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1. Introduction
Materials with strong electron-electron interactions compared to the kinetic energy, are
a considerable challenge in condensed matter physics as perturbation methods cannot
be applied.
Strong electronic correlations arise typically for materials with partially filled d- or f-
shells which are spatially more confined than s- or p-shells. This leads to a small overlap
of orbitals between neighboring atoms and therefore low kinetic energies, rising the im-
portance of electron-electron interactions. Examples are transition metals and their
oxides, ruthenates and iron pnictides. They exhibit strongly correlated many body
phenomena such as the Mott metal-insulator (MIT) transition or high temperature su-
perconductivity.
To treat such materials theoretically a quantum mean field approach, the Dynamical
Mean field theory (DMFT), has been developed [6],[14]. It treats an arbitrary site of
the lattice model as an impurity coupled to a non-interacting bath with effective param-
eters, presenting the rest of the lattice. These effective parameters are determined self
consistently.
As DMFT reduces the lattice model to an effective quantum impurity model, an accurate
impurity solver is needed to obtain a correct description of the material physics. A good
choice is the Numerical Renormalization (NRG) which was first used by K.G.Wilson
to treat the Kondo model [18]. It applies a logarithmic discretization to the bath with
exponentially improved resolution around the Fermi-level, yielding highly accurate real-
frequency spectral resolution at arbitrary low energies. However the computational effort
of NRG scales exponentially with the number of considered bands (orbitals) in DMFT.
While one and two-band calculations can still be performed with NRG using modern
computers, three band calculations are only possible if the models exhibit additional
band symmetries that can be exploited in the NRG procedure.
For ruthenates and iron pnictides, the interesting physical properties arise from the in-
terplay of up to 5 bands. Due to crystal field splitting the degeneracy of some bands
is usually broken. Thus standard NRG methods cannot be used to study these highly
relevant models.
Only recently a modification of NRG, called interleaved NRG (iNRG), has been devel-
oped by A. Mitchell [8] which reduces the exponential scaling with the number of bands.
The method was implemented and already tested as an impurity solver in the group of
Jan von Delft at LMU Munich by Katharina Stadler [11] for up to three-channel impu-
rity models and turned out to be very reliable.
In this thesis we will now test the performance of iNRG as an impurity solver for DMFT,
using the codes of Andreas Weichselbaum and Katharina Stadler.
In the first part of this thesis the basic theoretical background of the applied methods
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1. Introduction

will be discussed. Before presenting the standard NRG (sNRG) method and the iNRG
modification in chapter 3 and chapter 4, respectively, DMFT will be introduced in chap-
ter 2. We will then discuss the characteristics arising when NRG methods are used as
an impurity solver for DMFT in chapter 5 and at last introduce the Anderson Hund
Model in chapter 6, which was used as a test model for our results in the second part.
The second part starts with simple one band calculations in chapter 7. Here we will
perform a first quality check of the DMFT+iNRG method by comparing the results
with corresponding sNRG calculations. We will first perform two basic one-band cal-
culations and compare spectral data and Wilson chain couplings of iNRG and sNRG
results. After that we will examine the performance of z-averaging in iNRG and last
but not least the one-band Mott insulator transition will be studied. In chapter 8 we
will turn to two band calculations. First we will the two-band Anderson Hund model
with band symmetry and we again start by examining simple results and then turn to
the performance of z-averaging. After that we study the band-symmetric Mott insulator
transition in great detail. Chapter 8 will be finished with examining asymmetric two
band models and comparing iNRG with sNRG results. Last but not least chapter 9 will
treat three band DMFT+NRG calculations. Here sNRG results are available only for
the band-symmetric case, as sNRG is computationally too costly if no band-symmetry
can be exploited. In the first part of chapter 9 band-symmetric calculations for both
iNRG and sNRG are compared and the performance of z-shifting is again tested. In
the second part of chapter 9 we will show band-asymmetric three band calculations that
have been achieved with the DMFT+iNRG approach.
Chapter 10 gives a conclusion of our results and provides an outlook to possible future
directions based on the iNRG+DMFT approach.
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2. Dynamical mean field theory
(DMFT)

First steps towards DMFT were delivered by D. Vollhardt and W. Metzner in their
work on the Hubbard model in infinite dimensions [7], the basic DMFT framework was
then later established by A. Georges and G. Kotliar in [5]. DMFT is a mean field
approximation to treat quantum lattice problems. It freezes out spacial fluctuations but
takes into account temporal quantum fluctuations and is therefore dynamical. Good
reviews on DMFT can be found in [14] and [6]. To get an understanding of the basic
ideas of DMFT it is instructive to shortly recapitulate classical mean field theory in the
context of the Ising model.

2.1. Classical mean field theory

The Ising model describes spins on a lattice interacting with nearest neighbors and an
external magnetic field. It is described by the following Hamiltonian:

H = −1
2
∑
(i,j)

JijSiSj − h
∑
i

Si , (2.1)

where ∑(i,j) is a sum over all pairs of nearest neighbors with ferromagnetic couplings
Jij > 0. ∑i is a sum over all lattice sites and h an external field. The goal of a mean
field approach is now to reduce the complex lattice model to an effective single site
problem. For the Ising model this can be done with the approximation ∆Si∆Sj = 0,
where ∆Si ≡ Si − 〈Si〉 was defined:

H = −1
2
∑
(i,j)

Jij(〈Si〉+ ∆Si)(〈Sj〉+ ∆Sj)−
∑
i

hSi

' −1
2
∑
(i,j)

Jij(〈Si〉 〈Sj〉+ ∆Si 〈Sj〉+ ∆Sj 〈Si〉)−
∑
i

hSi = H̃
(2.2)
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2. Dynamical mean field theory (DMFT)

With the assumption of a translational invariant system, in other terms 〈Si〉 = 〈Sj〉 ≡
〈S〉 and Jij ≡ J , our approximate form of H becomes

H̃ = −1
2
∑
(i,j)

J(〈S〉2 + ∆Si 〈S〉+ ∆Sj 〈S〉)−
∑
i

hSi

=
∑
i

[
−
∑
nn

1
2J(〈S〉2 + 2 ·∆Si 〈S〉)− hSi

]

=
∑
i

[∑
nn

(1
2J 〈S〉

2 − JSi 〈S〉)− hSi
]

= 1
2zNJ 〈S〉

2 −
∑
i

Si

[
zJ 〈S〉+ h

]
= E0 − heff

∑
i

Si ,

(2.3)

where N is the total number of sites and z is the coordination number. E0 = 1
2zNJ 〈S〉

2

is just an energy offset and thus physically irrelevant. −heff
∑
i Si is the Hamiltonian

of N noninteracting spins in an external field heff = zJ 〈S〉 + h, which yields for the
magnetization 〈S〉:

〈S〉 = tanh(βheff ) = tanh(βzJ 〈S〉+ βh) (2.4)

Eq. (2.4) is a self consistency equation for 〈S〉. The mean field approximation 〈∆Si∆Sj〉 =
0 becomes exact in the limit of infinite coordination number where we have to rescale J

J = J̃

z
, J̃ = const. (2.5)

to get physical quantities like the magnetization to remain finite. In the following section
we will extend the concepts discussed here to quantum lattice models with arbitrary on
site interactions, following the ideas given in [14], [6] and [13].

2.2. General procedure of DMFT
Within DMFT a quantum lattice model is mapped self consistently on an effective single
site quantum impurity model.
The lattice model exhibits nearest neighbor hopping and arbitrary on site interactions,
but no site to site interactions. In general, the form of the Hamiltonian of the lattice
model is

Hlatt =
∑
ν,i

(εd,ν − µ)nν,i +
∑
i

H int
i +

∑
ν

∑
〈i,j〉

tνc
†
ν,icν,j (2.6)

where c(†)
ν,i are (creation) annihilation operators for electrons of type ν on site i. ν =

(σ,m) is a composite index of spin σ ∈ {↑, ↓} and orbital number m ∈ {1, . . . , Nc} with
number operator nν,i = c†ν,icν,i, flavor-dependent energy εd,ν and chemical potential µ.∑
〈i,j〉 is a sum over all pairs of nearest neighbors, coupled with hopping amplitude tν .
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2.3. Lattice Green’s function

H int
i is an arbitrary interaction Hamiltonian for site i. An example for the specific form

of H int
i is given in Sec. 6.

In the quantum mean-field approach, the lattice model is mapped onto a quantum
impurity model with effective parameters, that exhibits the same local interaction term
as the original model:

H = Himp +Hhyb +Hbath , (2.7)

Hbath =
∑
ν

∑
k∈1.BZ

(εk,ν − µ)c†ν,kcν,k , (2.8)

Himp =
∑
ν

(εd,ν − µ)d†νdν +H int , (2.9)

Hhyb =
∑
ν

∑
k∈1.BZ

V ν
k (d†νcν,k + c†ν,kdν) . (2.10)

Eq. (2.8) describes a non-interacting bath with dispersion relation εk,ν and annihilation
operators ck,ν for bath electrons with momentum k and flavor ν. The Hamiltonian
Eq. (2.9) describes a single site (impurity) with the same local interactions as the lattice
model with flavor dependent binding energy εd,ν , annihilation operators dν and local
interaction H int. Hhyb in Eq. (2.10) couples bath and impurity with hybridization Vk.
In this impurity model HamiltonianHhyb andHbath have to be determined self-consistent.
This is done by demanding that the on site lattice Green’s function 〈〈cν,i, c†ν,i〉〉ω equals
the impurity Green’s function 〈〈dν , d†ν〉〉ω and the on site lattice self-energy Σlatt(ω)
equals the impurity self-energy Σimp(ω), where the approximation of a k-independent
lattice self-energy has to be made. When these steps are performed, one arrives at a
self-consistency equation for the hybridization function

∆ν(ω) =
∑

k∈1.BZ

V 2
k

ω − εk,ν
(2.11)

which fully determines the interplay of bath and impurity. The exact form of Hhyb and
Hbath is not needed. In the following sections these steps will be performed explicitly.
For simplicity, the index ν will be dropped.

2.3. Lattice Green’s function
In the interacting lattice model (2.6), the non-interacting part is diagonal in k-space
with (creation) annihilation operators c(†)

k and dispersion relation εk. It can therefore
(without index ν) be written as

Hlatt =
∑

k∈1.BZ
(εk − µ)c†kck +

∑
i

H int
i (2.12)

To solve the lattice model, we calculate the lattice Green’s function 〈〈ck, c†k〉〉ω. With an
equation of motion ansatz we get the following expression:

ω 〈〈ck, c†k〉〉ω = 〈[ck, c†k]+〉T + 〈〈[ck, Hlatt]−, c†k〉〉ω (2.13)

9



2. Dynamical mean field theory (DMFT)

Here, 〈...〉T is the thermodynamic average in the grand canonical ensemble, [...]+ is the
anticommutator and [...]− the commutator. 〈[ck, c†k]+〉T = 1 follows from the fermionic
anticommutation relations. 〈〈[ck, Hlatt]−, c†k〉〉ω is calculated in appendix B and yields

〈〈[ck, Hlatt]−, c†k〉〉ω = (εk − µ) 〈〈ck, c†k〉〉ω + Σlatt(k, ω) 〈〈ck, c†k〉〉ω . (2.14)

With this expression we get

〈〈ck, c†k〉〉ω = 1
ω − εk + µ− Σlatt(k, ω) (2.15)

for the k-dependent lattice Green’s function.
To map this onto an impurity model, we need to get an expression for the local Green’s
function of a single site via fourier transformation:

〈〈ci, c†i〉〉ω = 1
N

∑
k∈1.BZ

eik(Ri−Ri) 〈〈ck, c†k〉〉ω

= 1
N

∑
k∈1.BZ

1
ω − εk + µ− Σ(k, ω)

(2.16)

Here, N is the total number of k vectors in the first Brillouin zone. The problem with
the above expression is the k-dependence of the self-energy Σlatt(k, ω). This is where
the DMFT-approximation comes in: we strip the k-dependence of the self-energy or in
other words, we take the self-energy to be purely local.

Σlatt(k, ω)→ Σlatt(ω)
Σi,j(ω)→ Σi,j(ω)δi,j

(2.17)

With this approximation and the density of states of the non interacting lattice, ρ0(ε),
we get an expression for the single site Green’s function we can handle:

〈〈ci, c†i〉〉ω '
1
N

∑
k∈1.BZ

1
ω − εk + µ− Σlatt(ω)

=
∫ ∞
−∞

dε
ρ0(ε)

ω − ε+ µ− Σlatt(ω)

(2.18)

As in in [13], [14] and [6], it can be shown that the approximation of a momentum
independent self-energy becomes exact for an infinite coordination number. The main
arguments involve a 1√

z
scaling of the nearest neighbor hopping amplitude to get a finite

density of states for z →∞. This then leads to a
(

1√
z

)|Ri−Rj | dependence of 〈〈ci, c†j〉〉ω,
with |Ri − Rj| measured in the Manhattan metric in terms of the lattice constant (i.e.
|Ri − Rj| = 2 for next nearest neighbors), collapsing the perturbation expansion of the
self-energy in position space to the same site.
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2.4. Impurity Green’s function

2.4. Impurity Green’s function
In order to map the lattice model on an impurity model, we need the impurity Green’s
function of the impurity model corresponding to our lattice model. The impurity model
consists of an impurity Hamiltonian Himp, a non-interacting bath Hbath and a hybridiza-
tion term that couples bath and impurity, Hhyb. For the full Hamiltonian of the model
we get:

Himp = (εd − µ)d†d+H imp
int

Hbath =
∑

k∈1.BZ
(εk − µ)c†kck

Hhyb =
∑

k∈1.BZ
Vk(d†ck + c†kd)

H = Himp +Hbath +Hhyb

(2.19)

We now seek an expression for the impurity Green’s function 〈〈d, d†〉〉ω. The explicit
calculation is done in appendix C with the following result:

〈〈d, d†〉〉ω = 1
ω − εd + µ−∑k

V 2
k

ω−εk
− Σimp(ω)

= 1
ω − εd + µ−∆(ω)− Σimp(ω) ,

(2.20)

with the hybridization function ∆(ω) defined as

∆(ω) ≡
∑

k∈1.BZ

V 2
k

ω − εk
. (2.21)

with imaginary part

Γ(ω) = −Im(∆(ω)) = π
∑

k∈1.BZ
V 2
k δ(ω − εk) (2.22)

2.5. General DMFT equations and iterative procedure
With the expressions (2.20) for the Green’s function of the impurity model, 〈〈d, d†〉〉ω,
and (2.18) for the single site Green’s function of the lattice model, 〈〈ci, c†i〉〉ω, we can
now map the lattice model onto an effective quantum impurity model. In order to do
that, we demand that the single site lattice Green’s function equals the impurity Green’s
function and the local on site lattice self-energy Σlatt(ω) equals the self-energy of the
impurity, Σimp(ω).

〈〈d, d†〉〉ω
!= 〈〈ci, c†i〉〉ω (2.23)

Σimp(ω) != Σlatt(ω) ≡ Σ(ω) (2.24)
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2. Dynamical mean field theory (DMFT)

With those two equations and εd in equation (2.20) given by the model we consider, the
form of ∆(ω) in equation (2.20) is determined uniquely.

∆(ω) = ω − εd + µ− Σimp(ω)− 〈〈d, d†〉〉−1
ω

(2.23)=
(2.24)

ω − εd + µ− Σ(ω)− 〈〈ci, c†i〉〉
−1
ω

(2.25)

Equation (2.25) is the self consistency equation of DMFT. We start by calculating the
non-interacting lattice density of states, ρ0(ε) and taking some arbitrary initial on site
self-energy Σ(ω), i.e. Σ(ω) = 0. With this starting condition an iterative procedure
follows:

1. The on site lattice Green’s function is calculated via equation (2.18)

2. With equation (2.25) the hybridization function for the impurity model is calcu-
lated

3. A new local self-energy is calculated by solving the impurity model. This requires
an efficient and accurate impurity solver. We will use the Numerical Renormaliza-
tion Group for this step.

4. With the new local self-energy we continue with step 1.
This iterative procedure is repeated until the self-energy changes by less than some given
precision ε.

2.6. DMFT on the Bethe lattice
In this work the Bethe lattice in the limit of infinite dimensions will be used for DMFT
calculations. In z dimensions the Bethe lattice is a graph where each lattice site has z
nearest neighbors without containing cycles.
The specific type of the lattice only enters DMFT via the non interacting density of
states in equation (2.18), ρ0(ε). For the Bethe lattice in infinite dimensions, ρ0(ε) has a
semi-elliptic form (see appendix D of [13]):

ρ0(ε) = 2
πD

√√√√1−
(
ε

D

)2

(2.26)

with ε ∈ [−D,D] and half bandwidth D.
The lattice Green’s function is obtained by solving the integral

〈〈ci, c†i〉〉ω =
∫ ∞
−∞

dε
ρ0(ε)
ξ − ε

(2.27)

where ξ = ω − Σlatt(ω) + µ and is thus formally the Hilbert transform of ρ0(ε). When
evaluating this integral for ρ0(ε) given in equation (2.26), we get

〈〈ci, c†i〉〉ω = 2
D2

(
ξ −

√
ξ2 −D2

)
, (2.28)
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2.6. DMFT on the Bethe lattice

yielding an expression for ξ:

ξ = D2

4 〈〈ci, c
†
i〉〉ω + 〈〈ci, c†i〉〉

−1
ω (2.29)

This can now be inserted into the DMFT self-consistency equation (2.25) which results
in an expression for ∆(ω) respectively Γ(ω):

∆(ω) =
(
D

2

)2

〈〈ci, c†i〉〉ω − εd (2.30)

Γ(ω) = π

(
D

2

)2

Ai,i(ω) (2.31)

with the local spectral function Ai,i(ω) = − 1
π
Im(〈〈ci, c†i〉〉ω).
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3. Numerical Renormalization Group
(NRG)

The Numerical Renormalization Group is a non perturbative way to solve quantum
impurity models, where an impurity with a small amount of degrees of freedom couples
to a non-interacting bath with→∞ degrees of freedom. It was first introduced by K.G.
Wilson in [18] to solve the Kondo model. A detailed review of the NRG method and its
applications is given in [3].

3.1. Hamiltonian
The dimension of the impurity Hamiltonian is low enough to be diagonalized exactly.
We choose an arbitrary impurity basis {|i〉} and corresponding annihilation (creation)
operators d(†)

i .
As the bath is non-interacting, the many-particle states are just product states of the
single-particle states and therefore the bath can also be diagonalized exactly with eigen-
states |k, ν〉 and corresponding annihilation (creation) operators c(†)

k,ν and eigenenergies
εk,ν ∈ [D−ν , D+

ν ]. The chemical potential µ must be in [D−ν , D+
ν ] and will be set to 0.

The impurity and bath states couple with hopping amplitudes V ν,i
k so that we get the

following Hamiltonian:

H = Himp +Hhyb +Hbath

= Himp +
∑
ν,i

∑
k∈1.BZ

V ν,i
k

(
d†ick,ν + c†k,νdi

)
+
∑
ν

∑
k∈1.BZ

εk,νc
†
k,νck,ν

(3.1)

ν = (mbath, σ) and i = (mimp, σ) are composite indices of bath/impurity orbital number
mbath/imp ∈ {1, . . . , N bath/imp

c } and spin σ ∈ {↑, ↓}, similar to ν in section 2.2.
Note that for the application of NRG as an impurity solver for DMFT, N imp

c = N bath
c ≡

Nc. Therefore mbath is equivalent to mimp ≡ m and i equivalent to ν. This means
that within DMFT, following section 2.2, V ν,i

k = 0 if ν = (m,σ) 6= (m′, σ′) = i, thus
V ν,i
k ≡ V ν

k as in equation (2.10).

3.2. General Procedure
The Hamiltonian of the impurity model can in general not be solved exactly, as the im-
purity Hamiltonian may contain arbitrary interactions and the bath Hamiltonian adds
→ ∞ degrees of freedom to that. In order to get an approximate solution, the bath
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3. Numerical Renormalization Group (NRG)

is discretized to lower its dimension. For that a logarithmic discretization is used so
that the resolution for low energy excitations is exponentially enhanced. With some
approximations to the bath, but not the hybridization and the impurity, the Hamilto-
nian is then mapped on a semi-infinite chain with exponentially decaying couplings and
diagonalized iteratively. The whole procedure from discretization to the mapping on a
tight-binding-chain is described in more detail in appendix D.

3.3. Discretization of the bath
To discretize the bath, a discretization parameter Λ > 1 is chosen. With Dν =
min{|D−ν |, |D+

ν |}, the energy axis of each band ν in respect to its hybridization with
impurity state i is discretized resulting in energy intervals Iλn,ν,i with λ = ±, n ∈ N and
a shift parameter zν,i ∈ [0, 1):

I+
n,ν,i = (DνΛ−1−zν,i , D+

ν ] I+
n,ν,i = (DνΛ−n−zν,i , DνΛ−n+1−zν,i ]

I−n,ν,i = [D−ν ,−DνΛ−1−zν,i) I−n,ν,i = [−DνΛ−n+1−zν,i ,−DνΛ−n−zν,i)
(3.2)

Figure 3.1.: Logarithmic discretization of band ν, min{|D−ν |, |D+
ν |} = |D−ν | = Dν . The

solid lines correspond to a discretization with z = 0, the dashed ones to
z > 0.

The length of those intervals (apart from the n = 1 ones) is DνΛ−n−zν,i(Λ − 1) ∼ Λ−n
which gives exponentially enhanced resolution near the chemical potential. zν,i allows to
shift the discretization grid points. This so called z-shifting can be used to increase the
precision of the NRG results by averaging over the results of several NRG calculations
with different zν,i. Usually, zν,i ≡ z is chosen the same for each pair (ν, i), but this is
not mandatory which will be exploited within the framework of the interleaved NRG
method, discussed in chapter 4.
In the calculations for this thesis, we perform up to nz = 8 z-shift. For the calculations
with the standard NRG method discussed in this chapter the same shift parameter
zν,i ≡ z is used for all pairs zν,i and shifted uniformly over the interval [0, 1):

z ∈
{

0, 1
nz
,

2
nz
, . . . ,

nz − 1
nz

}
, (3.3)
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3.4. Mapping on semi-infinite tight binding chain

where nz is the number of different shift parameters. Z-shifting within the interleaved
NRG is discussed in section 4.2.

3.4. Mapping on semi-infinite tight binding chain

In the next step, an orthogonal transformation is constructed so that in each interval
exactly one states couples directly to the impurity. All bath states but those that couple
directly to the impurity will be neglected for the further procedure. For the Hamiltonian
we now get

Hstar = Himp +
∑
n,λ

∑
ν,i

ξn,λi,ν (an,λ,νi )†an,λ,νi +
∑
n,λ

∑
ν,i

γν,in,λ
(
d†ia

n,λ,ν
i + h.c.

)
, (3.4)

where ∑n,λ is the sum over the intervals described in the previous section and ∑ν,i is the
sum over all impurity states and all bands. The operators (an,λ,νi )(†) annihilate (create)
the directly coupling bath states with energies ξn,λi,ν and coupling γν,in,λ. These couplings
and energies are obtained from an orthogonal transformation, described in appendix D.
In this thesis a different approach for the calculations of the representative energies ξn,λi,ν
was used. This approach uses a differential equation to calculate the representative
energies, which is obtained by insisting to reproduce the continuous bath density of
states in the limit of an infinite amount of z-shifts. For more details see [20] and [19].
Due to its form, the Hamiltonian of equation (3.4) is ofthen referred to as the star
Hamiltonian:

Hstar = Himp +
∑
ν,i

Hstar
ν,i

Hstar
ν,i =



. . . ... ... ...
ξn,−i,ν

... γν,in,−
...

. . . 0 ... ...
· · · 0 · · · ξ1,−

i,ν γν,i1,− 0 · · · 0 · · ·
· · · γν,in,− · · · γν,i1,− 0 γν,i1,+ · · · γν,in,+ · · ·
· · · 0 · · · 0 γν,i1,+ ξ1,+

i,ν · · · 0 · · ·
0 ... 0 . . .
... γν,in,+

... ξn,+i,ν
... ... ... . . .


The Matrix elements γν,in,λ are scaling like∼ Λ−n2 and ξn,λi,ν like∼ Λ−n due to the decreasing
length of the intervals Iλn ∼ Λ−n with increasing n. Each of the Hstar

ν,i can be brought
into a tridiagonal form via a second orthogonal transformation
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3. Numerical Renormalization Group (NRG)

Hchain
ν,i =



0 tν,i0 0 · · · · · ·
tν,i0 εi,ν0

. . .
0 . . . . . . tν,in
... tν,in εi,νn

. . .
... . . . . . . . . .



Hchain
ν,i = tν,i0 (d†if

ν,i
0 + h.c.) +

∞∑
n=1

tν,in ((f ν,in )†f ν,in−1 + h.c.) +
∞∑
n=0

εν,in (f ν,in )†f ν,in (3.5)

Hchain = Himp +
∑
ν,i

Hchain
ν,i (3.6)

with basis states {|f ν,in 〉}, n ∈ N and corresponding annihilation operators f ν,in . The
hopping amplitudes tν,in usually inherit the ∼ Λ−n2 dependence from the γν,in,λ while the
εν,in usually fall off even faster, like Λ−n as the ξn,λi,ν . Hchain in general represents νmax ·
imax semi infinite tight binding chains with exponentially decaying hopping amplitudes.
These chains are also called Wilson chains. I will call Hchain the full Wilson chain,
Hchain
ν,i a subchain, a site of a subchain a subsite and all subsites of a certain value of n

a supersite.

Figure 3.2.: Graphical illustration of a full Wilson chain with νmax = 2 and imax = 2.
The two rectangles with superscript n = 0 and n = 1 illustrate supersite
0 respectively 1. The circles within the rectangles illustrate the 4 subsites
within each supersite.

It should be clarified here that usually the number of subchains is smaller than νmax·imax,
as normally not every single particle impurity state i hybridizes with every bath electron
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3.5. Iterative Diagonalization

type ν. An example is the use of NRG with DMFT. As already mentioned in section
3.1, only bath electrons and impurity electrons with the same orbital index m and spin
index σ hybridize, yielding only 2 ·Nc subchains rather than 2 ·Nc · 2 ·Nc subchains.

3.5. Iterative Diagonalization
The tight-binding-chain Hamiltonian in equation (3.6) now has a manageable form for
approximative diagonalization which will be done by iteratively adding a supersite and
diagonalizing the Hamiltonian. As the hopping amplitudes tν,in and the on-site energies
εν,in decrease by Λ−n2 with increasing n, the n-th site is a perturbation of the order Λ− 1

2

relative to site n-1. We can terminate the Wilson chain (3.6) at the first site n = L

where our required energy resolution δE ≥ ∑
ν DνΛ−

L
2 . More on the required energy

resolution δE will be in section 3.7. The terminated Wilson chain

HL
ν,i = tν,i0 (d†if

ν,i
1 + h.c.) +

L∑
n=1

tν,in ((f ν,in )†f ν,in+1 + h.c.) +
L∑
n=0

εν,in (f ν,in )†f ν,in (3.7)

HL = Himp +
∑
ν,i

HL
ν,i (3.8)

is now diagonalized iteratively.

Figure 3.3.: Terminated Wilson chain corresponding to the Wilson chain in figure 3.2

When the diagonalization is performed, two problems occur:

1. Numerical matrix diagonalization has an error. As the weight of site n scales as
Λ−n2 the relative accuracy of each site gets worse as we go down the chain up to
the point where the numerical error is larger than the correction of the site.
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3. Numerical Renormalization Group (NRG)

2. The dimension ofHL is far too large to diagonalize it within an appropriate amount
of time and memory. If the number of our Wilson subchains is κ, the local many-
particle-basis of any supersite is 2κ. When we take N sites into account plus the
impurity with dimension dimp, we get:

dim(HN−1) = dimp · (2κ)N = dimp · 2N ·κ (3.9)

In this section we will deal with the exponential N-dependence. The exponential
κ-dependence is the point where the interleaved NRG-method, discussed in section
4, comes in.

The first problem is dealt with an iterative renormalization group procedure. For that
we define the following series of Hamiltonians HN :

HN
ν,i = tν,i0 (d†if

ν,i
1 + h.c.) +

N∑
n=1

tν,in ((f ν,in )†f ν,in−1 + h.c.) +
N∑
n=0

εν,in (f ν,in )†f ν,in (3.10)

HN
ren = ΛN

2

[
Himp +

∑
ν,i

HN
ν,i

]
(3.11)

The Hamiltonian HN
ren contains all sites up to site N and is renormalized by a factor

of ΛN
2 to cancel out the Λ−N2 dependence of the energy scale of site N to ensure equal

relative accuracy for every site. We get from HN
ren to HN+1

ren by rescaling HN
ren with Λ 1

2

and adding supersite N + 1, rescaled by ΛN+1
2 :

HN+1
ren = Λ 1

2HN
ren + Λ

N+1
2
∑
ν,i

[
tν,iN+1((f ν,iN+1)†f ν,iN + h.c.) + εν,iN+1(f ν,iN+1)†f ν,iN+1

]
(3.12)

The original Wilson-chain Hamiltonian of equation (3.6) is retrieved by taking the fol-
lowing limit:

Hchain = lim
N→∞

Λ−N2 HN
ren (3.13)

HL is now diagonalized iteratively by first diagonalizing H0
ren and then iteratively in-

voking equation (3.12) after HN
ren is diagonalized and carrying out the diagonalization

of HN+1
ren until HL

ren is reached. The eigenenergies of HL
ren are then scaled with Λ−L2 to

get the eigenenergies of HL, the eigenstates are of course the same.
When the iterative diagonalization procedure is carried out, the problem occurs that the
dimension of the state space will become too large to handle matrix diagonalizations.
This problem is tackled by a truncation scheme. For that a maximum number of kept
states is defined, Nkeep, so that 2κ ·Nkeep dimensional matrix diagonalizations can still be
managed reasonably. When, at some iteration Ñ , the dimension of HÑ

ren exceeds Nkeep,
the dim(HÑ

ren) − Nkeep states with the largest eigenenergies will be discarded and only
the Nkeep states with the lowest eigenenergies are kept. After that equation (3.12) is
invoked. As only Nkeep states have been kept, HÑ+1

ren is only considered on a 2κ · Nkeep

dimensional space, diagonalized and the (2κ − 1) ·Nkeep states with the largest eigenen-
ergies are again truncated. We will call the whole set of eigenstates acquired from the
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3.5. Iterative Diagonalization

diagonalization at some iteration N {|sN〉}, the states kept from that iteration are called
|sKN 〉 and the discarded ones |sDN〉. Values for Nkeep vary from a few hundred for two Wil-
son subchains (one band DMFT calculation) to 3000-5000 for six subchains (three band
DMFT calculation).
To summarize, we get the following iterative diagonalization procedure, initialized by
the diagonalization of H0

ren:

1. HN
ren is diagonalized. {|sN〉} are the eigenstates obtained from that diagonalization

with corresponding eigenenergies EN
s,ren

2. {|sN〉} is truncated and only the up to Nkeep eigenstates {|sKN 〉} with the lowest
eigenenergies are kept. The rest of the space, {|sDN〉} is discarded.

3. The ground state energy is set to 0. This step is not mandatory.

4. The diagonalized HN
ren is rescaled by Λ 1

2 .

5. {|sKN 〉} is extended by some arbitrary local basis {|σN+1〉} of supersite N+1 to
get the product basis {|sN〉K ⊗ |σN+1〉}. Then the Hamiltonian of supersite N+1,
rescaled by ΛN+1

2 is added to get HN+1
ren , represented in the product basis {|sKN 〉 ⊗

|σN+1〉}. Step 4. and 5. essentially corresponds to equation (3.12).

6. The whole procedure is repeated until supersite L is reached.

Figure 3.4.: iterative diagonalization procedure from N → N + 1:
The numbers indicate the steps within the enumeration above. In the illus-
trated case, Nkeep is 4 and the dimension of the site-specific local basis is 2,
which corresponds to a single Wilson subchain.

As this truncation scheme implies that we have to throw away almost the whole space
HL is acting on and only keep a small subspace, this procedure needs some explanation.
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3. Numerical Renormalization Group (NRG)

First of all, we are interested in a good resolution of the ground state and the first few
excited states, but as the excitation energy Eex from the ground state to an excited
state gets larger, the state gets less important for thermodynamic calculations as it
is exponentially subdued by a factor of exp(− Eex

kBT
). This is one thing the introduced

truncation scheme accomplishes: The lower the excitation energy, the later down the
chain a state is discarded and the more exactly the state is calculated.
A more important question is how this truncation affects the outcome of the kept states.
This a priori not completely clear, but can by justified by a perturbation theoretical
argument. The additional term occurring when going from HN to HN+1 is essentially a
perturbation V of order ∑ν DνΛ−

1
2 ∼ Λ− 1

2 . In first order the correction of a given states
|s̃N〉 we get

|s̃N〉1 =
∑
s,s 6=s̃
|sN〉

〈sN |V |s̃N〉
EN
s̃,ren − EN

s,ren

, (3.14)

which means if |〈sN |V |s̃N〉 | ∼
∑
ν DνΛ−

1
2 << |EN

s̃,ren − EN
s,ren| the correction to the

state |s̃N〉 can be neglected. This implies that we have to set Nkeep sufficiently large
so that the neglected corrections for the ground state are of an acceptable order. The
outcome of the excited states is of course worse the larger their eigenenergies are. An
other important thing to note is that one has to increase Nkeep if one decreases Λ or
otherwise the results might change for the worse.
With previously given arguments it seems more practical to set a certain maximum
energy up to which all states are kept rather than defining a maximum dimension Nkeep.
We will do this by defining a characteristic energy scale for site N ,

ωN = E0Λ−N2 , (3.15)

with E0 so that in the limit N → ∞,
∑

ν,i
tν,iN

ωN
→ 1. The rescaled truncation energy

Etrunc, up to which the states are kept, is then given in terms of E0. Common values
for Etrunc vary from about 9 · E0 for one band calculations to 7.5 · E0 for three band
calculations. Of course the number of states kept at each iteration varies when working
with a fixed Etrunc rather than a fixed Nkeep.
It is not clear how well the NRG results are for a given Etrunc or Nkeep, but there exists a
quantitative criterion called discarded weight that determines the quality of the result.
Acceptable values for this quantity are < 10−5. For more information on discarded
weight see [15] and [11].

3.6. Matrix product states and symmetries
In this section I want to show that the states obtained by the NRG-procedure can be
written as so called matrix product states (MPS). A comprehensive introduction to MPS
can be found in [10].
When we perform one step of the iterative diagonalization procedure from N → N + 1,
we express the eigenstates |sN+1〉 of HN+1 as linear combinations of the product basis
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3.6. Matrix product states and symmetries

{|sKN 〉 ⊗ |σN+1〉}. With scalar coefficients AσN+1,sKN ,sN+1 = A
σN+1
sKN ,sN+1

, we get the following
expression:

|sN+1〉 =
∑

σN+1,sKN

AσN+1,sKN ,sN+1 |s
K
N 〉 ⊗ |σN+1〉

=
∑

σN+1,sKN

A
σN+1
sKN ,sN+1

|sKN 〉 ⊗ |σN+1〉
(3.16)

The coefficients AσN+1
sKN ,sN+1

can be interpreted as matrix elements of matrices AσN+1 , one
for each local basis state |σN+1〉. As we usually have to discard some of the states
as discussed in section 3.5, the space spanned by {|sN+1〉} splits into a kept subspace
spanned by {|sKN+1〉} with coefficients AσN+1

sKN ,s
K
N+1

and a discarded one spanned by {|sDN+1〉}
with coefficients AσN+1

sKN ,s
D
N+1

. If we order the columns of AσN+1 in a way that the first Nkeep

columns are corresponding to AσN+1
sKN ,s

K
N+1

and the rest to AσN+1
sKN ,s

D
N+1

, the matrix can be split
into a matrix AσN+1

K with elements AσN+1
sKN ,s

K
N+1

and a second matrix AσN+1
D with elements

A
σN+1
sKN ,s

D
N+1

. For the kept and discarded states we then get:

|sKN+1〉 =
∑

σN+1,sKN

A
σN+1
sKN ,s

K
N+1
|sKN 〉 ⊗ |σN+1〉

=
∑

σN+1,sKN

(AσN+1
K )sKN ,sKN+1

|sKN 〉 ⊗ |σN+1〉
(3.17)

|sDN+1〉 =
∑

σN+1,sKN

A
σN+1
sKN ,s

D
N+1
|sKN 〉 ⊗ |σN+1〉

=
∑

σN+1,sKN

(AσN+1
D )sKN ,sDN+1

|sKN 〉 ⊗ |σN+1〉
(3.18)

If we express the |sKN 〉 states as linear combinations of{|sKN−1〉 ⊗ |σN〉} and so on, we
can express |sN+1〉 in the product basis {|σimp〉⊗ |σ0〉⊗ · · · ⊗ |σN+1〉} of the site-specific
basis:

|sXN+1〉 =
∑

σN+1...σ0
σimp

∑
sK0 ...s

K
N

Aσ0
σimp,sK0

· · ·AσN+1
sKN ,s

X
N+1
|σimp〉 ⊗ |σ0〉 ⊗ · · · ⊗ |σN+1〉

=
∑

σN+1...σ0
σimp

(Aσ0
K · · ·A

σN
K A

σN+1
X )σimp,sXN+1

|σimp〉 ⊗ · · · ⊗ |σN+1〉
(3.19)

In this equation X is a placeholder for either K or D. The advantage of the MPS-
formalism is that the matrices contain all the site-specific information about |sN+1〉X
and are an elegant way to keep track of all the kept and discarded states.
According to [16], MPS are also quite suitable for the implementation of abelian and
especially non-abelian symmetries. The QSpace formulation described in [16] has been
implemented by A. Weichselbaum and was used for the NRG calculations performed for
this thesis.
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3.7. Approximate complete eigenbasis and full density
matrix

As stated in [17] it is possible within NRG to calculate a full, approximate eigenbasis of
the Hamiltonian HL from all the discarded states and the states obtained from the last
diagonalization at site L. For that we define states

|eN〉 =
L⊗

n=N+1
|σn〉 (3.20)

from the local basis states |σn〉 of sites n. We now take the discarded states from site N
and extend them with the |eN〉,

|seDN〉 = |sDN〉 ⊗ |eN〉 (3.21)

, so that their dimension is the same as that of HL. We also count all states obtained
from the diagonalization of site L as discarded.
By construction, the states |seDN〉 are orthonormal, which follows from the orthonormality
of the states |sXN〉 obtained from diagonalizing site N and the orthonormality of the |eN〉.
The states {|seDN〉} also form a complete basis of the space HL is acting on. This can
be seen by simply counting the amount of states |seDN〉 we get.
These states are also approximate eigenstates of HL,

HL |seDN〉 ' EN
s |seDN〉 , (3.22)

with non-rescaled eigenenergies EN
s obtained from the diagonalization at site N for state

|sDN〉 and are (2κ)(L−N)-fold degenerate, with κ being the number of Wilson chains as in
section 3.5. With an approximate eigenbasis and corresponding eigenenergies, the full
density matrix (FDM) can be constructed:

ρ '
∑
{|seDN 〉}

|seDN〉
e−βE

N
s

Z
〈seDN | =

∑
N

wNρ
N
DD (3.23)

with normalization Z so that Tr(ρ) = 1 and β = 1
kBT

. ρNDD is the density matrix of the
discarded states of site N ,

ρNDD =
∑
{|sDN 〉}
N=const

|sDN〉
e−βE

N
s

ZN
〈sDN | , (3.24)

where ZN = Tr(ρNDD)|sND〉. The weights wN = (2κ)L−NZN
Z

select the shells relevant thermo-
dynamic calculations. They peaked at about the Wilson chain site with characteristic
energy . kBT with a width of about 5 to 10 shells, effectively terminating the Wilson
chain when wN becomes small enough.
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3.8. Calculation of spectral functions
The complete basis obtained in the previous section can also be used to calculate spectral
functions. For that we insert our approximate basis with the corresponding eigenenergies
into the Lehman representation,

AB,C(ω) =
∑
n,m

〈n|C |m〉 e
−βEm

Z
〈m|B |n〉 δ(ω − (En − Em)) , (3.25)

with Z the norm of the density matrix, Z = ∑
m e
−βEm . We then get a sequence of

δ-peaks,
Araw(ω) =

∑
j

ajδ(ω − ωj) , (3.26)

which have to be broadened to get a continuous spectral function. The broadening is
done with a broadening kernel K(ω, ω′),

A(ω) =
∫
dω′K(ω, ω′)Araw(ω), (3.27)

with a log-Gaussian broadening kernel

K(ω, ω′) = Θ(ω, ω′)√
πσ|ω|

e
−

(
log(|ω/ω′|)

σ
−σ4

)2

(3.28)

which is transitioned to a regular Gaussian below ω0. In this thesis ω0 will be set to
10 · T , with temperature T . The broadening parameter σ is dependent on the amount
of z-shifts performed and on Λ. More on the calculation and broadening of spectral
functions can be read in [13], p. 34-35, and with a lot of details in [17].
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4. Interleaved Numerical
Renormalization Group

The interleaved Numerical Renormalization Group (iNRG) method is a slightly altered
form of the standard NRG (sNRG) method discussed in section 3. It approaches the
problem that the dimension of the Hamiltonian is scaling exponentially with the number
of Wilson subchains κ, shown in equation (3.9).

4.1. Basic concept
The basic concept of iNRG is to use the shift parameters zν,i to generate an energy scale
separation between subsites of the Wilson chain supersites, allowing truncation between
those subsites rather than only whole supersites. This effectively lowers the dimension
of the local basis, leading to faster matrix diagonalizations.
We start with the couplings tν,in introduced in equation (3.6). According to [8] and [11],
these couplings decay exponentially with n and zν,i as follows:

tν,in ∼ DνΛ−zν,i−
n
2 , (4.1)

with Dν , Λ, n and zν,i as defined in section 3.3. This scaling is now used to create an
energy scale separation between subsites (ν̃, ĩ) and (ν, i) within the same supersite n,

tν̃ ,̃in
tν,in
∼ Dν̃

Dν

Λ−zν̃,̃i+zν,i (4.2)

As noted in [8], a natural energy scale separation occurs for different band widths Dν

without using different shift parameters zν,i. For the following discussion Dν̃ = Dν will
be assumed and energy scale separation will be generated solely via the zν,i. We assume
that we want to divide each supersite into MiNRG smaller sites, called iNRG sites, and
enumerate those smaller sites with an index α ∈ {1, . . . ,MiNRG}. For each of those
iNRG sites we use a different shift parameter zα so that

tν,in,α+1

tν̃ ,̃in,α
∼ Λzα+1−zα ≡ Λ̃− 1

2

tν,in,α+MiNRG

tν̃ ,̃in,α
=
tν,in+1,α

tν̃ ,̃in,α
∼ Λ− 1

2 ,

(4.3)

where the index α labels to which iNRG site t3,in ≡ t3,in,α belongs. This implies that
zα+1 − zα = 1

2MiNRG
and Λ̃ = Λ

1
MiNRG , leading to a Wilson chain MiNRG times longer
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Figure 4.1.: Discretization grid for iNRG corresponding to the grid shown in figure 3.1
without z-shift. The green lines are the grid points for α = 1 (zα=1 = 0),
the orange lines for α = MiNRG = 2 (zα=2 = 1

4).

Figure 4.2.: Interleaved Wilson chain with MiNRG = 2, corresponding to the Wilson
chain in figure 3.2. The related discretization grid is shown in figure 4.1.
Associated colors show which grid points have been used for which sites.
The number of subsites does not have to be the same for all α-indexed
iNRG sites, i.e. one green α = 1 subsite and three α = 2 subsites would
also be possible.

but with MiNRG-th nearest neighbor hopping instead of nearest neighbor hopping and
a reduced local basis, allowing faster matrix diagonalization.
As matrix diagonalizations scale with . dim3, depending on the symmetries that can
be exploited, and the dimension scales exponentially with the amount of subsites, this
procedure takes less computational resources. We will now estimate how many more
operations sNRG takes compared to iNRG. For that we will assume that the matrix
diagonalization scales with dim3 and all iNRG sites contain the same amount of subsites.
The matrix dimension for sNRG is then

dsNRG = Nkeep · 2κ (4.4)

while for iNRG it is
diNRG = Nkeep · 2κ/MiNRG . (4.5)

As we haveMiNRG more diagonalizations when using iNRG we get for the ratio of needed
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operations with iNRG, N iNRG
op and those needed for sNRG, N sNRG

op :

N sNRG
op

N iNRG
op

∼ Nkeep · 23κ

MiNRG ·Nkeep · 23κ/MiNRG
= 1
MiNRG

23κ·MiNRG−1
MiNRG , (4.6)

scaling exponentially with κ.
For truncation we use the same energy based scheme as for sNRG (see section 3.5 and
[11]). It should be noted here that the truncation energy for iNRG, EiNRG

trunc is a little
larger than the corresponding energy for sNRG, EsNRG

trunc , to keep the same amount of
states on average:

EiNRG
trunc = EsNRG

trunc Λ
MiNRG−1
4·MiNRG (4.7)

More details on this can be found in [11].

4.2. z-averaging within iNRG
When z-shifting in iNRG calculations we split the total shift parameter zν,i = zα + z
into the part that generates the energy scale separation between iNRG sites, zα, and the
parameter z that shifts the discretization points. As in section 3.3 we use the same z
for all pairs (ν, i) and shift it uniformly over the interval [0, 1) (see (3.3) in section 3.3):

z ∈
{

0, 1
nz
,

2
nz
, . . . ,

nz − 1
nz

}
, (4.8)

where nz is the number of z-shifts performed.

Figure 4.3.: Discretization grids for iNRG with nz = 2, corresponding to the grid in
figure 4.1. The solid lines are associated with z = 0, the dashed lines with
z = 1

2 . Colors are chosen to match those in figure 4.1 and 4.2.

For large nz, zν,i may become > 1, for example for nz > 3 and MiNRG = 2, yielding
very large first intervals and thus a very bad resolution at the band edges. A second
problem is that for some values of z, the discretization points of some iNRG sites are
shifted on those of other iNRG sites for a different z̃ 6= z, essentially replicating the
discretization with shift parameter z̃ with just larger first intervals. This happens for
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4. Interleaved Numerical Renormalization Group

Figure 4.4.: Discretization grids for iNRG with MiNRG = 2 and nz = 8. The solid lines
are grid points for z = 0, the dashed lines for z = 6

8 . The red arrows mark
where the dashed orange grid (z = 6

8 , zα=2 = 1
4) is shifted onto the solid

green grid (z = 0, zα=1 = 0). It essentially replicates the solid green grid
apart from the n = 1 grid points, giving it a bad resolution on the band
edges. Colors are chosen as in figures 4.1 - 4.3.

example for m = 2 and nz = 8, where the discretization of the zα = 0 iNRG sites and
the zα = 1

4 sites are shifted 7 times on each other. In section 7.2 the consequences of
that are examined.
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5. Using NRG as an impurity solver for
DMFT

In this section the complications that arise when combining using (i)NRG as an impurity
solver for DMFT will be discussed.

5.1. Self energy trick
The definition of the self energy,

〈〈[d,H int]−, d†〉〉ω = Σ(ω) 〈〈d, d†〉〉ω (5.1)

with H int the interaction part of the Hamiltonian, d(†) the (creation) annihilation op-
erators for particles in a certain state and Σ(ω) the self-energy corresponding to that
state implies a simple way to calculate the self-energy if arbitrary Green’s functions can
be calculated:

Σ(ω) = 〈〈[d,H
int]−, d†〉〉ω

〈〈d, d†〉〉ω
(5.2)

Within NRG it is possible to calculate spectral functions which are, up to a factor of
− 1
π
, the imaginary parts of the corresponding Green’s function. The real part of the

Green’s functions is then calculated via Kramers-Kronig relations and the whole complex
Green’s functions are then inserted into equation (5.2).
A second way to calculate the self-energy is to use the Dyson equation,

Σ(ω) =
(
〈〈d, d†〉〉0ω

)−1
−
(
〈〈d, d†〉〉ω

)−1
(5.3)

with 〈〈d, d†〉〉0ω the non-interacting Green’s function, which can be calculated exactly.
The reason the self-energy trick (equation (5.2)) is preferred over the Dyson equation
is that in (5.2), the self-energy is expressed as a ratio of two quantities calculated with
the same numerical concepts, thus avoiding systematic errors. Especially in DMFT it is
crucial to avoid such systematic errors as the outcome of one iteration is the input for the
next iteration and therefore the errors might increase during the DMFT self consistency
procedure.

5.2. Logarithmic discretization within DMFT
When using NRG as an impurity solver for DMFT, the form and energy support of
the hybridization function changes from one iteration to the next. This means that the
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5. Using NRG as an impurity solver for DMFT

band edges D+/−
ν have to be adjusted to match the input hybridization. The problem

with this is, as stated in [13] in section 4.2.1, that if γn �
√
ξn a peak arises in the

hopping matrix elements at a later site ñ, preventing truncation due to missing energy
scale separation at this site. In the calculations for this thesis we use a rather heuristic
method to get around this problem. We calculate the total weight of the hybridization
on each side of the chemical potential by integrating over it from −∞ to 0 respectively
0 to ∞. We then define ω+/− in the following way:∫±∞

ω+/−
dωΓ(ω)∫±∞

0 dωΓ(ω)
= F+/− (5.4)

With two arbitrary numbers 0 < F+/− < 1. The interval borders for the discretization
are then set to |D+/−| = max{|ω+/−|, D} with the half band width of the non-interacting
density of states D (see equation 2.26). In our calculations we chose F+ = F− = 1

5 .
Another issue arises due to the ω dependence of the hybridization. If the hybridization
varies a lot in energy regions far away from the chemical potential where the resolution
of the logarithmic discretization grid is not that good, the γn do not fall off perfectly
like ∼ Λ−n2 for small n. Therefore the tn also do not fall off like ∼ Λ−n2 for the first
Wilson chain sites. For some values of n, tn < tn+1 can be observed, casting doubt on
truncation between those sites. Nevertheless the overall Λ−n2 dependence is adhered to
and truncation is performed between all supersites for sNRG respectively all iNRG sites
in iNRG calculations.
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10-6

10-5

10-4

10-3

10-2

10-1

100

γ
n

Nc = 2, U = 0.90, J = 1.80, εd = −1.35

iNRG
sNRG

10-6

10-5

10-4

10-3

10-2

10-1

100

1 5 10 15 20 25 30 35 40

subsite index n

t n

0

0.1

0.2

0.3

−5 0 5

Nc = 2, U = 0.45, J = 0.90, εd = −0.67

1 5 10 15 20 25 30 35 40

subsite index n

0

0.1

0.2

0.3

−5 0 5

Figure 5.1.: γn and tn for two different input hybridizations. The hybridization shown on
the left hand side has a lot of weight far away from the chemical potential at
0. γn therefore shows no perfect ∼ Λ− z+n

2 -dependence and tn does not fall off
perfectly like ∼ Λ−z−n2 for up to about supersite 15. The hybridization on
the right hand side on the other hand shows a lot of weight near the chemical
potential, producing γn that fall off like ∼ Λ− z+n

2 almost immediately and
therefore also the tn perfectly fall off like ∼ Λ−z−n2 after only 3 supersites.
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6. Anderson-Hund model (AHM)
In this work I will use the Anderson-Hund model. This tight binding model, as defined
in [12], exhibits on site Coulomb repulsion and Hund’s rule coupling:

H =
Nc∑
ν=1

∑
σ,i

(εd,ν − µ)nν,σ,i +
∑
i

H int
i +

Nc∑
ν=1

∑
σ

∑
〈i,j〉

tνd
†
ν,σ,idν,σ,j (6.1)

H int
i = 3

4JNi + 1
2

(
U − 1

2J
)
Ni(Ni − 1)− JS2

i (6.2)

In this Hamiltonian, d†ν,σ,i creates electrons with spin σ ∈ {↑, ↓} in orbital (or channel)
ν ∈ {1, . . . Nc} on site i. nν,σ,i = d†ν,σ,idν,σ,i is the corresponding number operator, εd,ν
the on site binding energy of orbital ν and µ the chemical potential, which will be set to
zero. The last term describes the nearest neighbor hopping with orbital specific hopping
amplitude tν and ∑〈i,j〉 the sum over all (ordered) pairs of nearest neighbors.
H int
i describes the on site electron-electron interaction of site i with total number oper-

ator
Ni =

Nc∑
ν=1

∑
σ

nν,σ,i (6.3)

and total spin operator

Si = (Sxi , S
y
i , S

z
i )

Sαi =
Nc∑
ν=1

∑
σ,σ′

d†ν,σ,i
1
2σ

α
σ,σ′dν,σ′,i

(6.4)

where σα are Pauli matrices.
U > 0 accounts for the Coulomb repulsion, penalizing multi occupancy while the term
−JS2

i with ferromagnetic coupling J > 0 accounts for Hunds second rule, favoring a
large total spin per site.
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7. One band Anderson Hund Model
First we will have a look on the quality of iNRG as an impurity solver for DMFT by
solving the one band Anderson Hund Model (Eq. (6.1)), where corresponding sNRG
calculations will be our reference. We will start with comparing two spectral functions
without z-shifts, then turn to the performance of z-averaging and last but not least we
will examine the one band Mott insulator transition. Comparisons will be based on the
local spectral function A(ω), but Wilson chain couplings and computational efficiency
will also be examined.
All models considered in this chapter will exhibit SU(2)-spin symmetry (εd,↑ = εd,↓).
When using iNRG we will interleave the spins (MiNRG = 2) and therefore artificially
break the SU(2)-spin symmetry which should be treated with caution as symmetry
breaking may lead to different fixed points. In iNRG calculations we will average over
the results obtained for different spins in every DMFT iteration to use it as input for
the next iteration.
The calculations presented in the following sections have all been performed on the
Bethe lattice (see Sec. 2.6) and all energies are given in terms of the half-band width D
of the non interacting density of states (see Eq. (2.26)). We define the energetic zero
point via the chemical potential µ = 0 and ~ and kB are both set to 1. All spectral
functions shown are calculated via Eq. (2.28) with the self energy obtained from the
self-energy trick discussed in Sec. 5.1, Eq. (5.2). Spectral functions obtained directly
from the FDM-NRG approach (see Sec. 3.8) are not shown. As a criteria for DMFT
convergence we demand a maximum change of less than 5 ·10−4 in the spectral functions
compared to the preceding DMFT iteration. After convergence is reached, three more
iterations to truly ensure convergence are performed. The DMFT procedure is initiated
with a flat hybridization in the interval ω ∈ [−D,D] such that the result after the first
DMFT iteration is metallic.

7.1. Basic results without z-shifting
Our first two calculations, shown in Fig. 7.1 and Fig. 7.3, exhibit moderate on site
interactions (U = 3, J = 1), yielding metallic results and no z-averaging (nz = 1) was
applied.
For the results shown in Fig. 7.1 we choose a site specific filling nd = ∑

σ 〈d†i,σdi,σ〉
!=

0.6, with creation operators d†i,σ for electrons with spin σ on an arbitrary site i, and
determine the corresponding binding energy εd via linear interpolation between DMFT
iterations. Both iNRG and sNRG spectral functions shown in Fig. 7.1 are the final
results from a converged DMFT procedure. Both iNRG and sNRG calculations took 6
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7. One band Anderson Hund Model

DMFT iterations to reach convergence. As our considered filling is below half-filling we
expect A(ω) 6= A(−ω) with most of its weight in the ω > 0 regime, which is the case
as can be seen in Fig. 7.1. On a scale of A(ω) no difference between spectral functions
from iNRG and sNRG calculations can be seen (left panel of Fig. 7.1, linear scale for
ω), even at small frequencies, as can be seen in the right panel (logarithmic scale for ω)
of Fig. 7.1. Only when A(ω) is enhanced (inset in the right panel of Fig. 7.1) relative
deviations between sNRG and iNRG of order 0.01% can be seen at about ω ' 0.2. The
couplings leading to the converged DMFT results shown in Fig. 7.1 can be found in
Fig. 7.2. Apart from the first three supersites (orange circles) they show the expected
logarithmic decay due to their construction. In Fig. 7.2 can be seen that for iNRG sites
(blue dots) 3 and 5 the Wilson chain couplings notably increase compared to sites 2 and
4, respectively, preventing truncation for these sites.
In Fig. 7.3 we show results where half-filling (nd = 1) or in other terms particle-hole-
symmetry was chosen. The binding energy εd is again adjusted by linear interpolation to
reach the predetermined site-specific filling. Here it takes 8 DMFT iterations for iNRG
and 9 DMFT iterations for sNRG calculations to reach convergence. As now half-filling
is considered we expect A(ω) = A(−ω) for our local spectral functions. This is the case
as can be seen in the right panel of Fig. 7.3 where a logarithmic scale for ω is used. On
a scale of A(ω) barely any difference between spectral functions obtained from iNRG
and sNRG, respectively, can be seen, even close to ω ' 0. When zoomed in at the
quasi-particle peak at ω = 0 (upper inset in the right panel of Fig. 7.3), one can observe
that the iNRG spectral functions seem cut off at the top. This originates from setting
positive values of the imaginary part of the retarded self-energy to 0 to ensure causality.
In the lower inset in the right panel of figure Fig. 7.3 the largest difference between
the spectral functions obtained from iNRG and sNRG is shown in an enhanced plot.
The relative difference here is about 1.5%. The corresponding couplings leading to the
converged DMFT results in Fig. 7.3 can be found in Fig. 7.4. Overall they show the
expected logarithmic behavior due to their construction after about 3 supersites (orange
circles). At iNRG sites (blue dots) 3, 5 and 9 we again see a considerable increase of
the iNRG Wilson chain couplings compared to preceding sites which prevent truncation
for these sites. Due to particle hole symmetry the Wilson site energies are zero and
therefore not shown.
All in all the DMFT + iNRG results shown in Fig. 7.1 and Fig. 7.3 seem very promising
due to their good match with corresponding DMFT + sNRG calculations. However, one
DMFT iteration with sNRG took ∼ 133 seconds on average while it took ∼ 212 seconds
on average for iNRG, showing that iNRG is actually computationally less efficient than
sNRG in the one band case, which is rather surprising and is due to a slightly less
efficient implementation.
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7.1. Basic results without z-shifting
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Figure 7.1.: Comparison of spectral functions for iNRG with interleaved spins (MiNRG =
2) and sNRG for the last, converged DMFT iteration (iteration 11). The
site-specific filling is chosen below half-filling (nd = 0.6), the binding energy
εd is adjusted accordingly during DMFT iterations. In this figure one can
observe a perfect correspondence between sNRG and iNRG spectral func-
tions. In the left panel a linear scale for ω has been used, as opposed to a
logarithmic scale in the right panel. Small differences (maximum relative
error of 5 · 10−4) between iNRG and sNRG spectral functions are shown in
the enhanced inset, where also spin-resolved iNRG spectral functions are
shown. The couplings leading to the shown spectral functions can be found
in figure Fig. 7.2. Parameters: T = 10−8, Λ = 2, Etrunc = 8, Nmax

keep = 2500,
δρiNRG

disc = 2.87 · 10−8, δρsNRG
disc = 3.25 · 10−9
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Figure 7.2.: Couplings leading to the converged results in figure 7.1. In the upper panel
the Wilson chain couplings are shown, with the Wilson site energies shown
in its inset. It can be observed that every second iNRG coupling (blue dots)
coincides with the corresponding sNRG coupling (orange circles) due to their
construction. At the first few sites a non-decaying behavior can be observed
which implies that considerably large truncation energies have to be used
there. The Wilson site energies εn fall off much faster than the couplings tn
and do therefore not set the bar for the energy scale of a specific site. In
the lower panel the couplings for the star Hamiltonian can be seen. They
fall off as expected due to their construction. The couplings for ω > 0 (γ+

n )
are larger than those for ω < 0 (γ−n ) due to A(ω) 6= A(−ω).
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Figure 7.3.: Comparison of spectral functions for iNRG with interleaved spins (MiNRG =
2) and sNRG for the last, converged DMFT iteration (iteration 11 for iNRG
and 12 for sNRG). The site-specific filling is chosen at half-filling (nd = 1),
the binding energy εd is adjusted accordingly during DMFT iterations. In
this figure one can observe a perfect correspondence between sNRG and
iNRG spectral functions. In the left panel a linear scale for ω has been used,
as opposed to a logarithmic scale in the right panel. Small differences (max-
imum relative error of 5 · 10−4) between iNRG and sNRG spectral functions
are shown in the enhanced insets, where also spin-resolved iNRG spectral
functions are shown. The flattened tip of the iNRG spectral functions shown
in the upper inset is a result of setting positive values of the imaginary part
of the retarded self-energy to 0. The couplings leading to the shown spectral
functions can be found in figure Fig. 7.4. Parameters: T = 10−8, Λ = 2,
Etrunc = 8, Nmax

keep = 2500, δρiNRG
disc = 3.75 · 10−8, δρsNRG

disc = 4.63 · 10−9
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Figure 7.4.: Couplings leading to the converged results in figure 7.3. In the upper
panel the Wilson chain couplings are shown. It can be observed that every
second iNRG coupling (blue dots) coincides with the corresponding sNRG
coupling (orange circles) due to their construction. At the first few sites
a non-decaying behavior can be observed which implies that considerably
large truncation energies have to be used there. The Wilson site energies
εn are equal to 0 due to the SU(2)-charge-symmetry. In the lower panel the
couplings for the star Hamiltonian can be seen. They fall off as expected
due to their construction, despite a small bump at supersite (red circles)
3 which is caused by the frequency dependence of the input hybridization.
Because of the particle-hole symmetry of our considered model γ+

n = γ−n .
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7.2. Z-averaging for the one band model

7.2. Z-averaging for the one band model
We now use z-averaging paired with an appropriate reduction in the broadening param-
eter σ for the calculations with U = 3 and J = 1 in Sec. 7.1. For the calculations shown
in this sections nz = 3 with σ = 0.63 and nz = 8 with σ = 0.2 was used to compare
them with the results for nz = 1 with σ = 0.8 from Sec. 7.1.
The outcome of these calculations is shown in Fig. 7.5 for half-filling (nd = 1) and for
less than half-filling (nd = 0.6) in Fig. 7.6. In both cases the number of z-shifts nz did
not affect the number of DMFT iterations needed. Due to the decrease in σ considerably
more structure can be observed for larger amounts of z-shifts.
The results shown in Fig. 7.5 correspond to those shown in Fig. 7.3 with half filling
(nd = 1), despite σ and nz the same parameters were used and the same amount of
DMFT iterations were needed. As we decrease σ while increasing nz, the maximums
at |ω| ' 3 become much more distinctive, more structure in the spectral functions can
be observed. For nz = 3 with σ = 0.63 iNRG and sNRG spectral functions match best
and even in the enlarged inset in the right panel of Fig. 7.5 no differences can be seen.
However, for nz = 8 and σ = 0.2 differences between iNRG and sNRG can even be
observed at the scale of A(ω) at |ω| ' 3 (relative difference of about 4%), which will be
examined in this section in more detail.
Fig. 7.6 shows the results corresponding to the calculations in Fig. 7.1 with a site-specific
filling below half-filling (nd = 0.6). When decreasing σ while increasing nz a small bump
at ω ' 5.5 becomes visible at nz = 8, which cannot be seen at all in the nz = 1 calcula-
tions but already shows up slightly in the nz = 3 calculations. For the results in Fig. 7.6
no differences on the scale of A(ω) can be seen between iNRG and sNRG calculations.
For the nz = 3 results differences between iNRG and sNRG are not even visible in the
enlarged plots (see insets in Fig. 7.6), while for nz = 8 differences at ω ' 0.2 are visible
with a maximum relative deviation of ∼ 0.01%, which is about the same as that found
for nz = 1 (also ∼ 0.01%, see Sec. 7.1). For nz = 8 wiggles are visible for iNRG results
in the enhanced insets, which indicates that the used broadening parameter σ is not
chosen large enough.
As we found for the results in Fig. 7.6 and Fig. 7.5 that the nz = 8 results for iNRG
show wiggles (Fig. 7.6) and considerably large differences to sNRG results (Fig. 7.5), we
now want to examine this counterintuitive behavior more closely. To do that we show
an enlarged version of the right inset in Fig. 7.6, that is shown in Fig. 7.7. As opposed
to the right inset in Fig. 7.6, we do not plot the nz = 1 results in Fig. 7.7 and the
nz = 3 results are broadened with the same broadening parameter as the nz = 8 results
(σ = 0.2) to compare the accuracy of nz = 3 and nz = 8 results. Note that only the
averaged spectral functions are plotted for iNRG. In Fig. 7.7 it can clearly be seen that
the nz = 8 results for iNRG show the largest wiggles, even larger than the nz = 3 results
for both iNRG and sNRG. This can be explained with the discussion in Sec. 4.2, where
we have found that the iNRG grids for nz = 8 and MiNRG = 2 essentially replicate each
other 7 times with just enlarged outer intervals. The nz = 3 results however show the
same accuracy for both iNRG and sNRG, here the grids are not shifted on top of each
other for iNRG.
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All in all iNRG yields good results even with z-averaging when compared to correspond-
ing sNRG calculations. However, as seen especially in Fig. 7.7 the iNRG results become
worse of too many z-shifts are performed due to grids for different z-parameters repli-
cating each other with enlarged outer intervals. With the results shown in this section
z-averaging seems reasonable up to around nz ' 3.
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Figure 7.5.: Comparison of iNRG and sNRG for different nz, corresponding to the spec-
tral functions shown in figure 7.3. In the left panel a linear scale for ω was
used, the right panel uses a logarithmic scale for ω. The increase in resolu-
tion of the spectral functions with increasing nz can be clearly seen. sNRG
and iNRG match best at nz = 3, for nz = 8 quite large differences (maxi-
mum relative difference of ∼ 4%) can be observed at |ω| ' 2.5. In the inset
of the right panel an enlarged plot of the spectral functions for 0.5 < ω < 4
on a linear scale can be seen with flavor-resolved results for iNRG. General
parameters: T = 10−8, Λ = 2, Etrunc = 8, Nmax

keep = 2500, δρsNRG
disc ' 5 · 10−9,

δρiNRG
disc ' 4 · 10−8
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Figure 7.6.: Comparison of iNRG and sNRG for different nz, corresponding to the spec-
tral functions shown in figure 7.1. For the left panel a linear scale for ω has
been used, while for the right panel the ω-scale is logarithmic. The resolu-
tion of A(ω) increases clearly with nz and the best correspondence between
iNRG and sNRG can be observed at nz = 3. Unlike in Fig. 7.5, there is no
differences on the scale of A(ω) can be observed between iNRG and sNRG
at nz = 8, but in the nz = 8 iNRG spectral functions wiggles can clearly be
seen. To examine those wiggles further an enhanced plot on a logarithmic
scale can be found in figure 7.7. Parameters: T = 10−8, Λ = 2, Etrunc = 8,
Nmax

keep = 2500, δρsNRG
disc ' 6 · 10−9, δρiNRG

disc ' 6 · 10−8
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Figure 7.7.: Enhanced plot of the spectral functions for nz = 3 and nz = 8 shown in
Fig. 7.6 on a logarithmic scale for ω between 10−4 < |ω| < 1. Note that,
as opposed to the results shown in Fig. 7.6, the nz = 3 spectral functions
are broadened with the same broadening parameter (σ = 0.2) as the nz = 8
spectral functions to compare their accuracy. Also, only the flavor-averaged
spectral functions are shown for iNRG. It can clearly bee observed that the
largest wiggles occur for the nz = 8 iNRG spectral function. This indicates
that both iNRG and sNRG yield more accurate results with nz = 3 than
iNRG with nz = 8 does. For nz = 8, the discretization grids for different
flavors and shift parameters z are shifted on top of each other, effectively
replicating each other with enlarged outer intervals, which happens 7 times
for nz = 8. For a more detailed explanation of that see the text written for
this section and especially Sec. 4.2.
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7.3. One-band Mott insulator transition (MIT)
Last but not least we test the quality of DMFT + iNRG by means of the one-band Mott
insulator transition (MIT) and compare the obtained results to corresponding sNRG
calculations. As the MIT only occurs at integer filling, we choose εd = −3

4J , U = J
2 with

an arbitrary Hund’s coupling J , which leads to half-filling (nd = 1). It should be noted
here that the only remaining on-site interaction for the AHM (see Eq. (6)) with the
parameters chosen here is H int = −JS2, which puts the artificial SU(2)-spin symmetry
breaking in iNRG into question. We initialize the iterative DMFT procedure with a
metallic input hybridization. Four different DMFT + NRG calculations were performed
with J varying from J = 1 to J = 5.5. Based on our observations in Sec. 7.2, we choose
nz = 3 z-shifts.
The results for the one-band MIT can be found in Fig. 7.8. First of all, in the metallic
phase (J = 1 − 4), we observe a perfect correspondence between iNRG and sNRG
with no deviations visible. However, in the insulating phase (J = 5.5), the average
spectral function obtained from iNRG matches the sNRG one very bad, with only the
same general tendency. The flavor-resolved spectral functions for iNRG in the insulating
phase do not match at all.
As the on site interaction is only dependent on the total spin S2, putting artificial SU(2)-
spin symmetry breaking into question, we test the MIT also for the AHM with J = 0,
εd = −U

2 and arbitrary U , which also leads to half filling (nd = 1). With U=̂1.5 · J the
exact same on site interaction energies are reproduced as for the previously discussed
case. However, the results from the J = 0 calculations come out exactly the same as
those shown in Fig. 7.8 for both iNRG and sNRG and are therefore not plotted.
Presumably iNRG fails at the MIT because the underlying physics is not stable when
breaking the SU(2)-spin symmetry. This could for example be tested by using iNRG
Wilson chain couplings for a sNRG calculation in the insulating phase, but this was not
done here.
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Figure 7.8.: One band Mott insulator transition. The critical value of J is found to be
Jc ' 4. If J = 0, εd = −U

2 and arbitrary U is chosen, one gets the exact
same results for U=̂1.5 ·J . In this case we find a critical U of Uc ' 6, which
is in good accordance to the results in [13]. Parameters: T = 10−8, Λ = 2,
Etrunc = 8, Nmax

keep = 2500
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8. Two band Anderson Hund Model
In this chapter we test DMFT+iNRG by means of the two-band Anderson Hund Model.
For the band-symmetric two-band model we will start by comparing two results without
z-averaging, then test the performance of z-averaging and finally turn to the Mott insu-
lator transition. After that the two band Anderson Hund model without band symmetry
will be examined.
As in chapter 7, the main goal will be to determine the quality and performance of iNRG
by comparing spectral functions from converged DMFT loops, Wilson chain couplings
and computation time to corresponding sNRG calculations. The basis for our compar-
isons will again be the local spectral functions A(ω).
In Sec. 8.1, Sec. 8.2 and Sec. 8.3 we will consider the band-symmetric two-band AHM
(Eq. 6.1), which means εd,1 = εd,2 ≡ εd. In iNRG calculations we will interleave the
bands, but not the spins (MiNRG = 2) and therefore artificially break the band-symmetry,
which should be treated with caution. In every DMFT iteration we will take the average
over the iNRG results from different bands and use it as input for the next iteration.
Band-asymmetric (εd,1 6= εd,2) two band results will be treated in Sec. 8.4.
All calculations presented in the following sections have all been performed on the Bethe
lattice (see Sec. 2.6) and all energies are given in terms of the half-band width D of the
non interacting density of states (see Eq. (2.26)). The chemical potential µ = 0 will
be set to zero and ~ and kB are both set to 1. All spectral functions shown are calcu-
lated via Eq. (2.28) with the self energy obtained from the self-energy trick discussed in
Sec. 5.1, Eq. (5.2). Spectral functions obtained directly from the FDM-NRG approach
(see Sec. 3.8) are not shown. The criteria for DMFT convergence is a maximum change
of less than 10−3 in the spectral functions compared to the preceding DMFT iteration.
After convergence is reached, three more iterations to truly ensure DMFT convergence
are performed. We initiate the DMFT procedure with a flat hybridization in the interval
ω ∈ [−D,D] that leads to a metallic result after the first iteration.

8.1. Band symmetric results without z-averaging
First we discuss our NRG + DMFT results obtained for band symmetric (εd,1 = εd,2 ≡
εd) models. In the iNRG calculations the bands have been interleaved, breaking the
band symmetry, but not the spins, therefore MiNRG = 2.
To begin with, the difference between iNRG and sNRG spectral functions are much more
notable than for the one band results which is probably due to ΛNc=1 = 2 < 3 = ΛNc=3.
But at least for the metallic spectral functions shown in figure 8.1, iNRG and sNRG fit
together very well. For both iNRG and sNRG, no wiggles are visible, so the same mini-
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8. Two band Anderson Hund Model

mum broadening parameter σ can be used, which means they are both equally accurate
for nz = 1.
The insulating spectral function in figure 8.2 though shows the same disagreement be-
tween the spectral functions for channel 1 and channel 2 that already occurred in the
one band Mott insulator transition (see section 7.3). The spectral functions are only
acceptable if one averages over them. For now it seems that iNRG has problems if we
approach insulating states. This is not generally the case as we will see in section 8.3 and
chapter 9, where insulating spectral functions, calculated with iNRG, will be presented
that show no such problems. It is not completely clear why this instability in the results
in figure 8.2 shows up. The most natural reason would be that the underlying physics are
just unstable under symmetry breaking, which could for example be tested by running
an sNRG calculation with the same parameters but slightly broken band symmetry. An
other reason might be the bad resolution of the logarithmic discretization grid far away
from the chemical potential, as the iNRG spectral functions are treated there with a
considerable large asymmetry.
For band-symmetric two band calculations iNRG is already faster than sNRG, taking
680 seconds per DMFT iteration as opposed to 770 seconds, despite the exploited band
symmetry in sNRG and its more efficient implementation.
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Figure 8.1.: Comparison of spectral functions for both iNRG and sNRG for the last,
converged DMFT iteration (iteration 10). In iNRG calculations the bands
were interleaved (MiNRG = 2). As opposed to the one band results shown in
Sec. 7.1, deviations (maximum relative error of ∼ 3%) between iNRG and
sNRG can be seen in the scale of the spectral functions. The iNRG spectral
functions for different channels match well and cannot be distinguished on
a scale of A(ω). In the left panel a linear scale for ω is used, in the right
panel the scale for ω is logarithmic. The insets show enhanced details with
flavor resolved iNRG data on a linear scale for ω. Parameters: T = 10−8,
Λ = 3, Etrunc = 7.5, Nmax

keep = 3000, δρiNRG
disc = 2.1 · 10−6, δρsNRG

disc = 2.7 · 10−7
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Figure 8.2.: Comparison between iNRG and sNRG converged spectral functions (DMFT
iteration 17 for iNRG, 23 for sNRG) for a band-symmetric AHM in the
insulating state. In iNRG calculations the bands were interleaved (MiNRG =
2). The site-specific filling is chosen below half-filling (nd = 1). In contrast
to the results shown in figure 8.1, the iNRG spectral functions for band 1
and band 2 do not match at all, although the mean value of both iNRG
spectral functions is acceptable. For the left panel a linear scale for ω is
used, for the right panel the scale is logarithmic. Note that the green A1(ω)
curve for ω < 0 is slightly larger than 0. It can be found in the lower inset
featuring the green curve only, where a logarithmic scale for ω was used. In
the upper inset details of the spectral features at around ω ' 0 are shown
on a linear scale. Parameters: T = 10−8, Λ = 3, Etrunc = 7.5, Nmax

keep = 3000,
δρdisc has not been calculated
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8.2. Bandsymmetric results with z-averaging
We now z-average the results obtained in section 8.1. We use nz = 4 and adjust σ
accordingly to match the gain in accuracy.
In general the nz = 4 spectral functions for sNRG and iNRG match better than the
nz = 1 ones, and due to the decrease in σ, more structure can be seen. Also, the iNRG
spectral functions for channel 1 and channel 2 match significantly better.
The insulating iNRG spectral functions for nz = 4 shown in figure 8.5 match the sNRG
spectral function for nz = 4 notably better than in the nz = 1 case. In the alignment
of the iNRG spectral functions for the different channels there can also be observed an
improvement. Surprisingly the mean iNRG spectral functions for nz = 4 and nz = 1 are
very similar and the nz = 4 results for sNRG and iNRG after averaging actually match
in an acceptable way. As the iNRG spectral functions for the different channels are
significantly better aligned after z-averaging, it can be assumed that for some values of
z these spectral functions might actually almost completely match. Unfortunately, the
data of the individual z-shifts has not been saved due to limited amount of disk memory
and could therefore not be checked. At ω ' 0 the iNRG nz = 4 spectral functions show
an unusual behavior with unknown origin.
In figure 8.4 the Wilson chain couplings that led to the results in figure 8.3 are given
for two different values of the shift parameter z. While for z = 0 the sNRG and iNRG
couplings match almost perfectly, this is not the case for z = 3

4 where the sNRG couplings
are systematically larger than the iNRG couplings. At z = 3

4 the iNRG couplings,
as opposed to the sNRG ones, show values very similar the couplings at z = 0. An
explanation for this is that the iNRG grid points for z = 3

4 are shifted exactly on the
sNRG grid points for z = 0, as discussed in section 4.2. Nevertheless, both iNRG
and sNRG couplings show an almost perfect logarithmic decay which explains the good
quality of the results in figure 8.3.
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Figure 8.3.: Comparison of iNRG and sNRG calculations performed with different
amounts of z-shifts and accordingly adjusted broadening parameter (nz =
1, σ = 1 and nz = 4, σ = 0.79). All other parameters are chosen as for the
results shown in Fig. 8.1. In iNRG calculations the bands have been inter-
leaved (MiNRG = 2). The spectral function for nz = 4 is notably improved
by the z-averaging and more structure is visible due to the decrease in σ.
The maximum relative error in the spectral functions for nz = 4 is ∼ 1%.
In figure 8.4 corresponding Wilson chain couplings can be found. Param-
eters: T = 10−8, Λ = 3, Etrunc = 7.5, Nmax

keep = 3000, δρiNRG
disc ' 2.5 · 10−6,

δρsNRG
disc ' 3 · 10−7
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Figure 8.4.: Wilson chain couplings that led to the converged spectral functions shown
in Fig. 8.3. For both shift parameters z = 0 and z = 3

4 an almost perfect
logarithmic decay can be observed for both iNRG and sNRG. As opposed
to the z = 0 couplings, the z = 3

4 -couplings for iNRG and sNRG do not
match. Especially for the first few iNRG sites an increase of the couplings
compared to preceding couplings can be observed, preventing truncation for
these sites.
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Figure 8.5.: Comparison of iNRG and sNRG spectral functions for different amounts
of z-shifts and accordingly adjusted broadening parameter (nz = 1, σ = 1
and nz = 4, σ = 0.79). All other parameters are chosen as for the results
in figure 8.2. The result for nz = 4 is improved compared to nz = 1, but
still barely acceptable. Note the uncommon behavior of the nz = 4 spectral
function at ω ' 0. Corresponding Wilson chain couplings can be found in
figure 8.6. Parameters: T = 10−8, Λ = 3, Etrunc = 7.5, Nmax

keep = 3000, δρdisc

has not been calculated
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Figure 8.6.: Wilson chain couplings leading to the converged spectral functions in figure
8.5. Due to the large weight of the spectral functions far away from the
Fermi-level, the couplings do not show a perfect logarithmic decay, although
the overall tendency is adhered to.
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8.3. Bandsymmetric two band Mott insulator transition
In this section we turn to the band symmetric two band Mott insulator transition. In
our first Mott insulator calculation we obtain integer filling by choosing the particle hole
symmetric form of the Anderson Hund model with U = J

2 , εd = −3
4J and arbitrary J ,

which yields half filling (nd = 2). Our calculations yield a critical J of Jc ' 1.8, which
is considerably smaller than JNc=1

c ' 4.0 obtained for the one band Mott insulator
transition in section 7.3.
We get consistent iNRG results that agree almost perfectly with the sNRG results.
Slight, but notable differences between sNRG and iNRG only occur from J = 1.5 to
J = 2.4.
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Figure 8.7.: Particle hole symmetric two band Mott insulator transition. The spectral
functions for iNRG and sNRG match very well. The pointed behavior of
the spectral functions at ω ' 0 near the Mott insulator transition is no
discontinuity of ∂A(ω)

∂ω
, the curve is smooth there. The spectral functions

for J = 1.8 are not fully converged with an error of ' 10−2. Parameters:
T = 10−8, Λ = 3, Etrunc = 7.5, Nmax

keep = 3000

In our next two calculations we examine the dependence of the Hunds coupling J on
the Mott insulator transition at half filling nd = 2. For that we choose a constant J and
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8.3. Bandsymmetric two band Mott insulator transition

increase U to induce the transition. εd is chosen by the formula

εd = −3
4J −

1
2(U − 1

2J)(2Nc − 1) (8.1)

which is acquired by demanding the same on site energies for sites with filling 2Nc and
0. We further adjust εd by linear interpolation to fine tune it. The Mott insulator
transition with half filling is then calculated for constant J = 1 and J = 1

2 .

U = 1.75, εd = −2.62
U = 2.25, εd = −3.38
U = 2.50, εd = −3.75
U = 2.75, εd = −4.12
U = 3.00, εd = −4.50
U = 3.25, εd = −4.88
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Figure 8.8.: Two band, U -driven Mott insulator transition at half-filling (nd = 2) with
constant J = 1 and band symmetry. For the critical Coulomb interaction
Uc = 2.75 was found in both iNRG and sNRG calculations. Corresponding
iNRG and sNRG results match quite well, only small differences can be
observed. Note that the sharp features at ω ' 0 in the spectral functions
close to the Mott transition are no discontinuities of ∂A(ω)

∂ω
. The spectral

functions for U = 2.5 and U = 2.75 are not fully converged (error ' 10−2).
Parameters: T = 10−8, Λ = 3, Etrunc = 7.5, Nmax

keep = 3000

First of all we find that the critical Coulomb interaction energy for the transition with
J = 1 is Uc ' 2.75 while we get Uc ' 4.25 for the J = 1

2 case. This means that a larger
Hunds coupling J clearly decreases Uc for the Anderson Hund Model at half filling and
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Figure 8.9.: Two band, U -driven Mott insulator transition with nd = 2, constant J = 1
2

and band symmetry. For both iNRG and sNRG calculations Uc ' 4.25 was
found. iNRG and sNRG spectral functions mostly coincide. The sNRG
spectral function for U = 4.0 is not fully converged (error of ' 10−2). The
sharp features of the spectral functions occurring at ω ' 0 are no ∂A(ω)

∂ω

discontinuities. Parameters: T = 10−8, Λ = 3, Etrunc = 7.5, Nmax
keep = 3000

was also found in [4] and [13].
iNRG and sNRG results coincide very well for most parts. But especially for J = 1

2 and
U = 4.0 respectively J = 1 and U = 2.5, close to the Mott transition while still in the
metallic regime, quite large differences can be observed. Nevertheless, both iNRG and
sNRG calculations produce the same critical Uc. Most importantly, the iNRG results
are self consistent.
Last but not least we take a look at the Mott insulator transition for with filling nd =
Nc − 1 = 1 and its dependence on J . We again choose a constant J and increase U do
induce the Mott transition. εd is acquired by the formula

εd = −2 · (NC − 1) + 1
2 · (U − J) , (8.2)

which can be found in [1] and are additionally fine tuned during DMFT iterations by
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8.3. Bandsymmetric two band Mott insulator transition

linear interpolation. We again calculate the Mott insulator transition for both J = 1
2

and J = 1 with iNRG and sNRG. While in the half filling case Uc calculated with iNRG
and sNRG agreed, this is unfortunately not the case for nd = 1. But as the results
very close to the Mott transition are not fully converged, comparisons are difficult. The
J = 1 case yields for iNRG U iNRG

c ' 8.0 while for sNRG the transition occurs at a
considerably larger U sNRG

c ' 9.0.
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Figure 8.10.: Two band, U -driven Mott insulator transition for filling nd = 1, constant
J = 1 and band symmetry. We find a critical Coulomb interaction of
U sNRG
c ' 9.0 for sNRG and U iNRG

c ' 8.0 for iNRG. However, the results
for U = 8 and U = 9.25 are not fully converged (error: ' 10−2), making
comparisons difficult. iNRG and sNRG results coincide well, near the Mott
transition larger deviations in the iNRG spectral functions for different
bands can be observed. Parameters: T = 10−8, Λ = 3, Etrunc = 7.5,
Nmax
keep = 3000

The values for J = 1
2 are slightly smaller with U iNRG

c ' 7.75 and U sNRG
c ' 8.75, which

would mean that and increase in J leads to a slightly larger Uc, as opposed to the nd = 2
case where we found the opposite. This also coincides with the findings in [4] and [13].
One can also observe that near the Mott transition the iNRG results not only differ
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from the sNRG ones but are also not totally self consistent by showing considerable
differences in the spectral functions for the different bands. With the results shown in
8.2 this could already be expected.

U = 6.25, εd = −2.71
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Figure 8.11.: Two band, U -driven Mott insulator transition for filling nd = 1 with
constant J = 0.5 and band-symmetry. We find U iNRG

c ' 7.75 and
U sNRG
c ' 8.75, but as the results for U = 7.75 and U = 8 are not con-

verged comparisons are merely possible. Near the Mott insulator transi-
tion discrepancies in the iNRG spectral functions for different bands can
be observed. Parameters: T = 10−8, Λ = 3, Etrunc = 7.5, Nmax

keep = 3000

8.4. Band asymmetric two band results
Last but not least the two band Anderson Hund Model with asymmetric bands has been
examined. Here, εd,1/2 were predetermined rather than nd. Indications for good values
for εd,1/2 were taken from band symmetric calculations.
For the results shown in figure 8.12, two different DMFT + NRG calculations with re-
versed band order have been performed for iNRG. The shown iNRG results are then
obtained by averaging over the results of the two calculations. It should be emphasized
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here that the averaging was performed only after DMFT convergence for the final re-
sults, not for every DMFT iteration.
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Figure 8.12.: Spectral functions for two band Anderson Hund Model without band sym-
metry. sNRG and iNRG yield reasonable results but differ clearly, even
though two iNRG calculations with reversed band order have been per-
formed and averaged over for the iNRG result. In this figure only the aver-
aged iNRG spectral functions are shown, as the spectral functions from dif-
ferent iNRG calculations with reversed band order match almost perfectly
and cannot be distinguished on the shown scale. The spectral functions
for sNRG and iNRG in the first subplot look interchanged, but this is not
the case. The sNRG spectral functions in the last subplot get negative
at |ω| ' 0.25 and are therefore cut off. Parameters: T = 10−8, Λ = 3,
Etrunc = 7.5, Nmax

keep = 3000, δρdisc has not been calculated

The iNRG and sNRG spectral funtions show the same tendency, but are quite different
and do not match very well, although both results look reasonable. With more z-shifts
applied the results might coincide better. In figure 8.13 the Wilson chain couplings for
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8. Two band Anderson Hund Model

the last iteration and z = 1
2 are shown. They show a very good logarithmic decay, the

couplings for the different iNRG calculations match perfectly. With these results it is
hard to say whether iNRG or sNRG deliver the better results. The only indication are
the cut off sNRG spectral functions shown in the last subplot in figure 8.12 and the fact
that for a large |εd, 1 − εd,2| the iNRG calculations yield unreasonable results for a yet
unknown reason.
In figure 8.14 a band asymmetric Mott insulator transition is shown. It is successful for
both iNRG and sNRG, and shows the same properties, mainly that Jc = 1.8 for both
iNRG and sNRG. Nevertheless, the iNRG and sNRG spectral functions differ clearly
and yield definitely not the same results.
In the band-asymmetric case where no channel symmetry can be exploited in sNRG
calculations, serious computation time differences between iNRG and sNRG could be
observed. In iNRG calculations one DMFT iteration took about 16 minutes (with nz = 2
as opposed to nz = 1 in section Sec. 8.1), while sNRG calculations took 70 minutes per
DMFT iteration.
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Figure 8.13.: Wilson chain couplings corresponding to the results shown in figure 8.12.
Both iNRG and sNRG couplings show an almost perfect logarithmic decay
after about 3 supersites. The couplings for iNRG calculations with reversed
band orders are almost identical.
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Figure 8.14.: Band asymmetric two band Mott insulator transition. The results for
both iNRG and sNRG look reasonable, but do clearly differ. Nevertheless,
the spectral functions obtained from both methods show the same overall
properties. In contrast to the iNRG results seen in figure 8.12, no averaging
with reversed band order has been performed for the iNRG results. For J =
1.5, either the iNRG or the sNRG spectral functions seem interchanged,
but as in figure 8.12 this is not the case. As for the symmetric two band
Mott insulator transition shown in figure 8.7, no discontinuity of ∂A(ω)

∂ω

occurs. The spectral functions at J = 1.8 are not fully converged (error of
' 10−2). Parameters: T = 10−8, Λ = 3, Etrunc = 7.5, Nmax

keep = 3000
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9. Three band Anderson Hund Model
This chapter will treat the three-band Anderson Hund Model with the DMFT+iNRG ap-
proach. In Sec. 9.1 we will start by comparing calculations that exhibit band-symmetry
(εd,1 = εd,2 = εd,3 ≡ εd) with corresponding sNRG calculations, where we will also see to
the computational efficiency of iNRG and sNRG. We then turn to examining the perfor-
mance of z-averaging for band-symmetric models in Sec. 9.2, where also sNRG results
will be our reference. The basis for our comparisons will again be the local spectral
function A(ω), but Wilson chain couplings will also be studied. In Sec. 9.4, we will treat
three-band models with non-degenerated bands(εd,1 6= εd,2 = εd,3 and εd,1 6= εd,2 6= εd,3).
Here, no sNRG calculations as a reference are available, as sNRG is computationally too
costly if it is not possible to exploit full band-symmetry.
In iNRG calculations we will interleave the bands, but not the spins (MiNRG = 3). For
models with degenerated bands (εd,1 = εd,2 = εd,3 or εd,1 6= εd,2 = εd,3), the band sym-
metry is therefore artificially broken in iNRG calculations, which may lead to problems
if the symmetry is crucial for the underlying physics and should therefore be avoided.
When iNRG is used we will average over the results for degenerated bands in every
DMFT iteration and use it as input for the next iteration.
All calculations presented in the following sections have all been performed on the Bethe
lattice (see Sec. 2.6) and all energies are given in terms of the half-band width D of
the non interacting density of states (see Eq. (2.26)). We set the chemical potential
µ = 0 to zero and ~ and kB are both set to 1. All spectral functions shown are calcu-
lated via Eq. (2.28) with the self energy obtained from the self-energy trick discussed in
Sec. 5.1, Eq. (5.2). Spectral functions obtained directly from the FDM-NRG approach
(see Sec. 3.8) are not shown. The criteria for DMFT convergence is a maximum change
of less than 5 ·10−3 in the spectral functions compared to the preceding DMFT iteration.
After convergence is reached, three more iterations to truly ensure DMFT convergence
are performed. The DMFT procedure is initiated with a flat hybridization in the interval
ω ∈ [−D,D] that yields a metallic result after the first DMFT iteration.

9.1. Band symmetric three band results without
z-averaging

We now turn to the band symmetric three band Anderson Hund Model for which we
compare our sNRG to our iNRG results. In the iNRG calculations the band symmetry
is broken by interleaving the bands, the spins are not interleaved.
The alignment of iNRG and sNRG spectral functions is comparable to that of the two
band results but visibly worse than for the one band results. Both iNRG and sNRG
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9. Three band Anderson Hund Model

calculations took about 10 DMFT iteration to reach convergence.
The iNRG spectral functions for different bands match quite well, even in the case of an
insulator, which was different for the two band results. Note however that in the two
band case nd = Nc−1 was considered, while in the three band case we consider nd = Nc.
In the nd = Nc case for Nc = 2, a very good alignment of iNRG and sNRG could be
observed when considering the particle hole symmetric Mott insulator transition (see
figure 8.7).
As for the accuracy of iNRG compared to sNRG, small swerves can be observed in the
iNRG spectral functions shown in figure 9.2, as opposed to the sNRG result, where no
such thing happens. These swerves might be a result of the transition from a log Gaus-
sian to a normal Gaussian as a broadening kernel for the discrete spectral function, as
this transition happens at |ω| = 10−7.
Even though band-symmetry was be exploited in sNRG calculations, iNRG took con-
siderable less computation time (about 19 minutes per DMFT iteration) compared to
sNRG (about 170 minutes per DMFT iteration).
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Figure 9.1.: Spectral function for an insulating three band Anderson Hund model with
band symmetry. For the site-specific filling half-filling is chosen (nd = 3).
The iNRG and sNRG spectral functions match quite well, relative errors of
' 6% occur at |ω| ' 3. The spectral funtions show no ∂A(ω)

∂ω
discontinuity

at ω ' 0. Parameters: T = 10−8, Λ = 4, Etrunc = 7, Nmax
keep = 3000, δρdisc

has not been calculated
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Figure 9.2.: Spectral function for the metallic three band Anderson Hund model with
band symmetry. The results for sNRG and iNRG match well. The site-
specific filling is chosen below half-filling (nd = 2). We find a maximum
relative error of ' 9% between iNRG and sNRG at ω ' 2.5. The origin
of the swerves between 10−8 < |ω| < 10−7 are presumably caused by the
transition from a log-Gaussian to a regular Gaussian as a broadening kernel
in these regions. Parameters: T = 10−8, Λ = 4, Etrunc = 7, Nmax

keep = 3000,
δρdisc has not been calculated

9.2. Band symmetric results with z-averaging
In this section we will examine the effect of z-averaging for three band models. To do
that results with nz = 1 and nz = 3 and an appropriate choice of σ are compared for
both iNRG and sNRG.
iNRG and sNRG still coincide quite well if z-averaging is used, although they a little
worse than for one and two band calculations, which can be explained by the usage
of a larger discretization parameter Λ. As opposed to z-averaging in one or two band
calculations the benefits of z-averaging are quite small for our three band calculations,
probably because we used a smaller amount of z-shifts and therefore cannot lower σ by
much.
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For the insulating result shown in figure 9.3, the main difference to be observed is a
slight broadening of the very sharp minimum at ω ' 0 for smaller σ. The iNRG spectral
functions for nz = 1 and nz = 3 do not differ by much at all, while for the sNRG
spectral functions the broadening is much more distinct and they show an increase in
the height of the maximums at |ω| ' 3. The corresponding couplings are shown in figure
9.4. Because of the large spectral weight in regions where the logarithmic discretization
is very coarse they show no perfect logarithmic decay. For z = 0 though the non-
logarithmic behavior occurs only between supersites, the iNRG sites within a specific
supersite show the intended logarithmic decay. The non-logarithmic behavior for the
z = 2

3 couplings is much more severe, especially for iNRG. Here, the couplings for α = 1
iNRG sites lie energetically far lower than the corresponding α = 2 and 3 sites.
The metallic results shown in figure 9.5 show a better match of iNRG and sNRG results
than the insulating results. Between nz = 1 and nz = 3 no real difference can be observed
other that the iNRG results for nz = 3 show small wiggles, indicating a slightly too small
broadening parameter σ for these calculations. The corresponding couplings in figure
9.6 show an almost perfect logarithmic decay for z = 0, while for z = 2

3 the couplings for
the α = 1 iNRG sites lie energetically lower than the α = 2 and 3 ones, as has already
been observed for the couplings in figure 9.4.
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Figure 9.3.: Comparison of spectral functions for a different amount of z-shifts and ac-
cordingly adjusted broadening σ (nz = 1, σ = 1.2 and nz = 3, σ = 1.09).
Both iNRG and sNRG results match well, but no meaningful benefit of
z-averaging can be found. Between the nz = 4 iNRG and sNRG spectral
functions a maximum relative difference of ∼ 10% can be found, being larger
than the maximum relative difference for nz = 1 with ' 6%. The corre-
sponding Wilson chain couplings can be found in figure 9.4. Parameters:
T = 10−8, Λ = 4, Etrunc = 7, Nmax

keep = 3000, δρdisc has not been calculated
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Figure 9.4.: Wilson chain couplings leading to the spectral functions shown in figure 9.3.
Especially for z = 2

3 , the couplings for every third iNRG site are energetically
considerably lower than the other iNRG couplings, becoming even 0 at site
25 and 27.
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Figure 9.5.: Comparison of spectral functions for nz = 1 and nz = 3. Both iNRG and
sNRG spectral functions match quite well, but the benefit gained from z-
averaging is very small. Between nz = 4 calculations a maximum relative
error of ' 7% can be found. The wiggles in the iNRG nz = 4 spectral
functions on a logarithmic ω-scale indicate that σ is not chosen large enough.
The Wilson chain couplings leading to these spectral functions can be found
in figure 9.6. Parameters: T = 10−8, Λ = 4, Etrunc = 7, Nmax

keep = 3000, δρdisc

has not been calculated
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Figure 9.6.: Wilson chain couplings that leading to the spectral functions shown in
figure 9.5. As for the couplings in figure 9.4 every third iNRG coupling for
z = 2

3 lies energetically considerably lower than the rest of the couplings.
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9.3. Band symmetric three band Mott insulator
transition (MIT)

We now turn to the band-symmetric MIT for a three band AHM. We choose the particle
hole symmetric form of the AHM with εd = −3

4J , U = J
2 and arbitrary J , leading

to half filling (nd = Nc = 3). The results, shown in figure 9.7, show a that iNRG
and sNRG match quite well here, although clearly larger differences than for the two
band MIT with particle hole symmetry (see section 8.3) can be observed. But most
importantly the iNRG spectral functions for different bands match very well. sNRG
results for J = 1.2 and J = 1.5 are not available as unfortunately the calculations
took too much time. For the iNRG results we find a critical J for the transition of
J iNRGc ' 1.2 ' 2

3J
Nc=2
c ' 1

3J
Nc=1
c . JsNRGc is of the same magnitude but could not be

determined due to the timeout the sNRG calculations.

78



9.3. Band symmetric three band Mott insulator transition (MIT)

J = 0.90
J = 1.20
J = 1.50
J = 1.80
J = 3.00
J = 4.50

iNRG, Amean(ω)

sNRG

iNRG, A1(ω)

iNRG, A2(ω)

iNRG, A3(ω)

0

0.1

0.2

0.3

−7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7

ω

A
(ω

)

Nc = 3, U = J
2
, εd = − 3

4
J, nd = 3.00, nz = 2, σ = 1.14

Figure 9.7.: Three band MIT with band- and particle-hole-symmetry. iNRG and sNRG
results show the same tendencies, but also show clear differences. The iNRG
spectral functions for different bands match very well. Unfortunately, the
sNRG calculations for J = 1.2 and J = 1.5 took too much time and are
therefore not available. The spectral functions for J = 1.2 are not fully
converged. Jc = 1.2 can be found. Parameters: T = 10−8, Λ = 4, Etrunc = 7,
Nmax
keep = 3000
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9.4. Band-asymmetric three band results
In this section the three band Anderson Hund Model without band symmetry is exam-
ined. As for the two band calculations without band symmetry, εd,1/2/3 is not changed
during DMFT iterations, unlike for the symmetric case. Good values for εd,1/2/3 are
obtained by slightly varying the εd resulting from band symmetric calculations. We did
not perform any sNRG calculations in the band asymmetric case, because the computa-
tional effort for sNRG is too big with no band symmetry to exploit in the diagonalization
process.
For our first calculation, shown in figure 9.8, we take εsymd from a band-symmetric calcula-
tion with half filling (nsymd =3), which has a symmetric spectral function. We then define
δεd ≡ 0.3 · εsymd and chose the band-asymmetric binding energies as εd,1 = εsymd + δεd,
εd,2 = εsymd , εd,3 = εsymd − δεd. For the results we expect that A1(ω) = A3(−ω) and
A2(ω) = A2(−ω) and nd = 3. As shown in figure 9.8, the relations between the spectral
functions are fulfilled only approximately, which is due to the unequal treatment of the
spectral functions in terms of discretization in iNRG. nd = 2.99 ' 3 is also only fulfilled
approximately, but all in all the result seems quite reasonable. A second calculation with
reversed band order with following averaging, as was done for the results in figure 8.12,
might have yielded the expected filling nd and the expected relations between the spec-
tral functions of different bands, but was not performed. Between 10−8 < |ω| < 10−7,
we observe small swerves that may originate from the transition from a log-Gaussian to
a regular Gaussian as broadening kernel, as already discussed for the results shown in
figure 9.2. The DMFT convergence loop is initialized with a constant hybridization in
the interval [−1, 1], convergence is reached after 7 iterations with a maximum error in
the spectral functions of 10−3. After convergence 3 more iterations have been performed
to ensure that convergence has indeed been reached. In figure 9.9, the results from
different DMFT iterations are given, with the final result shown in figure 9.8 plotted in
gray as a reference. Figure 9.10 shows the Wilson chain couplings that led to the spec-
tral functions shown in figure 9.9, while the input for the Wilson chain couplings are of
course the spectral functions obtained in the preceding DMFT iteration. For the first
iteration an almost perfect logarithmic decay of the couplings can be observed, which
are obtained from a constant hybridization. The couplings for all other DMFT iterations
jump around between iNRG sites (different colors), calling truncation between the iNRG
sites with α = 1 and α = 2 (green and red) into question. An overall logarithmic decay
between supersites is still ensured though. The reason for the jumps between α = 1 and
α = 2 sites is probably the small weight of A1(ω) in the ω > 0 regime respectively the
small weight of A3(ω) in the ω < 0 regime. A modification in the discretization scheme
used for frequency dependent hybridization functions (see section 5.2) might be able to
generate logarithmic decay between iNRG sites, for example by altering D+/−

1/3 .
Our second band-asymmetric calculation is a Mott insulator transition, shown in figure
9.11. For the εd,1/2/3, a particle hole symmetric and band-symmetric Hamiltonian has
been taken (U = J

2 , εd = −3
4J). The band-symmetry was then broken by changing

εd,1 = −3
4J − 0.1 and εd,3 = −3

4J + 0.1 but leaving εd,3 = −3
4J , meaning the εd where

changed symmetrically from the band-symmetric case. As discussed for the calculation
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shown in figure 9.8 before, the total filling nd should then remain nd = 3, as for the parti-
cle hole and band-symmetric case, while the spectral functions satisfy A1(ω) = A3(−ω)
and A3(ω) = A3(−ω). As can be seen in figure 9.11, this is the case for our band-
asymmetric Mott insulator transition, up to the height of the peak in the J = 1.2 case.
All in all the band-asymmetric three band Mott insulator transition was very successful
and looks very promising. The critical J is found to be Jc ' 1.2, which is about 2

3 of
the critical J found for the band-asymmetric Mott insulator transition for the two band
model (see figure 8.14).
Our last band-asymmetric calculation performed has two degenerated bands with the
same εd,2 = εd,3, while for the first band an other εd,1 6= εd,2/3 is chosen. In principle, one
could treat the first band as one iNRG site and the second together with the third band
as a second iNRG site (MiNRG = 2), allowing to implement and exploit the band sym-
metry of the degenerated bands rather than artificially breaking it with iNRG. As this
scheme was not implemented yet in our program, this was not done and we interleaved
all three bands (MiNRG = 3), but took the average of the degenerated bands as input for
the next DMFT iteration. The converged results of these calculations can be found in
figure 9.12, where εd,2 = εd,3 = −2.54 remained constant and εd,1 was shifted from −1.02
in the first calculation to −4.07 in the last calculation. The results seem reasonable, and
no big difference between A2(ω) and A3(ω) can be noticed. the non-degenerated spectral
function A1(ω) is forced almost completely into the ω > 0 regime for εd,1 � εd,2/3, while
for εd,1 � εd,2/3 the difference between the εd,1 ' εd,2/3 spectral functions is not very
big. Generally, one can observe that the spectral functions of the two degenerated band
vary by much less than that of the non-degenerated band. One can also observe that
the smaller εd,1 becomes, the larger its maximum value gets and the pointier it becomes.
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Figure 9.8.: Band-asymmetric three band iNRG + DMFT calculation. The small
swerves at 10−8 < |ω| < 10−7 probably arise from the transition from a
log-Gaussian to a regular Gaussian as broadening kernel. As discussed in
the text, A2(ω) = A2(−ω), A1(ω) = A3(−ω) and nd = 3 should be pre-
served due to the construction of the εd,1/2/3, which is only approximately
the case. Other than that the result looks very reasonable and promising.
The corresponding couplings can be found in figure 9.10 and the course of
the DMFT-convergence can be found in figure 9.9. Parameters: T = 10−8,
Λ = 4, Etrunc = 7, Nmax

keep = 3000, δρiNRG
disc = 1.16 · 10−4
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Figure 9.9.: DMFT-convergence corresponding to the final result shown in figure 9.8.
The Wilson chain couplings that led to the presented spectral functions
are shown in figure 9.10. DMFT-convergence is reached after 7 iterations
for a maximum error in the spectral functions of less than 5 · 10−3. After
convergence 3 more iterations are performed to ensure the final result is
truly converged.
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Figure 9.10.: Wilson chain couplings leading to the spectral functions shown in figure
9.9. The shift parameters z for these couplings was 2

3 . The couplings for
the green sites lie energetically considerably lower than the other couplings,
which was also observed for the couplings in figures 9.6 and 9.4. The
couplings for DMFT iteration 1 are obtained from a constant hybridization
and show the intended behavior.
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Figure 9.11.: Three band MIT without band-symmetry, calculated with iNRG. The
results seem reasonable and are similar to the band-symmetric three band
MIT results shown in figure 9.7. The spectral functions at J = 1.2 are not
fully converged. Parameters: T = 10−8, Λ = 4, Etrunc = 7, Nmax

keep = 3000
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Figure 9.12.: Three band AHM results with two degenerated bands, calculated with
iNRG. Degenerated bands were interleaved but averaged over in between
DMFT iterations. The results seem reasonable, the spectral functions for
different degenerated bands do not differ by much. For the non-degenerated
band an increasing peak can be observed when lowering its binding energy
εd,1. The Wilson chain couplings leading to these results can be found
in figure 9.13 Parameters: T = 10−8, Λ = 4, Etrunc = 7, Nmax

keep = 3000,
δρiNRG

disc ' 7 · 10−5
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Figure 9.13.: Wilson chain couplings for z = 2
3 leading to the spectral functions in

figure 9.12. The couplings show an overall logarithmic decay but the green
couplings lie energetically lower than the other couplings, as could already
been observed for other couplings with z = 2

3 .
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10. Conclusion and outlook
In this thesis we tested the interleaved Numerical Renormalization Group as an impurity
solver for the Dynamical Mean Field Theory. As a reference for the quality and efficiency
of our iNRG calculations we compared them to corresponding sNRG calculations.
For a first quality check we used a one-band Anderson Hund Model. Here, iNRG yielded
very good results. Especially when nz = 3 z-shifts were used, no differenced between
iNRG and sNRG calculations could be observed. However, when the number of z-shifts
was further increased to nz = 8, a worsening of the iNRG results compared to calcula-
tions with a lesser amount of z-shifts could be observed. This means that the z-averaging
procedure in iNRG has to be further improved to allow more accurate iNRG calcula-
tions. The one-band Mott insulator transition revealed first problems when using iNRG.
In the insulating state no acceptable iNRG results could be obtained. In this case the
artificial SU(2)-spin symmetry breaking might be problematic.
For a second test the two-band Anderson Hund model was used. Presumably due to
an increase in the discretization factor Λ, deviations between sNRG and iNRG were
larger than for the one band model, but most of the iNRG results were still quite good.
Here, too, iNRG showed problems in some calculations yielding insulating results, which
might be either due to the artificial breaking of the band-symmetry in these iNRG calcu-
lations or problems with the discretization scheme. Our results for two- and three-band
models indicate that iNRG might have general problems if the hybridization function
has a lot of weight far away from the Fermi-level where the logarithmic discretization
yields a very bad resolution. This should be further examined and modifications to the
logarithmic discretization scheme might be needed to further improve the outcome of
iNRG calculations. It should be emphasized that this was not generally the case as also
insulating iNRG results with almost perfect accordance to corresponding sNRG results
could be achieved. In band-asymmetric calculations iNRG and sNRG showed rather
large discrepancies. It can be assumed that these discrepancies arise from an unequal
treatment of the bands in terms of the discretization, a larger amount of z-shifts might
reduce these differences. Further improvements in the discretization scheme and the
z-averaging process might help here. From an efficiency point of few, iNRG was superior
to sNRG in two-band calculations, as it was up to 4.5 times faster.
Last but not least the three-band Anderson Hund model was used to test iNRG as
an impurity solver for multi-band DMFT calculations. We first tested band-symmetric
models which are also accessible for sNRG. Probably due to the further increase in Λ,
discrepancies grew even larger than for two-band calculations but where still promising.
Here, problems with the iNRG Wilson chain couplings when z-shifting is applied were
revealed. The Wilson chain couplings for every third iNRG sites were systematically
smaller than the rest of the couplings. An altered, more systematic scheme to determine
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the band edges might help here. For iNRG major benefits in the computation time could
be observed, as it took only 16 minutes for iNRG per DMFT iteration as opposed to 170
minutes for sNRG. The band-asymmetric three band calculations were only calculated
with iNRG as sNRG calculations are too costly here without being able to exploit full
channel symmetry. iNRG yielded converged results here.
To conclude, iNRG seems a very promising method for multi-band DMFT applications,
especially for low symmetry models which are computationally very costly when calcu-
lated with sNRG. However, further improvements have to be made in the discretization
process and the z-averaging procedure to get more accurate results. With this in mind
four- or even five-band models seem to accessible with iNRG + DMFT in the near fu-
ture, yielding accurate results at low temperatures and high resolution at the Fermi-level.
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A. Basics of quantum many-particle
theory

In this appendix a short overview of the most important relations of quantum many-
particle theory used in this thesis is given. For a more detailed discussion I refer to [2]
and [9].
In this thesis only retarded Green’s functions are used. When Green’s functions appear
or are referred to we always mean the retarded Green’s function, defined as

〈〈A,B〉〉t = −iΘ(t) 〈[A(t), B]+〉T , (A.1)

where Θ is the step function, [. . . ]+ is the anticommutator and 〈. . .〉T is the thermal
average in the grand canonical ensemble. A(t) = eiHtAe−iHt is the operator A time
evolved in the Heisenberg picture, with Hamilton operator H. The equation of motion
for the operator A in the Heisenberg picture is

dA(t)
dt

= i[H,A(t)]− (A.2)

with commutator [. . . ]−. An equation of motion for 〈〈A,B〉〉t is obtained by simply
taking the time derivative:

d

dt
〈〈A,B〉〉t = −iδ(t) 〈[A,B]+〉T −Θ(t) 〈[[A(t), H]−, B]+〉T

= −iδ(t) 〈[A,B]+〉T − i 〈〈[A,H]−, B〉〉t
(A.3)

The equation of motion can be fourier transformed into frequency space where it becomes
an algebraic equation. With the fourier transformation of the Green’s function defined
as

〈〈A,B〉〉ω =
∫ ∞
−∞

dt 〈〈A,B〉〉t e
iωt

〈〈A,B〉〉t =
∫ ∞
−∞

dω

2π 〈〈A,B〉〉ω e
−iωt

(A.4)

the equation of motion in frequency space becomes

ω 〈〈A,B〉〉ω = 〈[A,B]+〉T + 〈〈[A,H]−, B〉〉ω . (A.5)

The spectral function is defined as

AA,B(t) = 1
2π 〈[A(t), B]+〉 . (A.6)
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A. Basics of quantum many-particle theory

It is usually also transformed in frequency space and is basically the imaginary part of
the Green’s function:

AA,B(ω) = − 1
π

Im(〈〈A,B〉〉ω) (A.7)

94



B. Calculation of the Lattice Green’s
Function

Here we derive the frequency dependent lattice Green’s function 〈〈ck, c†k〉〉ω for the lattice
model in section 2.3, equation (2.12):

Hlatt =
∑

k∈1.BZ
(εk − µ)c†kck +

∑
i

H int
i ≡

∑
k∈1.BZ

(εk − µ)c†kck +Hint (B.1)

We use the equation of motion in frequency space,

ω 〈〈ck, c†k〉〉ω = 〈[ck, c†k]+〉T + 〈〈[ck, Hlatt]−, c†k〉〉ω (B.2)

Where 〈. . .〉T is the thermal average in the grand canonical ensemble and [. . . ]+/− is
the anticommutator/commutator. The term 〈[ck, c†k]+〉T = 1 is easily seen while for
〈〈[ck, Hlatt]−, c†k〉〉ω we need an expression for [ck, Hlatt]−:

[ck, Hlatt]− =
∑
k̃

εk̃[ck, c
†
k̃
ck̃]− + [ck, Hint]− = εkck + [ck, Hint]− , (B.3)

which is obtained by inserting the following expression:

[ck, c†k̃ck̃]− = ckc
†
k̃
ck̃ − c

†
k̃
ck̃ck

= ckc
†
k̃
ck̃ − c

†
k̃
ck̃ck + c†

k̃
ckck̃ − c

†
k̃
ckck̃

= [c†
k̃
, ck]+ck̃ − c

†
k̃
[ck̃, ck]+ = δk,k̃ck

(B.4)

We therefore get

〈〈[ck, Hlatt]−, c†k〉〉ω = εk 〈〈ck, c†k〉〉ω + 〈〈[ck, Hint]−, c†k〉〉ω
= εk 〈〈ck, c†k〉〉ω + Σlatt(k, ω) 〈〈ck, c†k〉〉ω ,

(B.5)

where we have inserted the definition for the self-energy for the interacting part of the
Green’s function. When we insert this into equation (B.2), we get

〈〈ck, c†k〉〉ω = 1
ω − εk + µ− Σlatt(k, ω) (B.6)
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C. Calculation of the Impurity Green’s
Function

In this appendix we derive an expression for the impurity Green’s function 〈〈d, d†〉〉ω for
the impurity model in equation (2.19),

Himp = (εd − µ)d†d+H imp
int

Hbath =
∑

k∈1.BZ
(εk − µ)c†kck

Hhyb =
∑

k∈1.BZ
Vk(d†ck + c†kd)

H = Himp +Hbath +Hhyb

(C.1)

We use the equation of motion for the Green’s function in frequency space,

ω 〈〈d, d†〉〉ω = 〈[d, d†]+〉T + 〈〈[d,H]−, d†〉〉ω
= 1 + 〈〈[d,Himp]−, d†〉〉ω + 〈〈[d,Hbath]−, d†〉〉ω + 〈〈[d,Hhyb]−, d†〉〉ω ,

(C.2)

where we need the following commutator relations to calculate 〈〈[d,H]−, d†〉〉ω:

[d, d†d]− = [d, d†]+d− d†[d, d]+ = d (C.3)

[d, c†kck]− = [d, c†k]+ck − c
†
k[d, ck]+ = 0 (C.4)

[d, c†kd]− = [d, c†k]+d− d
†
k[d, d]+ = 0 (C.5)

[d, d†ck]− = [d, d†]+ck − d†[d, ck]+ = ck (C.6)

We now get expressions for the Green’s functions in equation (C.2) 〈〈[d,H]−, d†〉〉ω is
built from:

〈〈[d,Himp]−, d†〉〉ω = εd 〈〈[d, d†d]−, d†〉〉ω + 〈〈[d,H imp
int ]−, d†〉〉ω

= εd 〈〈d, d†〉〉ω + Σimp(ω) 〈〈d, d†〉〉ω
(C.7)

〈〈[d,Hbath]−, d†〉〉ω = 0 (C.8)

〈〈[d,Hhyb]−, d†〉〉ω =
∑

k∈1.BZ
Vk

(
〈〈[d, d†ck]−, d†〉〉ω + 〈〈[d, c†kd]−, d†〉〉ω

)
=

∑
k∈1.BZ

Vk 〈〈ck, d†〉〉ω
(C.9)
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C. Calculation of the Impurity Green’s Function

The Green’s function 〈〈ck, d†〉〉ω can be expressed in terms of 〈〈d, d†〉〉ω via the equation
of motion:

ω 〈〈ck, d†〉〉ω = 〈[ck, d†]+〉T + 〈〈[ck, H]−, d†〉〉ω
= 〈〈[ck, H]−, d†〉〉ω

(C.10)

We need to calculate the commutator [ck, H]−:

[ck, H]− = [ck, Himp]− + [ck, Hbath]− + [ck, Hhyb]− (C.11)

It can easily be seen that
[ck, Himp]− = 0 (C.12)

as [ck, Himp]− can be expressed in terms of anticommutators of ck and d(†). As ck and
d(†) annticommute, equation (C.12) follows. The other two commutators in equation
(C.11) are also easily obtained:

[ck, Hbath]− =
∑

k̃∈1.BZ

εk̃[ck, c
†
k̃
ck̃]−

Eq.(B.4)= εkck (C.13)

[ck, Hhyb]− =
∑

k̃∈1.BZ

Vk̃

(
[ck, d†ck̃]− + [ck, c†k̃d]−

)

=
∑

k̃∈1.BZ

Vk̃δk,k̃d = Vkd
(C.14)

We can now insert those expressions into equation (C.10),

ω 〈〈ck, d†〉〉ω = εk 〈〈ck, d†〉〉ω + Vk 〈〈d, d†〉〉ω (C.15)

〈〈ck, d†〉〉ω = Vk
ω − εk

〈〈d, d†〉〉ω (C.16)

and insert the expression for 〈〈ck, d†〉〉ω into equation (C.9).

〈〈[d,Hhyb]−, d†〉〉ω =
∑

k∈1.BZ

V 2
k

ω − εk
〈〈d, d†〉〉ω (C.17)

By inserting equations (C.7), (C.8) and (C.17) into equation (C.2), we arrive at an
expression for 〈〈d, d†〉〉ω:

〈〈d, d†〉〉ω = 1
ω − εd + µ−∑k

V 2
k

ω−εk
− Σimp(ω)

= 1
ω − εd + µ−∆(ω)− Σimp(ω) ,

(C.18)

where ∆(ω) is the hybridization function defined as

∆(ω) ≡
∑

k∈1.BZ

V 2
k

ω − εk
. (C.19)
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D. NRG transformation

D.1. Hamiltonian
H = Himp +Hbath +Hhyb

Himp: Impurity Hamiltonian, small dimension, must be exactly diagonalizable. d(†)
i are

the annihilation (creation) operators of impurity states |i〉. The exact form of Himp is
arbitrary.
Hbath: bath Hamiltonian, must be non-interacting and can thus be written as:

Hbath =
∑

k∈1.BZ
ν

εk,νc
†
k,νck,ν

c
(†)
k,ν are annihilation (creation) operators of bath electron states |k, ν〉 with momentum
k and of type ν , which is a combination of bath and spin index. εk,ν is the dispersion
relation of bath electrons of type ν. εk,ν ∈ [D−ν , D+

ν ], D−ν < 0 and D+
ν > 0, the chemical

potential is set to 0.
Hhyb: Hybridization of bath and impurity, describes hopping from bath to impurity and
vice versa:

Hhyb =
∑

k∈1.BZ
ν,i

V ν,i
k

(
d†ick,ν + c†k,νdi

)

V ν,i
k is the hopping amplitude between impurity states |i〉 and bath states |k, ν〉.

D.2. Logarithmic Discretization
The energy-axis of each band ν is now discretized with exponentially increasing resolu-
tion near the chemical potential. For that we first define: Dν = min{|D−ν |, |D+

ν |} and
a discretization factor Λ > 1. We now define energy intervals Iλn,ν with λ ∈ {+,−} and
n ∈ N:

I−1,ν = [D−ν ,−DνΛ−1); n > 1 : I−n,ν = [−DνΛ−n+1,−DνΛ−n)

I+
1,ν = (DνΛ−1, D+

ν ]; n > 1 : I+
n,ν = (DνΛ−n, DνΛ−n+1]

For n>1 one has |Iλn,ν | = DνΛ−n(Λ− 1) ∼ Λ−n.
The Hamiltonian has now the following form:

H = Himp +
∑
n,λ

∑
ν

∑
k∈1.BZ
εk,ν∈Iλn,ν

εk,νc
†
k,νck,ν +

∑
n,λ

∑
ν,i

∑
k∈1.BZ
εk,ν∈Iλn,ν

V ν,i
k

(
d†ick,ν + c†k,νdi

)
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D. NRG transformation

D.3. First Transformation
As we are interested in the effect of the impurity, we do not want to approximate the
Hybridization term. We will now search for a basis of the bath states in which only one
bath state per interval Iλn,ν couples to the impurity. For that we construct an orthogonal
transformation On,λ,ν

k,p,i with p ∈ Z and the following properties:
∑
p,i

On,λ,ν
k,p,i O

n,λ,ν

k̃,p,i
= δk,k̃

∑
k∈1.BZ
εk,ν∈Iλn,ν

On,λ,ν
k,p,i O

n,λ,ν

k,p̃,̃i
= δp,p̃δi,̃i

We now define a new basis with annihilation operators an,λ,νp,i :

an,λ,νp,i =
∑

k∈1.BZ
εk,ν∈Iλn,ν

On,λ,ν
k,p,i ck,ν

If the impurity should couple only to one of those states, i.e. the state with p=0, one
has V ν,i

k = γν,in,λO
n,λ,ν
k,0,i with (γν,in,λ)2 = ∑

k∈1.BZ
εk,ν∈Iλn,ν

|V ν,i
k |2. As the length of the intervals Iλn,ν

is ∼ Λ−n, γν,in,λ ∼ Λ−n2 , if V ν,i
k is of the same scale for all intervals. The Hybridization

then has the following form:

Hhyb =
∑
n,λ

∑
ν,i

∑
k∈1.BZ
εk,ν∈Iλn,ν

V ν,i
k

(
d†i
∑
p,̃i

On,λ,ν

k,p,̃i
an,λ,ν
p,̃i

+ h.c.
)

=
∑
n,λ

∑
ν,i

∑
p,̃i

γν,in,λ
(
d†iδp,0δi,̃ia

n,λ,ν

p,̃i
+ h.c.

)

=
∑
n,λ

∑
ν,i

γν,in,λ
(
d†ia

n,λ,ν
0,i + h.c.

)

=
∑
n,λ

∑
ν,i

γν,in,λ
(
d†ia

n,λ,ν
i + h.c.

)
with an,λ,ν0,i ≡ an,λ,νi .
The bath Hamiltonian transforms as follows:

Hbath =
∑
n,λ

∑
ν

∑
k∈1.BZ
εk,ν∈Iλn,ν

εk,ν
∑
p,i

On,λ,ν
k,p,i (an,λ,νp,i )†

∑
p̃,̃i

On,λ,ν

k,p̃,̃i
an,λ,ν
p̃,̃i

=
∑
n,λ

∑
ν

∑
k∈1.BZ
εk,ν∈Iλn,ν

∑
i

εk,ν |On,λ,ν
k,0,i |2(an,λ,ν0,i )†an,λ,ν0,i

︸ ︷︷ ︸
(1)
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+
∑
n,λ

∑
ν

∑
k∈1.BZ
εk,ν∈Iλn,ν

∑
p
p 6=0

∑
i

εk,ν |On,λ,ν
k,p,i |2(an,λ,νp,i )†an,λ,νp,i

︸ ︷︷ ︸
(2)

+
∑
n,λ

∑
ν

∑
k∈1.BZ
εk,ν∈Iλn,ν

∑
p,p̃
p6=p̃

∑
i,̃i
i 6=ĩ

εk,νO
n,λ,ν
k,p,i O

n,λ,ν

k,p̃,̃i
(an,λ,νp,i )†an,λ,ν

p̃,̃i

︸ ︷︷ ︸
(3)

(1) contains all states that interact directly with the impurity. The states in (2) only
interact indirectly with the impurity via (3). If the intervals Iλn,ν are not too big, one
gets εk,ν ' εν ≡ const. and therefore:∑

k∈1.BZ
εk,ν∈Iλn,ν

∑
p,p̃
p 6=p̃

∑
i,̃i
i 6=ĩ

εk,νO
n,λ,ν
k,p,i O

n,λ,ν

k,p̃,̃i
(an,λ,νp,i )†an,λ,ν

p̃,̃i

' εν
∑

k∈1.BZ
εk,ν∈Iλn,ν

∑
p,p̃
p6=p̃

∑
i,̃i
i 6=ĩ

On,λ,ν
k,p,i O

n,λ,ν

k,p̃,̃i
(an,λ,νp,i )†an,λ,ν

p̃,̃i

= εν
∑
p,p̃
p 6=p̃

∑
i,̃i
i 6=ĩ

δp,p̃δi,̃i(a
n,λ,ν
p,i )†an,λ,ν

p̃,̃i
= 0

Because of that we will neglect (3) and as (2) then does not couple to the impurity
at all we will also neglect (2). With the definition: ξn,λi,ν = ∑

k∈1.BZ
εk,ν∈Iλn,ν

εk,ν |On,λ,ν
k,0,i |2 =

∑
k∈1.BZ
εk,ν∈Iλn,ν

εk,ν
|V ν,i
k
|2

|γν,i
n,λ
|2
∼ Λ−n, one gets for the Hamiltonian:

H = Himp +
∑
n,λ

∑
ν,i

ξn,λi,ν (an,λ,νi )†an,λ,νi +
∑
n,λ

∑
ν,i

γν,in,λ
(
d†ia

n,λ,ν
i + h.c.

)

D.4. Second Transformation (mapping on semi-infinite
tight-binding-chain)

In a second transformation the Hamiltonian will be transformed to a semi-infinite tight-
binding-chain for iterative diagonalization. To do that, an orthogonal transformation
Uν,i
m,(n,λ) is defined so that with an,λ,νi = ∑∞

m=1 U
ν,i
m,(n,λ)f

ν,i
m the Hamiltonian has the fol-

lowing form:

H = Himp +
∑
ν,i

{
tν,i0 (d†if

ν,i
1 + h.c.) +

∞∑
m=1

tν,im ((f ν,im )†f ν,im+1 + h.c.) +
∞∑
m=1

εν,im (f ν,im )†f ν,im
}

The transformation Uν,i
m,(n,λ) is usually calculated iteratively for increasing m and the

resulting hopping amplitudes tν,im and site energies εν,im usually inherit the Λ−m2 and Λ−m
dependence from γν,in,λ and ξn,λi,ν , respectively.
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