to truncate the long-range interactions in the parent Hamiltonian on two-dimensional 
lattices without crossing a phase boundary. This would provide a short-range Hamiltonian with 
few-body interaction terms that stabilises a lattice analogue of the Halperin state with Abelian
anyonic excitations and which may be experimentally realisable. Secondly, it is known that in 
continuous two-dimensional systems deformations of the CFT su(3)k at levels k ≥ 2 lead to 
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spin-singlet FQH states with non-Abelian anyonic excitations [61]. It would be interesting to 
use the infinite MPS construction to define the lattice analogues of these non-Abelian states and 
study their properties in one and two dimensions.
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Appendix A. Vertex operators of a chiral free boson

After a compactification of the target space to a circle of finite radius, the massless real free 
boson field splits into decoupled chiral and anti-chiral parts φL(z), φR(z̄), where z, ̄z ∈ C are 
the coordinates on the complex plane [29]. The primary fields in the chiral sector consist of the 
left-moving U(1) current J = i∂φL and the chiral vertex operators V L

α =:eiαφL :, where : · · · :
denotes normal ordering. The OPE of two vertex operators is given by [30]

V L
α (z)V L

β (w) = (z−w)αβV L
α+β(w)+α×(z−w)αβ+1 :J (w)V L

α+β(w): +O
(
(z−w)αβ+2).

(A.1)

Correspondingly, the vacuum expectation value of a product of N chiral vertex operators takes 
the form [30]

〈V L
α1

(z1) · · ·V L
αN

(zN)〉 =
∏

1≤i<j≤N

(zi − zj )
αiαj ×

{
1 if

∑N
i=1 αi = 0,

0 otherwise,
(A.2)

where the constraint 
∑N

i=1 αi = 0 is a consequence of the global U(1) symmetry of the free boson 
theory. The correlation function of the U(1) current with a product of chiral vertex operators is 
given by

〈J (z)V L
α1

(z1) · · ·V L
αN

(zN)〉 =
N∑

k=1

αk

z − zk

× 〈V L
α1

(z1) · · ·V L
αN

(zN)〉. (A.3)

Appendix B. Parent Hamiltonian on periodic and open chains

In this appendix, we prove that at filling fraction ν = 2/(2m + 1) and vanishing total spin 
S3

tot = 0 the parent Hamiltonian of the Halperin infinite MPS on periodic and open chains is 
given by a two-body operator as claimed in (24) and (28). Let us consider a non-uniform periodic 
chain � = {zj = eiϕj |ϕj ∈ [0, 2π) ∀j = 1, . . . , N} such that the infinite MPS is annihilated by 
the operators in the second column of Table 2. The positive operator

N∑
j=1

∑
σ

[(
�′σ

j )†�′σ
j + (

C′σ
j )†C′σ

j + (
D′σ

j )†D′σ
j

]

= −(m − 1)
∑

(wjk + wjk)
[
(m + 1

2
)njnk − nj + 2S3

j S3
k

]

j =k
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+ (m − 1)
∑

j =k,σ

(wjk − wjk)d
†
jσ dkσ

+
∑
j =k

|wjk|2
[
2nj + 2

∑
σ

d
†
jσ dkσ + (m2 − m − 1

2
)njnk + 2(2m − 1)S3

j S3
k

]

+
∑′

j,k,l

(wjkwjl + wkjwkl + wlkwlj )
[∑

σ

d
†
kσ dlσ + 1

3
(m + 1

2
)2njnknl

]

+
∑′

j,k,l

wjkwjl

[
nj + njS

3
k S3

l ] + (m − 1)2ntot

+
∑′

j,k,l

(wjkwjl + wklwkj )
[−(m + 1

2
)njnk − 2S3

j S3
k + (2m + 1)S3

j S3
k nl

−
∑
σ

d
†
kσ djσ

(
(m + 1

2
)nl + sσ S3

l

)]
(B.1)

can be simplified by noting that the complex numbers wjk are purely imaginary such that 
wjk − wjk = 2wjk and the terms proportional to wjk + wjk vanish. Since w12w13 + w21w23 +
w31w32 = 1 for any three pairwise different complex numbers z1, z2, z3 ∈C we have∑′

j,k,l

(wjkwjl + wkjwkl + wljwlk)njnknl =
∑′

j,k,l

njnknl = (ntot − 2)(ntot − 1)ntot, (B.2)

∑′

j,k,l
σ

(wjkwjl + wkjwkl + wljwlk)d
†
kσ dlσ =

∑′

j,k,l
σ

d
†
kσ dlσ = (N − 2)

[∑
σ

(Y σ )†Yσ − ntot
]
,

(B.3)∑′

j,k,l

(wjkwjl + wkjwkl)S
3
j S3

k nl =
∑′

j,k,l

(1 − wljwlk)S
3
j S3

k nl

= (
(S3

tot)
2 − 1

4
ntot)(ntot − 2) −

∑′

j,k,l

wjkwjlnjS
3
k S3

l (B.4)

as well as∑′

j,k,l,σ

(wjkwjk + wkjwkl)d
†
kσ djσ

(
(m + 1

2
)nl + sσ S3

l

)

= (m + 1)
∑
j,σ

(
C′σ

j )†C′σ
j + m

∑
j,σ

(
D′σ

j )†D′σ
j

+ [∑
σ

(Y σ )†Yσ − ntot][(m + 1

2
)
(
ntot − 1

) + (
S3

tot −
1

2

)]

+
∑
j =k

w2
jk[(m + 1

2
)njnk + 2S3

j S3
k ], (B.5)

where we introduced the operators Yσ = ∑
j djσ that annihilate the infinite MPS as shown in 

Sec. 2.4. For any collection z1, . . . , zN of pairwise different complex numbers of unit absolute 
value one finds 

∑
k(=i,j) wkiwkj = N − 2 + 2w2

ij + wij (bi − bj ) with bi ≡ ∑
j (=i) wji . This 

implies
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∑′

j,k,l

(wjkwjl + wkjwkl)njnk =
∑′

j,k,l

(1 − wljwlk)njnk

= −
∑
j =k

[2w2
jk + wjk(bj − bk)]njnk, (B.6)

∑′

j,k,l

(wjkwjl + wkjwkl)S
3
j S3

k =
∑′

j,k,l

(1 − wljwlk)S
3
j S3

k

= −
∑
j =k

[2w2
jk + wjk(bj − bk)]S3

j S3
k , (B.7)

−
∑′

j,k,l

wjkwjlnj = (N − 1)(N − 2)ntot +
∑
j =k

[4w2
jk + 2wjk(bj − bk)]nj . (B.8)

Since it is a spin-singlet, for a = 1, 2, 3 the CFT state (1) is invariant under global spin rota-
tions Ua = exp[i π

2 Sa
tot] by π/2 around the x-, y- and z-axes. On the subspace of filling fraction 

ν = 2/(2m + 1) and vanishing total spin S3
tot = 0 the Halperin infinite MPS for m ≥ 1 is thus 

annihilated by the SU(2) invariant operator
1

6

∑
a

U†
a

[∑
j,σ

(
�′σ

j )†�′σ
j − m

(
C′σ

j )†C′σ
j − (m − 1)

(
D′σ

j )†D′σ
j

]
Ua

+ 1

2
(m − 1)

∑
j,σ

(Y σ )†Yσ + 1

2
Ẽ0

= (m − 1)
∑
j =k

wjk

∑
σ

d
†
jσ dkσ −

∑
j =k

w2
jk

[
−nj +

∑
σ

d
†
jσ dkσ + m2

2
njnk + m�Sj · �Sk

]

+
∑
j =k

wjk(bj − bk)[nj − 2m + 1

4
njnk − 1

3
�Sj · �Sk]

+ 1

3
m

∑′

j,k,l

wjkwjl nj
�Sk · �Sl (B.9)

with a constant Ẽ0 = M(M −1)(M −2)/3 +m(m −1)M +M(N −1)(N −2) +(2m +1)M(M −
2)/4. This operator contains only a single three-body term which can be eliminated by adding 
the SU(2) invariant linear combination

2m

9

∑
a,j

(�a
j )

†�a
j =

∑
j =k

wjkwjl[m
4

njnk + m

3
�Sj · �Sk] − m

3

∑′

j,k,l

wjkwjlnj
�Sk · �Sl. (B.10)

In order to obtain the final form of (24) one may rewrite w2
jk = 1 − (sin

ϕi−ϕj

2 )−2 and simplify 
the constant terms as∑

j =k

[
−nj +

∑
σ

d
†
jσ dkσ + 2m2 + m

4
njnk + m�Sj · �Sk]

= −(N − 1)M +
∑
σ

(Y σ )†Yσ − ntot + 2m2 + m

4
(ntot − 1)ntot

+ m
[
(�Stot)

2 − 3

4
ntot]. (B.11)
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A completely analogous calculation leads to the identity (28) for the parent Hamiltonian on an 
open chain � = {uj = cos θj |θj ∈ [0, π] ∀j = 1, . . . , N} since the latter is the projection onto 
the real line of the periodic chain {zj = eiθj |j = 1, . . . , N} in the upper half plane with com-
plex conjugates zj̄ = e−iθj for j = 1, . . . , N in the lower half plane. The operators in the third 
column of Table 2 annihilating the infinite MPS on the open chain depend on the lattice sites 
through wjk + wjk̄ = (zj + zk)/(zj − zk) + (zj + z̄k)/(zj − z̄k). Due to their close relation 
with the corresponding expressions on a periodic chain, we have (wij + wij̄ )(wik + wik̄) +
(wji + wjī)(wjk + wjk̄) + (wki + wkī)(wkj + wkj̄ ) = 4 and 

∑
i( =j,k)(wij + wij̄ )(wik + wik̄) =

(4N − 6) + 2(w2
jk + w2

j k̄
) + wjk(cj − ck) + wjk̄(cj + ck) for any pairwise different i, j, k, 

where ci ≡ wīi + ∑
j (=i)(wji + wj̄i). These identities can be used to simplify several terms 

in the explicit expression for the positive operator 
∑

jσ (�′′σ
j )†�′′σ

j . Similarly to the periodic 
case the remaining three-body terms may be absorbed after an explicit SU(2) symmetrisation 
into 

∑
a,j,σ U

†
a [m(C′′σ

j )†C′′σ
j + (m − 1)(D′′σ

j )†D′′σ
j ]Ua/6 or removed by addition of the oper-

ator (2m/9) 
∑

a,j (�
′′a
j )†�′′a

j . Finally we can rewrite w2
jk = 1 − sin−2 1

2 (θj − θk) to obtain the 
result (28).
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