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Quantum point contacts (QPCs) and quantum dots (QDs), two elementary building blocks of semiconducting
nanodevices, both exhibit famously anomalous conductance features: the 0.7 anomaly in the former case, the
Kondo effect in the latter. For both the 0.7 anomaly and the Kondo effect, the conductance shows a remarkably
similar low-energy dependence on temperature T , source-drain voltage Vsd, and magnetic field B. In a recent
publication [F. Bauer et al., Nature (London) 501, 73 (2013)], we argued that the reason for these similarities is that
both a QPC and a Kondo QD (KQD) feature spin fluctuations that are induced by the sample geometry, confined
in a small spatial regime, and enhanced by interactions. Here, we further explore this notion experimentally and
theoretically by studying the geometric crossover between a QD and a QPC, focusing on the B-field dependence
of the conductance. We introduce a one-dimensional model with local interactions that reproduces the essential
features of the experiments, including a smooth transition between a KQD and a QPC with 0.7 anomaly. We
find that in both cases the anomalously strong negative magnetoconductance goes hand in hand with strongly
enhanced local spin fluctuations. Our experimental observations include, in addition to the Kondo effect in a QD
and the 0.7 anomaly in a QPC, Fano interference effects in a regime of coexistence between QD and QPC physics,
and Fabry-Perot-type resonances on the conductance plateaus of a clean QPC. We argue that Fabry-Perot-type
resonances occur generically if the electrostatic potential of the QPC generates a flatter-than-parabolic barrier top.
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I. INTRODUCTION

A QPC is a narrow one-dimensional (1D) constriction
and a QD a small isolated puddle of charges, patterned
in a two-dimensional electron system (2DES), e.g., by
applying voltages to local gates. Being key ingredients of
semiconductor-based quantum circuits, much effort has been
devoted to understand their behavior at a fundamental level.
Here, we investigate the geometric crossover between a QPC
and a QD. The motivation for this study is to shed light on
similarities and differences between the 0.7 anomaly exhibited
by the conductance of a QPC, and the Kondo effect found in a
KQD that hosts an odd number of electrons and hence contains
a localized spin.

The linear conductance G(Vc) of a QPC is famously
quantized in units of GQ = 2e2/h, when measured as function
of the gate voltage Vc defining the channel width [1–3]. The
0.7 anomaly is observed as an additional shoulder when the
dimensionless conductance, g = G/GQ, reaches the value
g � 0.7 in the first conductance step [4–14]. It shows strikingly
anomalous behavior as function of temperature (T ), magnetic
field (B), and source-drain voltage (Vsd), which can not be
explained within a non-interacting model. The low-energy T ,
B, and Vsd dependencies of the 0.7 anomaly are similar to
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those of a KQD [15–23] at excitation energies well below its
Kondo temperature, TK: for both QPC and KQD, the linear
conductance strongly decreases with increasing B and T ,
while the nonlinear conductance shows a zero-bias peak as
function of Vsd, that splits into two subpeaks with increasing
B. We will call this similar behavior the “0.7 Kondo similarity”
(.7KS). To explain it, Meir and collaborators [24–26] have
argued that a “quasibound state” in the QPC, predicted via
spin density functional theory, harbors a localized spin that
causes Kondo-like conductance anomalies.

We have recently proposed a scenario that explains the
microscopic origin of the 0.7 anomaly and of the .7KS without
invoking a localized spin [14]. In a nutshell, we argue that the
0.7 anomaly is a direct consequence of a “van Hove ridge,”
i.e., a smeared van Hove peak in the local density of states
(LDOS) at the bottom of the lowest 1D subband of the QPC,
whose shape follows that of the QPC potential barrier. Invoking
a semiclassical picture, the LDOS is inversely proportional
to the velocity of an electron with given energy at a given
position; the van Hove ridge, which corresponds to a locally
enhanced LDOS, thus reflects the fact that electrons are being
slowed down while they cross the 1D barrier constituting the
QPC. The slow electrons experience strongly enhanced mutual
interactions. When the QPC barrier is tuned to lie just below
the chemical potential, transport properties are significantly
affected by these strongly enhanced electron interactions. In
Ref. [14], we have shown that this amplification of interaction
effects is sufficient to fully explain the 0.7 anomaly.
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The above-mentioned two scenarios for explaining the 0.7
anomaly, evoking a quasilocalized state or a van Hove ridge,
respectively, have an important common feature, namely that
in both cases, the physics is governed by slow electrons above
the barrier top. In this regard, it is not surprising that both
scenarios are compatible in their predictions for the low-energy
behavior of the 0.7 anomaly, which, as mentioned above, is
similar to that of the Kondo effect. In Ref. [14], we attributed
this .7KS to the fact that both a KQD and a QPC involve
a spin-singlet ground state featuring spatially confined spin
fluctuations. While for a KQD, they are associated with the
screening of a truly localized spin, for a QPC they result from
the extended but curved structure of the van Hove ridge and
include a large number of spins. In both cases, these spin
fluctuations are characterized by an exponentially small energy
scale, called B∗ in Ref. [14], which goes hand in hand with an
enhanced local spin susceptibility. For a KQD, this low-energy
scale corresponds to the Kondo temperature, TK. The .7KS
pertains to energies well below B∗; we have argued in Ref. [14]
that it results from the fact that for such low energies, both
a KQD and a QPC show Fermi-liquid behavior of the type
associated with quasiparticles experiencing spatially localized
interactions. The corresponding Fermi-liquid theory has been
worked out by Nozières for the Kondo model [27], and recently
it has been generalized to the single-level Anderson impurity
model [28]; doing the same for a QPC would be an interesting
challenge for the future.

Though slow electrons form the common ground for both
the van Hove ridge scenario and quasilocalized state scenario,
the two scenarios differ substantially in their microscopic de-
scription of the slow electrons’ dynamics. The van Hove ridge
scenario describes them via the LDOS, thus incorporating the
geometric shape of the barrier. In contrast, the quasilocalized
state scenario describes them more simplistically in terms of a
magnetic moment, i.e. a truly localized state, thus arriving at a
seemingly simpler model, akin to the single-impurity Ander-
son model. This apparent simplification, however, comes at
a price: the physics of the Anderson model involves a free
local moment at high energies, and Fermi-liquid behavior
emerges only at low energies, when the local moment is
screened. For a QPC, such a “detour” (first evoke a local
moment, then argue that it is screened) is in our opinion
not needed: in our van Hove ridge scenario, Fermi-liquid
behavior is present a priori. Moreover, in Ref. [14], we have
found no indications that a smooth parabolic barrier hosts
a discrete, truly localized spin, and no similarities (in our
experimental results or theoretical predictions) between the
Kondo effect and the 0.7 anomaly at high energies (�B∗),
where the Kondo effect is governed by an unscreened local
moment. This shows that when the “slow electrons” in a QPC
are probed at energies �B∗, they do behave differently from the
magnetic moment in a KQD. (In Sec. VI, we offer additional
evidence for this conclusion by comparing the behavior of
the magnetization of a KQD and a QPC at large magnetic
fields.)

The differences between a KQD and a QPC come to the fore
very explicitly in the functional dependence of the low-energy
scale B∗ on system parameters such as the gate voltage and the
interaction strength (discussed in detail in Sec. IV C below).
For a KQD, the scale B

KQD
∗ can not meaningfully be defined in

the absence of interactions (since then no local moment forms),
and ln B

KQD
∗ depends quadratically on gate voltage[19,23,29].

For a QPC, in contrast, BQPC
∗ can be meaningfully defined even

in the absence of interactions, and ln B
QPC
∗ depends linearly on

gate voltage. When interactions are turned on, BQPC
∗ is reduced

strongly, but its functional dependence on gate voltage hardly
changes (see Ref. [14], Sec. S-5).

The present paper aims to elaborate the relation between
local spin fluctuations and the .7KS in more detail, and,
more generally, to analyze the similarities and differences
between the Kondo effect and the 0.7 anomaly, focusing on
their dependence on magnetic field at low temperature, in
equilibrium. We experimentally and theoretically study the
smooth geometric crossover between a KQD and a QPC,
and hence between the Kondo effect and the 0.7 anomaly.
Experimentally, we measure the conductance throughout the
QD-QPC crossover using a highly tunable nanostructure
tailor made for this purpose. In our theoretical work, we
consider a 1D model with local interactions and a smooth
potential barrier, similar to that used in Ref. [14], but now
tune the shape of the potential barrier in such a way that it
smoothly crosses over between a single barrier, representing
a QPC, and a double barrier, representing a KQD. We use the
functional renormalization group (fRG) [30–33] to calculate
how transport and thermodynamic properties at T = 0 change
during this crossover. This allows us to track the extent to
which features characteristic for Kondo correlations do or do
not survive in the QPC regime. A central finding is that the
strongly enhanced local spin susceptibility in the center of the
system that is found for both a QPC and a KQD goes hand in
hand with an anomalously strong magnetic field dependence of
the conductance. This is actually not surprising, since a large
spin susceptibility indicates a strong depletion of that spin
species that is energetically disfavoured in the presence of a
small magnetic field. Our analysis pinpoints the enhanced local
spin susceptibility as the common feature of both systems that
underlies the .7KS regarding its dependence on the magnetic
field.

The paper is organized as follows. Section II describes
our experimental setup and our measurements for the QD-
QPC crossover. Section III presents the model by which we
describe this crossover, discusses how the geometry of the
QPC or QD barrier influences the noninteracting LDOS and
noninteracting transmission probability, and summarizes the
key elements of our fRG approach for treating interactions.
Section IV compares fRG results and experimental data for
this crossover, showing that our model captures its main
features in a qualitatively correct manner. Section V presents
the results of fRG calculations for local properties, such as
the local density, magnetization and spin susceptibility for
both a QPC and a KQD, and for the spin susceptibility
during the QPC-QD crossover, which very clearly reveals
the origin of the .7KS. Section VI presents fRG results on
the evolution of the magnetization with B̃, highlighting the
difference between a KQD and QPC when probed at energies
beyond B̃∗. Section VII offers a summary and outlook. An
appendix presents and discusses a movie with fRG results that
show how the conductance evolves with magnetic field during
the QD-QPC crossover.
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FIG. 1. (Color online) Geometric crossover between QPC and
QD—sample and shape of effective potential. (a) Scanning electron
microscope picture of the gate layout, which features a top gate
at voltage Vt, two central gates at voltage Vc, and four side gates
at voltage Vs. Negative voltages Vc and Vs deplete the 2DES
85 nm beneath the sample surface, inducing a tunable effective
electrostatical potential landscape there. (b) and (c) Artist’s depiction
of this landscape for a QPC and QD, respectively [red/yellow:
high electrostatic potential; blue: low potential, Fermi sea darkened;
golden structures at top of (b): gates]. (d)–(g) The effective potential
Ej of the Hamiltonian given in Eq. (1), shown for four different
choices of the barrier shape (black lines), tuned by adjusting three
model parameters, namely the central barrier height Ṽc = Ej=0 − εF,
the side barrier height Ṽs, and the spatial distance between the side
barrier maxima, chosen about half as large in (d) as in (e)–(g).
(d) A short QPC with a flat potential top (Ṽc = Ṽs); (e) a QPC
described by a parabolic potential top (Ṽc > Ṽs); (f) a long QPC
with a flat potential top (Ṽc = Ṽs); and (f) a QD (Ṽc < Ṽs). The model
parameters Ṽc and Ṽs mimic the effect of tuning the experimental gate
voltages, with Ṽc,s ∝ −|e|Vc,s. The model parameter governing the
spatial distance between the side barrier maxima has no independently
tunable experimental counterpart, since the spatial distance between
the location of the side gates is fixed. The short-barrier regime can
nevertheless be reached experimentally by choosing Vc well smaller
(much more negative) than Vs (see Fig. 2).

II. EXPERIMENTAL SETUP

We use the multigate layout shown in Fig. 1(a) to later-
ally define a nanostructure in the two-dimensional electron
system (2DES) located 85 nm beneath the surface of our
GaAs/AlGaAs heterostructure. The low temperature charge
carrier density is 1.9 × 1011 cm−2 and the mobility 1.2 ×
106 cm2/Vs. Magnetic fields are aligned parallel to the 2DES
and to the 1D channel defining the QPC (current direction). The
field’s alignment is optimized by use of a two-axis magnet and
controlled by magnetotransport measurements. The electron
temperature in all measurements presented here is T0 �
30 mK according to our estimations from separate temperature
dependent measurements (not shown, see also Ref. [14]).

Seven gates provide a particularly high tunability of the
central constriction region (CCR) of our device, located at the
center of Fig. 1(a) between the tips of six gates. We apply one
voltage, say Vc, to both central gates, and another, say Vs, to all
four side gates. Our sample also contains a global top gate [see
Figs. 1(a) and 1(b)], electrically insulated from other gates by a
layer of cross-linked PMMA (plexiglass). The top gate can be
used to adjust the carrier density of the 2DES in the contacts of
the CCR and thereby control the effective interaction strength
between electrons [14].

In this paper, we keep Vt fixed at 0.8 V. By suitably tuning
Vc and Vs, we are able to smoothly reshape the potential
landscape in the 2DES in such a way that it crosses over
from a saddle point potential defining a QPC [Fig. 1(b)] to
a symmetric local minimum defining a QD [Fig. 1(c)]. The
corresponding effective 1D potential barrier shape used in our
theoretical calculations to mimic this crossover changes from
a single barrier [Figs. 1(d)–1(f)], whose top is parabolic only
in a relative narrow range of gate voltages, to a symmetric
double barrier [Fig. 1(g)].

Apart from being essential for studying this crossover
experimentally, our layout’s high tunability also turned out
to be very useful in dealing with disorder effects. As apparent,
e.g., from a beautiful recent experiment [34], which performed
a statistical study of the conductance of hundreds of QPCs,
the local disorder potential as well as small irregularities in
the lithographically defined nanostructure have a considerable
influence on the transport properties of QPCs. Our multigate
device enables us to compensate such effects to some extent
by tuning the individual gate voltages and thereby reshaping
and “shifting the constriction around” in real space. This can
be monitored experimentally since disorder effects appear
as additional features in transport, e.g., small additional
resonances, which respond to external parameters in a different
way than the 0.7 anomaly feature. Our layout often allows us
to tune the gate voltages such that disorder effects are absent
within the regime of interest.

Experimentally we have studied the smooth transition from
a QD to a QPC by measuring the two-terminal differential
conductance g via the linear response of the current to small
modulations of the applied source-drain voltage. Figure 2
shows raw data (albeit already corrected for the lead re-
sistances) measured at B = 0 as a function of Vc and Vs.
For our most negative Vs-values and near pinch-off, i.e.,
also negative Vc, the conductance traces show pronounced
Coulomb blockade oscillations as function of Vc (at the
bottom center part of the figure). This indicates that the
CCR constitutes a single, well-defined QD with a substantial
Coulomb charging energy. When Vs is made less negative
the Coulomb blockade oscillations disappear altogether. The
reason is that the local electrostatic potential near the side
gates decreases and eventually becomes smaller than the
electrostatic potential between the center gates, corresponding
to a transition from a double barrier potential as in Fig. 1(g)
to a single barrier top as in Figs. 1(d)–1(f). In the process the
QD disappears, and with it the localized states, and a clean
QPC remains. Its barrier top may or may not be parabolic,
depending on the value of Vs. At Vs � −0.4 V, g(Vc) clearly
shows several smooth conductance steps as function of Vc, as
expected for the pinch-off curves of a clean parabolic QPC.
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FIG. 2. (Color online) The linear-response differential conductance g (main panel) and transconductance dg/dVc (inset) as a function of
Vc and Vs, showing the geometric crossover between a QD and a QPC. Detailed measurements of the 0.7 anomaly at fixed side gate voltage,
reported in Ref. [14] and shown in part in Fig. 6(d) below, were performed at Vs = −0.4 V, where the first plateau is absolutely flat, implying
a parabolic barrier top. Features marked by arrows are explained in the main text.

The broad transition regime between QPC and QD displays
a combination of both 1D conductance steps and Coulomb
blockade oscillations. The latter are most pronounced
at the steps between conductance plateaus (0 < g < 1,
1 < g < 2, ...) and occur in clusters with a rather similar
structure, as can be best seen in the inset of Fig. 2, which shows
dg/dVc using a color scale. This repeating pattern of Coulomb
blockade oscillations indicates a coexistence of a QD in the
not yet (fully) occupied one-dimensional subband of the CCR
with already fully occupied lower one-dimensional subbands
contributing to QPC-behavior. This causes the charge con-
figurations of the QD to repeat at adjacent QPC conductance
steps when the number of occupied one-dimensional subbands
changes by one. Note that as Vs becomes more negative, the
spacing between Coulomb blockade peaks within each cluster
tends to increase (causing the cluster to “fan out”, see Fig. 2,
inset, bottom right corner). This reflects an increase in the
QD charging energy, brought about by the steepening of the
confinement potential when its side barriers become higher.

Whenever a Coulomb blockade oscillation enters a conduc-
tance plateau at g = 1,2, . . . the corresponding conductance
maxima of the QD turn into narrow conductance dips, some
of which are marked by solid arrows in Fig. 2. We interpret
these dips as Fano resonances between the 1D channel of the
QPC and localized states of the QD.

We also observe broader and very shallow conductance
oscillations on the conductance plateaus deeper in the QPC
regime (at larger Vs), marked by dashed arrows in Fig. 2.
They are absent only in a narrow region around Vs � −0.4 V
(on the first plateau), and the oscillation period observed for
Vs < −0.4 V is shorter than that observed for Vs > −0.4 V.
We interpret these as Fabry-Perot-like resonances that arise
whenever the barrier shape is not parabolic: as Vs is increased

within the regime of a clean QPC, starting from around Vs �
−0.8 V, we observe a transition from a long flat barrier via a
parabolic barrier near Vs � −0.4 V to a short flat barrier for
Vs > −0.4 V, where also Vs � Vc, (as sketched in Figs. 1(d)–
1(f) and indicated in Fig. 2). We will discuss the origin and
behavior of these Fabry-Perot resonances in more detail in
Secs. III B and III C below.

At a particular side gate voltage, near Vs � −0.6 V, two
conductance traces show a marked dip (indicated by an ellipse)
near the end of the first plateau. We interpret this distinct
reduction of the conduction as reflection of electrons caused
by disorder in the form of a distinct defect.

The multigate tunability of our device has the important
advantage that it allows these type of effects (Fabry-Perot
and/or disorder) to be avoided, if desired. Indeed, at side
gate voltages near Vs � −0.4 V, no such effects are seen
around the first conductance plateau is completely flat. We have
therefore used Vs = −0.4 V for the detailed measurements of
the 0.7 anomaly reported in Ref. [14], some of which are also
shown in Fig. 6(d) below. An additional option would be to
apply various different voltages to the individual four side
gates or the two central gates to overcome possible disorder
effects. However, the high quality of our sample rendered such
options unnecessary, allowing us to maintain a high degree of
symmetry of the electrostatic potential defining the CCR.

Figure 2 displays two additional remarkable trends: (i) the
quantized plateaus in g(Vc) become wider as Vs is increased.
(ii) This goes along with an increase of the step width between
plateaus as is best seen in the inset of Fig. 2 (consider the width
of the white-yellow bands in the upper half of the plot, the
QPC regime). Trend (i) indicates that the lateral confinement
becomes stronger with more positive Vs, leading to a larger
characteristic energy spacing between the 1D subbands. This
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FIG. 3. (Color online) Noninteracting local density of states per spin species, A0
j (ω), and the noninteracting transmission per spin species,

T 0(ω), for B̃ = 0. The energy ω is measured w.r.t. the chemical potential. The five panels show five potential barrier shapes occuring during
the QPC-QD crossover, namely, (a) a QPC with a short flat barrier, (b) a QPC with a parabolic barrier, (c) a QPC with a long flat barrier, (d) a
shallow QD with just one discrete orbital state, and (e) a deeper QD with two discrete orbital states.

also implies a larger on-site exchange energy, U , between
the electrons. Trend (ii) confirms our statement, above, that
the width of the barrier, seen by electrons, decreases as Vs is
increased, because a narrower barrier causes the step width to
become wider (see the discussion in Sec. III B and Figs. 3(a)–
3(c) below). Both trends together (which further depend on
the topgate voltage, see Supplementary Material in Ref. [14])
provide us with an experimental toolkit to precisely measure
the geometry dependence of the 0.7 anomaly. This could be
used for a detailed test of the predictions of our model in
Ref. [14]. A study of this kind is beyond the scope of this work
and left for the future.

III. THEORETICAL MODEL

In this section, we present the one-dimensional model
used for our theoretical description of the QD-QPC crossover,
featuring a smooth barrier and short-ranged interactions
[Sec. III A]. We first illustrate its geometrical properties in the
absence of interactions, by showing results for the noninteract-
ing LDOS and noninteracting transmission [Sec. III B]. Within
this noninteracting framework we explain why Fabry-Perot-
type resonances occur whenever the barrier top is not parabolic
[Sec. III C]. Finally, we summarize the key ingredients of the
fRG approach used here to treat interaction effects [Sec. III D].
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A. Hamiltonian

To describe the QD-QPC crossover we restrict ourself to the
lowest 1D subband of the CCR and adopt the model introduced
in Ref. [14] (see its Supplementary Information, Section S-4.B,
“model I”), whose notational conventions we adopt here, too.
The Hamiltonian has the form

H =
∑
jσ

[Ejσ n̂jσ − τ (d†
j+1 σ djσ + h.c.)] +

∑
j

Ujnj↑nj↓,

(1)

where n̂jσ = d
†
jσ djσ counts the number of electrons with spin

σ (=± for ↑,↓) at site j . It describes an infinite tight-binding
chain with constant lattice spacing a = 1 (taken as length
unit), constant hopping amplitude τ = 1 (taken as energy
unit), on-site interaction Uj and on-site potential energy Ejσ =
Ej − σ

2 B̃. Here Ej = Ẽ(ja) models the smooth electrostatic
potential Ẽ(x) defined by gates, and the Zeeman energy B̃

accounts for a uniform external parallel magnetic field. (We
use tildes to distinguish model parameters from experimental
ones, with B̃ = |gel|μBB for the magnetic field, where gel < 0
for GaAs, T̃ = kBT for temperature, and Ṽc,s ∝ −|e|Vc,s for
the central and side gate voltages.) We neglect spin-orbit
interactions and other orbital effects. We take Uj and Ej to
be nonzero only within a central constriction region (CCR) of
N = 2N ′ + 1 sites around j = 0, representing the QD or QPC.
The rest of the chain represents two noninteracting leads with
effective mass m = �

2/(2τa2) (defined as the curvature of the
dispersion at the band bottom in the bulk), chemical potential
μ and bulk Fermi energy εF = 2τ + μ; we choose μ = 0,
implying half-filled leads. Uj is set to a constant value U within
the CCR for all but the outermost sites of the CCR, where it
drops smoothly to zero. (For an explicit formula for Uj , see
Eq. (S14) of the Supplementary Information of Ref. [14].) The
shape of Ej is governed mainly by two parameters, Ṽc and Ṽs,
that respectively mimic the effects of the central and side gates
in experiment. Ṽc < Ṽs defines a QD with side barrier height
Ṽs with respect to (w.r.t.) μ [Fig. 1(f)]. Ṽc > Ṽs yields a QPC
with a single central barrier [Fig. 1(e)]. Its shape near the top
is chosen to be parabolic [3], unless stated otherwise [Fig. 4
features nonparabolic barrier tops]. We parametrize parabolic
barrier tops by

Ẽ(x) � Ṽc + εF − m�2
xx

2

2�2
. (2)

Here Ṽc is the barrier height measured w.r.t. the chemical
potential, and the barrier curvature is characterized by an
energy scale �x . We emphasize that by “parabolic” barrier,
we mean that the quadratic x dependence of Eq. (2) holds over
an energy range of at least �x from the barrier top [i.e., up to x

values large enough that E(0) − E(x) � �x]. Then the width
of the conductance step is given by �x .

An explicit formula for the shape of Ej used here is given
by Eq. (S15) of the Supplementary Information of Ref. [14].
Apart from Ṽc and Ṽs, that formula also depends on two further
parameters, N ′ and js ; they govern the CCR length and the
number of sites between the side-gate maxima, respectively,
and are kept fixed while varying Ṽc and/or Ṽs. Typical choices
of the potentials described by Ej are shown in Figs. 1(d)–1(g),
Figs. 3(a)–3(f), and to some extent Fig. 4 (inset). For situations
where the shape of Ej is not shown explicitly [Figs. 5(a)–5(c),
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(ω − Ṽc)/Ωx

n

Ẽ
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x

2

0

Ẽ
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)

FIG. 4. (Color online) Noninteracting transmission T 0(ω) as
function of central gate voltage for several different barrier shapes,
depicted in the insets, with barrier tops governed by |x|n according
to Eq. (3). (a) Flatter-than parabolic barriers with n � 2, which
arise during the QPC-KQD crossover and (b) sharper-than parabolic
barriers with n � 2, shown for completeness.

Fig. 6, Figs. 7(i)–7(l)], it is chosen according to the formula
cited above, with js = 60 and N ′ = 150 there.

B. Noninteracting LDOS and transmission

To convey some intuition for the geometrical properties
of this model in the absence of interactions, Fig. 3 shows
the noninteracting LDOS, A0

j (ω), and the noninteracting
transmission probability, T 0(ω) (with ω measured w.r.t. the
chemical potential), for five different choices of the barrier
shape, chosen to represent various states of the geometric
crossover between a QPC and a QD. For a parabolic QPC
[Fig. 3(b)], the LDOS exhibits a broad ridge (yellow-red) just
above the band bottom, ωmin

j = Ej − εF (solid black line),
which follows the shape of the barrier. This is the van Hove
ridge mentioned in the introduction; it originates from the 1D
van Hove singularity at the band bottom, which in the CCR is
smeared out on a scale set by the barrier curvature �x . When
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Ṽs[τ ]
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FIG. 5. (Color online) Transition from a QD to a QPC. (a)–(c) fRG1 results for the conductance g(Ṽc,Ṽs), calculated at T = 0 and three
different fields, and plotted as function of the central gate voltage Ṽc for a large number of different side gate voltages Ṽs. (d)–(f) Analogous to
(a)–(c), but showing experimental data for the conductance g(Vc,Vs) in the range 0 � g � 1, measured at a fixed low temperature, T0 = 30 mK.
For each side gate voltage Vs, the conductance trace is plotted as function of the shift �Vc = Vc − V

pinch
c in central gate voltage Vc relative to a

Vs-dependent reference value V
pinch

c (Vs), which is indicated by red lines in panels (h) and (i). [We chose V
pinch

c to statisfy g(V pinch
c ) = 0.5 in the

QPC regime (Vs > −1Ṽ ), and to shift linearly with Vs in QD regime, with a slope chosen such that the red line does not cross any resonances.]
Orange lines in (a-f) mark the 0.7 anomaly, red lines mark Kondo valleys; black arrows in (d)–(f) mark Fano resonances. (g) The three colored
pinch-off curves from (d)–(f), all measured at Vs = −1.18 V, are plotted together to show how in Kondo valleys (marked by red arrows) the
Kondo-enhanced conductance is suppressed by increasing field. (h) The raw experimental data for g(Vc,Vs) at B = 0 [corresponding to (d)] is
plotted over a larger range of (unshifted) gate voltages to show several conductance steps. (i) The derivative dg/dVc of the data from panel (h).
[(h) and (i) show identical data as Fig. 2 and its inset.] The red lines in (h) and (i) show V

pinch
c (Vs), as used in (d)–(f).

ω is increased from below to above the barrier top, set by Ṽc,
the transmission T 0(ω) changes from 0 to 1 in the form of a
smooth monotonic step of width �x , centered at ω = Ṽc.

Upon raising the side gate parameter Ṽs at fixed Ṽc, the
effective barrier top eventually turns flat [Fig. 3(c)] and the
ridge in the LDOS narrows (while the maximal value of
the LDOS above the barrier increases accordingly). This
flatter-than-parabolic barrier shape causes the noninteracting
transmission T 0(ω) to show wiggles at the onset of the
T 0(ω) = 1 plateau, which we interpret as Fabry-Perot-like
resonances. They are discussed in more detail in the next
subsection. Experimentally, we also observe the case of a short
flat barrier for quite large Vs, which we simulate in Fig. 3(a)
by using a short barrier with a quartic top (described by Eq. (3)

below, with n = 4). In agreement with the measured g(Vc) in
Fig. 2 we observe Fabry-Perot-like resonances in T 0(ω) for
both cases, short versus long flat barriers in panels (a) and (c),
and the period of the wiggles is longer for the shorter barrier,
as expected.

When the central gate parameter Ṽc is lowered below Ṽs,
we enter the QD regime [Figs. 3(d) and 3(e)]. The LDOS now
develops bound states, very narrow in energy, that are spatially
localized inside the QD and define its single-particle spectrum.
They are accompanied by resonances in the noninteracting
transmission. Note, though, that the energy beyond which the
T 0(ω) = 1 plateau associated with full transmission sets in, is
still determined by the broader LDOS ridges above the tops of
the left and right barriers, which are remnants of the van Hove
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Ṽc[τ ]Ṽc[τ ]
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FIG. 6. (Color online) Magnetoconductance: experiment vs the-
ory. (a) and (b) Experimental conductance curves for a KQD and a
QPC, at two different, fixed Vs values and various magnetic fields
measured at a low temperature T0 = 30 mK. Here, �Vc is the offset
of the central gate voltage Vc relative to VQD or V0.5, denoting the
middle of the Kondo valley or the middle of the first conductance
step, respectively. The data in (a) are a subsection of those shown in
Fig. 5(g); the data in (b) correspond to those shown in Ref. [14],
Fig. 2e. (c) and (d) fRG results, plotted in a way analogous to
(a) and (b), for the conductance g(Ṽc,B̃) at fixed Ṽs of a (deep)
KQD containing nKQD = 49 electrons, or for the lowest subband
of a QPC, respectively. (e) and (f) The corresponding KQD and
QPC low-energy scales B̃∗(Ṽc) [red lines, from Eq. (6)] and inverse
excess spin susceptibilities 1/[πχexc(Ṽc)] [blue lines, from Eq. (9)],
plotted on a log-linear scale. Note that near the gate voltage Ṽc0

[dashed line] where B̃∗ reaches its minimum, B̃min
∗ , the small-field

magnetoresponse in (c) and (d) is strongest.

ridge found for the parabolic and flat barrier shapes in (b) and
(a) and (c), respectively. This is clearly seen in the transmission
curves in panels (c) and (e), which exhibit very similar
Fabry-Perot-like resonances near T 0(ω) = 1. In addition,
T 0(ω) in panels (d) and (e) shows sharp resonances at ω < 0,
reflecting the bound states in the LDOS. The occurrence
of a conductance step together with sharp resonances is a
clear signature of the coexistence of a QD and a QPC; our
experimental data show corresponding features in the QD
regime of Fig. 2.

In the outer flanks of the potential barrier, the LDOS has
interference fringes with a period that scales as 1/v, and

the LDOS value averaged over several such fringes likewise
scales as 1/v, where vj (ω) is the semiclassical velocity of
an electron with kinetic energy ω − ωmin

j at site j . This
explains the strikingly different behavior of the LDOS at
the flanks of the potential maxima in Figs. 3(a) and 3(b):
for the short, flat barrier with steep flanks in Fig. 3(a), the
velocity vj (ω) of electrons with ω � μ increases rapidly with
|j |. As a consequence the LDOS at μ decreases rapidly and
forms interference fringes with an correspondingly rapidly
decreasing period. For the parabolic barrier of Fig. 3(b),
the flanks decrease much more slowly with increasing |j |, thus
the corresponding increase in Fermi velocity, the decrease in
the average LDOS and the decrease in the interference period
all occur more slowly, too.

C. Fabry-Perot resonances

In this section, we discuss the Fabry-Pero-like resonances
(wiggles) that are seen in both the measured conductance in
Fig. 2 (marked by dashed arrows) as well as in the calculated
T 0(ω), e.g., in Figs. 3(a) and 3(c), in more detail.

For our 1D model, studied in the absence of interactions,
we find, in particular, that T 0(ω) shows Fabry-Pero-like
resonances whenever the QPC barrier top is flatter than
parabolic. This is illustrated in Fig. 4, which shows the
noninteracting conductance g0(Ṽc) for a sequence of barrier
shapes with barrier tops given by

Ẽ(x) = Ṽc + εF − �x

( |x|
lx

)n

, lx =
√

2�2

m�x

, (3)

where lx is a characteristic length. The noninteracting trans-
mission of a purely parabolic barrier top (n = 2, black line) is
a smooth function of energy, given by [3]

T 0(ω) = [e2π(Ṽc−ω)/�x + 1]−1 . (4)

In contrast, making the barrier top flatter than parabolic
by increasing n introduces additional wiggles or resonances
in T 0(ω), see Fig. 4(a). Note that such structures occur
naturally in the conductance of longer QPCs and we suspect
that some previously published QPC measurements have
likely been performed in this regime of flatter-than-parabolic
barriers [35,36]. Our own experimental results, displayed in
Fig. 2, demonstrate that the transition from a gate defined
QD to a QPC likely covers the regime of a long QPC with a
flatter-than-parabolic barrier top and, moreover, a short QPC
with steep flanks can also result in a flatter-than-parabolic
barrier and Fabry-Perot-like resonances.

For completeness, Fig. 4(b) shows examples of n � 2.
Here, the transmission increases purely monotonically,
without any Fabry-Perot-like resonances. With decreasing n,
the potential flanks tend to “flatten,” causing the conductance
step to develop an increasingly skewed shape: the step’s onset
becomes noticeably steeper, while the onset of the plateau is
affected only weakly.

We note that it is not straightforward to distinguish
Fabry-Perot-type resonances, that occur even without inter-
actions, from many-body effects, that arise in the presence
of interactions. In the light of recent experimental work on
shape-dependent barriers, including Refs. [35,36] and this
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FIG. 7. (Color online) Local properties of KQD [charged with nKQD = 9 electrons for (c), (e), and (g)] vs QPC, calculated using fRG
including vertex flow. (a)–(f) Fixed geometries of KQD (left) and QPC (right). (a) and (b) The barrier tops for a (shallow) KQD and a QPC
near pinchoff, respectively; for each, we show three barrier shapes ωmin

j = Ej − εF, used to calculate the curves in (c)–(l) marked by matching
colored symbols. (c) and (d) Local density nj , and (e) and (f) local magnetization mj , for 11 equidistant fields from B̃ = 0 (blue) to B̃ = 10B̃∗
(red), for the KQD and QPC potentials shown by solid lines in (a) and (b), respectively. (g) and (h) The local spin susceptibility χj for the KQD
and QPC potentials shown by solid lines in (a) and (b), respectively; the spatial structure of χj reflects that of mj for small fields, likewise
showing strongly-enhanced standing-wave oscillations in the CCR. (i)–(l) Geometric crossovers: χj is shown as a function of site j and
Ṽc = Ṽj=0 for four trajectories in the (Ṽc,Ṽs) plane, drawn color-coded in (m) [where colored symbols mark Ṽc- and Ṽs-values used in (a)–(l)].
Each panel (i)–(l) also shows g(Ṽc) for three fields (B̃/B̃min

∗ = 0, ∼1, and � 1), to indicate the Ṽc dependence of the magnetoconductance; red
dashed lines mark the gate voltage, Ṽc0, where B̃∗ takes its minimal value, B̃min

∗ . (i) A QD being charged starting from nine electrons (up left)
to 13 electrons (down right), showing Coulomb blockade oscillations, (j) a QPC tuned from pinchoff to an open channel, (k) a crossover from
a QPC to a KQD with 11 electrons, and (l) a crossover from a QPC to an even QD (EQD) charged by ten electrons.

work, a systematic theoretical study of how Fabry-Perot-type
resonances are affected by turning on interactions would be
very interesting, but is beyond the scope of this work.

D. fRG approach

To theoretically study the effect of interactions on the
properties of the CCR at zero temperature, we used fRG
[30–33], a renormalization-group-enhanced perturbative ex-
pansion in the interaction. We used it to calculate the linear
conductance g of the CCR, and three local quantities, the
occupation nj , magnetization mj , and spin susceptibility χj

of site j , defined, respectively, as

nj = 〈n̂j↑ + n̂j↓〉, (5a)

mj = 〈n̂j↑ − n̂j↓〉/2 , (5b)

χj = ∂B̃mj |B̃=0 . (5c)

The results are presented in Secs. IV and V, below.
The details of our fRG approach are explained concisely in

the supplement of Ref. [14], and in more detail in Ref. [33].
Here we just summarize some key aspects. We restrict
ourselves to zero-temperature calculations in the Matsubara
formalism. Our fRG flow equations are based on two criteria.
First, we assume that mj = 0 for B̃ = 0, thus spontaneous
symmetry breaking is ruled out a priori. This assumption is
justified a posteriori by the agreement of our fRG results with

experiment, both in Ref. [14] and in the present paper. Second,
we neglect all contributions to the flow of the interaction
vertex that are not already generated to second order in
the bare (onsite) interaction, but feed back all other terms.
This so-called coupled latter approximation [33] amounts
to including all RPA-like channels on equal footing, while
feeding back all Hartree-like terms into the Fock-like equations
and vice versa. As a computational simplification, we here
use a “static” version of the coupled-ladder approximation,
which neglects all frequency dependencies in self-energies
and vertices. For the model of present interest, the results
for the zero-temperature conductance obtained via this static
simplification are qualitatively essentially the same as those
obtained by a “dynamic” calculation in which the frequency
dependence is retained, as shown explicitly in Refs. [14,33]
for a parabolic QPC potential.

The effective expansion parameter for static fRG is
UjA0

j (0). As a result, we find that the fRG equations describing
vertex flow do not converge for geometries that cause A0

j (ω)
to be sufficiently sharply peaked near the chemical potential,
i.e., near ω = 0. This problem occurs in the QD regime, where
the shallow few-electron QD has wide barriers near μ. We
have therefore neglected vertex flow for plots that involve this
regime, i.e., in Figs. 5(a)–5(c), and for the movie discussed
in Appendix. Vertex flow was included, however, for all other
fRG results shown in this paper, and is essential for obtaining
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the 0.7 shoulder in the QPC conductance even at B̃ = T̃ = 0,
as discussed in Sec. IV B below.

In Ref. [14], we showed that our model and fRG treatment
of interactions are able to capture key elements of the 0.7
anomaly in a QPC in a qualitatively correct manner, including
its magnetoconductance. In the next section, we show that this
is true also for the Kondo effect in a KQD, and in fact for the
entire QD-QPC crossover.

IV. MAGNETOCONDUCTANCE

In this section, we compare zero-temperature fRG results
and low-temperature experimental data for the conductance
during geometrical QD-QPC crossover, for three different
magnetic fields [Sec. IV A]. We also discuss the magneto-
conductance in the KQD and QPC regimes in more detail,
showing that fRG reproduces the characteristic magnetic-field
dependence associated with the Kondo effect and the 0.7
anomaly, respectively [Sec. IV B]. Moreover, we discuss the
Ṽc dependence of the characteristic low-energy scale, B̃∗, that
characterizes the strength of the magnetoconductance at low
fields, and its relation to the static spin susceptibility of the
CCR [Sec. IV C].

A. QPC-QD crossover at finite magnetic field

Figure 5 compares fRG results and experimental data for
the QD-QPC crossover at three magnetic fields, including
the B = 0 data already shown in Fig. 2. Figures 5(a)–5(c)
present model calculations of the zero-temperature linear
conductance g(Ṽc,Ṽs) (using fRG without vertex flow) for
three magnetic field values, and Figs. 5(d)–5(f) corresponding
experimental data. The pinch-off value of Vc around which
the measured conductance drops to zero as Vc is decreased,
say V

pinch
c , is indicated using red lines in the raw data for

B = 0 in Figs. 5(h) and 5(i), which are miniature versions
of Fig. 2 and its inset. Note that V

pinch
c shifts as a function

of Vs, reflecting the capacitive influence of Vs on the local
potential between the center gates. This effect is absent
in the calculated data, since our model does not include
such a cross-coupling. For better comparison between theory
and experiment, this cross-coupling is corrected for in the
measured data in Figs. 5(d)–5(f), by plotting them as function
of �Vc = Vc − V

pinch
c .

The measured transition from a QD to a QPC in Figs. 5(d)–
5(f) is smooth regardless of B. Our calculations qualita-
tively reproduce the main features of the measured QPC-QD
crossover: Just as for the B = 0 data in Fig. 2, both the calcu-
lated and measured conductance traces in Figs. 5(a)–5(f) show
the transition between a single QD with Coulomb blockade
oscillations and a QPC with a smooth conductance step. A
movie showing how this crossover evolves continuously with
magnetic field is presented and discussed in Appendix.

Moreover, both the calculated (at T = 0) and measured (at
T0 � 30 mK) data exhibit the Kondo effect in the QD regime:
it manifests itself as an enhanced conductance in the Coulomb
blockade regime if an odd number of electrons charges the
QD. In such Kondo valleys, highlighted in Figs. 5(a)–5(f)
by red lines, the Kondo-enhanced conductance is strongly
suppressed with increasing field. Figure 5(g) illustrates this

for the measured data by showing in a single panel the
three colored pinch-off curves from Figs. 5(d)–5(f), taken
for three comparable values of side gate voltage Vs. (These
three values, Vs = −1.18, −1.14 and −1.18, are not all the
same, because a random charge fluctuation had occurred in
the sample between the respective measurement runs, shifting
the potential landscape by a small but noticable amount.) The
solid red arrows in Fig. 5(g) mark the two Kondo valleys
corresponding to the red lines in Figs. 5(d)–5(f). The dashed
red arrow in Fig. 5(g) marks a third Kondo valley at a smaller
Vc-value, where, however, the Kondo effect is already very
weak, since the coupling to the leads is so small that TK < T .

In the regime of a QPC defined by a parabolic barrier (small
Ṽs, large Vs), both measurements and calculations display the
typical magnetic-field dependence of the 0.7 anomaly [marked
by orange lines in Figs. 5(a)–5(f)], namely the development
from a weak shoulder at g � 0.7 for B = 0 to a pronounced
plateau at a reduced conductance for finite magnetic fields.

B. Magnetoconductance of QPC and KQD

In this section, we compare theory and experiment in more
detail, for the magnetoconductance at two fixed values of side
gate voltage, for which the system forms a KQD or a QPC,
respectively. For the QPC, we have tuned the experimental
system to have a smooth plateau at g = 1 without any
Fabry-Perot resonances on the first conductance plateau (Vs =
−0.4 V, compare Fig. 2), while we use a parabolic barrier top
for the theoretical calculations.

Figures 6(a) and 6(b) show measured conductance of a
KQD and a QPC, respectively, at several magnetic fields, 0 �
B � 5.8 T, and Figs. 6(c) and 6(d) show corresponding fRG
results (calculated with flowing vertex). The fRG calculations
qualitatively reproduce the gate voltage and field dependencies
observed by us and numerous other experimental groups: The
conductance of the KQD [Fig. 6(c)] shows a Kondo plateau
for B̃ = 0, which is suppressed into a dip with increasing field,
as expected theoretically [31,37] and observed experimentally
in Ref. [20] and for our own data [Figs. 5(g) and 6(a)]. The
conductance step of the QPC [Fig. 6(d)] exhibits a 0.7 shoulder
at B̃ = 0, which, as B̃ is increased, is suppressed into a double
step whose width is proportional to the magnetic field, as
also seen in numerous experiments[4,7,9], including our own
(Fig. 6(b), see also Ref. [14]).

Note that the shoulder at g � 0.7 is visible in Fig. 6(d) even
for B = 0, much more so than in Fig. 5(a) above; the reason is
that the fRG scheme without vertex flow used for Figs. 5(a)–
5(c) underestimates the effects of interactions compared to
the fRG scheme that includes vertex flow, used for Figs. 6(c)
and 6(d). For a detailed discussion of this point, see Ref. [14].

C. Low-energy scale and excess spin susceptibility

For both KQD and QPC, the low-field expansion of g,

g(B̃) � g(0)[1 − (B̃/B̃∗)2] (B̃ � B̃∗) , (6)

can be used to characterize the strength of the B̃ dependence
in terms of a Ṽc-dependent energy scale, B̃∗: the smaller B̃∗,
the larger the magnetoconductance. For KQDs, the scale B̃∗ in
Eq. (6) corresponds to the Kondo temperature, B̃KQD

∗ = kBTK,
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according to Nozières’ Fermi-liquid [27,38] description of the
low-energy limit of the Kondo model. The B̃2 dependence (6)
has recently been observed experimentally for a KQD [23]
and previously for a few electron double quantum dot [39];
for a QPC, it has been confirmed in Ref. [14] (Fig. 2g there).
Extracting B̃∗(Ṽc) from our fRG results [Figs. 6(e) and 6(f),
red lines], we find that for both KQD and QPC it exhibits a
distinct minimum, B̃min

∗ , at (say) Ṽc0, near which it behaves as

B̃KQD
∗ ∝ exp [c1(Ṽc0 − Ṽc)2] , (7a)

B̃QPC
∗ ∝ exp [c2(Ṽc0 − Ṽc)/�x] , (Ṽc < Ṽc0) , (7b)

for the KQD and QPC geometries, respectively. (c1 and c2 are
Ṽc-independent constants.) Equation (7a) reproduces for B̃∗
the behavior theoretically predicted [29] and experimentally
observed [19,23] for the Kondo temperature of a KQD.
The linear exponential behavior described by Eq. (7b) for a
QPC is valid even in the absence of interactions. There it
follows directly from the noninteracting transmission formula
for parabolic barriers, Eq. (4) (see Sec. S-5 of Ref. [14]).
Experimentally, Eq. (7b) has been confirmed in Ref. [14]
(Fig. 2e there). Thus, our 1D model and fRG treatement of
interactions correctly capture the full B and Vc dependence
of the conductance of both KQD and QPC, including the
exponential dependence of B∗ on Ṽ 2

c or Ṽc, respectively. Note
that for a KQD the actual value of B̃

KQD
∗ depends exponentially

not only on Ṽc but on the entire shape of the double-well
potential: the latter affects both the width of the dot level
harboring the local moment and the dot’s charging energy, and
the prefactor c1 in Eq. (7a) is inversely proportional to both
these quantities.

For the Kondo effect, the scale B̃∗ defined by Eq. (6) is
inversely proportional to the excess contribution of the KQD
to the static spin susceptibility at zero temperature,

1/B̃KQD
∗ = πχexc. (8)

This relation, which links the strength of the magnetocon-
ductance to that of local spin fluctuations, is a hallmark of
Nozières’s Fermi-liquid theory [27]. For our model, we define
the excess spin susceptibility of the CCR by

χexc(Ṽc) =
∑

j∈CCR

[
χj (Ṽc) − χj

(
Ṽ ref

c

)]
, (9)

where χj [Eq. (5c)] is the local zero-field spin susceptibility
of site j , and Ṽ ref

c a reference potential at which the
magnetoconductance is very small. As reference for a KQD,
we take Ṽ ref

c to define an even QD (EQD) charged by an
even number of electrons in an adjacent Coulomb-blockade
valley; for a QPC, we take Ṽ ref

c small enough to define a truly
open 1D channel (g > 0.999). We find that the characteristic
Fermi-liquid relation

1/B̃∗ ∝ χexc (10)

is satisfied very well for the KQD for Ṽc near Ṽc0 [Fig. 6(e)], as
expected. Remarkably, we find that for a QPC, too, a small B̃∗
goes hand in hand with a large χexc. In fact, by using Ṽ ref

c as fit
parameter, the inverse proportionality Eq. (10) can be achieved
for a QPC over a rather large range of gate voltages Ṽc � Ṽc0, as
shown in Fig. 6(f). That the inverse relation between B̃∗ and
χexc also holds roughly for a QPC (though not as well as for

a KQD, and requiring a fit parameter in the definition of χexc)
is truly remarkable and constitutes one of the main theoretical
results of this paper: the link between the magnetoconductance
and local spin fluctuations that characterizes the Fermi-liquid
regime of the Kondo effect, namely Eq. (10), applies for the
0.7 anomaly as well. This substantiates the argumentation,
presented by us in Ref. [14], that the .7KS is a manifestation
of the fact that a KQD and a parabolic QPC show similar
Fermi-liquid behavior at low energies.

It should be emphasized, though, that the .7KS applies
only to physical quantities that probe the nature of low-
energy excitations relative to the ground state, such as the
magnetoconductance and the spin susceptibility, but not to pure
ground-state properties, such as the value of the conductance
at zero temperature and zero field, to be denoted here by
g0,0(Ṽc). Indeed, in the gate voltage regime where the system
responds most strongly to low-energy probes, namely, for
Ṽc � Ṽc0 where B̃∗ � B̃min

∗ , the conductance of a KQD reaches
its maximal value of g

KQD
0,0 � 1, whereas for a QPC it has

significantly smaller value, g
QPC
0,0 � 0.7 [Figs. 6(c) and 6(d),

black lines]. The reason for this difference is that a KQD
features a Kondo resonance, whereas a QPC does not, since
it does not harbor a local moment (as argued in detail in
Secs. V and VI below). For a KQD, the height of the Kondo
resonance reaches the unitary limit in the middle of the Kondo
valley, which is why g

KQD
0,0 � 1 there. In contrast, g

QPC
0,0 is

governed simply by the effective QPC barrier height, which
has a bare contribution linear in Ṽc, and a small additional
interaction-induced upward shift from Hartree terms. The
latter shows a slight nonlinearity when the van Hove ridge
passes through the chemical potential, causing g0,0(Ṽc) to
show a slight shoulder that for a parabolic QPC sits near
g0,0 � 0.7 (as discussed in detail in Ref. [14]). The maximal
value g

QPC
0,0 = 1 is reached only when the barrier height has

become so low that the channel is truly open. As an aside, let
us briefly comment on the implications of the above points for
the structure of a yet-to-be developed Fermi-liquid theory, à la
Nozières, for the low-energy behavior of the one-dimensional
model studied here. Such a theory is formulated in terms of
the eigenvalues of the spin-dependent scattering matrix at low
excitation energies. These eigenvalues can be expressed in
terms of scattering phase shifts, whose low-energy behavior
can be parametrized in terms of a small number of Fermi-liquid
parameters, which fully determine the low-energy behavior of
the system. These Fermi-liquid parameters include, amongst
others, the zero-energy, zero-field values of the phase shifts,
which fully characterize g0,0(Ṽc). The differences in the Ṽc

dependence of g0,0 for a KQD or a QPC can thus be encoded
in different Ṽc dependencies for the zero-energy, zero-field
phase shifts. On the other hand, the similarities in the behavior
of low-energy excitations, which give rise to the .7KS, must
arise from a similar structure in the leading energy dependence
of the phase shifts.

V. LOCAL PROPERTIES

In this section we further explore the .7KS by theoretically
studying the relation between the magnetoconductance and
local properties in more detail, and for several different
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QD-QPC crossover trajectories. We here focus on the local
density nj , magnetization mj and spin susceptibility χj

[defined in Eq. (5) above] at zero temperature, calculated by
fRG. We find that a strong negative magnetoconductance goes
hand in hand with an enhanced local spin susceptibility in the
CCR, and argue that this connection is the microscopic origin
of the .7KS.

Figures 7(c)–7(f) compare the B̃ dependence of nj and
mj of a KQD and a parabolic QPC near pinchoff, whose
barrier shapes are shown by solid lines in Figs. 7(a) and 7(b),
respectively. Towards the edges of the CCR (large |j |, Ej →
0), the density nj , plotted in Figs. 7(c) and 7(d), rises toward
the filling of the noninteracting leads. For the KQD the charge
near the center of the CCR is well-localized and discrete
[nKQD

j sums to nKQD = 9 between the two distinct minima

in (c)]. For the parabolic QPC, in contrast, n
QPC
j is minimal at

the center, showing no signs of localized charge. For B̃ �= 0,
both m

KQD
j and m

QPC
j , plotted in Figs. 7(e) and 7(f), show

strongly-enhanced standing-wave oscillations in the CCR
(with locally varying wavelength λ ∼ 1/nj ), but significant
differences arise when B̃ increases far beyond B̃∗: for a KQD,
m

KQD
j saturates in magnitude, its maxima stay fixed in position,

and n
KQD
j remains B̃-independent, all indicating that a discrete

spin is being polarized. In contrast, for a QPC, m
QPC
j does

not saturate for B̃ � B̃∗, its maxima shift outward, and n
QPC
j

increases near the barrier center, all indicating that a smooth
redistribution of charge and spin occurs during the polarization
of the CCR, which ultimately causes the spin-split double
conductance step at B̃ � B̃∗. We conclude that whereas the
KQD harbors a discrete, localized spin- 1

2 local moment, a
parabolic QPC does not, since the spins in its CCR are neither
discrete nor localized. A detailed study of the behavior of
the magnetization in large fields B > B∗ follows in the next
section below.

Despite these differences, the KQD and QPC do show two
striking similarities in the regime of small fields, B̃ � B̃∗,
relevant for the .7KS. First, mj vanishes at B̃ = 0 [Figs. 7(e)
and 7(f), blue lines], reflecting our fRG assumption that
no spontaneous magnetization occurs, in contrast to the
spontaneous spin splitting scenario advocated in Refs. [4–6,13]
(see Ref. [14], Supplementary Information, pp. 5 and 6, for a
detailed discussion). Second, the local static spin susceptibility
χj , shown in Figs. 7(g) and 7(h), exhibits a strong enhancement
(modulated by standing-wave oscillations) in the CCR for
both KQD and QPC. This enhancement arises through an
interplay of geometry and interactions. In the absence of
interactions, the bare local spin susceptibility in a QPC is
directly proportional to the LDOS at the chemical potential,
χ0

j = A0
j (0)/2, and hence inherits the spatial dependence of

the latter, reflecting the geometry of the system. Interactions
enhance the spin susceptibility via a Stoner-type mechanism:
upon turning on a small Zeeman field that favors spin up
over spin down, interactions enhance the spin imbalance
by further depleting the spin-down population. The same
line of arguments applies for a KQD in the low-energy
regime described by an effective Fermi-liquid Hamiltonian,
involving quasiparticles that experience a local interaction
whose strength is proportional to 1/TK [27].

In contrast to a KQD, an EQD shows no χj enhancement.
This is illustrated by Figs. 7(i)–7(l), which display χj (Ṽc) and
g(Ṽc) for four trajectories in the (Ṽc,Ṽs) plane, corresponding
to four types of geometric crossovers. Figure 7(i) shows a QD
at fixed Ṽs, whose electron number (blue integers) is increased
by lowering Ṽc. It exhibits odd-even effects for both χj (Ṽc) and
g(Ṽc): the Kondo-plateaus in g(Ṽc) for odd electron numbers
(KQDs) are accompanied by distinct peaks in χj (Ṽc) (white
lines), whereas the Coulomb valleys for even electron numbers
(EQDs) are not. Figure 7(j) shows a QPC at fixed Ṽs, which
is tuned from pinchoff into an open channel with g = 1 by
lowering Ṽc. The 0.7 anomaly in g(Ṽc) occurs for Ṽc values
near Ṽc0 (red dashed line) where B̃∗ is minimal. There the
two maxima in χj merge into a single one (reminiscent of
Figs. 2 bA-C in Ref. [26]), indicating that the barrier top has
dropped below 0 [compare panel Fig. 7(b), green circle], so
that the chemical potential cuts through the apex of the Hove
ridge. Figure 7(k) shows a QPC-KQD crossover ending in
an 11-electron KQD: χj exhibits strong maxima in the QPC,
which weaken in the open-channel regime during the crossover
to the KQD, where they become large again. Fig. 7(l) shows a
QPC-EQD crossover ending in a 10-electron EQD, where χj

remains very small, in contrast to the case of the 11-electron
KQD in Fig. 7(k).

Note that in the QPC parts of Figs. 7(j)–7(l), χj exhibits a
ridgelike, parabola-shaped main maximum as function of Ṽc

and j that mimics (and indeed stems from) the Hove ridge in
the LDOS as function of ω and j [Fig. 3(a)].

Note also that the trajectories in Figs. 3(j) and 3(k) were
chosen such that the point where the barrier top changes from
a local maximum to a local minimum (Ṽs = Ṽc) occurs deep
in the open-channel regime, where the barrier top already lies
well below the chemical potential. There the conductance is
essentially unity (g � 1) and the spin susceptibility χj is very
small (since the van Hove ridge lies far below the chemical
potential), illustrating that a truly open channel harbors very
little spin fluctuations. However, the detailed behavior during
the crossover depends on the detailed shape of the crossover
trajectory (which need not be linear in the Ṽc-Ṽs plane). For
example, it is possible to construct trajectories (not shown) that
avoid the open-channel regime altogether, so that throughout
the crossover the conductance remains well below 1 and the
spin susceptibility large. (One option: lower Ṽc to just below
μ, then keep it fixed there while increasing Ṽs past Ṽc; this
fixes the QPC barrier’s local maximum to lie just below the
chemical potential until it turns into a local minimum.)

The main message of Figs. 7(i)–7(l) is that the negative
magnetoconductance seen for both KQDs and QPCs, but not
for EQDs, goes hand in hand with a strongly enhanced spin
susceptibility, whereas the latter vanishes or is weak for EQDs
and open 1D channels. This is direct microsocopic evidence
that the strong negative magnetoresistance observed in both
a KQD and a QPC as one of the key features of the .7KS,
originates from the fact that a QPC harbors strong local spin
fluctuations similar to those of a KQD. In this regard, our
scenario is fully consistent with the quasibound state Kondo
scenario proposed by Meir and collaborators [24–26]. In fact,
the spatial structure of χ

QPC
j seen in Figs. 7(j)–7(l), namely

two peaks that merge into one as Ṽc is lowered, is consistent
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with that of the spin density of the “quasibound states” found
for a QPC by SDFT calculations [26,40] (Figs. 2bA-C in
Ref. [26]). This is not surprising, since the SDFT calculations
were initialized using a small magnetic field to break spin
symmetry, which naturally gives rise to spin density maxima
in regions of large spin susceptibility.

We emphasize, though, that the .7KS applies only for
low energy scales, B̃ � B̃∗, because while a KQD harbors
a discrete, localized spin- 1

2 local moment, a QPC does not,
as argued above, and further elaborated in the next section.
From the perspective of the quasibound state scenario of Meir
and collaborators, this could be phrased by saying that the
conditions for the formation of a quasibound state cease to
exist at large fields. The differences between the 0.7 anomaly
and the Kondo effect are therefore evident in deviations of
the QPC conductance from the Kondo predictions as T or B

approaches or exceeds T∗ or B∗, as already detailed in Ref. [14].
To end this section, we point out that Figs. 7(j)–7(l) offer a

hint to why the approximate Fermi-liquid relation χexc ∝ 1/B̃∗
[Eq. (10)] was found to hold only for Ṽc � Ṽc0, but not for Ṽc �
Ṽc0. In the former (or latter) case, the apex of the Hove ridge
lies below (or above) the chemical potential, so that the local
spin susceptibility χi(Ṽc) at fixed Ṽc has just one maximum (or
two separate maxima) as function of position [see the white
lines at Ṽc = Ṽc0 (or Ṽc > Ṽc0) in Figs. 7(j)–7(l)]. Hence, for
Ṽc � Ṽc0, the spatial region harboring strong spin fluctuations
forms a single connected region in the CCR center (similar to
the case of a single KQD between two leads), but for Ṽc � Ṽc0

it breaks into two distinct, spatially separated parts. In the latter
case, the analogy to a Fermi-liquid description à la Nozières
(which underlies the proportionality χexc ∝ 1/B̃∗) presumably
is no longer applicable, because the latter assumes strong spin
fluctuations to reside in a single, spatially localized region, not
two spatially separated ones.

VI. MAGNETIZATION

In the previous section, we have argued that the local
magnetization mj of a KQD and QPC evolve in strikingly
different ways when B̃ increases far beyond B̃∗ [Figs. 7(e)
and 7(f)]: for a KQD, mKQD

j saturates in magnitude, indicating
that a discrete spin is being polarized. In contrast, for a QPC,
m

QPC
j shows no signs of saturation, indicating that a smooth

redistribution of charge and spin occurs during the polarization
of the CCR. (Microscopically, this originates from differences
in the ω dependence of the LDOS of a QD and QPC, illustrated
in Fig. 3 and discussed in detail in Sec. S-4.E of Ref. [14].)
To substantiate our conclusion that a QPC does not harbor
a discrete, localized spin- 1

2 local moment, in contrast to a
KQD, we present in this section additional fRG results on the
evolution with B̃ of the magnetization, conductance and charge
of a KQD and QPC. For comparison, we also include fRG
results for the single-impurity Anderson model (SIAM), the
paradigmatic model for local moment formation in metals [41].
It describes a local level with energy εd = Ṽc and Coulomb
repulsion U for double occupancy, that acquires a level width
� via hybridization with a conduction band of width D (with
D � U � �).

For this purpose, we define the total charge and magnetiza-
tion in the “inner” region of the CCR by

ninner =
∑

|j |�jinner

nj , minner =
∑

|j |�jinner

mj . (11)

For the KQD geometry, we choose the inner region to lie
between the two maxima of the KQD potential, say at ±jKQD

inner .
The remaining CCR sites with jKQD

inner < |j | � N ′ are excluded,
since they lie outside the dot, in the CCR barrier’s outer flanks.
Although the contribution of each such site to the CCR’s total
charge or magnetization is small, their total contribution is
proportional to the length of the outer flanks, i.e., extensive,
and hence should be excluded when discussing intensive dot
properties. For the QPC geometry, in contrast, there is no
natural separation between an inner region and the barrier’s
outer flanks. We will show results for inner regions of three
different sizes below: for fixed N ′ = 150, we choose jQPC

inner =
150, 60, and 30 (they all yield qualitatively similar results).

Figure 8 compares the large-field behavior of the con-
ductance, charge and magnetization of a KQD (middle
column) and a QPC (right column). The left column shows
corresponding quantities for the SIAM, which corresponds to
a CCR with just a single site. We denote its local charge and
magnetization by nSIAM

d and mSIAM
d , respectively.

Panels (a)–(c) of Fig. 8 show the conductance as function of
Ṽc for SIAM, KQD, and QPC, respectively, for five magnetic
fields, specified in units of the Ṽc-independent reference field
B̃min

∗ = min[B̃∗(Ṽc)] [cf. Figs. 6(c) and 6(d)]. Colored arrows
indicate five fixed Ṽc values used to calculate the corresponding
curves in all other panels. These show the conductance [panels
(d)–(f)], charge [panels (g)–(i)], and magnetization [panels (j)–
(l)] as functions of B̃/B̃min

∗ , as well as the scaled conductance
G(B̃)/G(0) [panels (m)–(o)] and magnetization [panels (p)–
(r)] as functions of B̃/B̃∗. For SIAM and KQD, the blue, green,
and orange curves correspond to the local-moment regime
[G/GQ � 1 in (a) and (b), local charge close to 1 in (g) and
(h)], while the red and purple curves correspond to the mixed-
valence regime.

Upon comparing the three columns, we note the following
salient features. (i) For all five Ṽc values, the charges nSIAM

d ,
nKQD

inner , and nQPC
inner all depend only weakly on B̃ [(g)–(i)].

In the small-field limit, the conductance and magnetization
shows Fermi-liquid behavior in all cases: (ii) the conductance
decreases quadratically with field [(d)–(f)], and (iii) the magne-
tization increases linearly with field [(g)–(i)]. (iv) At interme-
diate fields both conductance [(d)–(f)] and magnetization [(g)–
(i)] go through a crossover, during which their slopes decrease
markedly in magnitude. (v) In the large-field regime beyond
this crossover, the behavior of the SIAM and KQD differs strik-
ingly from that of the QPC: SIAM and KQD exhibit behavior
characteristic of a spin- 1

2 local moment, whereas the QPC be-
comes spin-polarized with a magnetization much larger than 1

2 .
To be specific, the evidence for this interpretation of the

large-field regime is as follows: (vi) for the SIAM, the plateau
in mSIAM

d saturates towards 0.5 (j); this saturation is the
hallmark of a polarized spin- 1

2 local moment. (vii) At the same
time, the conductance G continues to decrease with field, albeit
very slowly (d). (For the SIAM this decrease is known to be
logarithmic, ∼1/ ln(B̃/B̃∗), but fRG is not sufficiently accurate
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FIG. 8. (Color online) fRG results (with vertex flow included) for the large-field behavior of the single-impurity Anderson model (SIAM,
left column), a KQD (middle column, same parameters as Fig. 6(c), and a QPC [right column, same parameters as Fig. 6(d)]. (a)–(c) The
conductance G, plotted as function of Ṽc, for five values of magnetic field; vertical dashed lines indicate the Ṽc-value where B̃∗ is minimal,
B̃∗(Ṽc0) = B̃min

∗ . (d)–(f) The conductance, (g)–(i) the total charge ninner, and (j)–(l) the total magnetization minner in the CCR’s inner region,
comprising sites |j | � jinner [Eq. (11)]. These are plotted as functions of field B̃/B̃min

∗ , for five different values of gate voltage Ṽc, indicated by
arrows of corresponding color in (a)–(c). (For the SIAM, the CCR consists of just a single central site, which constitutes the local d level of
that model, thus nSIAM

inner = nSIAM
d and mSIAM

inner = mSIAM
d .) (m)–(o) and (p)–(r) Same conductance and magnetization data as in (d)–(f) and (j)–(l),

respectively, but plotted vs B̃/B̃∗; black dotted lines in (p)–(r) have slope 1/π , indicating the small-field limiting behavior minner = B̃/(πB̃∗)
expected in the Kondo limit [cf. Eq. (8)]. The inset of (r) shows a zoom of the limiting behavior for B̃/B̃∗ → 0.

to reproduce purely logarithmic behavior.) The KQD exhibits
qualitatively similar features, though with some quantitative
differences. (viii) The plateau in mKQD

inner is fairly flat, too (k),
although it does not truly saturate but instead slowly increases
past 0.5 for sufficiently large fields. This reflects the fact that
the KQD in Fig. 8 harbors not only one spin- 1

2 local moment

but many additional occupied levels (ninner � 50); some of
these begin to contribute to the magnetization when B̃ becomes
a sufficiently large fraction of the dot level spacing. (ix) The
KQD conductance continues to decrease with field (e), but less
slowly so than for the SIAM (d), due to contributions from the
additional levels.

195401-14



RELATION BETWEEN THE 0.7 ANOMALY AND THE . . . PHYSICAL REVIEW B 92, 195401 (2015)

The above large-field features of the SIAM and a KQD
stand in stark constrast to those of a QPC: (x) its magnetization
continues to increase with field without any saturation (l) [the
slope depends on the width of the inner region: the larger jinner,
the larger the slope]; and (xi) the conductance fully saturates
at G = 0.5GQ (f), corresponding to a spin-split conductance
plateau. The absence of any saturation in the magnetization
reflects the fact that the QPC barrier lacks the isolated “inner
region” of a KQD. Instead, the CCR barrier is made up
entirely of outer flanks, along which electrons of both spin
species can freely move. As the magnetic field is increased,
the magnetization of the QPC is thus free to increase without
any intrinsic limit1 (in contrast to the case of a KQD). The
spin-split conductance plateau sets in once the LDOS at the
chemical potential is fully spin-polarized.

These differences between SIAM and KQD on the one hand
and QPC on the other of course imply different behaviors when
the conductance and magnetization are plotted versus B̃/B̃∗.
(xii) For the local-moment curves (blue, green, orange) of
the SIAM, the scaled conductance G(B̃)/G(0) (m) and the
magnetization (p) both collapse onto a single scaling curve
when plotted versus B̃/B̃∗. (xiii) The same is true approxi-
mately for the KQD’s conductance (n) and magnetization (q),
though the collapse is not as perfect. Thus, for the SIAM and
KQD, the Ṽc-dependent scale B̃∗ governs both the small- and
large-field behavior of the magnetization and conductance.
(xiv) This is not the case for the QPC, whose conductance (o)
and magnetization (r) do not show a collapse onto a single
curve when plotted versus B̃/B̃∗. (xv) Instead, the large-field
behavior of the magnetization is governed by a Ṽc-independent
scale: when the mQPC

inner-curves are plotted vs. B̃/B̃min
∗ , they all

overlap (l), except in the limit B̃ � B̃min
∗ [not resolved in (l)].

Also, (xvi) the field scale at which the conductance saturates
at G = 0.5GQ does not depend on B̃∗ at all, but instead grows
linearly with decreasing Ṽc (f).

To summarize, when the SIAM and the KQD are tuned
into their local moment regime, their conductance and mag-
netization exhibit the expected crossover, governed only by
a single energy scale B̃∗(Ṽc), between a Fermi-liquid and a
local-moment fixed point that is characteristic of the Kondo
effect, (xii, xiii). The QPC conductance and magnetization,
however, do not, (xiv-xvi). This is an example, therefore, where
the analogy between Kondo effect and 0.7 anomaly breaks
down—at large fields, they are distinct physical effects.

The lack of local-moment behavior for the QPC magneti-
zation at large fields is not surprising, given the open nature
of the QPC geometry. Nevertheless—and this is surprising
and remarkable—(xvii) the small-field limit (B̃ � B̃∗) of the
magnetization is governed by B̃∗ not only for the SIAM and
KQD in the local moment regime, but also for the QPC when
Ṽc < Ṽc0: for all these, the linear response of the magnetization

1This conclusion is consistent with a recent experimental study of
the magnetization of a QPC in a large magnetic field by nuclear
magnetic resonance [46]. For a field of 4.5 T, the authors “estimate
that the observed magnitude of the magnetization density corresponds
to the total magnetic moment (1.65 ± 0.45) in the QPC, exceeding
the single-electron-spin magnetic moment which a bound state can
support.”

to field is proportional to 1/B̃∗, meaning that curves of minner

versus B̃/B̃∗ for different Ṽc values all have the same slope as
B̃/B̃∗ → 0. [This is illustrated by the blue, green, orange lines
in panels (p) and (q), which all have slope 1/π (dashed black
line), in accord with Eq. (8); and by the green, orange and red
curves in the inset of panel (r), which have mutually similar
slopes, though these do not equal 1/π (dashed black line).]
The fact that the small-field limit of the QPC magnetization is
governed by B̃∗, (xvii) has far-reaching consequences, in that
it underlies the low-energy Fermi-liquid behavior of the QPC
conductance mentioned in Sec. IV C above.

We end this subsection with a parenthetic remark. As
an alternative to Eq. (11), outer flank contributions to the
magnetization can also be eliminated by considering

mexc(Ṽc) =
∑

j∈CCR

mj (Ṽc) −
∑

j∈CCR

mj

(
Ṽ ref

c

)
, (12)

the excess magnetization of the CCR at central gate voltage Ṽc

relative to its magnetization at a suitably chosen reference
voltage Ṽ ref

c [chosen to define an even QD (EQD) in an
Coulomb blockade value adjacent to the odd KQD, or an open
QPC, as discussed in conjunction with Eq. (9)]. Indeed, for
small fields (B̃/B̃∗ � 1) one finds mexc(B̃) � minner(B̃) when
choosing jinner = js , and the excess susceptibility defined in
Eq. (9) corresponds to χexc = (∂mexc/∂B̃)B̃=0. However, for
the large-field regime of interest in the present subsection, the
subtraction scheme of Eq. (12) is not convenient, because at
sufficiently large fields the second term becomes comparable
in size to the first, causing mexc to decrease.

VII. SUMMARY AND OUTLOOK

In Ref. [14], we have argued that the .7KS, i.e., the observed
similarities in the low-energy behavior of the conductance for
0.7 anomaly and the Kondo effect, originate from geometry-
induced, interaction-enhanced local spin fluctuations, that
are present both in a QPC and a KQD. The goal of the
present work has been to offer additional evidence for this
conclusion, by studying the geometric crossover between a QD
and a QPC, both experimentally and theoretically, focusing
on the magnetic field dependence at low temperatures. Our
experimental and numerical results were found to be in good
qualitative agreement. This shows that the 1D-model with
short-range interactions introduced here, together with the fRG
approach used to treat interactions, succeeds in capturing the
essential physics of the Kondo effect, the 0.7 anomaly and the
geometric crossover between them.

Our initial motivation for studying the geometric crossover
was the expectation that this would allow us to observe an
adiabatic transition from Kondo correlations present in a KQD
to the correlations present in a QPC showing the 0.7 anomaly.
Indeed, this idea turned out to be fruitful: our fRG results show
that an anomalously strong negative magnetoconductance, one
of the key features of the .7KS, always goes hand in hand with
strongly enhanced local spin fluctuations.

The spatial structure of the local spin fluctuations is
inherited from that of the noninteracting local density of states
at the chemical potential, and enhanced by interactions in
Stoner-type fashion. Roughly speaking, local spin fluctuations
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are strong in those regions of space where the electrons near
the chemical potential are “slow”. For a parabolic QPC, slow
electrons are found in the CCR when the barrier top is just
below the chemical potential, whereas for a KQD the odd
electron is slow simply because it is really trapped inside
the dot. The difference between these two situations does
not matter much for low energies (� |B̃∗|), thus both show
behavior characteristic of a Nozières-Fermi liquid with local
interactions. (These local interactions are the reason why the
.7KS also comprises similar temperature and source-drain
voltage dependences for a KQD and a QPC, see Ref. [14] for
a more detailed discussion of this point.) The difference does
matter, though, for high energies, where we find no indications
that a parabolic QPC harbors a localized state, and where
indeed no .7KS is observed.

One of the lessons learnt from Figs. 7(i)–7(l) is that the
presence or absence of the two crucial properties discussed
above, namely a strong negative magnetoconductance and
strong local spin fluctuations, depends very much on the
trajectory followed in the (Ṽc,Ṽs) plane during the QD-QPC
crossover. For example, for the trajectory studied in Fig. 7(k),
both these features disappear in the intermediate regime
between the KQD and the QPC, because there the barrier
top is so far below the chemical potential that the system is
essentially an open channel, with g � 1.

It is, of course, possible to also implement QD-QPC
crossover trajectories during which the barrier top always
remains close to the chemical potential. Suppose that such a
trajectory includes a wide, flat barrier top, such as that shown
in Fig. 3(b). When this barrier top is just below the chemical
potential, the electron density will be low throughout the wide
barrier region, implying that interaction effects will become
very strong there. This regime is conducive to the formation of
a Wigner crystal, so that the conductance can be expected
to show behavior different from that of a “standard” 0.7
anomaly. Indeed two recent experimental papers have studied
this regime [35,36] and reported interesting differences from
standard 0.7 phenomenology (such as a zero-bias peak that
splits into two or even three subpeaks as the barrier width is
varied).

In our own detailed studies of QPCs, both in Ref. [14]
and here, we have so far purposefully chosen to avoid the
regime of wide, flat barrier tops. Instead, we have focused
on parabolic barrier tops and demonstrated that these were
sufficient to explain numerous features of the standard
0.7 anomaly. Nevertheless, it would be very interesting to
systematically study the crossover from parabolic to wide,
flat barrier tops. The latter lead to Fabry-Perot resonances
even in the absence of interactions (as argued in Sec. III C),
and the way in which Fabry-Perot structures in the density of
states are modified or enhanced by interactions has not been
explored systematically yet.

In the limit of a very wide and flat barrier, the CCR
would represent a long 1D wire of low density, behaving as
a spin-incoherent Luttinger liquid [42,43]. To systematically
study the physics of this regime, it would be important
to consider not short-range interactions, as done here, but
long-range interactions, since the screening length increases
with decreasing density. Changing the screening length, in
turn, could affect the detailed behavior of local properties such

as the density nj and magnetization mj . Even in the context
of parabolic QPCs, it would be interesting and important
to explore whether the absence of any signs of a localized
charge in a QPC found here [Sec. V, Fig. 7(d)] persists when
the calculations are repeated with long-ranged interactions.
However, a detailed analysis of the effects of long-ranged
interactions is beyond the scope of the present paper and is left
for future investigations.

We also note that since interaction effects become ever
more important as the density decreases, fRG will at some
point become unsuitable for a flat barrier top when either
its width is made sufficiently wide or its top approaches the
chemical potential sufficiently closely from below. However,
more powerful numerical methods, such as the density matrix
renormalization group, could be used to study such situations.
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APPENDIX: EVOLUTION OF g( ˜Vc, ˜Vs) WITH ˜B (MOVIE)

In Sec. IV A, we showed fRG results (without vertex flow)
for the QD-to-QPC crossover of the conductance g(Ṽc,Ṽs)
as function of central and side gate voltage, for three values
of magnetic field [Figs. 5(a)–5(c)]. Its continuous evolution
with B̃, again calculated by fRG without vertex flow, can be
viewed as a QuickTime Movie, see the file “fRG.mov” in
Ref. [47]. The movie shows simultaneously the evolution with
B̃ of three data sets. The central panel gives the conductance
g(Ṽc,Ṽs) in a three-dimensional plot formatted in the same
way as Figs. 5(a)–5(c). The top left panel gives the frontmost
curve of the central panel, g(Ṽc,Ṽs = 0.018τ ), representing
the pure QD regime; and the top right panel gives its backmost
curve g(Ṽc,Ṽs = 1.9τ ), representing the pure QPC regime. A
moving horizontal line in the scale bar on the right hand side
indicates the evolution of B̃, and whenever it passes one of a
selected set of B̃ values, that value is indicated by a frozen
horizontal line, while two curves of matching color freeze in
the top left and top right panels.

The initial evolution for small fields (B̃ � 2 × 10−4τ )
shows how the Kondo plateaus of the first few Kondo
valleys, whose typical Kondo temperatures increase with
dot occupancy n, successively get suppressed as B̃ increases
[see top left panel]. For larger fields (B̃ � 2 × 10−4τ ), the
conductance in the QPC regime also begins to develop
a shoulder [see top right panel], which evolves (beyond
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FIG. 9. (Color online) Example of a spin-flip resonance in the
conductance of a QD. (a) Conductance (solid black line) and phases
δσ,+/π = nQD

σ (solid lines) and δσ,−/π (dashed lines), for σ =↑ (red
lines) and σ =↓ (blue lines), all calculated using fRG. The phases are
all set to 0 at a reference voltage Ṽ r

c = 0.022 so large that the CCR
no longer represents a QD, but a pinched-off QPC, with g = 0 and
nQD

σ = 0. As Ṽc decreases below 0.02τ where the dot is still empty,
n

QD
↑ (red solid line) initially increases in roughly integer steps as the

dot is being charged, while n
QD
↓ (blue solid line) stays essentially

zero, because the fixed field B̃ is large. However, at Ṽ
flip

c = 0.01303τ

(vertical dashed line), a spin-flip transition occurs, where (nQD
↑ ,n

QD
↓ )

changes from � (3,0) to � (2,1), and the conductance shows a spin-
flip resonance of height 1. (b) Zoom-in of the same data to the vicinity
of the spin-flip transition at Ṽ

flip
c .

B̃ � 3 × 10−3τ ) into an ever more pronounced double step.
Note that the scale bar changes from logarithmic to linear at
B̃ � 10−4τ , since the B̃ dependence of the conductance at
large fields is logarithmic for the Kondo effect, but linear for
the 0.7 anomaly. (This is another indication that the latter does
not involve local-moment physics at large fields.)

For large magnetic fields (beyond about B̃ � 10−4τ ) the
movie shows several sharp conductance resonances or peaks
of height g � 1, which move in the direction of decreasing
Ṽc (toward the right) with increasing magnetic field. An
example of such a resonance, occurring for B̃ = 1.4 × 10−3τ

and Ṽs = 0.018τ at Ṽc = 0.01303τ , is shown in Fig. 9. We
will call these “spin-flip resonances”, since their origin lies in
spin-flip transitions on the QD; in fact, they can be viewed
as generalized versions of the singlet-triplet Kondo effect
discussed in the literature (see Ref. [44], and references

therein). Although the spin-flip resonances have no relevance
for the 0.7 anomaly, they are interesting in their own right,
hence we now explain their origin in some more detail.

With increasing magnetic field, the total spin of a Coulomb-
blockaded QD will increase in discrete steps. This has been
discussed in the past in terms of the Fock-Darwin spectrum
of a QD, see, e.g., Fig. 5 in Ref. [45]. Such a step involves
adding a spin-up electron to the lowest-lying empty dot level
while removing a spin-down electron from the highest-lying
doubly-occupied one, which occurs whenever the gain in
Zeeman energy outweights the cost in kinetic energy. The
latter depends on the QD’s level spacing, and hence on Ṽc

and Ṽs. For given B̃ and Ṽs, such a transition can thus also
be induced changing Ṽc. To be specific, decreasing Ṽc (as in
Fig. 9) increases the level spacing and causes a spin-decreasing
spin-flip transition, say from the dot configuration (nQD

↑ ,n
QD
↓ )

to (nQD
↑ − 1,n

QD
↓ + 1). Precisely at the spin-flip transition,

say for Ṽc = Ṽ
flip

c , these two configurations are energetically
degenerate, so that Kondo-like correlations between the QD
and the leads can develop, which cause the conductance g to
reach its maximum possible value, namely, 1.

In the movie, the heights of these spin-flip resonances
typically do not reach unity, but rather fluctuate as a function
of magnetic field. This is a numerical artefact caused by the
insufficient resolution of Ṽc used when making the movie. The
numerical effort that would have been needed to resolve these
type of resonances in the movie would have been very high,
since they are typically very narrow. (We note also that at finite
temperature, the minimum width of these resonances would
be set by temperature.)

The fact that g = 1 at a spin-flip resonance can be under-
stood, following Ref. [44], using elementary concepts from the
Fermi-liquid description of zero-temperature transport through
a multilevel quantum dot. (For present purposes, we call the
entire CCR a “QD”.) Such a description is formulated in terms
of the eigenphases, say δσ,1 and δσ,2, of the spin-dependent,
zero-energy scattering matrix of the QD, Sσ . We compute it
by fRG using

Sσ = I − 2πiτ 2ρσ
0 (0)Tσ , (A1)

where ρσ
0 (0) is the lead density of states at the chemical

potential,

Tσ =
(
Tσ

LL Tσ
LR

Tσ
RL Tσ

RR

)
=

(
Gσ,R

−N ′,−N ′ Gσ,R
−N ′,N ′

Gσ,R
N ′,−N ′ Gσ,R

N ′,N ′

)
(A2)

is the spin-dependent transmission matrix through the CCR,
and Gσ,R

ji = Gσ
ji(i0

+) denotes the full retarded propagator from
site i to j , evaluated at zero temperature and zero energy.

The eigenphases are defined w.r.t. a reference gate voltage
Ṽ r

c , at which we set δσ,1 = δσ,2 = 0. The even and odd linear
combinations of these eigenphases,

δσ,± = δσ,1 ± δσ,2 , (A3)

determine, respectively, the quantum dot’s charge nQD and
conductance g. The charge nQD, measured w.r.t. the reference
point, is given by Friedel’s sum rule:

nQD = n
QD
↑ + n

QD
↓ = 1

π
(δ↑,+ + δ↓,+). (A4)
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The conductance is given by the relation

g = 1

2

∑
σ

sin2 δσ,− , (A5)

valid for left-right symmetric couplings between QD and
leads, as in our model. We choose Ṽ r

c to lie near the spin-
flip transition, but sufficiently different from Ṽ

flip
c that the

conductance and the phases determining it are small at Ṽ r
c ,

i.e., g � 1 and |δσ,−| � π/2.
Now, when Ṽc is tuned through the spin-flip transition,

the Ṽc-induced changes in δσ,− and nQD
σ (w.r.t. to their values,

namely 0, at the reference voltage Ṽ r
c ) are related by

�δσ,− � π�nQD
σ . (A6)

This equation follows from two facts: first, one of the spin-
dependent eigenphases of the scattering matrix, either δσ,1 or
δσ,2, turns out to be essentially independent of Ṽc throughout
a Coulomb-blockade valley, so that |�δσ,−| = |�δσ,+| [by
Eq. (A3)]; second, the Friedel sum rule implies that �δσ,+ =
π�nQD

σ . Now, since the total dot charge nQD = n
QD
↑ + n

QD
↓ is

fixed within the Coulomb blockade valley, the spin-dependent
dot occupancies change in equal but opposite manner as Ṽc

is tuned through the spin-flip transition: �n
QD
↑ � −�n

QD
↓ . By

Eq. (A6), this implies that both |�δ↑,−| and |�δ↓,−| will pass
through π/2 at essentially the same value of Ṽc, causing the
conductance g [Eq. (A5)] to show a resonance of height � 1
there. The case shown Fig. 9 is an example of a so-called
“triplet-singlet” transition [44], where the spin of the QD
changes from 3/2 to 1/2 as Ṽc decreases past Ṽ r

c .
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Schollwöck, and K. Schönhammer, Phys. Rev. B 73, 045125
(2006).

[31] C. Karrasch, T. Enss, and V. Meden, Phys. Rev. B 73, 235337
(2006).

[32] W. Metzner, M. Salmhofer, C. Honerkamp, V. Meden, and
K. Schönhammer, Rev. Mod. Phys. 84, 299 (2012).

[33] F. Bauer, J. Heyder, and J. von Delft, Phys. Rev. B 89, 045128
(2014).

[34] L. W. Smith, H. Al-Taie, F. Sfigakis, P. See, A. A. J. Lesage,
B. Xu, J. P. Griffiths, H. E. Beere, G. A. C. Jones, D. A.
Ritchie, M. J. Kelly, and C. G. Smith, Phys. Rev. B 90, 045426
(2014).

[35] M. J. Iqbal, R. Levy, E. J. Koop, J. B. Dekker, J. P. de Jong,
J. H. M. van der Velde, D. Reuter, A. D. Wieck, R. Aguado,
Y. Meir, and C. H. van der Wal, Nature (London) 501, 79
(2013).

195401-18

http://dx.doi.org/10.1103/PhysRevLett.60.848
http://dx.doi.org/10.1103/PhysRevLett.60.848
http://dx.doi.org/10.1103/PhysRevLett.60.848
http://dx.doi.org/10.1103/PhysRevLett.60.848
http://dx.doi.org/10.1088/0022-3719/21/8/002
http://dx.doi.org/10.1088/0022-3719/21/8/002
http://dx.doi.org/10.1088/0022-3719/21/8/002
http://dx.doi.org/10.1088/0022-3719/21/8/002
http://dx.doi.org/10.1103/PhysRevB.41.7906
http://dx.doi.org/10.1103/PhysRevB.41.7906
http://dx.doi.org/10.1103/PhysRevB.41.7906
http://dx.doi.org/10.1103/PhysRevB.41.7906
http://dx.doi.org/10.1103/PhysRevLett.77.135
http://dx.doi.org/10.1103/PhysRevLett.77.135
http://dx.doi.org/10.1103/PhysRevLett.77.135
http://dx.doi.org/10.1103/PhysRevLett.77.135
http://dx.doi.org/10.1103/PhysRevB.58.4846
http://dx.doi.org/10.1103/PhysRevB.58.4846
http://dx.doi.org/10.1103/PhysRevB.58.4846
http://dx.doi.org/10.1103/PhysRevB.58.4846
http://dx.doi.org/10.1103/PhysRevB.63.121311
http://dx.doi.org/10.1103/PhysRevB.63.121311
http://dx.doi.org/10.1103/PhysRevB.63.121311
http://dx.doi.org/10.1103/PhysRevB.63.121311
http://dx.doi.org/10.1103/PhysRevLett.88.226805
http://dx.doi.org/10.1103/PhysRevLett.88.226805
http://dx.doi.org/10.1103/PhysRevLett.88.226805
http://dx.doi.org/10.1103/PhysRevLett.88.226805
http://dx.doi.org/10.1103/PhysRevB.76.035316
http://dx.doi.org/10.1103/PhysRevB.76.035316
http://dx.doi.org/10.1103/PhysRevB.76.035316
http://dx.doi.org/10.1103/PhysRevB.76.035316
http://dx.doi.org/10.1007/s10948-007-0289-5
http://dx.doi.org/10.1007/s10948-007-0289-5
http://dx.doi.org/10.1007/s10948-007-0289-5
http://dx.doi.org/10.1007/s10948-007-0289-5
http://dx.doi.org/10.1088/0953-8984/20/16/160301
http://dx.doi.org/10.1088/0953-8984/20/16/160301
http://dx.doi.org/10.1088/0953-8984/20/16/160301
http://dx.doi.org/10.1088/0953-8984/20/16/160301
http://dx.doi.org/10.1103/PhysRevB.79.201308
http://dx.doi.org/10.1103/PhysRevB.79.201308
http://dx.doi.org/10.1103/PhysRevB.79.201308
http://dx.doi.org/10.1103/PhysRevB.79.201308
http://dx.doi.org/10.1209/0295-5075/91/67010
http://dx.doi.org/10.1209/0295-5075/91/67010
http://dx.doi.org/10.1209/0295-5075/91/67010
http://dx.doi.org/10.1209/0295-5075/91/67010
http://dx.doi.org/10.1103/PhysRevLett.107.126801
http://dx.doi.org/10.1103/PhysRevLett.107.126801
http://dx.doi.org/10.1103/PhysRevLett.107.126801
http://dx.doi.org/10.1103/PhysRevLett.107.126801
http://dx.doi.org/10.1038/nature12421
http://dx.doi.org/10.1038/nature12421
http://dx.doi.org/10.1038/nature12421
http://dx.doi.org/10.1038/nature12421
http://dx.doi.org/10.1103/PhysRevLett.61.1768
http://dx.doi.org/10.1103/PhysRevLett.61.1768
http://dx.doi.org/10.1103/PhysRevLett.61.1768
http://dx.doi.org/10.1103/PhysRevLett.61.1768
http://dx.doi.org/10.1038/34373
http://dx.doi.org/10.1038/34373
http://dx.doi.org/10.1038/34373
http://dx.doi.org/10.1038/34373
http://dx.doi.org/10.1126/science.281.5376.540
http://dx.doi.org/10.1126/science.281.5376.540
http://dx.doi.org/10.1126/science.281.5376.540
http://dx.doi.org/10.1126/science.281.5376.540
http://dx.doi.org/10.1126/science.289.5487.2105
http://dx.doi.org/10.1126/science.289.5487.2105
http://dx.doi.org/10.1126/science.289.5487.2105
http://dx.doi.org/10.1126/science.289.5487.2105
http://dx.doi.org/10.1038/35042545
http://dx.doi.org/10.1038/35042545
http://dx.doi.org/10.1038/35042545
http://dx.doi.org/10.1038/35042545
http://dx.doi.org/10.1038/nature03422
http://dx.doi.org/10.1038/nature03422
http://dx.doi.org/10.1038/nature03422
http://dx.doi.org/10.1038/nature03422
http://dx.doi.org/10.1103/PhysRevLett.100.026807
http://dx.doi.org/10.1103/PhysRevLett.100.026807
http://dx.doi.org/10.1103/PhysRevLett.100.026807
http://dx.doi.org/10.1103/PhysRevLett.100.026807
http://dx.doi.org/10.1103/PhysRevB.84.245316
http://dx.doi.org/10.1103/PhysRevB.84.245316
http://dx.doi.org/10.1103/PhysRevB.84.245316
http://dx.doi.org/10.1103/PhysRevB.84.245316
http://dx.doi.org/10.1103/PhysRevLett.89.196802
http://dx.doi.org/10.1103/PhysRevLett.89.196802
http://dx.doi.org/10.1103/PhysRevLett.89.196802
http://dx.doi.org/10.1103/PhysRevLett.89.196802
http://dx.doi.org/10.1103/PhysRevLett.97.186801
http://dx.doi.org/10.1103/PhysRevLett.97.186801
http://dx.doi.org/10.1103/PhysRevLett.97.186801
http://dx.doi.org/10.1103/PhysRevLett.97.186801
http://dx.doi.org/10.1038/nature05054
http://dx.doi.org/10.1038/nature05054
http://dx.doi.org/10.1038/nature05054
http://dx.doi.org/10.1038/nature05054
http://dx.doi.org/10.1007/BF00654541
http://dx.doi.org/10.1007/BF00654541
http://dx.doi.org/10.1007/BF00654541
http://dx.doi.org/10.1007/BF00654541
http://dx.doi.org/10.1103/PhysRevB.92.075120
http://dx.doi.org/10.1103/PhysRevB.92.075120
http://dx.doi.org/10.1103/PhysRevB.92.075120
http://dx.doi.org/10.1103/PhysRevB.92.075120
http://dx.doi.org/10.1103/PhysRevLett.40.416
http://dx.doi.org/10.1103/PhysRevLett.40.416
http://dx.doi.org/10.1103/PhysRevLett.40.416
http://dx.doi.org/10.1103/PhysRevLett.40.416
http://dx.doi.org/10.1103/PhysRevB.73.045125
http://dx.doi.org/10.1103/PhysRevB.73.045125
http://dx.doi.org/10.1103/PhysRevB.73.045125
http://dx.doi.org/10.1103/PhysRevB.73.045125
http://dx.doi.org/10.1103/PhysRevB.73.235337
http://dx.doi.org/10.1103/PhysRevB.73.235337
http://dx.doi.org/10.1103/PhysRevB.73.235337
http://dx.doi.org/10.1103/PhysRevB.73.235337
http://dx.doi.org/10.1103/RevModPhys.84.299
http://dx.doi.org/10.1103/RevModPhys.84.299
http://dx.doi.org/10.1103/RevModPhys.84.299
http://dx.doi.org/10.1103/RevModPhys.84.299
http://dx.doi.org/10.1103/PhysRevB.89.045128
http://dx.doi.org/10.1103/PhysRevB.89.045128
http://dx.doi.org/10.1103/PhysRevB.89.045128
http://dx.doi.org/10.1103/PhysRevB.89.045128
http://dx.doi.org/10.1103/PhysRevB.90.045426
http://dx.doi.org/10.1103/PhysRevB.90.045426
http://dx.doi.org/10.1103/PhysRevB.90.045426
http://dx.doi.org/10.1103/PhysRevB.90.045426
http://dx.doi.org/10.1038/nature12491
http://dx.doi.org/10.1038/nature12491
http://dx.doi.org/10.1038/nature12491
http://dx.doi.org/10.1038/nature12491


RELATION BETWEEN THE 0.7 ANOMALY AND THE . . . PHYSICAL REVIEW B 92, 195401 (2015)

[36] B. Brun, F. Martins, S. Faniel, B. Hackens, G. Bachelier, A.
Cavanna, C. Ulysse, A. Ouerghi, U. Gennser, D. Mailly, S.
Huant, V. Bayot, M. Sanquer, and H. Sellier, Nat. Commun. 5,
4290 (2014).

[37] T. A. Costi, Phys. Rev. B 64, 241310 (2001).
[38] L. Glazman and M. Pustilnik, in Nanophysics: Coherence and

Transport, edited by H. Bouchiat et al. (Elsevier, Amsterdam,
2005), pp. 427–478.
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