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Quantum impurity problems can be solved using the numerical renormalization group (NRG), which involves
discretizing the free conduction electron system and mapping to a “Wilson chain.” It was shown recently
that Wilson chains for different electronic species can be interleaved by use of a modified discretization,
dramatically increasing the numerical efficiency of the RG scheme [Phys. Rev. B 89, 121105(R) (2014)]. Here we
systematically examine the accuracy and efficiency of the “interleaved” NRG (iNRG) method in the context of
the single impurity Anderson model, the two-channel Kondo model, and a three-channel Anderson-Hund model.
The performance of iNRG is explicitly compared with “standard” NRG (sNRG): when the average number of
states kept per iteration is the same in both calculations, the accuracy of iNRG is equivalent to that of sNRG but
the computational costs are significantly lower in iNRG when the same symmetries are exploited. Although iNRG
weakly breaks SU(N ) channel symmetry (if present), both accuracy and numerical cost are entirely competitive
with sNRG exploiting full symmetries. iNRG is therefore shown to be a viable and technically simple alternative
to sNRG for high-symmetry models. Moreover, iNRG can be used to solve a range of lower-symmetry multiband
problems that are inaccessible to sNRG.
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I. INTRODUCTION AND MOTIVATION

Quantum impurity problems are relevant to a range of
physical phenomena in which strong electron correlations
play a key role [1]. They describe a generic class of systems
comprising a few interacting degrees of freedom coupled
to a continuum bath of noninteracting conduction electrons.
The Kondo model [2] is the simplest exemplar, featuring a
single spin- 1

2 “impurity” coupled to a single spinful conduction
electron channel. The basic physics can be understood within
the renormalization group (RG) framework: the effective
impurity-bath coupling grows as the temperature/energy scale
is reduced. The RG flow from weak to strong coupling is
characterized by the Kondo temperature TK , which sets the
scale for onset of strong coupling physics and the dynamical
screening of the impurity spin by conduction electrons [1].

A detailed understanding of this problem was first obtained
using Wilson’s numerical renormalization group (NRG) [3–5].
The method involves discretization of the conduction electron
Hamiltonian, and mapping to a 1D tight-binding Wilson chain.
The transformation is defined so that the interacting impurity
subsystem couples to one end of the noninteracting Wilson
chain. A special form of the discretization is used that ensures
exponential decay of hopping matrix elements down the chain
[3]. This energy-scale separation justifies an RG scheme
based on successive diagonalization and truncation, starting
at the impurity subsystem and working down the chain. At
each step, a Wilson shell with dloc additional local quantum
degrees of freedom couples into the system, but only the
lowest NK eigenstates of the enlarged state space are kept after
diagonalization. This scheme ensures that the Fock space of
kept states does not increase exponentially with chain length,
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and allows the physics to be investigated at successively lower
energies.

The computational costs of using NRG scale exponentially
with the number of fermionic bands (distinct flavors), m,
involved in the quantum impurity model. The power and appli-
cability of NRG would be greatly improved if these numerical
costs could be reduced, since multiflavor quantum impurity
problems appear in a wide range of contexts. For example,
iron impurities in gold are described by a spin- 3

2 three-channel
Kondo model [6,7]; multiple impurities separated in real space
[8,9] or manipulated by STM [10] necessitate a multichannel
description, as do magnetic nanostructures [11]; single car-
bon nanotube quantum dots display entangled spin-orbital
SU(4) Kondo physics [12], while certain nanotube double
dot [13] and multilead semiconductor coupled dot devices
[14–16] are described by generalized two-channel models;
and nanowire/superconductor heterostructures hosting lead-
coupled Majorana fermions give rise to effective multichannel
topological Kondo models [17,18]. Furthermore, quantum
impurity problems appear as effective local models within
dynamical mean-field theory (DMFT) for correlated materials.
Multiorbital/band lattice models map to generalized multi-
channel impurity problems [19–21], and in cluster extensions
of DMFT, the number of bands of the effective impurity model
scales with the number of cluster sites [22].

There is thus much incentive to improve the efficiency
of NRG when dealing with multiflavor models. The present
paper aims to make a contribution towards this goal, by
offering a detailed analysis of a recently-proposed scheme of
“interleaving” the Wilson chains for different fermion flavors
[23]. Having a purely methodological focus, it is based on
well-studied physical models and is particularly addressed at
a readership of NRG practitioners. New physical applications
of iNRG are left for follow-up projects.

To set the scene, we first briefly summarize why the
numerical costs of NRG scale exponentially with m. For a
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given conduction electron discretization, the accuracy of the
calculation is controlled by the number of states retained or
kept at each step of the iterative RG scheme, NK. On the other
hand, the computational cost of an NRG run is controlled by the
total size of the Hilbert space to be diagonalized at each step,
Ntot = NK×dloc, which is the tensor product of the space of
states retained from the previous iteration (of dimension NK),
and the state space of a newly added Wilson shell (of dimension
dloc). The computational time for matrix diagonalization scales
as N3

tot, while the memory required scales as N2
tot. In Wilson’s

original “standard” NRG formulation [3] (sNRG), the local
dimension for a system with m distinct fermionic flavors
scales exponentially in m, dsNRG

loc = dm
f , with df the state space

dimension of a single flavor. For a single fermionic level,
it follows that df = 2, since it can be either occupied or
unoccupied. Commonly, quantum impurity models involve
Nc channels of spinful conduction electrons. In this case,
m = 2Nc, such that dsNRG

loc = 4Nc .
In fact, as the number m of flavors increases, the number NK

of states kept at each step of an NRG calculation must also be
increased to maintain the same accuracy (i.e., the same degree
of numerical convergence). We find that for converged sNRG
calculations, NK scales roughly exponentially with the number
of flavors, which we will indicate by writing NK ≡ N

(m)
K . This

scaling property is demonstrated explicitly in this paper.
Overall then, Ntot depends exponentially on m through both

NK and dloc in sNRG:

N sNRG
tot = N

(m)
K × dm

f . (1)

This exponential scaling imposes severe limitations on the
applicability of sNRG to treat quantum impurity problems
with several conduction electron channels. In practice, unless
large symmetries can be exploited, sNRG cannot be used for
problems with more than two spinful channels.

Two approaches have been developed to improve the
efficiency of NRG applied to multichannel quantum impurity
models. One approach exploits non-Abelian symmetries if
present: diagonalization of the NRG Hamiltonian at each
step can then be done in multiplet space rather than state
space, significantly reducing the matrix sizes and hence
computational cost.

From the very first sNRG studies of the Anderson im-
purity model [4], it was essential to exploit the SU(2) spin
symmetry so that the calculations could be performed with
the limited computational resources available at that time.
In Ref. [24], the use of SU(2) symmetries was incorporated
into the framework of the density-matrix (DM) NRG [25] to
obtain dynamical results for a symmetric two-channel model.
Finally, a generalized and flexible framework was pioneered
in Ref. [26], which now allows much larger symmetries to
be handled, including arbitrary non-Abelian symmetries. The
precise gain in computational efficiency with this scheme
naturally depends on the specific model and its symmetries;
its scope of application is of course limited when symmetry-
breaking perturbations (such as a magnetic field) are present.

A second, very different strategy has recently been pro-
posed in Ref. [23]. This “interleaved” NRG (iNRG) method,
described in detail in Sec. II, introduces slightly different
discretization schemes for conduction bands of different

electronic flavors, leading to inequivalent Wilson chains (even
for flavors related by symmetries of the bare model). For m

electronic flavors, the m Wilson chains are interleaved to form
a single generalized Wilson chain [23], which still has the
required property of exponential energy-scale separation down
the chain. The diagonalization and truncation step in iNRG is
then done separately after addition of each electron flavor,
rather than after addition of the entire “shell” of m flavors,
as in sNRG. In practice, we specify the truncation threshold
not by fixing the number of states to be kept, but by fixing a
truncation energy: all states with higher energies are discarded
at every step.

Full interleaving leads to a reduction of the local state
space from dsNRG

loc = dm
f in sNRG to d iNRG

loc = df in iNRG,
independent of m. However, it also raises the question as
to whether the truncation energy required to reach accurate,
well-converged results needs to be changed when switching
from sNRG to iNRG. One of the main conclusions of the
present paper is that it essentially does not change: an extensive
comparison of iNRG and sNRG results, obtained using
comparable discretization settings and exploiting the same
symmetries for both methods, shows that results of comparable
accuracy are obtained if on average the “same” truncation
energy is used (see Sec. II C for a detailed discussion).
Moreover, this implies that the number of states kept at a
given step is the same, on average, for both methods:

N iNRG
K � N sNRG

K ≡ N
(m)
K . (2)

We find that N
(m)
K still depends exponentially on m, as for

sNRG. Thus, for iNRG, the computational costs are governed
by

N iNRG
tot = N

(m)
K ×df , (3)

where the first factor N
(m)
K is essentially the same as that in

Eq. (1) for N sNRG
tot . However, the exponential dependence of

dloc on m in the second factor is entirely eliminated in iNRG.
As a result, when equivalent settings are used for both

methods, iNRG yields results of comparable accuracy as sNRG
at dramatically reduced numerical cost: computation times are
smaller by a factor of order (N sNRG

tot /N iNRG
tot )3 = d

3(m−1)
f , and

the required storage resources are smaller by a factor of order
d

2(m−1)
f .

Although dloc is smaller in iNRG than sNRG, an additional
minor cost is incurred in iNRG because the interleaved
Wilson chain is m times longer than the standard Wilson
chain (resulting in an additional linear increase in overall
computation time with m). Furthermore, fine tuning of bare
parameters is also necessary for effective restoration of broken
symmetries in cases where flavor symmetry-breaking is a
relevant perturbation, requiring multiple iNRG runs (the
exponentially rapid convergence in the number of runs is
discussed in Sec. IV E).

The conclusions summarized above are established in this
paper by a direct comparison of iNRG and sNRG for several
symmetric quantum impurity problems (specified in Sec. III)
with Nc = 1, 2, and 3 spinful conduction electron channels.
Within iNRG, we explore different ways of interleaving the
electronic flavors, and exploit all symmetries that remain after
interleaving. For each such iNRG calculation, we perform a
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corresponding sNRG calculation using the same symmetries,
a comparable discretization choice, and the same average
truncation energies, i.e., we adopt “equivalent settings.”
Moreover, for each model, we also perform a set of benchmark
calculations exploiting the full symmetries of the bare model,
serving as an absolute reference.

Our iNRG-sNRG comparison for equivalent settings fo-
cuses particularly on comparing their efficiency (Sec. IV C)
and their accuracy (Sec. IV D). We determine efficiency by
tracking representative CPU times. We gauge accuracy in
two ways: (i) deviations of numerically computed physical
quantities from certain exact results yield an absolute measure
of the accuracy of both methods; (ii) the discarded weight [27]
estimates the degree of numerical convergence of a given NRG
run (see also Sec. II D).

It may be surprising at first that the accuracy of iNRG and
sNRG are equivalent when using equivalent settings, since
iNRG involves significantly more truncation steps. This result
can, however, be rationalized by noting that the truncation
at each step of iNRG is less severe than in sNRG (fewer
states are discarded at any given step), producing a more fine-
grained RG description. For equivalent settings, iNRG clearly
outperforms sNRG in terms of efficiency because the state
space diagonalized at each step is much smaller in iNRG.
In fact, for the high-symmetry multiband models studied here,
iNRG is absolutely competitive even when compared to sNRG
calculations that exploit the full symmetry of the model.

This finding greatly increases the scope of possibilities
available for NRG treatments of multiband impurity models.
For models with high symmetries, both sNRG and iNRG
can be highly efficient methods. In such cases, iNRG is a
viable and technically simple alternative to sNRG. For models
having lower symmetries (for example, when a magnetic field
is applied, particle-hole symmetry is broken, or other channel
anisotropies are present), iNRG has a clear advantage over
sNRG.

In a pure renormalization group (RG) sense, the artificial
symmetry breaking, of course, is clearly also visible in the
resulting energy flow diagrams derived from finite-size spectra
[3–5]. There, a full RG step, which in sNRG requires two
iterations (e.g., to get from one even site to the next even
site), now requires 2m iNRG steps. Nevertheless, aside from
possible fine-tuning as discussed in Sec. IV E, this does not
affect the energy scales of different phases (fixed points) [23]
nor does it affect thermodynamical physical quantities of the
model of interest.

II. METHODS

The Hamiltonian of quantum impurity models has the form

Ĥ = Ĥimp + Ĥcpl({f̂0ν}) + Ĥbath . (4)

It describes an interacting “impurity” subsystem, Ĥimp, cou-
pled by Ĥcpl({f̂0ν}) to a bath of noninteracting conduction
electrons,

Ĥbath =
m∑

ν=1

∑
k

εkν ĉ
†
kν ĉkν, (5)

where ν = 1, . . . ,m labels the m distinct electron flavors,
and ĉ

†
kν creates an electron with a given flavor ν and

momentum k at energy εkν ∈ [−Dν,Dν]. The impurity is
taken to be located at real-space site r = 0, and coupled to
local bath sites f̂0ν = V −1

ν

∑
k Vkν ĉkν , with the normalization

factor |Vν |2 = ∑
k |Vkν |2. The density of bath states with

flavor ν at the impurity position is then given by ρν (ω) =∑
k |Vkν/Vν |2δ(ω − εkν), defined inside a band of half-width

Dν . We assume constant (momentum-independent) couplings
for which the density of bath states simplifies to a box
function, ρν (ω) = �(ω − |ε|)/(2Dν). When Nc channels of
spinful conduction electrons are involved, ν ≡ (α,σ ), where
α ∈ {1, . . . ,Nc} labels channels and σ ∈ {↑ , ↓} labels spins.

A. Standard Wilson chains

Within sNRG, Ĥbath is discretized and mapped onto a
1D tight-binding Wilson chain [3], consisting of m identical
“subchains,” one for each flavor. The subchains are constructed
as follows: first, each band ρν (ω) is divided up into energy
intervals with exponentially reducing width. The discretization
points are given by

ε±
nν(z) =

{±Dν n = 0,

±Dν �−n+zν n = 1,2, . . . ,
(6)

where � > 1 is a dimensionless discretization parameter,
and zν ∈ [0,1[ (defined modulo 1) is a continuous “twist”
parameter that shifts the discretization points. Conventionally,
the twist parameter is applied symmetrically to all electronic
flavors by choosing zν ≡ z. If desired, results of Nz separate
NRG runs with uniformly distributed z can be averaged to
remove certain discretization artifacts [28,29].

A discretized version of the continuous spectrum ρν (ω) is
obtained by replacing the electron density in each interval by
a single pole of the same total weight,

ρdisc
ν (ω,z) =

∞∑
n=0

∑
λ=±

γ λ
nν(z)δ

(
ω − ξλ

nν(z)
)
, (7)

where γ λ
nν(z) = ∫ ελ

nν (z)
ελ
n+1,ν (z)

dωρν (ω) gives the pole weights. The

pole positions, ξλ
nν(z), are determined from a differential

equation introduced in Ref. [30], which is based on the
condition that the original (continuous) bath density of states
is reproduced exactly in the limit Nz → ∞ after z averaging,
ρν(ω) = ∫ 1

0 dzρdisc
ν (ω,z). For constant density of states, we use

γ λ
nν(z) = Dν

{
1 − �z−1 n = 0(
1 − 1

�

)
�−n+z n = 1,2, . . .

, (8a)

ξλ
nν(z) = λ

γ λ
nν(z)

ln �

{+z n = 0
1 n = 1,2, . . .

. (8b)

The Wilson subchain for flavor ν is defined uniquely [3] as
the semi-infinite 1D tight-binding chain that reproduces the
discretized density of states ρdisc

ν (ω) at the terminal site. The
discretized bath is represented by the sum of all m Wilson
subchains, which together form the “full” Wilson chain, with
Hamiltonian

Ĥ disc
bath =

m∑
ν=1

∞∑
n=0

[(tnνf
†
n,νfn+1,ν + H.c.) + εnνf

†
n,νfn,ν], (9)
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The Wilson chain coefficients tnν and εnν are obtained in
practice by Lanczos tridiagonalization [5] [in contrast to the
index k in Eq. (5), n refers to sites of the Wilson chain].

Importantly, due to the logarithmic discretization, the
hopping matrix elements decay exponentially along each
subchain [3],

tnν/Dν ∼ �zν−n/2, (10)

for n 
 1, and as such depend on NRG discretization
parameters � and zν . For equal bandwidths Dν ≡ D and
constant zν ≡ z, there is an energy-scale separation between
sites with different n,

tn+1,ν/tnν

sNRG∼ �−1/2 . (11)

However, since the subchains are identical for sNRG, there
is no scale separation between different flavors with the same
site index n. Together, these flavors form “supersite” n of the
full Wilson chain: they all have the same characteristic energy
scale

ωn = a�−n/2 , (12)

(the constant a is chosen such that the rescaled hoppings
tn−1/ωn → 1 as n → ∞). As a consequence, all m subsites
of supersite n must be treated equivalently in a single step in
sNRG.

The discretized model Hamiltonian in Eqs. (4) and (9)
is diagonalized iteratively [3], starting at the impurity and
working down the chain in sNRG by adding an entire supersite
at each iteration n. The energy-scale separation embodied by
Eq. (11) justifies truncation at each step: the lowest NK states
are kept, forming a Wilson “supershell,” and the remaining
NK×(dm

f − 1) states are discarded. If the eigenenergies En of
supershell n are given in units of ωn (“rescaled units”), the
typical level spacing of the lowest-lying levels is of order 1.

B. Interleaved Wilson chains

We now turn to the iNRG method, introduced in Ref. [23].
Its key idea is to modify the discretization scheme in such a way
that energy-scale separation is achieved between all subsites
associated with the same supersite, as well as between different
supersites. The subsites from different subchains can then
be interleaved in a linear sequence, labeled by ñ ≡ (n,ν) =
m n + (ν − 1) = 0,1,2, . . . to form a single interleaved Wilson
chain, m times longer than the corresponding standard Wilson
chain [compare Figs. 1(a) and 1(b)]. The hopping matrix
element t̃ñ = t̃(n,ν) describes hopping between subsites of the
same flavor ν in adjacent supersites n and n + 1. For m > 1,
there is thus no “nearest-neighbor” hopping on the Wilson
chain as in sNRG. Importantly, t̃ñ progressively decreases as
ñ increases. To ensure a net rate of decrease equivalent to that
of a standard Wilson chain going from one supersite to the
next [see Eq. (11)], we have t̃ñ+m/t̃ñ ∝ �−1/2. Moreover, to
achieve uniform energy-scale separation along the interleaved
chain, this decrease should occur uniformly from one subsite to
the next [see Fig. 1(d)], with t̃ñ+1/t̃ñ ∝ �−1/(2m). By contrast,
sNRG amounts to keeping t̃ñ constant for all m subsites
associated with the same supersite [see Fig. 1(c)]. The above
behavior of t̃ñ can be achieved by choosing the twist parameter
zν differently for each conduction electron flavor ν, namely

sNR iG NRG

nν ñ
1 2 3 4 5↑1 1↓ 2↑ 2↓ 3 ↓↑ 3

NK

NK

log ωn log ω̃˜ω̃ñωn

0

dsNRG
loc = dm

f
diNRG
loc = df

sNRG iNRG

1 2 1 2 3 4 50

(a) (b)

(c) (d)

0

0 0 1 1 2 2

n = ñ =

∼ log tn−1 ∼ log t̃ñ−1

FIG. 1. Schematic illustration of standard (left) and interleaved
(right) Wilson chains, for a spinful single-channel model (m = 2).
(a) In sNRG, subsites for spin up (red) and spin down (blue) are
grouped into supersites (indicated by dashed boxes), which are
connected by nearest-neighbor hopping (thin lines). (b) In iNRG,
subsites are interleaved in linear fashion and hopping occurs between
next-nearest neighbors. n labels sNRG supersites, while ñ labels
iNRG subsites. (c) and (d) Depictions of the MPS-structure used
for sNRG and iNRG: boxes represent MPS tensors, vertical thin
legs represent local state spaces of dimension df , and thick diagonal
lines represent the state spaces obtained after diagonalizing a Wilson
shell and discarding all but the lowest NK states (the truncation
process is indicated by scissors). The matrix size to be diagonalized
is reduced from N sNRG

tot = NK×dm
f in sNRG to N iNRG

tot = NK×df in
iNRG. The vertical positions of the boxes reflect, on a logarithmic
scale, the characteristic energies ωn (sNRG) and ω̃ñ (iNRG) of each
shell. The additional energy-scale separation within each supershell
justifies the additional truncations in iNRG.

zν+1 = zν − 1/(2m). This leads to

t̃ñ+1

t̃ñ
= t̃n,ν+1

t̃nν

iNRG∼ �−1/(2m) ≡ �̃−1/2, (13)

with t̃n,m+1 = t̃n+1,1. Evidently, the effective discretization
parameter for iNRG is smaller than for sNRG, namely �̃ ≡
�1/m, thus generating scale separation from subsite to subsite
within a supersite. We choose zm = z, such that t̃(n,m) = tn, i.e.,
the iNRG hopping matrix element of the last (ν = m) subsite
of supersite n is identical to the sNRG hopping matrix element
for that supersite. Correspondingly, the characteristic energy
scale for subsite ñ of the interleaved Wilson chain is now

ω̃ñ = ã�̃−ñ/2 = a�̃−(m(n−1)+ν)/2 , (14)

where the requirement ω̃(n,m) = ωn (which follows from
t̃(n,m) = tn) fixes the prefactor as ã = a�̃(m−1)/2.

Scale separation within a given Wilson shell n is exploited
in iNRG by performing a truncation after the addition of each
new subsite (rather than only after an entire supersite of m

subsites has been added, as in sNRG). With a local state space
of d iNRG

loc = df , at each step NK states are kept (forming a
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Wilson subshell), and NK× (df − 1) (= NK for df = 2) states
are discarded.

If the eigenenergies Ẽñ of iNRG subshell ñ are measured in
rescaled units of ω̃ñ, the spacing of the lowest-lying levels is
again of order 1. In absolute units, however, the level spacing
in iNRG scales as the mth root compared with sNRG, because
the m subsites are added asymmetrically (one by one with
different hopping matrix elements) in iNRG, implying m times
more iteration steps that lift level degeneracies. iNRG therefore
constitutes a more fine-grained RG scheme, as illustrated in
Fig. 7 (compare the faint red and blue lines).

C. Truncation energy

In practice, the value of NK needed to reach a specified
degree of accuracy depends sensitively on the specific physical
model Hamiltonian, discretization scheme, and energy regime.
This type of dependence of the accuracy on various details
can be circumvented by using an energy-based truncation
strategy [27], which we also adopt in this paper: for a
given NRG calculation, we specify a fixed, dimensionless
truncation energy, to be called EsNRG

trunc or EiNRG
trunc , and keep only

those states whose absolute (not rescaled) energies lie below
EsNRG

abs-trunc = EsNRG
trunc ×ωn at iteration n of an sNRG calculation,

or below EiNRG
abs-trunc = EiNRG

trunc ×ω̃ñ at iteration ñ of an iNRG
calculation. Using this energy-based truncation scheme, NK

becomes a dynamical parameter that changes from iteration to
iteration in a given NRG run, in a way that depends on Etrunc,�,
and details of the particular model under consideration (Fig. 3
below shows an example of the resulting NK values as a
function of iteration number n).

When, in our numerical analysis below, we cite sNRG
values for the number of states NK and Ntot (or for the
corresponding number of symmetry multiplets, N∗

K and N∗
tot),

these will refer to the geometric average over adjacent even and
odd sNRG supershells chosen around a specified energy Eref

deep in the low-energy regime, where Eref  TK . Similarly,
the corresponding iNRG values refer to a geometric average
over all iNRG subshells associated with both even and odd
supershells near Eref .

In general, sNRG calculations performed for the same
choice of EsNRG

trunc yield results of comparable accuracy and de-
gree of convergence, which are to a large extent independent of
the specific model and discretization settings being considered.
We have confirmed this expectation for the models studied in
this paper, as discussed in detail in Sec. IV below. For sNRG,
the truncation energy is therefore the key quantity controlling
accuracy and convergence.

In fact, we find that this is true also for iNRG. Moreover,
we find that sNRG and iNRG calculations yield results with
comparable accuracy and convergence properties, provided
that their truncation energies are related in such a manner
that the resulting N iNRG

K and N sNRG
K values are equal “on

average,” i.e., after geometrically averaging over all subsites
in a neighboring pair of even and odd supersites. We find
empirically that this is achieved by choosing

EiNRG
trunc = EsNRG

trunc �
m−1
4m , (15)

which implies that the parameter EiNRG
trunc is larger than the

parameter EsNRG
trunc . Nevertheless, the phrase “equivalent set-

tings” includes this choice. By contrast, the simpler choice
EiNRG

trunc = EsNRG
trunc leads to a smaller average N iNRG

K than N sNRG
K .

In Appendix A, we present a heuristic justification for
Eq. (15). In Sec. IV, sNRG and iNRG results demonstrate
explicitly that the choice of Eq. (15) leads to the desired equiv-
alence of the number of kept states, accuracy, and convergence.
In the rest of this paper, we will specify truncation energies
in relation to the usual sNRG value Etrunc ≡ EsNRG

trunc , taking
it to be understood that the corresponding EiNRG

trunc is given by
Eq. (15).

D. Discarded weight

The convergence of sNRG and iNRG calculations, with a
given truncation threshold Etrunc and discretization parameter
�, can be analyzed for each model in terms of the estimated
discarded weight [27] δρdisc. As with the density matrix renor-
malization group (DMRG), the decay of the eigenspectrum of
site-specific reduced density matrices, built from the ground
state space of later iterations, can be used as a quantitative
(a posteriori) measure of the convergence as proposed in
Ref. [27]. However, in contrast to Ref. [27], where only the
SIAM with � = 2 was investigated, we wish to compare NRG
calculations performed using a range of different (effective)
discretization parameters � (or �̃) in different models. Since
the truncation in NRG is decided on the basis of an energy
threshold, in this context it is more natural to quantify the
contributions of high-lying energy eigenstates to reduced
density matrices, rather than analyzing the eigenspectrum of
the reduced density matrices as in Ref. [27]. The details of our
modified approach are presented in Appendix B.

By examining the decay of the discarded weight δρdisc with
increasing Etrunc, and observing the corresponding conver-
gence of physical quantities, we have found that calculations
can be considered converged when δρdisc < 10−6. An impor-
tant advantage of defining the discarded weight in terms of
the energy eigenbasis is that δρdisc, evaluated at fixed Etrunc, is
rather insensitive to changing the discretization parameter �.

The discarded weight analysis is particularly important in
benchmarking the iNRG, because the interleaving approach
appears to weaken the energy scale separation (�̃ < �). One
might then expect [23] that a larger bare � would be required
in iNRG compared with sNRG to achieve convergence with
the same discarded weight. However, our detailed study of
discarded weights in Sec. IV in fact reveals the same degree of
convergence for iNRG and sNRG when the same � and Etrunc

are used.

E. Numerical implementation

Both sNRG and iNRG can be formulated within the
framework of matrix product states (MPS), which allows for
a systematic and efficient numerical implementation. Here
we employ the unified tensor representation of the QSpace
approach introduced in Ref. [26], in which Abelian and non-
Abelian symmetries can be implemented on a generic level.
The state space is labeled in terms of the symmetry eigenbasis,
and the Wigner-Eckart theorem is used to determine the matrix
representation of irreducible operator sets. Based on this, every
(rank-3) tensor object relevant to NRG calculations splits into a
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tensor product of two objects that have identical data structures
within the QSpace approach, operating respectively on the
reduced multiplet space and the Clebsch-Gordan coefficient
space. Matrix diagonalization, for example, is then only
performed in the reduced multiplet space, resulting in an
enormous gain of numerical efficiency.

All correlation functions presented in Sec. IV are calculated
with the full-density-matrix (fdm-)NRG approach of Ref. [31].
It is established on a complete basis set [32], constructed from
the discarded states of all NRG iterations. Since iNRG also
produces a matrix-product-state similar to sNRG, from the
point of view of fdm-NRG, iNRG cannot be distinguished
from sNRG. Therefore the intrinsic multishell approach of
fdm-NRG to finite temperature has the major advantage here
that the subshell structure of iNRG poses no complications
and is automatically taken care of. Spectral functions for
the discretized model then are given from the Lehmann
representation as a sum of poles, and can be calculated
accurately at zero or arbitrary finite temperature. Continuous
spectra are obtained by broadening the discrete data with a
standard log-Gaussian kernel of frequency-dependent width
[5,31].

III. MODELS

In this paper, we study three representative models with
Nc = 1, 2, and 3 spinful conduction electron channels. In
Sec. IV, iNRG and sNRG are used to solve these models;
the accuracy and efficiency of the two methods are then
compared. Here we study models with rather high symmetries;
sNRG calculations can exploit either the full symmetries of
the model, or lower symmetries if desired for comparison with
iNRG. We therefore assume symmetry between the bands in
the following, with half-bandwidth Dν ≡ D = 1 independent
of ν. This also sets the half-bandwidth as the unit of energy.

A. Single-impurity Anderson model (Nc = 1)

The single impurity Anderson model [1] (SIAM) describes
a single correlated quantum level,

Ĥ SIAM
imp =

∑
ν

εdν d̂
†
ν d̂ν + Ud̂

†
↑d̂↑d̂

†
↓d̂↓, (16)

tunnel-coupled to a single spinful channel of conduction
electrons Ĥbath [Eq. (5) with m = 2] via

Ĥcpl({f̂0ν}) = ∑
kν(Vkνd̂

†
ν ĉkν + H.c.) (17)

≡
√

2D�
π

∑
ν(d̂†

ν f̂0ν + H.c.), (18)

where ν ≡ σ ∈ {↑ , ↓} = {+,−}. Here, d̂†
ν creates an electron

of flavor ν on the impurity, with energy εdσ = εd + σh/2
in a Zeeman field h. For constant, flavor-independent cou-
plings, Vkν , the hybridization strength is given by �ν(ε) =
π |Vν |2ρν(ε) ≡ ��(D − |ε|) within a band of half-width D ≡
1.

The SIAM possesses an SU(2) spin symmetry for h = 0, to
be denoted by SU(2)spin, which reduces to U(1)spin for h �= 0.
Moreover, at particle-hole symmetry, εd = −U/2, the SIAM
possesses an SU(2) symmetry involving transformations be-

tween particles and holes, to be called SU(2)charge. This reduces
to U(1)charge for εd �= −U/2. Depending on the symmetries
allowed by the choice of model parameters, sNRG can exploit
any combination of these spin and charge symmetries. In
this paper, we set h=0 and εd = −U/2, and employ either
U(1)spin×U(1)charge or SU(2)spin×SU(2)charge symmetries.

Within iNRG, we can interleave Wilson chains for the
ν =↑ and ↓ conduction electrons species, discretizing these
separately for a given � using two different z shifts, z↑ =
z + 1

4 and z↓ = z. Since this “spin-interleaved” scheme (spin-
iNRG) artificially breaks the bare symmetry between spin
up and down, it reduces the SU(2)spin symmetry to U(1)spin.
Furthermore, SU(2)charge is reduced to U(1)charge in spin-iNRG,
as the irreducible operator set for SU(2)charge mixes spin
components, and therefore cannot be defined within the state
space of a single fixed-spin subsite. Consequently, spin-
iNRG studies of the SIAM can employ U(1)spin×U(1)charge
symmetries only.

B. Two-channel Kondo model (Nc = 2)

The two-channel Kondo model (2CKM) [33] features a
single spin- 1

2 impurity with spin Ŝ 1
2

coupled by antiferromag-
netic Heisenberg exchange to two spinful conduction electron
channels [Eq. (5) with m = 4]

Ĥ 2CKM
0 =

∑
α

JαŜ 1
2
· ŝα + hSz

1
2
, (19)

where ŝα = ∑
σσ ′ f̂

†
0ασ

�σσσ ′
2 f̂0ασ ′ is the conduction electron spin

density at the impurity in channel α = 1,2 (and �σ is a vector
of Pauli matrices).

In the spin sector, the 2CKM possesses an SU(2)spin
symmetry for h = 0, and an U(1)spin symmetry for h �= 0.
In the case of particle-hole and channel symmetry (J1 = J2),
the m = 4 flavors possess the enlarged symplectic symmetry
Sp(4)charge,channel. This reduces to [SU(2)charge]2 if channel
symmetry is broken (J1 �= J2), and further to [U(1)charge]2

if particle-hole symmetry is broken (not considered here).
Depending on the symmetries allowed by the choice of model
parameters, sNRG can exploit any combination of these spin
and charge symmetries. We will here set h = 0 and employ
either the U(1)spin×[U(1)charge]2,SU(2)spin×[SU(2)charge]2, or
SU(2)spin×Sp(4)charge,channel symmetries.

Within iNRG, the four electron flavors can be interleaved
in several different ways. For example, using spin-iNRG (as
described above, with zα,↑ = z + 1

4 and zα,↓ = z), the spin
symmetry is reduced to U(1)spin. Although z1,σ = z2,σ , this can
only be combined with U(1)charge symmetries in the particle
sector.

Alternatively, one can interleave the spinful α = 1,2
channels, discretizing them separately using zα=1,σ = z + 1

4
and zα=2,σ = z (but zα,↑ = zα,↓). This “channel-interleaved”
scheme (channel-iNRG) breaks the symmetry between chan-
nel 1 and 2 (even if J1 = J2) and hence the full Sp(4)charge,channel

symmetry is broken. However, [SU(2)charge]2 symmetry can
still be exploited, in combination with either SU(2)spin or
U(1)spin.

In the most asymmetric case, all four electron flavors
of the 2CKM are interleaved, using z1↑ = z + 3

8 ,z1,↓ = z +
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2
8 ,z2,↑ = z + 1

8 ,z2,↓ = z. The maximum symmetry consistent
with this “flavor-interleaved” scheme (flavor-iNRG) is
U(1)spin×[U(1)charge]2. In this paper, our iNRG studies of the
2CKM will employ the latter flavor-iNRG scheme, and also
channel-iNRG with SU(2)spin×[SU(2)charge]2 symmetry.

The point J1ρ1(0) = J2ρ2(0) is a critical point of the 2CKM,
characterized by a frustration of screening that gives rise to
fragile non-Fermi liquid physics [33,34]. Any finite channel
anisotropy J1ρ1(0) �= J2ρ2(0) produces a crossover [34,35] to
a Fermi liquid ground state, corresponding to Kondo strong
coupling between the impurity and channel α = 1 (or 2) for
(J1ρ1(0))/(J2ρ2(0)) > 1 (or < 1). Because the interleaving in
iNRG spoils the channel symmetry [ρdisc

1 (0) �= ρdisc
2 (0)] even

in the isotropic case J1 = J2, the critical point of the 2CKM
is spuriously destabilized. Fine-tuning of the ratio J1/J2 ≈ 1
must then be carried out to access the critical physics [23].
This is discussed further in Sec. IV E.

C. Anderson-Hund model (Nc = 3)

Finally, we consider the particle-hole symmetric three-
channel Anderson-Hund model (3CAHM) of Refs. [7,26,36].
The isolated ‘impurity’, comprising α = 1,2,3 orbitals, each
with spin σ =↑ , ↓, is described by

Ĥ 3CAHM
imp = −JH Ŝ2, (20)

where Ŝ = ∑
α

∑
σ,σ ′ d†

ασ
�σσσ ′

2 dασ ′ is the total impurity spin.
Electrons of different impurity orbitals interact through the
Hund coupling, JH , in Eq. (20).

Each impurity orbital with flavor ν = (α,σ ) is tunnel-
coupled to a conduction electron band of the same flavor,
via Eq. (18); overall there are m = 6 electronic flavors. The
large local state space dsNRG

loc = 64 for the 3CAHM means that
iterative diagonalization in state space (rather than multiplet
space) is practically intractable for sNRG. However, this
3CAHM possesses large symmetries that can be optimally
exploited in sNRG: SU(2)spin symmetry in the spin sector, and
Sp(6)charge,channel symmetry in the particle-hole/channel sector.
The 64 states describing a single Wilson supersite reduce to a
mere four multiplets in this case.

The Sp(6)charge,channel symmetry reduces to U(1)charge×
SU(3)channel if particle-hole symmetry is broken, or to
[SU(2)charge]3 if channel symmetry is broken. Exploiting one
of these three large symmetries is essential when using sNRG.
For iNRG, one again has several options for interleaving.
We will consider channel-iNRG with SU(2)spin×[SU(2)charge]3

symmetry, and full flavor-iNRG with U(1)spin×[U(1)charge]3

symmetry. A major advantage of iNRG is that such models
can be solved even when no large symmetries are available
[cf. yellow dashed curve in Fig. 5(b) that shows the spectral
function of the 3CAHM calculated with iNRG and U(1)spin×
[U(1)charge]3 symmetry].

IV. RESULTS

In the following, we present a comprehensive comparison
of iNRG and sNRG for the three models introduced in Sec. III.
We begin in Sec. IV A by summarizing our main conclusions,
referring only briefly to the relevant figures. We then offer a
detailed analysis of the figures to substantiate our main results

in the subsequent sections. In particular, we compare iNRG
and sNRG by examining the number of kept multiplets in
Sec. IV B, the efficiency of the calculations in Sec. IV C, and
the accuracy/convergence of the results in Sec. IV D. The take-
home message is that iNRG offers significant improvements
in efficiency without compromising accuracy and convergence
properties.

A. Overview

We perform calculations in which, for a given model, dis-
cretization parameter �, and choice of exploited symmetries,
the truncation energies of iNRG and sNRG are related by
Eq. (15) . This use of equivalent settings allows for optimal
comparability, because it ensures that, on average, the same
number of states are kept at each iteration in both methods.
The number of kept multiplets, N∗

K, is therefore also the same
on average—as demonstrated explicitly in Figs. 2(a)–2(c)
and 3.

Number of multiplets. N∗
K, and thus also NK, is found to

increase roughly exponentially with Etrunc and also with the
number of conduction electron channels Nc [Figs. 2(a)–2(c)
and 4]. This scaling is common to both iNRG and sNRG.
It simply reflects the fact that the number of many-body
eigenstates of a gapless system grows exponentially with
energy, with an exponent that increases linearly with Nc.
Since we exploit symmetries and conserved quantities in the
calculations, the number of kept multiplets N∗

K is far smaller
than the number of kept states NK in both iNRG and sNRG.
When iNRG and sNRG use the same symmetry setting, the
total number of multiplets to be diagonalized at each iteration,
N∗

tot, is far smaller for iNRG than sNRG [Figs. 2(d)–2(f)],
due to the intermediate truncations in iNRG. However, iNRG
cannot always exploit the full model symmetries due to
the interleaving process. As a consequence there can be an
efficiency tradeoff in iNRG: the advantage of a reduced local
state space comes at the cost of fewer symmetries being
available to exploit. This is shown by Figs. 2(d)–2(f), where
N∗

tot for the most efficient iNRG calculation is essentially the
same as that of the best sNRG calculation (exploiting all
symmetries) in each case [in fact, N∗

tot is actually lower in
sNRG for the SIAM in panel (d)].

Efficiency. The total CPU time for a given iNRG calculation
is smaller than that of the corresponding sNRG calculation
with equivalent settings [Figs. 2(g)–2(i)]. In fact, with � = 4,
spin-iNRG for the SIAM, spin and channel-iNRG for the
2CKM and channel-iNRG calculations for the 3CAHM are
also more efficient than the best sNRG calculations exploiting
full symmetries. Even though N∗

tot is typically similar or even
lower for the best sNRG compared to the best iNRG cal-
culations, the book-keeping overheads involved in exploiting
symmetries can outweigh the potential gains of doing so (this
is especially pronounced for smaller Etrunc). In general, the
gain in iNRG efficiency becomes more significant as the
number of flavors increases. Importantly, some low-symmetry,
many-band models that are prohibitively expensive for sNRG
can still be tackled with iNRG.

Accuracy and convergence. Remarkably, these gains in
efficiency do not compromise accuracy and convergence prop-
erties. To establish this, we performed extensive comparisons
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2

Λ = 2.0
channel-iNRG

SU(2)spin × [SU(2)charge]
2
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Λ = 4.0
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SU(2)spin × Sp(4)charge,channel

flavor-iNRG
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3
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SU(2)spin × [SU(2)charge]

3

sNRG
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Λ = 4.0
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SIAM : U = 0.08, εd = −0.04, Γ = 0.01 2CKM : J1 = 0.25 3CAHM : JH = 30, Γ = 10
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FIG. 2. Comparison of sNRG and iNRG for three models: SIAM (left column), 2CKM (middle column), and 3CAHM (right column).
(a)–(c) The number of kept multiplets, N∗

K; (d)–(f) the total number of multiplets generated during an NRG step, N∗
tot; (g)–(i) the total CPU

time for one NRG run; (j)–(l) the relative deviations δA(0)/A(0) of correlation functions at the Fermi energy ω = 0 from their exact values [cf.
Eqs. (21)]; and (m)–(o) the discarded weight δρdisc (the horizontal dashed lines indicate the convergence threshold). All quantities (computable
with a maximum memory of 128 GB) are plotted versus Etrunc (≡ EsNRG

trunc ), for � = 1.7 (crosses), 2.0 (triangles), and 4.0 (circles). Each
symmetry setting is identified by a particular color in iNRG and sNRG. iNRG results have been geometrically averaged over all interleaved
flavors. Data for N∗

K and N∗
tot have been geometrically averaged over even and odd Wilson shells at an energy scale Eref = 5 × 10−8D  TK .

We used z = 0 in all cases except for (j)–(l), where data for z = 0 and 0.5 have been averaged. An exception is the flavor-iNRG data point at
Etrunc = 7 in (l), which was obtained for z = 0 without z averaging (z = 0.5 exceeded memory resources). In (j)–(l), sNRG results with the
same � but different symmetry settings coincide.
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between iNRG and sNRG using equivalent settings [see
Figs. 2(j)–2(l), 2(m)–2(o), and 5].

The accuracy of iNRG was established directly, by mon-
itoring the deviation of calculated physical quantities from
certain exact results. In particular, we studied the value of
the impurity spectral function (or t matrix) at the Fermi level,
relative to known analytic results [Figs. 2(j)–2(l)]. The quality
of the results improves with increasing Etrunc as expected,
and exact results are reproduced to within a few percent for
Etrunc > 7 in both sNRG and iNRG. This conclusion is further
supported by comparisons of the full frequency dependence of
impurity spectral functions in Fig. 5.

Furthermore, our analysis of the discarded weight shows
that both iNRG and sNRG calculations are effectively con-
verged for Etrunc > 7 [Figs. 2(m)–2(o)]. This demonstrates
explicitly that the states discarded at intermediate steps in
iNRG do not contribute appreciably to low-energy eigenstates
at later iterations, thus validating the more fine-grained RG
scheme employed by iNRG.

Artificially broken symmetries. Finally, we examined the
tuning protocol employed in iNRG to restore channel symme-
tries that are broken artificially by the interleaved discretization
(see Fig. 6). Such channel symmetries are of course not
always relevant perturbations (an example is the 3CAHM,
where the same basic low-energy physics arises even in the
channel-anisotropic case). The worst-case scenario for iNRG
emerges in the vicinity of a quantum critical point, where
channel asymmetries generate a relevant RG flow to a different
fixed point [33,34]. The classic exemplar is the 2CKM, whose
frustrated critical point occurs precisely at J1ρ1(0) = J2ρ2(0).
In iNRG, where ρdisc

1 (0) �= ρdisc
2 (0), the ratio J1/J2 must be

tuned to access this physics, but is found in practice to deviate
from its exact value by only ∼1%. We also show that the critical
point can be located exponentially rapidly in the number of
iNRG runs, keeping calculation overheads to a minimum.

B. Number of kept multiplets

The key difference between sNRG and iNRG is the size
of the local state space, i.e., dsNRG

loc = dm
f versus d iNRG

loc = df .
However, to compare fairly the relative efficiency, we must
ensure that both calculations are of comparable accuracy. By
choosing the “same” truncation energies in iNRG and sNRG
[via Eq. (15)], a comparable number of multiplets is kept in
both calculations, as argued in Sec. II C. Here we present data
to substantiate this. Moreover, the consequence of this choice
is that sNRG and iNRG calculations are of equivalent accuracy,
as demonstrated explicitly below in Sec. IV D.

Figures 2(a) and 2(c) show N∗
K obtained for the SIAM,

2CKM, and 3CAHM, with several different choices of �, and
employing various symmetry settings. In all cases, we find that
N

∗,iNRG
K and N

∗,sNRG
K are comparable when the same symmetry

setting is used. However, note that the different iNRG subshells
contribute unequally to their geometric average, because the
absolute truncation energy changes from subshell to subshell
in iNRG, as explained in Sec. II C. This is illustrated in Fig. 3,
which shows N∗

K as function of Wilson shell index n for the
2CKM. For iNRG, the number of multiplets kept after adding
the first channel (red dashed line) is smaller than the number
of multiplets kept after adding the second channel (red dash-

N
∗ K

n

Λ = 4, Etrunc = 8

2CKM : J1 = 0.25

300

350

400

10 20 30 40

SU(2)spin × [SU(2)charge]
2

sNRG

channel − iNRG

iNRG (channel 1)

iNRG (channel 2)

FIG. 3. Number of kept multiplets N∗
K vs Wilson shell index n

for the 2CKM within the SU(2)spin×[SU(2)charge]2 symmetry setting.
For iNRG (red), the number of multiplets kept after adding channel
1 (dashed) or channel 2 (dash-dotted) are shown separately, as well
as their geometric average (solid). sNRG results are shown in blue
for comparison. All results are geometrically averaged over even and
odd iterations.

dotted), but their geometric average (red solid) is rather similar
to the number of kept multiplets in the corresponding sNRG
calculation (blue solid line) for all n.

Furthermore, Figs. 2(a) and 2(c) confirm that the total
number of kept multiplets N∗

K depends exponentially on Etrunc,
with a growth exponent that increases with Nc [the slope of
the line increases from Figs. 2(a) to 2(c)]. This behavior is
expected for the many-body eigenstates of a gapless system,
whose number increases exponentially with energy.

Naturally, exploiting larger symmetries means that fewer
multiplets are kept for a given Etrunc. [For example, in Fig. 2(c)
for � = 4, the black circles lie well below the red and blue
circles.] This reduction of the multiplet space arises by splitting
off large Clebsch-Gordan spaces. We also note that smaller
�, which reduces energy-scale separation between iterations,
leads to larger N∗

K, and to a faster increase of N∗
K with Etrunc.

[For example, in Fig. 2(b), the blue and red triangles for � = 2
lie above the blue and red circles for � = 4, and rise with a
greater slope.]

Furthermore, the number of kept states, NK (which is
independent of the symmetry settings used), increases roughly
exponentially with the number of conduction electron chan-
nels, m. This is confirmed in Fig. 4, which shows NK for the
multichannel Kondo model (Nc-CKM) and the multichannel
Anderson-Hund model (Nc-CAHM), with Nc = 1,2,3 spinful
channels [these models are the generalizations of Eqs. (19)
and (20) to the case of Nc channels]. Figure 4 also shows that
the description of certain multichannel fixed points requires
a greater number of kept states than others, reflecting their
relative complexity. For example, the frustrated non-Fermi
liquid fixed points of the NcCKM (with Nc � 2) require a
larger NK than the corresponding Fermi liquid fixed points of
the NcCAHM at Etrunc = 7.

These results confirm that the exponential scaling of
required computational resources with m in both sNRG
and iNRG cannot be avoided—it simply reflects elementary
state-counting properties for gapless multichannel systems.
However, the efficiency of the calculation for a given model
can be substantially improved by exploiting symmetries in
sNRG, or by interleaving flavors in iNRG, as now discussed.
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FIG. 4. Number of kept states NK at the low-energy fixed point
of the NcCAHM (black) and NcCKM (blue), showing a roughly
exponential increase with the number of channels, Nc. Results were
obtained with sNRG and have been geometrically averaged over even
and odd Wilson shells at energy scale Eref = 5 × 10−8D  TK .

C. Efficiency

The total number of multiplets, N∗
tot, generated in NRG near

the low-energy fixed point of the three models, is plotted as
a function of Etrunc in Figs. 2(d)–2(f). As with N∗

K, the size
of N∗

tot depends on the particular model under consideration,
�, Etrunc, and the symmetry setting used. Additionally, we now
also see a dramatic difference between iNRG and sNRG. When
the same symmetry setting is used, N

∗,iNRG
tot is far smaller than

N
∗,sNRG
tot , because d iNRG

loc is smaller than dsNRG
loc . [For example,

the red data points lie clearly below the blue data points in
Fig. 2(f) for the 3CAHM and in Fig. 2(e) for the 2CKM.]
Moreover, then also the ratio N

∗,sNRG
tot /N

∗,iNRG
tot grows expo-

nentially with the number of interleaved flavors. For a given
model and symmetry, N

∗,sNRG
tot /N

∗,iNRG
tot would therefore be

larger for full flavor-iNRG than channel-iNRG. However, note
that in general N∗

tot itself might be smallest for channel-iNRG,
meaning that the optimal strategy might involve keeping some
symmetries at the expense of interleaving fewer flavors. An
example of this is seen clearly for the 2CKM in Figs. 2(e) and
2(f), where red dots lie below orange dots.

These trends in N∗
tot are reflected in the CPU time plotted in

Figs. 2(g)–2(i), which is the ultimate measure of calculation
efficiency. The total CPU time for an NRG calculation is
generally dominated by matrix diagonalizations (especially
for large Etrunc), and therefore scales as ∼(Ntot)3. Since N∗

K
and N∗

tot grow with Etrunc, so too does the CPU time – the
faster so with smaller �. For small Etrunc, however, numerical
overheads can also have a noticeable influence. [For example,
in Fig. 2(e) for N∗

tot, the green and orange circle points for
� = 4 show a separation that is quite large and approximately
constant; by contrast, Fig. 2(h) shows an increasing difference
in the CPU time with increasing Etrunc. At large Etrunc, the
difference is essentially attributable to the difference in N∗

tot
alone. At small Etrunc, the numerical overhead in iNRG can
presumably be attributed to larger Wilson chain lengths.]

The maximum efficiency gain of iNRG over sNRG in terms
of CPU time occurs if no symmetries are used in either iNRG
or sNRG. This gain is then of order ∼d

3(m−1)
f /m, where the

factor of 1/m arises because the interleaved Wilson chain is
m times longer than the standard Wilson chain. Similarly, the
corresponding gain in terms of memory resources is given by

∼d
2(m−1)
f , here without the factor of 1/m, since memory is

required on the level of a specific NRG iteration rather than
for the whole calculation. The following table summarizes the
theoretical maximum gain relative to sNRG (in the absence
of symmetries) obtained with channel-iNRG and flavor-iNRG
for models with Nc = 1,2,3:

No. spinful No. channels Max. speedup Max. gain
channels interleaved factor (CPU) in memory
Nc = 1 Nν=σ = 2 4 4
Nc = 2 Nν=α = 2 32 16

Nν=ασ = 4 128 64
Nc = 3 Nν=α = 3 1365 256

Nν=ασ = 6 5461 1024

When symmetries are exploited in the calculations, the
efficiency gain for iNRG over sNRG is reduced, relative to the
value cited in the above table, because the local Hilbert space
of each supersite in sNRG (or subsite in iNRG) is organized
into multiplets instead of states. The factor df

3(m−1)/m, which
was based on a state-counting argument, is then effectively
reduced. Note, however, that handling and bookkeeping of
Clebsch-Gordan coefficient spaces also introduces a numerical
overhead. For very small Etrunc, this can even outweigh
the efficiency gains of exploiting symmetries. However, the
symmetry gains grow with increasing Etrunc (which leads to
increasingly large block sizes for reduced matrix elements),
and eventually always dominate compared to book-keeping
overheads. [For example, in Fig. 2(h) for � = 4, the green
circles lie below the blue circles for small Etrunc, but cross
at Etrunc � 6. For large Etrunc, the most efficient sNRG
calculations are those that exploit the largest symmetries (the
black circles start crossing the blue circles at Etrunc = 10).]

Ultimately, when the same symmetries are used for both
calculations, iNRG clearly requires far smaller CPU time than
sNRG for a given � and Etrunc, see Figs. 2(h) and 2(i). This
effect becomes more pronounced with increasing Etrunc.

The models considered here have high intrinsic symmetries,
which can be more fully exploited in sNRG than iNRG.
The “best case” scenario for sNRG, in which the full model
symmetries are exploited, are shown as the blue data points in
the first column of Fig. 2 and as black points in the second
and third columns of Fig. 2. For Nc = 1 [panel (d)], this
optimal sNRG generates a slightly smaller N∗

tot than the best
corresponding iNRG calculation (for a given � and Etrunc).
However, when the number of channels is increased to Nc = 2
or 3 [panels (e) and (f)], we find similar N∗

tot for the best iNRG
calculations (red dots) and the best sNRG calculations (black
dots). Nevertheless, for the range of Etrunc values used here,
the total CPU times [panels (h) and (i)] for � = 4 calculations
employing channel-iNRG (red dots) are still lower than for
sNRG (black dots), even when full symmetries are exploited in
sNRG (the difference is attributable to additional bookkeeping
costs incurred when handling large symmetries in sNRG).

The benefits of exploiting symmetries increase for larger
N∗

tot and hence Etrunc. As a consequence, we find that the CPU
time increases with Etrunc slower for full-symmetry sNRG than
for iNRG. For example, for Nc = 3 and � = 4, in panel (f) for
N∗

tot the black (sNRG) and red (iNRG) dots are approximately
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equivalent, while in panel (i) for the CPU times, the black
dots lie well above the red dots for small Etrunc, but then
rise more slowly with Etrunc, so that both roughly coincide
for Etrunc = 10. Similarly, for Nc = 1 and � = 2, in panel
(g) for N∗

tot the blue triangles (sNRG) start above the orange
triangles (iNRG) for small Etrunc, but rise more slowly and end
up below the latter for Etrunc � 7, showing that full-symmetry
sNRG can sometimes be the most efficient method. We also
anticipate that full-symmetry sNRG for Nc = 3 [panel (i)]
would be more efficient than iNRG for Etrunc � 10.

Finally, we note that the optimal iNRG calculation does not
necessarily involve interleaving all possible flavors, due to the
tradeoff in lowered symmetries. Indeed, making partial use of
interleaving and partial use of symmetries can yield the best
results, as seen, for example in panels (h) and (i) for the CPU
times of Nc = 2 and 3, respectively, where the red symbols
(channel-iNRG) lie below the corresponding orange symbols
(flavor-iNRG).

D. Accuracy

As highlighted above, the iNRG scheme is more efficient
due to the intermediate truncations along the interleaved
Wilson chain, which results in the smaller local state space
dloc = df at each step (if all flavors are interleaved). A key
question is whether these intermediate truncations adversely
affect the accuracy of iNRG results. In the following, we show
that, for the same model and same �, with truncation energies
set equal as in Eq. (15), we obtain results with similar accuracy
and convergence properties for both iNRG and sNRG.

The absolute accuracy of both iNRG and sNRG can
be directly assessed from calculated physical quantities. In
particular, we focus on T = 0 correlation functions. For the
particle-hole symmetric SIAM and 3CAHM, the impurity
spectral function A(ω) = − 1

π
Im〈〈d̂ν ; d̂†

ν〉〉ω is pinned by the
Friedel sum rule at the Fermi level, ω = 0. The exact analytic
result [1] is π�A(0) = 1. As a measure of the accuracy in
NRG, we therefore consider the relative deviation at the Fermi
energy,

δA(0)/A(0) = π�A(0) − 1, (21a)

shown in Figs. 2(j) and 2(l). For the 2CKM, we consider
the spectrum t(ω) = −πρ(ω)ImT (ω), where T (ω) is the
scattering t matrix. Again, the spectrum is pinned at the
low-energy non-Fermi liquid fixed point; the exact analytic
result [37] is t(0) = 1

2 . In Fig. 2(k), we therefore consider the
relative NRG deviation at the Fermi energy,

δA(0)/A(0) = 2t(0) − 1 . (21b)

We find that iNRG and sNRG perform similarly, recovering
exact results to within a few percent for Etrunc > 7. For each
case studied, iNRG appears to deviate somewhat stronger from
δA(0)/A(0) = 0 for Etrunc < 7 than sNRG; but approximately
equivalent results are obtained for Etrunc > 7. Even when
interleaving all 6 flavors in the 3CAHM, using Abelian
symmetries only, we similarly anticipate that δA(0)/A(0) will
converge to 0 for sufficiently large Etrunc. [This is supported
in Fig. 2(l) by the orange data point at Etrunc = 7, which was
calculated for z = 0 only.]

π
Γ

A
(ω

)

ω

Etrunc = 10

Λ = 2, σ = 0.8

(a) SIAM

10-4 10-2 100
0

0.2

0.4

0.6

0.8

1
spin-iNRG

sNRG

c
o
rr

e
la

ti
o
n

fu
n
c
ti

o
n
s

ω

Af0 (ω)

t(ω)

Λ = 4, σ = 1

(c) 2CKM Etrunc = 13

10-10 10-5 100
0

0.1

0.2

0.3

0.4

0.5

S
im

p
(T

)/
ln

(2
)

T

(d) 2CKM

10-10 10-5 100
0

0.2

0.4

0.6

0.8

1

flavor-iNRG

channel-iNRG

sNRG

π
Γ

A
(ω

)

ω

Etrunc = 7

Λ = 4, σ = 1

(b) 3CAHM

10-8 10-4 100
0

0.2

0.4

0.6

0.8

1

FIG. 5. Comparison of physical quantities calculated with iNRG
and sNRG. (a) Impurity spectral function π�A(ω) at T = 0 for
the SIAM; (b) impurity spectral function π�A(ω) at T = 0 for
the 3CAHM; (c) spectrum of the t matrix t(ω) and the correlator
Af0 (ω) at T = 0 for the 2CKM; (d) impurity contribution to the
entropy, Simp(T ), for the 2CKM. For the dynamical correlators shown
in (a)–(c), the protocol of Ref. [31] was used to broaden discrete
data, using a broadening parameter of σbroad = 0.8 or 1 for � = 2.0
or 4.0, respectively. All quantities were z-averaged over z = 0 and
0.5, except for the flavor-interleaved 3CAHM spectral function in
(b), which was only calculated for z = 0 (z = 0.5 exceeded memory
resources). The observed low-frequency oscillations are therefore an
artifact of underbroadening, and would be removed by additional z

averaging or use of a larger σbroad.

This conclusion is further substantiated by Fig. 5, which
shows the full frequency dependence of dynamical correlation
functions at T = 0 in panels (a)–(c), and the temperature
dependence of the impurity entropy in panel (d). For the
SIAM in panel (a), the iNRG and sNRG impurity spectral
functions are essentially indistinguishable for Etrunc = 10 and
� = 2, at all frequencies. For the 3CAHM in panel (b),
channel-iNRG and sNRG results for the impurity spectral
function are again indistinguishable for Etrunc = 7 and � = 4.
Flavor-iNRG shows some oscillations on the lowest energy
scales due to underbroadening: the iNRG calculation was
performed only for z = 0. Obtaining a completely smooth
curve would either require additional z averaging (but z = 0.5
exceeded memory resources) or the use of a larger broadening,
σbroad. Panel (c) shows the spectrum of the t matrix t(ω), and the
local bath spectral function Af0 (ω) = − 1

π
Im〈〈f̂0ν ; f̂ †

0ν〉〉ω for
the 2CKM. At Etrunc = 13 for � = 4, both iNRG and sNRG
yield equivalent and highly accurate results. Finally, panel (d)
confirms that thermodynamic quantities (here illustrated for
the impurity contribution to the total entropy) are accurately
reproduced using both iNRG and sNRG for the 2CKM. In
particular, the nontrivial residual entropy [37] Simp(T = 0) =
1
2 ln(2) is correctly reproduced.
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In Figs. 2(m)–2(o), we examine the convergence of both
iNRG and sNRG calculations, analyzed quantitatively in
terms of the NRG discarded weight δρdisc (see Sec. II D).
As expected, the discarded weight decays exponentially
with increasing Etrunc. The calculations are considered fully
converged when δρdisc < 10−6, which is reached in all
cases at around Etrunc ≈ 7. No qualitative changes occur in
physical results on further increasing Etrunc [panels (j)–(l)].
Figures 2(m)–2(o) show clearly that the convergence behavior
of iNRG is equivalent to that of sNRG, implying that the
states additionally discarded by iNRG at intermediate steps
do not have appreciable weight in the eigenstates of later
iterations. Indeed, the discarded weights for iNRG (orange
and red symbols) and sNRG (green, blue and black symbols)
for the same � are approximately equal. [The only exception is
seen in panel (m), for Nc = 1 and � = 4, where the discarded
weight differences between sNRG (green circles) and iNRG
(orange circles) are apparently somewhat larger. We attribute
this to inaccuracies in the estimation of the discarded weight,
since, by far, the smallest number of data points (diagonal
weights ρs) were available for the extrapolation in this case.]

For δρdisc � 10−6, i.e., above the convergence threshold, the
discarded weights behave similarly for all NRG calculations
irrespective of the choice of �; below this threshold, the
behavior becomes somewhat dependent on �: for a given
Etrunc, larger � yields a larger discarded weight both for iNRG
and sNRG [panels (m) and (n)]. The reason for this is that
the spectrum of rescaled eigenenergies in NRG shows a �

dependence for higher energies: while rescaling is designed
to ensure that the low-energy regime (dominated by single-
particle excitations) of the rescaled eigenspectrum is almost
�-independent, it stretches apart the high-energy regime
(dominated by many-particle excitations). High-energy states
are therefore shifted up more for larger �. The consequence
is that, on increasing Etrunc and �, the weight of the reduced
density matrices is shifted to higher rescaled energies. This
means that the slope κ of the dashed red line in Fig. 8 would
decrease, causing an increase in the total integrated discarded
weight δρdisc.

E. Fine tuning in iNRG

If a given model possesses an exact flavor symmetry—
and furthermore, if the breaking of this flavor symmetry
is an RG relevant perturbation—iNRG must be combined
with parameter fine tuning. This is because the asymmetric
discretization required to interleave different Wilson chains
in iNRG artificially breaks bare flavor symmetries, albeit
rather weakly. However, effective channel symmetry in the
discretized model can be restored through the fine-tuning of
couplings [23].

A prime example is the 2CKM, for which channel
symmetry-breaking is relevant [33,34]. The critical point
of the 2CKM is realized at precisely ρ1(0)J1 = ρ2(0)J2,
embodying the frustration responsible for its non-Fermi liquid
properties. In sNRG, channel symmetry is exactly preserved:
ρdisc

1 (ε) = ρdisc
2 (ε), and so the critical physics is accessible

along the line J1 = J2 (only the Kondo temperature T 2CK
K is

affected by the actual value chosen for J1 = J2). However,
we note that even in sNRG, the precise value of ρdisc
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FIG. 6. Fine tuning in iNRG for the 2CKM (a) Flow of iNRG
many-particle energies with Wilson shell index n [solid (dashed) lines
for even (odd) n] for the 2CKM. Different colors correspond to states
with different quantum numbers. (b) The Fermi liquid crossover scale
TFL can be extracted from the flow of the first excited state (thick
black line): we fit its large-n behavior with a power law (dashed
red line), take n(TFL) to be the iteration number [vertical grey line
in (a) and (b)] at which this power law reaches half of the fixed-
point value of this state (horizontal grey line), and define the Fermi
liquid scale as TFL = ωn(TFL). In (c) and (d), the resulting values of
TFL are plotted as function of J2 − J c

2 on a log-log or linear plot,
respectively, using red (blue) symbols for J2 > J c

2 (< J c
2 ). Grey lines

give the asymptotic form TFL ∼ (J2 − J c
2 )2. By using an extrapolative

protocol, the critical coupling J c
2 can be located exponentially rapidly

in the number of separate iNRG runs. [Inset to (d)] The difference
between the critical coupling J c

2 and J1, plotted as a function of the
truncation energy.

can deviate very slightly from the bare value ρα(0)Jα , due
to the discretization. Although the T 2CK

K obtained in sNRG
might therefore also be slightly different from the true value, it
should be emphasized that the universal low-energy physics is
identical.

Likewise, ρdisc
α (0)Jα deviates from ρα(0)Jα in iNRG. How-

ever, the important difference is that ρdisc
1 (0)J1 �= ρdisc

2 (0)J2,
even when ρ1(0)J1 = ρ2(0)J2. In the presence of this small
channel asymmetry perturbation, the critical point is destabi-
lized, leading to a flow away from the non-Fermi liquid fixed
point, and toward a stable Fermi liquid fixed point [34,35,37].
The temperature/energy scale characterizing this Fermi liquid
crossover is denoted TFL. To access the critical physics for a
given J1, one must therefore fine tune the value of J2 → J c

2
such that TFL → 0. In principle, TFL can be extracted from any
physical quantity; it can also be extracted directly from the
flow of NRG many-particle energies, as shown in Figs. 6(a)
and 6(b) (see caption for details).

A very efficient extrapolative tuning protocol can be
employed if the functional dependence of TFL on J2 − J c

2 is
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known analytically. In the case of the 2CKM, it is known
[37] that TFL ∼ (J2 − J c

2 )2 when TFL  T 2CK
K . This can be

exploited by adopting the following protocol (somewhat
similar to Newton’s method for finding roots from a linear fit):
the lowest two values of TFL extracted from previous iNRG
runs are used to fit a parabola; the trial value of J2 for the next
iNRG run is then given by the minimum of the parabola. This
protocol is illustrated in Figs. 6(c) and 6(d). J2 converges to
the critical value J c

2 exponentially rapidly in the number of
separate iNRG runs. In Fig. 6(c), TFL decreases by roughly
one order of magnitude per iNRG run.

When the dependence of TFL on the model parameters
is not known analytically, a more general bisection method
can instead be used to locate the critical point, provided the
two phases separated by it can be distinguished in different
iNRG runs. For example, in the 2CKM, the critical point J c

2
separates Kondo strong coupling phases where the impurity
spin is ultimately fully screened by either lead α = 1 or 2
(depending on the sign of J2 − J c

2 ). These phases can be
distinguished by physical observables, e.g., the t matrix for
channel α, since tα=2(0) = 1 and tα=1(0) = 0 when J2 > Jc

2 .
In practice, a simpler and more direct way to distinguish the
two phases involves comparing their NRG fixed point energy
level structures, which are indexed differently.

The bisection method also involves multiple iNRG runs:
each new run uses a value J2 that is an average of two previous
J2 values (one in each phase) lying closest to each other. TFL

does not need to be calculated explicitly here. This protocol
also locates the critical point exponentially rapidly (although
utilizing information about the functional dependence of TFL,
where available, is the optimal strategy).

Finally, we note that the precise value of J c
2 in iNRG

depends on the discretization details. However, the critical
ratio J c

2 /J1 is generally found to deviate from its exact
(undiscretized) value of 1 by about 1% [see the inset of
Fig. 6(d)]. We also find that J c

2 /J1 converges to a specific value
on increasing Etrunc, and is essentially invariant for Etrunc > 7.
This indicates that the critical value of J c

2 determined by the
above tuning protocol in iNRG is the true (converged) value
for the asymmetrically discretized model.

V. CONCLUSION

In this paper, we compared two methods for treating multi-
band quantum impurity problems with NRG: sNRG exploiting
model symmetries [26], and iNRG exploiting symmetry-
breaking [23]. Our analysis of the NRG discarded weight
[27] and the error in certain calculated physical quantities
demonstrates that sNRG and iNRG are of comparable accuracy
when the same discretization parameter � is used, and when
the same number of states are kept on average at each iteration.
iNRG therefore constitutes a more fine-grained RG scheme,
in which intermediate state-space truncations do not adversely
affect convergence or accuracy.

For models that possess high intrinsic symmetries, sNRG is
a highly efficient tool for treating multiband quantum impurity
problems, because full use can be made of the symmetries. But
in models with lower symmetries, sNRG quickly becomes
inefficient, and in practice unusable, when more than two
spinful conduction electron channels are involved.

We find that iNRG is much more efficient than sNRG for
treating a given model with equivalent settings. This is the
appropriate comparison for systems where bare model flavor
symmetries are already broken. Such a scenario naturally
arises on inclusion of a magnetic field, potential scattering,
channel anisotropies, and in the vicinity of high-symmetry
critical points. In these cases, iNRG has the clear advantage.

For high-symmetry models where sNRG can exploit larger
symmetries than iNRG, the “best” sNRG and iNRG calcu-
lations are found to be of roughly comparable efficiency. In
this case, iNRG can be regarded as a viable and technically
simple alternative to sNRG. However, optimal efficiency can
often be obtained by combining features of sNRG and iNRG to
interleave the Wilson chains for some electronic flavors, while
retaining and exploiting other symmetries.

The results of this paper suggest that iNRG could find pow-
erful application as an impurity solver for multiband DMFT.
For example, Hubbard models of transition metal oxides with
partially filled d orbitals, ruthenates, or iron pnictide and
chalcogenide high-temperature superconductors map within
DMFT to effective multichannel impurity problems that could
be solved accurately using iNRG. In the context of simulating
real strongly correlated materials, channel symmetries are
generally broken (for example, due to crystal field splitting).
Our analysis indicates the feasibility of studying such channel-
asymmetric models for three effective channels, and further
suggests that 4- and even 5-channel problems could be tackled
using iNRG in the future.

We conclude that iNRG is a competitive and versatile
alternative to sNRG, even for high-symmetry models. When
large symmetries are not available, iNRG is far more efficient
that sNRG. Moreover, iNRG provides a way forward for
complex models with lower symmetries that are beyond the
reach of sNRG, opening up possibilities for new applications
of NRG as an impurity solver.
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APPENDIX A: CHOICE OF TRUNCATION
ENERGY IN iNRG

In this Appendix, we provide a heuristic justification of
the choice of truncation energy EiNRG

trunc proposed in Eq. (15).
In iNRG, the subsites ñ = (n,ν) of supersite n are added one
by one, each followed by a truncation with a different abso-
lute truncation energy, EiNRG

abs-trunc = EiNRG
trunc ω̃(n,ν). The geometric

average of these truncation energies over the supershell is

〈
EiNRG

abs−trunc

〉geom
n

= EiNRG
trunc

(
m∏

ν=1

ω̃(n,ν)

)1/m

. (A1)
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FIG. 7. Schematic depiction of the sNRG (blue) and iNRG (red)
truncation schemes used here, illustrated for a model with m = 3
flavors. The vertical axis corresponds to absolute energies on a
logarithmic scale, while the Wilson (sub)shell index is given on the
horizontal axis. The lower part of the sketch depicts the evolution
of the characteristic energies ωn and ω̃ñ for sNRG and iNRG. Thin
faint blue and red lines depict the excitation eigenenergies (relative
to the ground state energy) of sNRG supershells or iNRG subshells.
In sNRG, all three subsites comprising the supersite for that iteration
are added at once (there is no intermediate truncation), while in
iNRG the subsites are added separately, and truncation occurs at
each step. The absolute truncation energies EsNRG

abs-trunc and EiNRG
abs-trunc

therefore form two different staircases, depicted as the thick blue
and red lines, respectively (the step width for sNRG is m times
longer than that of iNRG). States with higher energies are discarded.
The truncation pattern of sNRG, when viewed from the perspective
of iNRG, amounts to employing the effective truncation energy
EsNRG

abs-trunc,eff, shown as the black dashed line: by using a high truncation
threshold (that of the previous iteration, EsNRG

trunc × ωn−1) for the first
m − 1 subsites, and then dropping to EsNRG

trunc × ωn only for the last
subsite, all states are effectively kept until the supersite is complete.
Viewed from this iNRG perspective, the truncation energies of iNRG
and sNRG are the same on average (green dotted line for supersite
n = 1) and the areas under the red solid, black dashed, and green
dotted lines are the same, provided EsNRG

trunc and EiNRG
trunc are related via

Eq. (15).

In sNRG, by contrast, all m subsites of supersite n are added
as one unit, followed by truncation at the absolute truncation
energy EsNRG

abs-trunc = EsNRG
trunc ωn. The thick red and blue lines in

Fig. 7 show the resulting evolution of the absolute truncation
energies in iNRG and sNRG with NRG iteration number,
respectively. The characteristic energies ω̃ñ and ωn are shown
as the circles in the lower part of the figure.

To meaningfully compare sNRG and iNRG, it is instructive
to view the truncation profile of sNRG within the framework
of iNRG. One can think of sNRG as an effective iNRG
calculation, in which subsites are added separately, but the
effective truncation threshold EsNRG

abs-trunc,eff for the first m − 1
subsites is high enough so that all states are kept. This is

guaranteed by using the absolute truncation energy of the
previous iteration, EsNRG

trunc × ωn−1. Only when the supersite is
complete after adding the last subsite with ν = m, the effective
absolute trucation energy is reduced to induce the necessary
truncation EsNRG

trunc × ωn. Overall, the effective truncation energy
in sNRG is subsite-dependent: specifically, within supersite n,
we have EsNRG

abs-trunc,eff = EsNRG
trunc ×ωn−1+δνm

. This is shown as the
black dashed line in Fig. 7. The geometric average of the
effective sNRG truncation energies is

〈
EsNRG

abs-trunc,eff

〉geom
n

= EsNRG
trunc

(
ωn

m−1∏
ν=1

ωn−1

)1/m

. (A2)

By demanding that the average truncation energies Eqs. (A1)
and (A2) are the same (illustrated by the green dotted line
in Fig. 7 for iteration n = 1), we obtain the relation between
EiNRG

trunc and EsNRG
trunc announced in Eq. (15).

Finally, we comment that, given a specific number of flavors
m, the choice of Eq. (15) implies that the area under the
lines EiNRG

abs-trunc (red) and EsNRG
abs-trunc,eff (black dashed) is the same

for each supersite n and (as examplified for n = 1 in Fig. 7)
corresponds to the area under the green dotted line.

The important consequence of effectively using ‘same’
absolute truncation energies on average is that the number
of kept states turns out to be the same on average for iNRG
and sNRG. Nevertheless, similar to even-odd effects in the
number of states of sNRG, subshell-dependent variations of
NK occur in iNRG (see Fig. 3).

APPENDIX B: DISCARDED WEIGHT BASED
ON ENERGY EIGENSTATES

In this Appendix, we describe how to quantify the contribu-
tions of highlying energy eigenstates to reduced density ma-
trices, rather than evaluating the eigenspectrum of the reduced
density matrices as in Ref. [27]. We do this by analyzing the di-
agonal weights of ρ̂, i.e., the diagonal elements of the reduced
density matrix in the energy eigenbasis |s〉K within the kept
sector, ρs = K〈s|ρ̂|s〉K. Hence we employ a strategy analogous
to that of Ref. [27], but here we use the energy eigenbasis (cf.
Fig. 3 of Ref. [27] and Fig. 8) rather than the eigenbasis of the
reduced density matrices (cf. Fig. 4 of Ref. [27]) to estimate the
discarded weight. This leads to a slightly different definition
of the discarded weight, as described below.

Due to the energy scale separation in NRG, the diagonal
weights of the reduced density matrices decrease exponentially
when plotted versus their corresponding rescaled eigenener-
gies (cf. colored dots in Fig. 8). The same is true for the
integrated weight distribution [cf. Eq. (18) of Ref. [27] and
black solid line in Fig. 8], which as such constitutes an
upper bound for the weights, and scales as ρ(E) ≈ κe−κE

(normalized such that
∫ ∞

0 ρ(E) dE = 1). This exponential
decay shows that the contribution of an NRG state with
rescaled energy E to the properties of subsequent shells
decreases exponentially with E. This justifies the strategy in
NRG to keep track of these contributions only up to a threshold
energy of Etrunc. Moreover, by extrapolating the exponential
form to energies beyond Etrunc, the sum of weights associated
with all discarded high energy states with E > Etrunc can be
estimated. We therefore define the total discarded weight by
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FIG. 8. Estimating the discarded weight, δρdisc, of a single NRG
run. Colored dots show the diagonal weights of the reduced density
matrices in the energy eigenbasis of NRG. Different colors represent
the weights for different NRG iterations. We calculate and plot the
cumulative weights (blue open circles) using 16 bins in the energy
window [0,Etrunc]. The truncation energy Etrunc = 7 is indicated by
the vertical black dashed line. The red dashed line is an exponential
fit to the cumulative weights; its slope gives κ as defined in Eq. (B1).
The black line shows the normalized integrated weight distribution
ρ(E) = κe−κE , extrapolated to energies E > Etrunc. The shaded grey
area under this black line then serves as estimate for the discarded
weight: δρdisc = e−κEtrunc . This example is well-converged, with κ =
2.37 yielding δρdisc = 6.23 × 10−8.

the following integral (represented by the shaded grey area in
Fig. 8):

δρdisc =
∫ ∞

Etrunc

ρ(E) dE = e−κEtrunc . (B1)

In practice, we obtain δρdisc numerically as follows. First, a
cumulative histogram is constructed of the discrete weights ρs

for E < Etrunc over all NRG iterations, using coarse-grained
energy bins (e.g., keeping 16 bins in the energy window
[0,Etrunc]). This histogram represents ρ(E). A linear fit to
its shape on a semilogarithmic scale then yields κ , which in
turn gives δρdisc, via Eq. (B1) . Since δρdisc depends only on
the dimensionless quantity κEtrunc, the result is independent
of the choice of energy unit for Etrunc.

By examining the decay of the discarded weight δρdisc with
increasing Etrunc, and observing the corresponding conver-
gence of physical quantities, we have found that calculations
can be considered converged when δρdisc < 10−6. This con-
vergence criterion has been determined to ensure that further
increasing Etrunc does not qualitatively change the results [see,
e.g., Figs. 2(j)–2(o)]. We note that the numerical value of this
threshold is about the square-root of and thus considerably
larger than that reported in Ref. [27], which was obtained
using the alternative definition of discarded weight in terms of
the eigenspectrum of reduced density matrices.

An important advantage of defining the discarded weight
in terms of the energy eigenbasis is that δρdisc, evaluated at
fixed Etrunc, is rather insensitive to changing the discretization
parameter � (we verified this explicitly over a range of
� typically used in NRG, 1.7 � � � 7). We found that
Etrunc � 7 generally suffices to obtain well-converged results
for physical quantities. In contrast, the discarded weight
defined in terms of density matrix eigenvalues [27] turns
out to show a much more pronounced dependence on � at
fixed Etrunc, which would be inconvenient for the present
purposes.
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[24] A. I. Tóth and G. Zaránd, Phys. Rev. B 78, 165130 (2008).
[25] W. Hofstetter, Phys. Rev. Lett. 85, 1508 (2000).

235101-15

http://dx.doi.org/10.1143/PTP.32.37
http://dx.doi.org/10.1143/PTP.32.37
http://dx.doi.org/10.1143/PTP.32.37
http://dx.doi.org/10.1143/PTP.32.37
http://dx.doi.org/10.1103/RevModPhys.47.773
http://dx.doi.org/10.1103/RevModPhys.47.773
http://dx.doi.org/10.1103/RevModPhys.47.773
http://dx.doi.org/10.1103/RevModPhys.47.773
http://dx.doi.org/10.1103/PhysRevB.21.1003
http://dx.doi.org/10.1103/PhysRevB.21.1003
http://dx.doi.org/10.1103/PhysRevB.21.1003
http://dx.doi.org/10.1103/PhysRevB.21.1003
http://dx.doi.org/10.1103/RevModPhys.80.395
http://dx.doi.org/10.1103/RevModPhys.80.395
http://dx.doi.org/10.1103/RevModPhys.80.395
http://dx.doi.org/10.1103/RevModPhys.80.395
http://dx.doi.org/10.1103/PhysRevLett.102.056802
http://dx.doi.org/10.1103/PhysRevLett.102.056802
http://dx.doi.org/10.1103/PhysRevLett.102.056802
http://dx.doi.org/10.1103/PhysRevLett.102.056802
http://dx.doi.org/10.1103/PhysRevB.88.075146
http://dx.doi.org/10.1103/PhysRevB.88.075146
http://dx.doi.org/10.1103/PhysRevB.88.075146
http://dx.doi.org/10.1103/PhysRevB.88.075146
http://dx.doi.org/10.1103/PhysRevLett.61.125
http://dx.doi.org/10.1103/PhysRevLett.61.125
http://dx.doi.org/10.1103/PhysRevLett.61.125
http://dx.doi.org/10.1103/PhysRevLett.61.125
http://dx.doi.org/10.1016/0921-4526(91)90490-6
http://dx.doi.org/10.1016/0921-4526(91)90490-6
http://dx.doi.org/10.1016/0921-4526(91)90490-6
http://dx.doi.org/10.1016/0921-4526(91)90490-6
http://dx.doi.org/10.1103/PhysRevB.91.235127
http://dx.doi.org/10.1103/PhysRevB.91.235127
http://dx.doi.org/10.1103/PhysRevB.91.235127
http://dx.doi.org/10.1103/PhysRevB.91.235127
http://dx.doi.org/10.1038/nphys2076
http://dx.doi.org/10.1038/nphys2076
http://dx.doi.org/10.1038/nphys2076
http://dx.doi.org/10.1038/nphys2076
http://dx.doi.org/10.1103/PhysRevB.92.155104
http://dx.doi.org/10.1103/PhysRevB.92.155104
http://dx.doi.org/10.1103/PhysRevB.92.155104
http://dx.doi.org/10.1103/PhysRevB.92.155104
http://dx.doi.org/10.1038/nature03422
http://dx.doi.org/10.1038/nature03422
http://dx.doi.org/10.1038/nature03422
http://dx.doi.org/10.1038/nature03422
http://dx.doi.org/10.1103/PhysRevLett.109.156804
http://dx.doi.org/10.1103/PhysRevLett.109.156804
http://dx.doi.org/10.1103/PhysRevLett.109.156804
http://dx.doi.org/10.1103/PhysRevLett.109.156804
http://dx.doi.org/10.1103/PhysRevB.69.115316
http://dx.doi.org/10.1103/PhysRevB.69.115316
http://dx.doi.org/10.1103/PhysRevB.69.115316
http://dx.doi.org/10.1103/PhysRevB.69.115316
http://dx.doi.org/10.1103/PhysRevB.81.075126
http://dx.doi.org/10.1103/PhysRevB.81.075126
http://dx.doi.org/10.1103/PhysRevB.81.075126
http://dx.doi.org/10.1103/PhysRevB.81.075126
http://dx.doi.org/10.1103/PhysRevB.84.035119
http://dx.doi.org/10.1103/PhysRevB.84.035119
http://dx.doi.org/10.1103/PhysRevB.84.035119
http://dx.doi.org/10.1103/PhysRevB.84.035119
http://dx.doi.org/10.1103/PhysRevLett.109.156803
http://dx.doi.org/10.1103/PhysRevLett.109.156803
http://dx.doi.org/10.1103/PhysRevLett.109.156803
http://dx.doi.org/10.1103/PhysRevLett.109.156803
http://dx.doi.org/10.1103/PhysRevB.89.045143
http://dx.doi.org/10.1103/PhysRevB.89.045143
http://dx.doi.org/10.1103/PhysRevB.89.045143
http://dx.doi.org/10.1103/PhysRevB.89.045143
http://dx.doi.org/10.1103/RevModPhys.68.13
http://dx.doi.org/10.1103/RevModPhys.68.13
http://dx.doi.org/10.1103/RevModPhys.68.13
http://dx.doi.org/10.1103/RevModPhys.68.13
http://dx.doi.org/10.1140/epjb/e2005-00117-4
http://dx.doi.org/10.1140/epjb/e2005-00117-4
http://dx.doi.org/10.1140/epjb/e2005-00117-4
http://dx.doi.org/10.1140/epjb/e2005-00117-4
http://dx.doi.org/10.1103/PhysRevLett.115.136401
http://dx.doi.org/10.1103/PhysRevLett.115.136401
http://dx.doi.org/10.1103/PhysRevLett.115.136401
http://dx.doi.org/10.1103/PhysRevLett.115.136401
http://dx.doi.org/10.1103/PhysRevB.61.12739
http://dx.doi.org/10.1103/PhysRevB.61.12739
http://dx.doi.org/10.1103/PhysRevB.61.12739
http://dx.doi.org/10.1103/PhysRevB.61.12739
http://dx.doi.org/10.1103/PhysRevB.89.121105
http://dx.doi.org/10.1103/PhysRevB.89.121105
http://dx.doi.org/10.1103/PhysRevB.89.121105
http://dx.doi.org/10.1103/PhysRevB.89.121105
http://dx.doi.org/10.1103/PhysRevB.78.165130
http://dx.doi.org/10.1103/PhysRevB.78.165130
http://dx.doi.org/10.1103/PhysRevB.78.165130
http://dx.doi.org/10.1103/PhysRevB.78.165130
http://dx.doi.org/10.1103/PhysRevLett.85.1508
http://dx.doi.org/10.1103/PhysRevLett.85.1508
http://dx.doi.org/10.1103/PhysRevLett.85.1508
http://dx.doi.org/10.1103/PhysRevLett.85.1508


STADLER, MITCHELL, VON DELFT, AND WEICHSELBAUM PHYSICAL REVIEW B 93, 235101 (2016)

[26] A. Weichselbaum, Ann. Phys. 327, 2972 (2012).
[27] A. Weichselbaum, Phys. Rev. B 84, 125130 (2011).
[28] L. N. Oliveira, V. L. Libero, H. O. Frota, and M. Yoshida, Physica

B: Condensed Matter 171, 61 (1991).
[29] W. C. Oliveira and L. N. Oliveira, Phys. Rev. B 49, 11986 (1994).
[30] R. Zitko and T. Pruschke, Phys. Rev. B 79, 085106 (2009).
[31] A. Weichselbaum and J. von Delft, Phys. Rev. Lett. 99, 076402

(2007).
[32] F. B. Anders and A. Schiller, Phys. Rev. Lett. 95, 196801 (2005);

Phys. Rev. B 74, 245113 (2006).

[33] P. Nozières and A. Blandin, J. Phys. (Paris) 41, 193 (1980).
[34] I. Affleck, A. W. W. Ludwig, H.-B. Pang, and D. L. Cox, Phys.

Rev. B 45, 7918 (1992).
[35] E. Sela, A. K. Mitchell, and L. Fritz, Phys. Rev. Lett. 106,

147202 (2011); A. K. Mitchell and E. Sela, Phys. Rev. B 85,
235127 (2012).

[36] M. Hanl, A. Weichselbaum, J. von Delft, and M. Kiselev, Phys.
Rev. B 89, 195131 (2014).

[37] I. Affleck and A. W. W. Ludwig, Phys. Rev. B 48, 7297
(1993).

235101-16

http://dx.doi.org/10.1016/j.aop.2012.07.009
http://dx.doi.org/10.1016/j.aop.2012.07.009
http://dx.doi.org/10.1016/j.aop.2012.07.009
http://dx.doi.org/10.1016/j.aop.2012.07.009
http://dx.doi.org/10.1103/PhysRevB.84.125130
http://dx.doi.org/10.1103/PhysRevB.84.125130
http://dx.doi.org/10.1103/PhysRevB.84.125130
http://dx.doi.org/10.1103/PhysRevB.84.125130
http://dx.doi.org/10.1016/0921-4526(91)90491-V
http://dx.doi.org/10.1016/0921-4526(91)90491-V
http://dx.doi.org/10.1016/0921-4526(91)90491-V
http://dx.doi.org/10.1016/0921-4526(91)90491-V
http://dx.doi.org/10.1103/PhysRevB.49.11986
http://dx.doi.org/10.1103/PhysRevB.49.11986
http://dx.doi.org/10.1103/PhysRevB.49.11986
http://dx.doi.org/10.1103/PhysRevB.49.11986
http://dx.doi.org/10.1103/PhysRevB.79.085106
http://dx.doi.org/10.1103/PhysRevB.79.085106
http://dx.doi.org/10.1103/PhysRevB.79.085106
http://dx.doi.org/10.1103/PhysRevB.79.085106
http://dx.doi.org/10.1103/PhysRevLett.99.076402
http://dx.doi.org/10.1103/PhysRevLett.99.076402
http://dx.doi.org/10.1103/PhysRevLett.99.076402
http://dx.doi.org/10.1103/PhysRevLett.99.076402
http://dx.doi.org/10.1103/PhysRevLett.95.196801
http://dx.doi.org/10.1103/PhysRevLett.95.196801
http://dx.doi.org/10.1103/PhysRevLett.95.196801
http://dx.doi.org/10.1103/PhysRevLett.95.196801
http://dx.doi.org/10.1103/PhysRevB.74.245113
http://dx.doi.org/10.1103/PhysRevB.74.245113
http://dx.doi.org/10.1103/PhysRevB.74.245113
http://dx.doi.org/10.1103/PhysRevB.74.245113
http://dx.doi.org/10.1051/jphys:01980004103019300
http://dx.doi.org/10.1051/jphys:01980004103019300
http://dx.doi.org/10.1051/jphys:01980004103019300
http://dx.doi.org/10.1051/jphys:01980004103019300
http://dx.doi.org/10.1103/PhysRevB.45.7918
http://dx.doi.org/10.1103/PhysRevB.45.7918
http://dx.doi.org/10.1103/PhysRevB.45.7918
http://dx.doi.org/10.1103/PhysRevB.45.7918
http://dx.doi.org/10.1103/PhysRevLett.106.147202
http://dx.doi.org/10.1103/PhysRevLett.106.147202
http://dx.doi.org/10.1103/PhysRevLett.106.147202
http://dx.doi.org/10.1103/PhysRevLett.106.147202
http://dx.doi.org/10.1103/PhysRevB.85.235127
http://dx.doi.org/10.1103/PhysRevB.85.235127
http://dx.doi.org/10.1103/PhysRevB.85.235127
http://dx.doi.org/10.1103/PhysRevB.85.235127
http://dx.doi.org/10.1103/PhysRevB.89.195131
http://dx.doi.org/10.1103/PhysRevB.89.195131
http://dx.doi.org/10.1103/PhysRevB.89.195131
http://dx.doi.org/10.1103/PhysRevB.89.195131
http://dx.doi.org/10.1103/PhysRevB.48.7297
http://dx.doi.org/10.1103/PhysRevB.48.7297
http://dx.doi.org/10.1103/PhysRevB.48.7297
http://dx.doi.org/10.1103/PhysRevB.48.7297



