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Adaptive broadening to improve spectral resolution in the numerical renormalization group
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We propose an adaptive scheme of broadening the discrete spectral data from numerical renormalization group
(NRG) calculations to improve the resolution of dynamical properties at finite energies. While the conventional
scheme overbroadens narrow features at large frequency by broadening discrete weights with constant width in
log-frequency, our scheme broadens each discrete contribution individually based on its sensitivity to a z-shift
in the logarithmic discretization intervals. We demonstrate that the adaptive broadening better resolves various
features in noninteracting and interacting models at comparable computational cost. The resolution enhancement
is more significant for coarser discretization as typically required in multiband calculations. At low frequency
below the energy scale of temperature, the discrete NRG data necessarily needs to be broadened on a linear scale.
Here we provide a method that minimizes transition artifacts in between these broadening kernels.
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I. INTRODUCTION

The numerical renormalization group (NRG) is a nonper-
turbative method to solve quantum impurity problems [1,2],
with applications ranging from actual quantum impurities
in mesoscopic systems to self-consistent impurity models in
dynamical mean-field theory (DMFT) [3–5]. Owing to using a
logarithmic discretization grid, the NRG has major advantages
in calculating dynamical properties. Most importantly, it can
reach arbitrarily low temperatures at comparable computa-
tional cost, and satisfies the Friedel sum rule at temperature
T = 0+ generally within 1% deviation.

The above benefits come at the cost that NRG only provides
finite spectral resolution of dynamical properties at finite
frequencies. With many-body eigenstates H |Ei〉 = Ei |Ei〉,
dynamical properties of the impurity such as the local density
of states can be written in Lehmann representation as

A(ω) =
∑
ij

Aij δ(ω − Ej + Ei), (1)

where we use � = kB = 1 in this paper, throughout. Ac-
cording to the exponential coarse-graining in energy, the
conventional approach [6,7] broadens every discrete spectral
weight Aij at |ω| > T with constant width σ in log-frequency
or, equivalently, constant width-to-position ratio in linear
frequency. As a consequence, sharp features at finite frequency
either show artificial oscillatory behavior for too small σ

or are overbroadened otherwise. This oscillatory behavior
is also inherited by static observables, e.g., as a function
of temperature. A standard prescription to deal with this
situation is z-averaging, which averages the discrete spectral
data over nz logarithmic grids (shifted relative to each other by
a parameter z), allowing the broadening width proportional to
1/nz [8–10]. However, z-averaging is inherently sensitive to
the precise treatment of the band edges [10] in that state space
truncation inevitably introduces slight inequivalencies for
different z-shifts. Eventually, this limits resolution. Therefore
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besides z-averaging, it is desirable to have a broadening
scheme that incorporates more information about the spectral
data to be broadened [11].

In this work, we propose an adaptive broadening scheme
that systematically improves resolution of dynamical proper-
ties at finite frequencies. For |ω| > T , contrary to the con-
ventional broadening scheme of constant σ(ij ) for all weights
Aij , we determine the broadening width σij individually for
each Aij from the sensitivity of its position ωij = Ej − Ei

to z-shift, i.e., σij ∝ d ln |ωij |/dz. For |ω| < T , the curve is
further convolved with a kernel of width γ < T on a linear
frequency scale to ensure smooth behavior across ω = 0. We
propose a generic scheme to minimize γ while maintaining a
smooth curve for |ω| � T without artificial features at |ω| ∼
T . We show that this scheme captures, for example, narrow
single-particle resonances in noninteracting models by using
a clearly reduced number of z-shifts. For interacting models,
such as the Kondo model and the single-impurity Anderson
model (SIAM), the adaptive broadening better resolves sharp
band edges, Hubbard side peaks, or the splitting of Kondo peak
by magnetic field.

This paper is organized as follows. In Sec. II, we briefly
review how discrete spectral data of the dynamical properties
is obtained within the NRG framework. In Sec. III, we present
our adaptive broadening scheme. In Sec. IV, we compare the
adaptive scheme with the conventional one, by applying them
to various systems at T = 0. In Sec. V, we apply the adaptive
scheme at finite T .

II. DISCRETE DATA OF DYNAMICAL
PROPERTIES BY NRG

A. Model Hamiltonians

The generic Hamiltonian of a quantum impurity problem
can be written as

H = Himp({dν}) + Hcpl({dν,cεν})︸ ︷︷ ︸
≡H0

+Hbath({cεν}), (2)

where ν is an index of constituent particle species (e.g., spin,
flavor, channel), dν is the annihilation operator at the impurity,
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and cεν annihilates a bath particle with energy ε in the bath,
satisfying {cεν,c

†
ε′ν ′ } = δ(ε − ε′)δνν ′ . While different particle

species interact locally within the impurity Hamiltonian or
the coupling, H0 ≡ Himp + Hcpl, the bath Hamiltonian is
quadratic,

Hbath =
∑

ν

∫
dε ε c†ενcεν. (3)

In the case of the SIAM, its coupling Hcpl to the impurity
is also quadratic and given by

H SIAM
cpl =

∑
ν

∫
dε

√
�ν(ε)

π

(
d†

νcεν + c†ενdν

)
, (4)

where �ν(ε) is an energy-dependent hybridization between
the impurity and the bath, and ν ∈ {↑,↓} the electronic
spin. Throughout this work we use a species-independent
hybridization �ν(ε) = �(ε) = �
(D − |ε|) and choose the
half-bandwidth D as unit of energy, i.e., D := 1. In the SIAM,
the impurity is a single spinful electronic site with Coulomb
interaction,

H SIAM
imp = Und↑nd↓ + εdnd + BSd,z, (5)

where ndν ≡ d†
νdν , nd ≡ nd↑ + nd↓ counts the number of

particles on the impurity, Sd,z ≡ 1
2 (nd↑ − nd↓) is the spin

operator, U the Coulomb interaction strength, εd the energy
of the single-particle level, and B the Zeeman splitting due
to a magnetic field in the z direction. Here we consider the
particle-hole symmetric case εd = −U/2.

The Kondo model is the projection of the particle-hole
symmetric SIAM onto the subspace where only one electron
occupies the impurity, in the limit U 
 �,D. A Schrieffer-
Wolff transformation results in

H Kondo
0 = J �Sd · �S0 + BSd,z, (6)

with �S0 ≡ ∫ D

−D
dε

∫ D

−D
dε′ ∑

ν,ν ′=↑,↓ c†εν[�σ ]νν ′cε′ν ′ the spin
of the bath site at the location of the impurity, �σ the
Pauli spin matrices, �Sd the impurity spin operator, and
J � 8�D/πU > 0.

B. NRG discretization

A quantum impurity problem considers a localized impurity
coupled to a noninteracting bath of half-bandwidth. In units
of D = 1, its continuous energies in [−1,1] are discretized
into logarithmic intervals split at ±�−k+1−z for k = 1,2, . . . ,

where � > 1 is a logarithmic discretization parameter and
z ∈ (0,1] a discretization shift [8–10] referred to as the
z-shift. Here we choose � = 2 and z ∈ {1/nz,2/nz, . . . ,1}.
This coarse-graining is followed by an exact mapping onto
the discrete Wilson chain [1,2], with exponentially decaying
hopping amplitudes, i.e., tn ∝ �−n/2. This introduces energy
scale separation and thus justifies iterative diagonalization of
the Wilson chain.

After discretization and mapping onto the Wilson chain, the
SIAM becomes

H SIAM
N (z) = H SIAM

imp + H SIAM
cpl︸ ︷︷ ︸

≡H SIAM
0

+H bath
N (z), (7)

now with

H SIAM
cpl =

∑
ν=↑,↓

t0(d†
νf0ν + H.c.), (8)

H bath
N (z) =

N∑
n=1

∑
ν=↑,↓

t (z)
n (f †

n−1,νfnν + H.c), (9)

where t0 = √
2�D/π is z-independent, and where fnν anni-

hilates the electron at the chain site n = 0,1,2, . . . with spin ν.
By construction, the Kondo model maps onto a similar chain
geometry,

H Kondo
N (z) = H Kondo

0 + H bath
N (z), (10)

with H Kondo
0 as in Eq. (6), but now with �S0 ≡∑

ν,ν ′=↑,↓ f
†
0ν[�σ ]νν ′f0ν ′ . Contrary to the original continuous

Hamiltonian, the discrete Hamiltonians in Eqs. (7) and (10)
depend on z, due to the z dependence of discretized bath H bath

N .

C. Dynamical properties

Based on the argument of energy scale separation, NRG
proceeds with iterative diagonalization of the Wilson chain.
This generates a complete set of well-approximated energy
eigenstates {|E(z)

i 〉} of the full chain [12,13]. Having the
energy eigenstates {|E(z)

i 〉}, the impurity’s dynamics at finite
temperature is described by local correlation functions in the
Lehmann representation [2,6,13,14] [see also Eq. (1)],

Adisc
z (ω) = − 1

π
Im〈O||O†〉ω

= − 1

π
Im

∫
dt eiωt (−i
(t)〈[O(t),O†]±〉)

=
∑
ij

A
(z)
ij δ

(
ω − ω

(z)
ij

)
, (11)

with

A
(z)
ij = ∣∣〈E(z)

i

∣∣O∣∣E(z)
j

〉∣∣2(
ρ

(z)
i ± ρ

(z)
j

)
,

(12)
ω

(z)
ij = E

(z)
j − E

(z)
i ,

where O is a local operator acting at the impurity (e.g., spin,
particle creation/annihilation), ± takes + (−) for a fermionic
(bosonic) operator O, and ρi = e−Ei/T /(

∑
j e−Ej /T ) is the

diagonal of the density matrix at temperature T . Here we
employ the full-density-matrix (fdm) NRG [6,14] in evaluating
Eq. (11).

The dynamics of the impurity in either the SIAM or the
Kondo model is described by the spin and frequency resolved
T -matrix for electrons scattering off the impurity. By using
equations of motion [15], it is given by

Tν(ω) =
{

π�〈dν ||d†
ν〉ω (SIAM),

π2

2D
〈Oν ||O†

ν〉ω (Kondo).
(13a)

For the SIAM, this leads to the impurity spectral func-
tion Aν(ω) = − 1

π
Im〈dν ||d†

ν〉ω, whose spectral resolution can
be improved by utilizing the impurity self-energy ν ≡
〈[Un↑n↓,dν]||d†

ν〉ω/〈dν ||d†
ν〉ω [16]. For the Kondo model this

introduces the local correlation function 〈Oν ||O†
ν〉ω in terms of

235127-2



ADAPTIVE BROADENING TO IMPROVE SPECTRAL . . . PHYSICAL REVIEW B 94, 235127 (2016)

the composite operator [15] Oν ≡ [f0ν,H
Kondo
0 ] = [f0ν,J �Sd ·

�S0] [see Eq. (10)].
The imaginary part of the T -matrix defines the frequency

and spin-resolved transmission probability

Tν(ω) ≡ − 1

π
Im[Tν(ω)], (13b)

which, for simplicity, will be also referred to as the T -
matrix (note the altered font). One has Tν(ω) ∈ [0,1], where
Tν(ω) = 1 implies perfect transmission at given frequency
ω. Furthermore, in the absence of a magnetic field, T↑(ω) =
T↓(ω) = T (ω), with T (ω) the spin-averaged spectral data.

D. Limitations of z-averaging

Within the conventional broadening scheme [6–10], the
spectral resolution can be improved by decreasing � and
by increasing nz, but the improvement is limited. First, for
practical reasons, the choice of � needs to be � 1.7 to ensure
energy scale separation, since otherwise an excessive number
of states must be kept within the NRG [17].

Second, while nz � 2 is highly attractive to gain resolution
in energy space, there is no reason to expect that excessive
z-averaging, i.e., nz → ∞ for finite � � 1.7, can recover the
exact continuum limit � → 1+. Moreover, there turns out to
be a practical limit in z-averaging, typically nz � 64 [10],
since there exist unavoidable slight inequivalencies of the
spectral data of different z-shifts. While the coefficients tn in
Eq. (9) scale as ∼�−n/2−z for large n, z-dependent variations
of tn�

n/2+z occur for smaller n as seen in Fig. 1(a). These
originate from the disruption of the logarithmic scaling at

FIG. 1. (a) The hopping amplitudes t (z)
n vs Wilson shell index n

and (b) their derivatives dtn/dz (obtained numerically using δz =
0.01/nz), for the hybridization �(ε) = �
(D − |ε|) in units of half-
bandwidth, i.e., D = 1. Since tn=0 is independent of z, only data for
n > 0 is shown, which itself is independent of the value of �. For
large n � 8, tn and dtn/dz follow an exponential scaling, i.e., tn �
�−z�(1−n)/2(� − 1)/ ln � and (dtn/dz)/tn = d ln(t (z)

n )/dz � − ln �.
For small n, the values for tn and dtn/dz deviate from the exponential
scaling. The deviation is larger for smaller z, since the discretization
interval at the band edge becomes narrower, i.e., is more weakly
coupled to the impurity.

the band edge: for example, if one strictly adheres to the
discretization ±�−k+1−z (k = 1,2, . . .) near the band edge,
a narrow discretization interval emerges at the band edge for
z � 1. The corresponding coarse-grained level possesses a
large level energy since it resides at the band edge, yet is
weakly coupled to the impurity. As a consequence, z → 0+
compromises energy scale separation. This manifests itself in
a peaklike structure in the scaled hopping amplitudes tn�

n/2+z

in Fig. 1(a) that shifts towards smaller energies, i.e., larger n as
z is reduced [18]. Therefore the iterative NRG diagonalization
along the Wilson chain intrinsically faces increasing difficulty
with z → 0+. The resulting bias with respect to different z

translates into slightly uneven distribution of spectral weights
after z-averaging. Though the unevenness is smoothened by
large enough broadening for small nz, it introduces “noise”
for larger nz [e.g., see dash-dotted line in Fig. 3(a)]. Hence the
gain in spectral resolution slows down with increasing nz.

III. BROADENING DISCRETE DATA

In order to recover the continuum from the discrete spectral
data Adisc

z in Eq. (11), we first need to gather the discrete
spectral data in a suitable way. Since we will associate each
discrete weight not only with an individual energy ωij but also
with an individual broadening width σij [specified in Eq. (19)
below], we will use a two-dimensional binning scheme (instead
of the usual one-dimensional scheme used when all weights
are broadened by the same width). For this, we introduce a fine-
grained binning in log-frequency space (about 250 to 500 bins
per decade) as well as a linear binning in the broadening width
σ (e.g., linearly spaced between [0.01,σmax] with spacing 0.01,
where σmax can be chosen differently in different contexts;
σmax = 2 ln � is enough at T = 0, while σmax = 8 ln � was
used for finite T for the sake of the analysis). A discrete spectral
weight Aij at ωij and broadening σij can then be associated
with bin k at frequency ωk and broadening σk; i.e., it is added
to a two-dimensional array

A
(z)
ij at (ωij ,σij )z → Az(ωk,σk). (14)

While the first dimension (binning in ω) is standard within
the NRG [2], the binning in an adaptive σ is new. Subsequent
z-averaging then is easily performed on the level of the fine-
grained binned data array in A(ωk,σk),

Ā ≡ 〈A〉z = 1

nz

∑
z

Az. (15)

The broadening scheme proposed in this paper is based on
using the above z-averaged two-dimensional array Ā as input
for the following broadening formula:

A(ω) = Lγ

[∑
k

Ā(ωk,σk)δσ̄k
(ω; ωk)

]
. (16)

Here the broadening consists of two subsequent steps: First
the discrete spectral data in bin Ā(ωk,σk) is broadened using a
standard NRG log-Gaussian broadening kernel [2,6] δσ̄k

(ω; ωk)
[see Eq. (17a) below], centered around ωk , yet with individual
broadening width σ̄k ≡ α

nz
σk , where α is an overall constant

prefactor [see Eq. (17b) below]. This first step is applied to the
spectral data at all frequencies, yet it only generates smooth
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data for frequencies ω > T . It still leaves pronounced discrete
features for |ω| � T .

In a second step we employ uniform linear broadening
Lγ [·] of optimized width γ � T [cf. Eq. (21) below]. The
latter is again applied to the full frequency range; thus there
is no need to specify a transition function for switching
from log-Gaussian to linear broadening (in contrast to the
conventional scheme of Ref. [6]). Consequently, while there is
minor numerical overhead involved by considering the full
frequency range, the latter minimizes artifacts in the final
spectral data for intermediate frequencies |ω| ∼ γ . For ex-
ponentially large frequencies |ω| 
 T � γ , where the data
obtained from the first log-Gaussian broadening step is already
smooth, the uniform broadening Lγ [·] has negligible effect, so
eventually may be skipped there.

Another approach to improve the spectral resolution [19]
first converts the discrete data to the imaginary-frequency
domain via the Hilbert transform and then applies the an-
alytic continuation to obtain real-frequency curves (without
imposing broadening). However, the analytic continuation is
numerically ill-posed and thus subject to error. Indeed, as
the impurity solver of the DMFT, the NRG is advantageous
exactly for the reason that the dynamical properties are directly
computed on the real-frequency axis without the analytic
continuation [5].

In the following, we discuss the individual steps above in
more detail. For simplicity, we start with the conventional
and adaptive broadening schemes for the regime |ω| > T , in
which all the weights are logarithmically distributed. Then
we address the regime |ω| � T . For all of the following
discussion we already assume z-averaged discrete NRG data,
unless indicated otherwise.

A. Broadening for |ω| > T

The discrete spectral contributions of Adisc
z (ω) are

bunched in log-frequency space, where average distance
between bunches �(ln |ω|) � (ln �)/nz after z-averaging,
as illustrated in Fig. 2. This originates from the underlying
discretization grid: due to the logarithmic discretization,
the discretized energy levels of the bath are located at
∼ ± �−k+1−z (k = 1,2, . . .), that is, uniformly spaced in
log-frequency space (except near the band edges). By coupling
the impurity to the bath, the energy levels of the total system
are shifted from the bare bath energy levels, but the overall
logarithmic distribution remains.

We use the standard NRG log-Gaussian broadening kernel
[2,6]

δσ̄k
(ω; ωk) = 
(ωωk)√

πσ̄k|ωk|e
−( ln |ω/ωk |

σ̄k
− σ̄k

4 )2

, (17a)

which preserves the spectral sum rule and Kondo peak
height [6], yet where we explicitly introduce an individually
determined broadening width

σ̄k ≡ α

nz︸︷︷︸
≡αz

σk (17b)

with α an overall constant prefactor of order 1. In this work, we
choose α ∈ [1,2] and specify its value with each figure below.

FIG. 2. Discrete spectral data Az(ωk) ≡ ∑
σk

Az(ωk,σk) for (a)
the noninteracting resonant level model [see Eq. (22)] and (b) the
SIAM at T = 0. Different colors denote different z-shifts. Since the
bin k at frequency ωk has width proportional to |ωk| in the frequency
domain, Az(ωk)/|ωk| is related with the height of a subsequently
broadened curve. The discrete spectral weights are bunched, and most
of the bunches are uniformly spaced in log-frequency space with
the spacing �(ln |ω|) � (ln �)/nz after z-averaging. But in certain
regimes [ωk ∼ εd = −0.05 for (a) and ωk ∼ U/2 = 0.25, ωk ∼ TK �
0.01 for (b)], bunches are widely spread or irregularly distributed:
the adaptive broadening scheme systematically applies the narrower
broadening width to these bunches, leading to the improved spectral
resolution in such regimes (see Figs. 3 and 5). See Secs. IV A and
IV B for details.

We use α = 1 for the noninteracting resonant level model,
α ∈ {1.5,2} for the SIAM and Kondo model at � = 2, and
α = 2 also for extremely large � � 16 (cf. Fig. 10). The bar
on the left-hand side of Eq. (17b) is a reminder that this is the
final broadening used on the z-averaged data as in Eq. (15).

Conventional broadening schemes [6,7] use a constant σk =
ln � for all discrete spectral weights (i.e., σ̄(k) = constant �
ln �). This choice is natural for the discrete weights deep
inside fixed-point regimes such as the stable low-energy fixed
point where the spectral data is featureless and the spectral
data appears bunched at distance �(ln |ω|) = (ln �)/nz in
log-frequency space, suggesting α = 1. However, this leads to
overbroadening of sharp spectral features at finite frequencies
|ω| � T where discrete weights are distributed more irregu-
larly in relation to the underlying physics.

Adaptive broadening σk

The broadening scheme proposed in this paper uses the
log-Gaussian in Eq. (17a) with the adaptive broadening width
in Eq. (17b) where

σij

binning−−−→ σk. (18)

Here σij is determined for each spectral weight Aij at
frequency ωij for an arbitrary but fixed z-shift as in Eq. (11),
and then binned according to Eq. (14). In the following we
describe and motivate a scheme for computing σij for an
elementary spectral contribution Aij prior to z-averaging.
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For the sake of the argument, suppose the discrete data
Adisc

z (ω) can be obtained exactly by solving H (z) in Eq. (7)
without any truncation. As the coefficients in H (z) are
continuous functions of z, the frequency ω

(z)
ij associated with

each discrete spectral weight A
(z)
ij shifts as a function of

z. In particular, a shift z → z + 1 shifts the discrete data
onto itself (except for the very band edge). Now to fill the
distance between a delta peak of weight A

(z)
ij at frequency

ω
(z)
ij and another delta peak of weight A

(z+�z)
ij at ω

(z+�z)
ij , with

�z ≡ 1/nz � 1, a sensible choice for the broadening width
σij for A

(z)
ij is to use the resulting shift in log-frequency scale,

| ln |ω(z)
ij | − ln |ω(z+�z)

ij ||, up to a factor α of order 1. To leading
order we thus choose

σ
(z)
ij ≡

∣∣∣∣∣d ln
∣∣ω(z)

ij

∣∣
dz

∣∣∣∣∣ = 1∣∣ω(z)
ij

∣∣
∣∣∣∣dEj

dz
− dEi

dz

∣∣∣∣ (19a)

= 1∣∣ω(z)
ij

∣∣
∣∣∣∣〈Ej |dH

dz
|Ej 〉 − 〈Ei |dH

dz
|Ei〉

∣∣∣∣, (19b)

where the last expression is evaluated within an NRG run
at fixed z-shift. Here we used the Hellmann-Feynman theo-
rem dEi

dz
= 〈Ei | dH

dz
|Ei〉, given that the NRG is dealing with

(approximate) eigenstates |E〉i of the Hamiltonian H (for
further details, see Appendix B). Therefore overall the adaptive
broadening σ

(z)
ij is computed as the lowest-order response to

the perturbation dH
dz

. [Actually, the full perturbation is dH
dz

�z;
the factor �z = 1/nz, however, has already been split off in
Eq. (17b); hence dH

dz
will be referred to as the perturbation

here.]
Finally, the perturbation dH

dz
in Eq. (19) for the Wilson

chain for a given z-shift is obtained numerically as follows:
the standard Lanzcos tridiagonalization of the bath is per-
formed for two close-by shifts z and z + δz, with, e.g., δz =
0.01/nz � �z. This gives two Wilson chains with slightly
altered coefficients tn. The perturbation dH

dz
is therefore defined

in the same geometry as the Wilson chain, but with different
hopping amplitudes

dtn

dz
� 1

δz

(
t (z+δz)
n − t (z)

n

)
, (20)

instead of tn. A typical set of the coefficients dtn/dz of the
perturbation dH/dz is presented in Fig. 1(b). For simplicity,
we use the particle-hole symmetric hybridization �(ε) =
�(−ε) throughout this work. Hence the on-site energy for each
Wilson site is zero by symmetry and thus trivially independent
of z-shifts. For general �(ε), nevertheless, the on-site energies
can be simply incorporated within the tridiagonalization, with
the numerical derivatives of the resulting on-site energies along
the Wilson chain computed analogously to Eq. (20). See also
Appendix A for further details.

Note that the two Lanzcos tridiagonalizations for slightly
different z-shifts above effectively address a different one-
particle basis fnν [cf. Eq. (9)] via a slightly shifted coarse-
graining of the bath. However, this leads to two Wilson chains
of identical structure, differing only in their parameters. Hence
without restricting the above argument, the operators fnν may
be considered independent of z-shifts, and the only changes

in the bath are described by the coefficients t (z)
n . With this, the

diagonal matrix elements of the perturbation, 〈Ei | dH
dz

|Ei〉 in
Eq. (19), can be straightforwardly evaluated directly during
the iterative diagonalization of NRG.

B. Broadening for |ω| � T

Finite temperature T introduces an energy scale where
energy scale separation necessarily comes to a halt. Even if
the Wilson chain itself is semi-infinite, finite T introduces
an effective finite length of the chain nT ∼ −2 ln� T within
fdm-NRG [6,14]. This intrinsically limits the energy resolution
to the order of T . Consequently, the log-Gaussian broadening
must eventually be replaced by a linear broadening scheme for
|ω| � T . This also ensures that the spectral data for positive
and negative frequencies is smoothly connected across ω = 0.
In practice, this is achieved by using various linear broadening
kernels, such as Gaussians [6] or Lorentzians [7] of width
γ � T in linear frequency.

However, the transition from the log-Gaussian to linear
broadening involves some arbitrariness, and tends to introduce
artificial features at intermediate frequencies at |ω| ∼ T .
While these artifacts can be reduced to some extent by
carefully combining two kernels [6], it is difficult to have
a generic scheme to avoid artifacts for a general parameter
regime where pronounced spectral features occur on the scale
of temperature. This is specifically relevant for DMFT-type
calculations [2–5,7].

In many cases, discretization artifacts can be systematically
suppressed at all frequencies, including both |ω| � T as
well as |ω| 
 T , by exploiting self-energy improved spectral
functions [16], to be referred to as “-improved” in the
analysis below. However, as this self-energy “trick” is the
postprocessing of smoothened spectral data, the main focus
here is to find an optimal way of directly broadening discrete
spectral data before any postprocessing.

The essential observation here is that we would like to
avoid altogether a transition function from one broadening
kernel to another, i.e., log-Gaussian to linear broadening. To
achieve this, we perform the log-Gaussian broadening for all
frequencies, followed by a linear broadening that again also
operates on all frequencies; i.e., we use a convolution of two
broadening kernels as in Eq. (16). This scheme thus avoids
constructing an ad hoc scheme for transitioning from one type
of broadening to another.

The order in which the broadening kernels are applied
is important. Since the log-Gaussian broadening does not
affect the function at ω = 0, by construction, the value of
the T -matrix at ω = 0 is determined at the stage of the linear
broadening. If one applies the linear broadening first, the value
T (0) is determined directly from discrete data, so is subject
to numerical noises. On the other hand, if the log-Gaussian
broadening is applied first, the linear broadening acts on the
curve which is already smooth for |ω| � T in log-frequency
space [see blue line in Fig. 11(a)], so results in smooth curves
across ω = 0. Solid and dashed lines in Figs. 11(c) and 11(d)
illustrate the results from the “correct” and opposite orders,
respectively: with the opposite broadening order, the value
T (0) is clearly shifted from the correct value �1 and the fitting
error εrms is much larger (see Sec. V 2 for details).
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For the linear broadening using the convolution Lγ [g] =∫
dω′δγ (ω − ω′)g(ω′) in Eq. (16), we choose the derivative of

the Fermi-Dirac distribution function f (ω),

δγ (ω − ω′) ≡ − d

dω
f (ω − ω′)

= 1

2γ

(
1 + cosh

ω − ω′

γ

)−1

, (21)

at an effectively reduced “temperature” γ < T . This kernel de-
cays more slowly for large frequencies than a regular Gaussian.
Hence it promises somewhat smoother data, whereas it still
decays exponentially, in contrast to Lorentzians [7]. Last but
not least, the above choice is also motivated by the empirical
fact that the linear conductance, which exactly corresponds to
a spectral function convolved with −df/dω|γ=T at ω = 0, can
be very accurately computed within the NRG by convolving
the discrete spectral data of the NRG with −df/dω [6].

It remains to find the optimal value for the linear broadening
width γ . It should be chosen such that (i) it removes the residual
discrete features from the prior log-Gaussian broadening for
frequencies |ω| � T , yet (ii) that it minimally overbroadens the
remaining data otherwise. Large γ guarantees smooth data as
argued above, which in practice means that γ = T is more than
sufficient to obtain smooth data. Minimizing 0 < γ < T in an
systematic fashion while maintaining smooth data to within
about 0.2% variations will be addressed in Sec. V below.

IV. RESULTS AT T = 0

In this section, we compute the T -matrix in Eq. (13) for
noninteracting and interacting impurity models at T = 0, and
demonstrate that the adaptive broadening scheme provides
overall better spectral resolution than the conventional scheme.

A. Noninteracting resonant level model

We apply the adaptive broadening scheme to the noninter-
acting resonant level model of spinless fermions,

H = εdd
†d +

∫ +D

−D

dε

(√
�

π
(d†cε + c†εd) + ε c†εcε

)
, (22)

which is the spinless one-band SIAM with U = 0. Since the
Hamiltonian is quadratic, the T -matrix for particles scattering
off the impurity T (ω) = π�A(ω) = −� Im〈d||d†〉ω has the
closed form

T (ω) = �2 
(D − |ω|)(
ω − εd − �

π
ln

∣∣D+ω
D−ω

∣∣)2 + �2
, (23)

with D = 1 as usual. When �,|εd | � 1, T (ω) approximates a
Lorentzian centered at εd of width 2�. For the simulation of
this model using NRG, we kept up to 200 states in each step
of iterative diagonalization.

Though the model is quadratic and simple, the NRG with
the conventional broadening is very inefficient in reproducing
T (ω) in Eq. (23) when the resonance is sharp in the sense
� � |εd |. Since every discrete weight is broadened with the
fixed width-to-position ratio, the resonance in T (ω) cannot be
narrower than |εd | α

nz
ln �. As seen in Fig. 3(a), this makes the

peaks overbroadened when �/|εd | � ln �/nz as compared to

ln

FIG. 3. Adaptive broadening for the T -matrix in the spinless
noninteracting resonant level model. Panel (a) shows the exact
T (ω) [Eq. (23), black dashed line] and the NRG results with
the conventional and adaptive broadening schemes for different
εd . For small nz, the conventional scheme (strongly) overbroadens
the resonance peaks (red dashed line), while the adaptive scheme
(blue solid line) nicely reproduces the exact T (ω). In contrast, the
conventional broadening scheme can capture the sharp peak shapes
only for much larger nz (purple dash-dotted line), but also acquires
noise (cf. Sec. II D). Panels (b) and (c) show the binned discrete
data Ā(ωk,σk)/|ωk| (Ā/ω for short; see text) for εd = −0.45 and
εd = −0.05, respectively. The weights near ωk � εd as well as
near the band edge −D have clearly reduced adaptive broadening
width σk < ln �. Thus the adaptive broadening can capture the sharp
features near ωk � εd and band edges |ωk| = D [not shown in (a)]
much better than the conventional broadening scheme for fixed nz.

the exact T (ω) [cf. Eq. (23)]. Also, Fig. 3(a) shows that exces-
sive z-averaging with nz = 32 does not only sharpen the reso-
nance peak but also introduces noise as discussed in Sec. II D.
In contrast, the adaptive broadening already captures the
resonance peaks at much lower z-averaging (nz = 4). This can
be understood by analyzing the distribution of discrete binned
spectral weights Ā(ωk,σk) which are z-averaged as in Eq. (15).

Figures 3(b) and 3(c) present a snapshot of the adaptively
determined broadening by directly plotting the binned data
Ā(ωk,σk)/|ωk|, which is related with the height of a sub-
sequently broadened curve as mentioned in Fig. 2. Hence
for the purpose of analysis of the discrete data later in this
paper, we show the array Ā(ωk,σk)/|ωk| (Ā/ω in short). In
Figs. 3(b) and 3(c) then, three features can be distinguished in
the distribution of Ā/ω: (i) For |ωk − εd | 
 �, the weights
are concentrated along the line σk � ln �. These weights,
including the stable low-energy fixed point regime, are almost
uniformly distributed in equally spaced bunches in log-
frequency. Consequently, the adaptive broadening assigns the
same broadening width as the conventional one: σ̄k = α

nz
ln �.

(ii) At the maximum of T (ω) around ωk � εd , the weights
in Ā/ω show a clearly reduced broadening width σk that can
be much narrower than in the conventional scheme [e.g., see
panel (b)]. This is important in order to capture the sharp peak
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ln

FIG. 4. T -matrix of the Kondo model for B = T = 0. Due to total
spin and particle-hole symmetries, Tν(±ω) = T (ω). (a) Broadened
curves with different broadening schemes (adaptive or conventional)
and number of z-shifts (nz = 4 and 8). Inset: Discrete spectral data
Ā/ω for the data in the main panel. (b) Close-up near the band edge
D = 1. The adaptive broadening better resolves the sharp edge at
|ω| = D, which stems from the reduced broadening σk < ln � at
|ωk| � D in the inset of (a).

structure. (iii) Near the band edges |ωk| � D = 1, similarly to
(ii), again the weights have clearly reduced σk < ln �. Here
they describe the sharp edges of A(ω) at ω = ±D in Eq. (23),
which originates from the sharp edge of the hybridization
function �(ε).

B. Kondo and SIAM at B = 0

In this section and the next, we analyze the dynamical
behavior of the Kondo model and the SIAM over a wide
range of magnetic field B, starting with the case B = 0.
Here the frequency-resolved T -matrix [cf. Eq. (13)] shows
the well-known Kondo resonance at ω = 0 as seen in Figs. 4
and 5 for the Kondo model and the SIAM, respectively. The
height of the Kondo peak is determined by the Friedel sum rule.
The NRG gives T (ω = 0) � 1 accurately to within 1% error in
either model. When also self-energy is exploited for improved
spectra data in the SIAM, the error further decreases. The width
of the Kondo peak is the Kondo temperature TK, up to an O(1)
factor depending on the precise definition. For both Kondo
and Anderson models, we determined TK as the frequency ω

at which the dynamical impurity spin susceptibility χs(ω) ≡
− 1

3π
Im〈�Sd || �Sd〉ω becomes maximum [20] (here the factor 1/3

comes from the average of the components in �Sd · �Sd when
exploiting SU(2) spin symmetry; e.g., see Ref. [21]). In the
simulations, we kept up to 500 multiplets in each step of the
iterative diagonalization when exploiting SU(2)spin ⊗ SU(2)ph

for spin and particle-hole symmetry, respectively.
Both the Kondo as well as the SIAM share the same

Kondo physics around |ω| � TK, as well as the sharp cutoff

ln

FIG. 5. T -matrix of the SIAM for B = T = 0. Due to total
spin and particle-hole symmetries, Tν(±ω) = T (ω). (a) Broadened
curves with different broadening schemes (adaptive or conventional),
number of z-shifts (nz = 4 and 8), and partly improved by self-energy
(). (b) Close-up of the Kondo peak at ω � TK, showing convergence
to within 1%. Here the blue solid (dashed) line coincides with the red
solid (dashed) line. (c) Close-up of the Hubbard side peak centered at
ω = U + εd = U/2. The self-energy removes discretization-related
noise at ω � TK and sharpens the Hubbard side peaks. The inset
to panel (a) presents the discrete spectral data Ā/ω for the data in
the main panel. It shows that the adaptive broadening reduces the
broadening σk for frequencies ωk � U/2, and hence enhances the
resolution of the side peak. This is more significant for smaller nz or
without self-energy.

outside the band edge |ω| > D. The Hubbard side peaks
of the SIAM, however, are absent in the Kondo model.
The adaptive broadening enhances the resolution of the
high-frequency features, as in Fig. 4(b) and Fig. 5(c). Quite
generally, the enhancement is more significant where features
are overbroadened in the conventional scheme. In particular,
this is the case when nz is smaller, � is larger, and in case
of the SIAM, no self-energy is used. In Sec. IV D, we further
discuss the performance of adaptive broadening for large �.
Here in the insets of Fig. 4(a) and Fig. 5(a), we show for fixed
� = 2 where and how the adaptive broadening of the discrete
spectral data Ā/ω enhances the resolution. The broadening is
clearly reduced at the band edges |ωk| = D, and for the SIAM
also around the Hubbard side peaks, |ωk| � U/2, in that the
distribution in σk clearly spreads to lower values. Also, for the
SIAM, the spread in σk at |ωk| = D is much less pronounced,
since at |ωk| 
 U/2 the spectral weight decays more strongly
as compared to the Kondo model.
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The adaptive broadening gives quantitatively the same
Kondo peak shape as the conventional broadening, since it is
located around ω = 0 where the resolution is exponentially
refined due to the underlying logarithmic discretization.
Furthermore, given the relatively slow logarithmic corrections
that enter the Kondo peak shape, the discrete weights Ā/ω for
|ωk| � TK are mostly distributed around σk � ln �.

C. Kondo and SIAM at large B

Next we apply a large magnetic field B 
 TK, which
splits the Kondo peak of T (ω) = 1

2

∑
ν=↑,↓ Tν(ω) in between

the different spins ν. The split Kondo peaks are located at
ω = ±(B − �ωB) for ν = ↑ and ν = ↓, respectively. The
shift �ωB � −B/[2 ln(B/TK)] is suggested by analytic RG
calculations [23,24] and numerically confirmed by density-
matrix renormalization group results [22]. Here by having
B �= 0, the symmetry SU(2)spin ⊗ SU(2)ph above is reduced
to U(1)spin ⊗ SU(2)ph, where we kept up to 2000 multiplets in
each step of iterative diagonalization.

As illustrated in Figs. 6 and 7, the adaptive broadening
systematically improves the resolution of the Kondo peaks
for B 
 TK, in addition to the sharp edge at |ω| = D in the
Kondo model and the Hubbard side peak at |ω| = U/2 in the
SIAM. Overall we observe that for a fixed ratio of B/TK 
 1,

ln

FIG. 6. T -matrix of the Kondo model for large magnetic field
B 
 TK at T = 0. Due to particle-hole symmetry, T↑(ω) = T↓(−ω).
(a), (b) Broadened curves at B/TK = 102 and 103, plotted versus
(a) ω/B and (b) ω, with different broadening schemes (adaptive or
conventional) and number of z-shifts (nz = 4 and 8). The blue and
red cross hairs in (a) indicate the value and uncertainty for the peak
positions and heights extrapolated to the limit αz → 0 for adaptive
and conventional schemes, respectively, as derived from Fig. 8. The
extrapolated peak position at B = 102TK is consistent with the DMRG
result (dotted line, taken from Ref. [22]). (c) Discrete spectral data
Ā/ω for the data in panel (a) for the parameters as indicated.

ln

FIG. 7. T -matrix of the Anderson model for large magnetic field
B 
 TK at T = 0. Due to particle-hole symmetry, T↑(ω) = T↓(−ω).
(a), (b) Broadened curves at B/TK = 102 and 103, versus (a) ω/B and
(b) ω, with different broadening schemes (adaptive or conventional)
and number of z-shifts (nz = 4 and 8). All curves are improved by
utilizing the self-energy . The blue and red cross hairs in (a) indicate
value and uncertainty of the peak positions and heights extrapolated to
the limit αz → 0 for adaptive and conventional schemes, respectively,
as extracted from Fig. 9. (c) Discrete spectral data Ā/ω for the data
in panel (a) for the parameters as indicated.

the position ωmax of the Kondo peak is slightly larger in the
Kondo model (see also Figs. 8 and 9 below). The overall line
shapes of the curves are similar otherwise. As B increases,
the peak line shapes remain qualitatively similar as a function
of ω/B, except that the peak position slightly shifts towards
ω/B = 1 and that the peak height is reduced. Eventually, for
the SIAM when B � U/2, the Kondo peak merges with the
Hubbard side peak.

For the SIAM as well as the Kondo model, we choose a
slightly larger α = 2 for B = 103TK than α = 1.5 for B =
102TK to smear out the residual noise from z-averaging at
nz = 8 (cf. Sec. II D). This noise persists even if we adjust the
width of the outmost discretization interval in different ways
as a function of z, or if we increase the number of kept states.
Overall we again observe that the adaptive broadening leads
to improved performance.

We estimate the height Tmax and the position ωmax of the
Kondo peaks in the continuum limit, by extrapolating their
values at finite broadening σ̄k ∝ αz ≡ α/nz to αz → 0. In
Figs. 8(c) and 8(d) and Figs. 9(c) and 9(d), we plot the
heights Tmax and positions ωmax of the peak vs αz obtained
from different choices of nz and α. For both adaptive as well
as conventional broadening, Tmax and ωmax show consistent
dependency solely on the ratio αz. In detail, the consistency
is somewhat better within the conventional approach (since
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FIG. 8. Extrapolation of the Kondo peak in T↑(ω) for the Kondo
model towards the “continuum limit” αz ≡ α/nz → 0, in terms of (a)
heights Tmax and (b) positions ωmax vs B/TK. For ωmax, we compare
with the analytic prediction (dashed line). At B = 100 TK, we show
(c) Tmax and (d) ωmax vs αz (see Fig. 6 for remaining parameters). For
each magnetic field, we extrapolate Tmax and ωmax to αz → 0 by fitting
the data points from nz = 4,8 within the fitting range [0.25,0.95] as
indicated by the vertical dotted lines with a Padé approximant of
order [2/1] (dashed and dash-dotted lines). The inset in (c) shows the
adaptively (blue) and the conventionally (red) broadened curves of
T↑(ω) at B = 100TK, α = 2, and nz = 8, where αz = 0.25 is on the
lower edge of the fitting range. The extrapolated peak positions and
heights are depicted as cross hairs. The inset in (d) shows a close-up
of the data points and the fitted curves of ωmax/B vs αz at small
αz. The upturn of ωmax for the smallest αz appears with the onset of
underbroadening.

uniformly overbroadened), whereas minor offsets between
different nz values can be observed in the adaptive broadening.

For the extrapolation αz → 0 we introduce lower and the
upper cutoffs αmin

z and αmax
z , respectively, for the range of

αz to be included in the extrapolation. Here αmin
z is required

to avoid resolving the underlying discrete frequencies due to
finite � and nz [see the insets of Figs. 8(d) and 9(d)]. Very
large αz, on the other hand, leads to excessive overbroadening
such that peak height and position become dependent on
the line shape of the spectral data over a wider region, thus
invalidating simple lower-order polynomial fits. For example,
in Figs. 8(d) and 9(d) we observe a qualitative change in the
extracted peak position ωmax for αz � 1 which we attribute to
excessive overbroadening. For the results in this section, we
use the fitting range αz ∈ [0.25,0.95] for the Kondo model
and αz ∈ [0.2,0.9] for the SIAM. For the fitting, we use a
Padé approximant of order [2/1], i.e., the ratio of a quadratic
over a linear polynomial. We estimate the error bar for the

FIG. 9. Same as Fig. 8, but for the SIAM. The fitting range in (c),
(d) is αz ∈ [0.2,0.9].

extrapolated value for αz → 0 as the 95% confidence interval
out of this fit.

The extrapolated values Tmax and ωmax vs B/TK are
presented in Figs. 8(a) and 8(b) for the Kondo model and
Figs. 9(a) and 9(b) for the Anderson model. Tmax shows a
crossover around B ∼ TK, which smoothly connects the value
at B = 0 (e.g., see Figs. 4 and 5) to the regime of large B

(e.g., see Figs. 6 and 7). We also compare our NRG result of
ωmax/B with the analytic prediction [23,24] 1 − �ωB/B =
1 − (2 ln B/TK)−1 [black dashed lines in Figs. 8(b) and
9(b)]. While the extrapolated ωmax/B for the Kondo model
systematically deviates from this analytical prediction, the
one for the SIAM traces the analytic prediction more closely.
Besides that for the SIAM we exploit self-energy to get
improved spectral data, the difference with the Kondo model
may also result from the fact that the Kondo model is affected
by finite bandwidth D whereas by having U � D the SIAM
is not (e.g., see Ref. [20]).

Overall, for both models the adaptive broadening clearly
gives consistently better peak resolution in terms of Tmax

and ωmax for any finite αz, as compared to the conventional
broadening [see Figs. 8(c) and 8(d), and 9(c) and 9(d)]. The
extrapolation to the “continuum limit,” i.e., αz → 0, works
accurately for magnetic fields up to B = 100TK [see Figs. 6(a)
and 7(a)]. In particular, it is consistent across conventional
or adaptive broadening, and in the case of the Kondo model,
one also sees excellent agreement of the peak position with
accurate DMRG simulations (Fig. 6(a) with data reproduced
from Ref. [22]); the difference in the remaining line shape is
attributed to the drastically finer discretization grid employed
in the DMRG simulations as compared to the � = 2 for
the NRG data here. For B 
 100TK, such as B = 103 TK in
Figs. 6(a) and 7(a), the extrapolation is less reliable leading
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to larger error bars. The reason for this is that the line shape
becomes less peak shaped, but more and more steplike which
increases the uncertainty in the determination of the position
of the peak maximum.

D. Larger �

In the previous sections, we have used constant � =
2, a typical choice for NRG simulations of single-band
impurity models, and kept Nkeep = 500 or 2000 multiplets to
demonstrate well-converged results. For multiband problems,
however, this choice of � = 2 is no longer practical since the
required number of multiplets Nkeep increases exponentially
with the number of bands, and the computational cost scales
like O(N3

keep). This problem can be partly ameliorated by
using significantly larger �, where the energy scales of the
Wilson chain sites ∼�−n/2 are better separated. Then the
entanglement in the ground state of the Wilson chain is
lowered [14], with the effect that a significantly smaller Nkeep

suffices for well-converged results. Accordingly, 4 � � � 10
is frequently used to simulate multiband models accurately and
feasibly. For such larger �, z-averaging is absolutely crucial to
cancel out oscillatory behavior due to enhanced discretization
artifacts [2].

Here we demonstrate that, depending on the situation,
one can achieve nearly comparable spectral resolution for
� as large as 16. This is further supported by the adap-
tive broadening where the resolution enhancement is more
significant for larger �. For this, we revisit the systems
considered in Secs. IV B and IV C. In Fig. 10(a), we depict the
Hubbard side peaks of the SIAM in the absence of magnetic
field for different choices of (�,nz) while keeping ln(�)/nz

constant to ensure comparable spectral resolution. Indeed,
the conventional broadening results in hardly distinguishable
curves (brown and purple lines). However, when turning on
the adaptive broadening, this further resolves the Hubbard side
peaks with increasing �. Specifically, for � as large as � =
16, (i) the curves are still smooth without any discretization
blips, and (ii) the adaptively broadened curves already show
comparable peak shape with and without self-energy improve-
ment. This suggests that the peak height is converged for
these curves.

In Figs. 10(b) and 10(c), we show the split Kondo peaks by
B = 102TK for the Kondo model and the SIAM, respectively.
By again choosing comparable ln(�)/nz, the conventionally
broadened curves for different � are nearly on top of each
other. In contrast, the adaptively broadened curves for larger
� = 10 again show enhanced resolution, even though here
for B 
 TK at the price of more pronounced discretization
artifacts. While this may not come as a surprise—after all we
are using a hugely crude discretization based on � = 10—one
can still observe that aside from discretization-related blips,
the mean of the resulting curve still moves around a consistent
overall line shape. In particular, the data in Figs. 10(b) and
10(c) is still consistent with the α → 0 extrapolated peak
height (symbols) or the DMRG data [black dotted line in panel
(b)] replicated from Figs. 6 and 7. Also in Fig. 10(b), the height
of the plateau for ω > B is consistent within the NRG in the
entire range � ∈ [2,10]. Therefore we believe the NRG data
is more reliable for ω > B than the replicated DMRG data,

FIG. 10. Dependence of T -matrices on � ∈ [2,16], for the
models discussed in Secs. IV B–IV C and Figs. 5–7. Here we use
α = 2, and for comparable accuracy across the wide range of �,
we employ an energy-based truncation with Etrunc = 10, throughout.
(a) Zoom into the Hubbard side peaks of the SIAM at B = 0 (see
Fig. 5 for system parameters). Here we choose different pairs of
(�,nz) with a constant ratio (ln �)/nz. This implies the same spectral
resolution within the conventional broadening scheme in that the
brown and purple lines (lower two rows in the legend) (nearly) lie
on top of each other. Panels (b) and (c) show the T -matrix for (b)
the Kondo and (c) the SIAM at large magnetic field (B = 102TK;
see Figs. 6 and 7 for system parameters, respectively). Here again
ln(�)/nz = ln(10)/26 � ln(2)/8 was chosen comparable. Note that
by truncating with respect to energy (Etrunc = 10) rather than fixed
number of states, the curves of � = 2 here slightly differ from the
ones in Figs. 5–7. For comparison, we again also plot the extrapolated
peak position and height (blue and red cross hairs) and the DMRG
data (black dotted line), adapted from Figs. 6(a) and 7(a).

which themselves may have suffered from inaccuracies in a
numerically necessarily unstable deconvolution scheme.

We conclude this section with a few technical remarks.
In order to compare the data for different � at the same
footing with similar accuracy, the state space truncation
within the NRG [2] proceeds along an energy-based threshold
Etrunc = 10 with adaptively varying number of kept multiplets
Nkeep, rather than a fixed Nkeep, using the conventions adopted
in Ref. [17], keeping all states without truncation for the
first five NRG iterations. For example, in Figs. 10(b) and
10(c) where we have used U(1)spin ⊗ SU(2)ph symmetry, the
resulting number of kept states (multiplets) is �6700 (2700)
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for � = 2, and �300 (150) for � = 10, respectively. This
demonstrates the clear reduction in computational cost by
using larger �.

V. RESULTS AT FINITE T

In the previous section we analyzed frequencies |ω| 

T = 0+ where log-Gaussian broadening is well-suited. For
frequencies |ω| � T , however, this needs to be amended by
a linear broadening scheme, as discussed in Sec. III earlier.
In this section, we present the results for the SIAM at three
different temperature scales T � TK, T ∼ TK, and T 
 TK,
as shown in Figs. 11, 12, and 13, respectively. This is
followed by a comparison to quantum Monte Carlo (QMC)
data at intermediate temperatures, as well as a discussion on
a systematic way to determine the optimal value of linear
broadening width γ .

ln

FIG. 11. T -matrix of the SIAM at finite T � TK. (a) Broadened
curves for different γ and (b) binned discrete data Ā/ω for T (ω).
Contrary to the confined distribution of Ā/ω at T � ωk � TK and
σk � ln �, the weights at |ω| � T spread widely along σk . This leads
to distinct irregular behavior in T (ω) at |ω| � T after the logarithmic
Gaussian broadening [blue solid line in (a)]. The secondary convolu-
tion with width γ � T smears out sharp fluctuations without the blip
artifact, keeping features at higher ω untouched [red and brown solid
lines in (a)]. (c) Spectral function values Ti ≡ T (ωi) at frequencies
ωi = γ�2 × {−1, − 0.8, − 0.6, . . . ,1} vs γ /T (see text). (d) Error
εrms of quadratic polynomial fit vs γ /T [see Eq. (24)]. In (c), (d),
solid lines are obtained by applying first the log-Gaussian and then
the linear broadening kernels, as in Eq. (16). In comparison, dashed
lines are obtained by the opposite order of broadening; the order of
broadening kernels is essential to obtain smooth curves at |ω| � T

(cf. Sec. III B).

FIG. 12. T -matrix of the SIAM at T = D/30 � 2TK. (a) Com-
parison of NRG and quantum Monte Carlo results (data from
Ref. [25]) (b) Low-frequency region of T (ω) for different γ ,
where × symbols are the discrete points Ti at ωi = γ�2 ×
{−1,−0.8,−0.6, . . . ,1} vs γ /T to estimate the smoothness of the
curve at |ω| ∼ γ . (c) Error εrms of quadratic polynomial fit for discrete
points vs γ /T [cf. Eq. (24)].

In Fig. 11, we depict T (ω) at finite T � TK, where
the Kondo peak height is close to the perfect transmission
T (0) � 1. Using log-Gaussian broadening only [blue solid
line in Fig. 11(a)] the spectral curve shows irregular behavior
at |ω| � T due to effectively finite chain length induced by
finite T (cf. Sec. III B). Note though that the log-Gaussian
broadened spectral data is already smooth for frequencies
ω � T . After further convolving the curve with the linear
kernel δγ in Eq. (21), a smooth curve emerges for γ = T/10
(still very small as compared to temperature T ).

At elevated temperatures T � TK, the Kondo physics be-
comes suppressed by thermal fluctuations. Figure 12(a) shows
that the Kondo peak height at T � 2TK is almost halved from
the value at T = 0+. At even higher temperature T � 100TK,
the Kondo physics is fully suppressed, leaving behind only the
two Hubbard side peaks, as illustrated in Fig. 13.

We observe that the discrete data Ā/ω shows a pronounced
spread along σk as |ωk| decreases below T : while the spread
appears only at |ωk| � T/3 for T � TK [Fig. 11(b)], the spread
becomes even more pronounced over all |ωk| � D for T 

TK [Fig. 13(b)]. Given an interacting model, this spread in
broadening width σk naturally tends to smear out spectral data
on the energy scale of temperature.

Next we analyze how the low-frequency region of T (ω)
changes with γ . This is illustrated in Figs. 12(b) and 13(d)
for T ∼ TK and for T 
 TK, respectively. For both cases,
γ /T = 0.1 sufficiently smooths the curve, and at the same
time minimizes overbroadening (brown and purple lines). In
contrast, the curves of γ /T < 0.1 show discretization-related
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ln

FIG. 13. T -matrix of the SIAM at large temperature (T �
100TK). (a) Broadened curves for various γ . Due to high temperature,
the Kondo peak is completely suppressed while the Hubbard side
peaks persist at ω = ±U/2. Using the self-energy () improves the
spectral resolution of the Hubbard peaks. The -improved curve for
nz = 2 at γ /T = 0.1 (purple line) shows a height of the Hubbard
peaks that is comparable with a non--improved curve for nz = 8
and the same γ /T = 0.1 (not shown). (b) Binned discrete data Ā/ω

for T (ω). While the weights at |ωk| < T spread widely along σk

for T � TK [see Fig. 11(b)], here a certain spread also appears at
|ωk| � T . (c) Same as Fig. 12(c). (d) Same as Fig. 12(b).

oscillations [red line in Fig. 12(b), red and blue lines in
Fig. 13(d)]. Meanwhile, for γ /T > 0.1, the curve segments
over the interval |ω| < T/2 are overall shifted (relative to
the curves for γ /T � 0.1) hence indicating the onset of
overbroadening (green lines).

1. Comparison to QMC data

At intermediate temperatures T ∼ TK, we can compare our
NRG result with recent state-of-the-art QMC calculations [25].
The results are presented in Fig. 12(a) at T = D/30 � 2TK.
Though our NRG result mostly lies within the error bar of
the QMC result, at ω = 0 the Kondo peak height of the NRG
is systematically about 5% lower, and thus clearly outside the
QMC error bar. NRG, however, is known to produce consistent
accurate results at ω = 0 to within 1% at arbitrary temperature
[e.g., see the perfect consistency with the Friedel sum rule at
T � TK in Fig. 11(a)]. We speculate that the QMC may have
overestimated the peak height or underestimated the error bar.
Also the current setting of U = −2εd yields the particle-hole
symmetry, which appears in the T -matrix as T (ω) = T (−ω).

While the NRG accurately reproduces the symmetry, the QMC
data is only barely particle-hole symmetric within the error
bars. For the results in Figs. 11–13, we kept up to 500 multiplets
(about 3300 states) exploiting SU(2) spin and SU(2) particle-
hole symmetry in each step of the iterative diagonalization.
For a single z-shift, the calculation of the entire spectral data
took about ten minutes on a 4-core workstation. Note that
in the QMC calculation the band edges of �(ε) are slightly
smoothened, but this smoothing does not affect the NRG result
as we explicitly checked.

2. Optimal choice for linear broadening width γ

The width γ of the linear broadening that follows the
log-Gaussian broadening, so far, is a parameter that needs
to be tuned by hand. While sufficiently large γ � T ensures a
smooth final spectral curve, γ = T typically already results
in clear overbroadening. Ideally, γ is chosen as small as
possible to just smear out discretization-related irregularities at
|ω| � T that are out of reach for the log-Gaussian broadening,
but keeps the overbroadening of already smooth physical
features at |ω| � T to a minimum. The optimal choice for the
linear broadening width γ for the spectral data for |ω| < T

necessarily depends on the underlying physics. Hence a
systematic determination of γ is desirable.

Foremost, this requires a measure to quantify “smoothness”
of the data |ω| � T on a linear scale including its transition to
the log-Gaussian broadening. We start from spectral data that
has already been broadened in the entire frequency range by an
adaptive log-Gaussian scheme as described earlier. Then we
estimate the smoothness of the curve obtained after the linear
broadening with any γ � T : we sample T (ω) on a linear grid
of frequencies ωi in the close vicinity of ω = 0, and check
whether the sampled values T (ωi) can be well fitted by a
quadratic function. If so, T (ω) is regarded as smooth. This
procedure avoids applying the linear broadening to the entire
spectral range. Hence the determination of an optimal γ as
outlined here is numerically cheap.

To be specific, we consider (i) a linear frequency range ω ∈
[−ωl,ωl] with ωl ≡ γ�2. (The subscript l stands for linear.)
Eventually, we will demand that the broadened resulting
spectral data closely follows a quadratic polynomial in this
interval. By including the scale factor �nl with nl = 2 in the
definition of ωl , the linear broadening width γ is extended to at
least nl intervals of the underlying logarithmic discretization
for both positive and negative frequencies. This ensures that the
analysis of the resulting smoothness clearly reaches across into
the log-Gaussian broadened frequency range. (ii) Next we split
this frequency range ω ∈ [−ωl,ωl] into a uniformly spaced
linear grid ωi of ml frequencies {ωi} = [−ωl, . . . ,ωl], where
we choose ml = 5nl + 1 = 11. By being odd, this includes the
frequency ω = 0, and by being >4nl , this ensures sufficient
resolution into the underlying logarithmic discretization grid
towards the log-Gaussian broadened data at |ω| ∼ ωl . (iii) We
then compute the linearly broadened data {Ti} ≡ T ({ωi}; γ ) at
the above linear grid of ml frequencies only [see Fig. 11(c)],
and (iv) perform a quadratic fit on this data (ωi,Ti), which
results in a quadratic polynomial T̃ (ω) for the data range
|ω| � ωl . We define the error estimate of the fit as the
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normalized distance of the data to this quadratic fit,

εrms ≡
√

〈δ2Ti〉
〈Ti〉 , (24)

where 〈Ti〉 ≡ 1
ml

∑ml

i=1 Ti is the average and 〈δ2Ti〉 ≡
1

ml−3

∑ml

i=1[Ti − T̃ (ωi)]2 is the standard error of fitting (note
that ml − 3 is the statistical degree of freedom, as there are
three coefficients of quadratic polynomial fitting function).
(v) The error εrms provides the desired estimate for the
smoothness of the fully broadened data for frequencies
|ω| � T that now include both the initial log-Gaussian and
the subsequent linear broadening of width γ . A small value of
εrms implies that T (ω) indeed behaves quadratically within the
fitting range [−ωl,ωl], indicating that discretization artifacts
have been satisfactorily smoothed out.

In Figs. 11(d), 12(c), and 13(c), we show the dependence
of the fitting error estimate εrms vs γ in three different regimes
T � TK, T ∼ TK, and T 
 TK, respectively. At T � TK, the
error εrms monotonically decreases with increasing γ [solid
line in Fig. 11(d)], due to the featureless flat behavior of
T (ω) at |ω| � T � TK. As seen in Fig. 11(a), the spectral
data is visibly smooth for γ /T = 0.1, which corresponds to
εrms � 0.002.

The situation becomes different at higher temperatures, in
that T (ω) actually has structure, e.g., curvature at |ω| � T .
Therefore the strong rise of εrms towards larger γ at γ /T > 0.2
[Fig. 12(c)] and at γ /T > 0.3 [Fig. 13(c)] indicates the onset
of overbroadening: given that the line shape within the linear
frequency window |ω| � T is no longer exactly quadratic [see
Figs. 12(b) and 13(d)], the fitting quality of a quadratic fit in
the range [−ωl,ωl] (with ωl = γ�2) necessarily deteriorates
with larger γ .

Conversely, the strong increase of εrms towards small γ in
Fig. 12(c) [as already also seen in Fig. 11(d)] indicates the
onset of discretization artifacts due to underbroadening. In
Fig. 12(c) this occurs for γ /T < 0.2. With γ /T = 0.2 still
visibly overbroadened, though, due to the smallness of εrms at
γ /T = 0.2, γ can be further reduced as long as discretization
artifacts are still weak. Similarly to Fig. 11(d) where we
estimated εrms � 0.002 for smooth data, the same requirement
also leads to γ /T = 0.1 here.

A similar picture emerges for large temperatures as seen
in Fig. 13(c): a strong increase in εrms, for γ /T > 0.3 due to
overbroadening, and for γ /T < 0.03 due to underbroadening.
In the large-temperature case, however, there emerges an
intermediate window for γ /T ∈ [0.03,0.3] that shows more
irregular behavior of εrms yet at small values. This is interpreted
as a consequence of the interplay of the underlying discrete
data with the broadening as well as the intrinsic line shape of
the spectral function.

Based on the above observations, we therefore suggest the
following procedure to determine the optimally minimal γ :
(i) Obtain the dependence εrms vs γ , over a wide range on a
log scale, e.g., γ /T ∈ [0.01,1]. Since the evaluation of εrms

does not require the linear broadening over all frequencies,
this step can be done efficiently. By analyzing its dependence,
we can identify the regimes where under- or overbroadening
occurs. (ii) If only the underbroadening behavior appears [e.g.,
T � TK as in Fig. 11(d)], choose the value of γ /T at which

εrms passes through a certain threshold, e.g., 0.002. So we have
chosen γ /T = 0.1 in Fig. 11(d). (iii) If the underbroadening
behavior appears directly next to the overbroadening behavior
[e.g., T ∼ TK as in Fig. 12(c)], there will be two values
of γ /T at which εrms passes through the threshold, e.g.,
0.002. We choose the smaller γ , since the larger one clearly
overbroadens the curve; thus γ /T = 0.1 is chosen in Fig. 11(d)
as well. (iv) If there exists a more irregular region between
the under- and overbroadening regimes [e.g., T 
 TK as in
Fig. 13(d)], take the geometric mean (or the midpoint on a
log scale, equivalently) of the smallest overbroadening γ /T

and the largest underbroadening γ /T to stay equally far
from either side. For the example of Fig. 13(d), these two
values are γ /T � 0.03 and 0.3, respectively. Incidentally, this
again results in an optimal γ /T � 0.1 at slightly enhanced
εrms � 0.003. As seen in Figs. 13(a) and 13(d), this trades off
the shift of the curve segment due to overbroadening against
the oscillation due to underbroadening.

VI. SUMMARY

We have developed an adaptive scheme which broadens
each discrete spectral weight individually based on its po-
sition’s sensitivity on z-shifts in the underlying logarithmic
discretization. For frequencies |ω| � T we have developed a
systematic scheme to keep the required linear broadening of
width γ to a minimum.

The additional computational cost for the adaptive broad-
ening is minor: (i) Only the matrix elements of the perturbation
dH/dz need to be computed to estimate the broadening
width. (ii) The discrete spectral data then is collected on
a 2-dimensional array, i.e., with dimensions frequency ωk

and broadening σk . (iii) The actual broadening is part of
the postanalysis of the fdm-NRG run. Its cost is linearly
proportional to the number nσ of bins in the broadening σk ,
where in practice a linear grid of nσ � 50 bins should suffice
for a linear range σ ∈ [0,2] × ln �.

The adaptive broadening presented here systematically
improves spectral resolution. With increasing nz, it converges
much more quickly to the analytically known line shapes of
noninteracting models than the conventional broadening. Yet
also for interacting models, the adaptive broadening converges
faster to the “continuum limit.” In the limit of infinite z-
averaging, i.e., nz → ∞, the adaptive approach necessarily co-
incides with the conventional approach. However, the infinite-
nz limit is not accessible within the NRG (and moreover is
biased by the existence of the band edges; see Sec. II D).
The adaptive scheme presented in this paper systematically
improves spectral resolution from dynamical NRG data at
finite nz � 2. Therefore the proposed adaptive broadening
should benefit two widely used applications of the NRG: (i)
DMFT calculations in the quest to deal with structured bath
hybridization functions and, quite generally, (ii) multiband
(effective) impurity calculations to obtain maximal spectral
resolution at necessarily larger coarse-graining in energy.
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APPENDIX A: LOGARITHMIC DISCRETIZATION

In this appendix we discuss the numerical calculation of
the derivatives of hopping amplitudes dtn/dz and of on-site
energies dεn/dz. This analysis proceeds independently for
each flavor ν. Hence, for simplicity, we skip the flavor index
in the following discussion.

For simplicity, we also focus on the case that the impurity
and the bath are coupled via the quadratic hybridization Hcpl

with the hybridization function �(ω) as in the SIAM in Eq. (4),
but our argument is easily extendible to the Kondo model. As
usual within the NRG, we define the logarithmic discretization
intervals symmetrically for positive and negative energies, i.e.,
I

(z)
k,+ ≡ (ε(z)

k+1,ε
(z)
k ] and I

(z)
k,− ≡ [−ε

(z)
k , − ε

(z)
k+1), with

ε
(z)
k =

{
D, k = 0,

D�−k+1−z, k > 0.
(A1)

In the process of coarse-graining, we replace the bath con-
tinuum within each interval I

(z)
ks with k = 0,1,2, . . . and s ∈

{+,−} by a single discrete level at energy ξ
(z)
ks which couples

to the impurity with amplitude t
(z)
ks = ( γ

(z)
ks

π
)1/2. The total

hybridization of the discrete levels represents the hybridization
of the continuum still, since∫

�(ε) dε =
∑
ks

∫
I

(z)
ks

�(ε) dε︸ ︷︷ ︸
≡γ

(z)
ks

, (A2)

which defines γ
(z)
ks . The continuum limit may be restored

by z-averaging over nz → ∞ z-shifts that are uniformly
distributed within z ∈ (0,1], i.e., 1

nz

∑
z → ∫ 1

0 dz. With focus

on the noninteracting bath only, the energy ξ
(z)
ks then needs to

satisfy [10]

�
(
ξ

(z)
ks

) = γ
(z)
ks

/∣∣∣∣∣dξ
(z)
ks

dz

∣∣∣∣∣, (A3)

which is a differential equation in the continuous variable
x ≡ k + z ∈ [0,∞].

Via coarse-graining in energy space, the continuous-star
Hamiltonian Hcpl + Hbath in Eq. (2) becomes the discrete-
star Hamiltonian Hstar = ψ

(z)†
star H(z)

starψ
(z)
star, where ψ

(z)
star ≡

(d,a
(z)
0+,a

(z)
1+, . . . ,a

(z)
0−,a

(z)
1−, . . . )T with a

(z)
ks the annihilation op-

erator of the discretized bath level (ks) for a given z, and

H(z)
star,ν =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 t
(z)
0+ t

(z)
1+ · · · t

(z)
0− t

(z)
1− · · ·

t
(z)
0+ ξ

(z)
0+

t
(z)
1+ ξ

(z)
1+

...
. . .

t
(z)
0− ξ

(z)
0−

t
(z)
1− ξ

(z)
1−

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A4)

Here “star” means a star-shaped tree geometry of how the
impurity and the bath levels are coupled; the impurity couples
to the bath levels and there is no direct coupling between
the bath levels. Then by Lanczos tridiagonalization with the
starting vector [1,0,0, . . .]T, i.e., leaving the impurity level
d as it is, the star Hamiltonian in Eq. (A4) can be exactly
mapped onto a chain geometry, H (z)

chain ≡ ψ
(z)†
chain T(z) ψ

(z)
chain, with

ψ
(z)
chain ≡ (d,f

(z)
0 ,f

(z)
1 ,f

(z)
2 , . . . )T and the tridiagonal Hamilto-

nian matrix

T(z) = [U(z)]† H(z)
star U(z) (A5)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 t
(z)
0

t
(z)
0 ε

(z)
0 t

(z)
1

t
(z)
1 ε

(z)
1 t

(z)
2

t
(z)
2 ε

(z)
2

. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A6)

By construction, the discrete intervals (ks) depend on the
underlying z-shift. Therefore also ψ

(z)
star and subsequently also

ψ
(z)
chain refer to a z-dependent coarse-grained basis set. From

the point of view of the impurity in the NRG, however, the set
{fn} simply refers to a set of one-particle states. In this sense,
the z dependence in ψ

(z)
chain is irrelevant and can be ignored.

Therefore by only considering the z dependence of the
tridiagonal matrix T(z), the perturbation dH/dz translates
into dT/dz. Based on the defining equations (A2)–(A6), we
therefore simply compute

dT(z)

dz
� 1

δz
(T(z+δz) − T(z)). (A7)

This perturbation simply consists of the numerical derivatives
dεn/dz and dtn/dz which enter the diagonal and first off-
diagonal in dT/dz, respectively. These, however, are numeri-
cal derivatives that need to be based on two different Lanczos
tridiagonalizations with slightly offset z-shifts. In practice, we
chose δz = 0.01/nz. Note that the perturbation dT/dz clearly
cannot be simply related to the differentiation of dξks/dz and
dtks/dz in the star geometry since the unitary transformation
U(z) itself is z-dependent.

For any hybridization function �(ω) that is finite at ω = 0,
the asymptotic behavior for large n for the hoping amplitudes is
t (z)
n ∝ 1/�

n
2 +z and therefore (dt (z)

n /dz)/t (z)
n = d ln(t (z)

n )/dz �
− ln � [eventually, this needs to be multiplied by the global
factor 1/nz to get the full perturbation; cf. Eq. (17b)]. The
on-site energies ε(z)

n have nontrivial asymptotic behavior that
decays at least as �−n, unless the particle-hole symmetry
enforces ε(z)

n = 0.

APPENDIX B: EQUATION (19) IN CASE OF DEGENERACY

For the estimate of the broadening width of discrete spectral
data based on its sensitivity on z-shifts, we made use of the
Hellmann-Feynman theorem in Eq. (19) in the main text. Here
we address the implications of (accidental) degeneracy in the
energy eigenstates.

Degeneracy of eigenstates typically occurs due to symmetry
such as particle number conservation, particle-hole symmetry,
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total spin conservation, etc. In practical NRG calculations,
these symmetries are fully exploited to strongly reduce
numerical cost in terms of memory consumption and CPU
time [21]. Accidental degeneracy can be neglected, since
this always may be removed by an infinitesimal external
perturbation, which in a numerical setting may be interpreted
as numerical noise that always weakly lifts exact accidental
degeneracy anyway.

Therefore degenerate eigenstates typically arise due to
symmetry. As such they are (i) part of the same multiplet
if the full symmetry setting includes non-Abelian symmetries
(e.g., degenerate states within a given symmetry multiplet,
say, of some total spin S) or (ii) distinguishable by different
quantum numbers (such as spin-component Sz) if a reduced
symmetry setting is used for the simulation itself. In either
case, the matrix elements of dH/dz will be block-diagonal
with respect to symmetry by the Wigner-Eckart theorem,

since the perturbation dH/dz relates to a scalar Hamiltonian
(note that z-shifts do not break the symmetry of the original
Hamiltonian).

Consequently the application of the Hellmann-Feynman is
legitimate, since degenerate eigenstates in different symmetry
sectors are distinguishable; i.e., they do not mix. Conversely,
degeneracy within a given symmetry multiplet space has
always a diagonal matrix representation, since the Clebsch-
Gordan coefficients out of the Wigner-Eckart theorem for
a scalar operator are always proportional to an identity
matrix. Hence the perturbation will not mix in between
different states of the same multiplet since symmetry is
preserved.

Overall, therefore this justifies that we can use the energy
eigenstates |Ei〉 directly obtained from the iterative diagonal-
ization in Eq. (19) without having to worry about degenerate
subspaces.
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