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Thermalization and dynamics in the single-impurity Anderson model
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We analyze the process of thermalization, dynamics, and the eigenstate thermalization hypothesis (ETH) for the
single-impurity Anderson model, focusing on the Kondo regime. For this we construct the complete eigenbasis
of the Hamiltonian using the numerical renormalization group (NRG) method in the language of the matrix
product states. It is a peculiarity of the NRG that while the Wilson chain is supposed to describe a macroscopic
bath, very few single-particle excitations already suffice to essentially thermalize the impurity system at finite
temperature, which amounts to having added a macroscopic amount of energy. Thus, given an initial state of the
system such as the ground state together with microscopic excitations, we calculate the spectral function of the
quantum impurity using the microcanonical and diagonal ensembles. These spectral functions are compared to
the time-averaged spectral function obtained by time evolving the initial state according to the full Hamiltonian,
and to the spectral function calculated using the thermal density matrix. By adding or removing particles at a
certain Wilson energy shell on top of the ground state, we find qualitative agreement between the resulting spectral
functions calculated for different ensembles. This indicates that the system thermalizes in the long-time limit, and
can be described by an appropriate statistical-mechanical ensemble. Moreover, by calculating static quantities
such as the impurity spectral density at the Fermi level as well as the dot occupancy for energy eigenstates relevant
for microcanonical ensemble, we find good support for the ETH. The ultimate mechanism responsible for this
effective thermalization within the NRG can be identified as Anderson orthogonality: the more charge that needs
to flow to or from infinity after applying a local excitation within the Wilson chain, the more the system looks
thermal afterwards at an increased temperature. For the same reason, however, thermalization fails if charge
rearrangement after the excitation remains mostly local. In these cases, the different statistical ensembles lead to
different results. Their behavior needs to be understood as a microscopic quantum quench only.
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I. INTRODUCTION

In an isolated many-body quantum system, the dynamics
can drive the system towards a stationary state that resembles
a thermal state [1,2]. Its resulting macroscopic properties are
therefore consistent with statistical mechanics [3,4]. Thermal-
ization exhibits a certain universality, in that widely different
initial conditions can lead to very similar thermal states [5–7].
Several recent studies have aimed at finding the reason for this
universality [7–13]. It has been argued that for generic isolated
interacting quantum systems, the process of thermalization is
described by eigenstate thermalization hypothesis (ETH) [5,6].
The ETH states that expectation values of generic observables
calculated using a diagonal ensemble derived from a single
generic many-body state and characterized by a density matrix
that is diagonal in the energy eigenbasis, and those calculated
for a proper energy eigenstate, are equal. This happens if eigen-
states that are close in energy yield similar expectation values
for the operator in question. It implies that the knowledge of a
single eigenstate with energy falling within a proper energy
window is sufficient to describe the system in its thermal
state. Although for systems displaying simple correlations the
ETH may be rather intuitive [7], it is definitely not obvious
for fully interacting many-body problems, the description of
which involves exponentially large Hilbert spaces.

*weymann@amu.edu.pl

In this paper, we study the process of thermalization and
explore the applicability of the ETH for a particular interacting
many-body system, namely, the single-impurity Anderson
model (SIAM). For this model, a complete basis of approxi-
mate eigenstates of the Hamiltonian can be constructed using
the numerical renormalization group (NRG) method [14,15].
The availability of this complete basis of energy eigenstates
allows numerous aspects of the ETH to be analyzed in great
detail.

The SIAM describes a localized electronic level (the
quantum impurity, henceforth called the quantum dot) with
local interactions, that hybridizes with a band of conduction
electrons. Proposed originally to explain the formation of
local moments in metals [16], this model and generalizations
thereof have been commonly used to model transport through
small quantum dots coupled to leads [17–19]. When the local
level, henceforth called the dot level, has average occupancy
ndσ = 〈d̂†

σ d̂σ 〉 � 1
2 per spin species, it hosts a localized spin

which experiences exchange interactions with the spins of
the conduction band, leading to the Kondo effect [20,21]. At
temperatures below the Kondo temperature TK , the conduction
electrons screen the dot’s spin, forming a nonlocal singlet
state [20,21]. TK corresponds to the binding energy associated
with forming the screened singlet. The many-body correlations
involved in this screening can be characterized [21] in terms
of the local density of states (LDOS). For the ground state |G〉,
the LDOS is given by the local spectral function, defined as
the expectation value AG = 〈G|Â|G〉 of the spectral operator
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Â ≡ ∑
σ (Â+

σ + Â−
σ ), where

Â+
σ = d̂σ δ(ω − Ĥ + E0) d̂†

σ ,
(1)

Â−
σ = d̂†

σ δ(ω + Ĥ − E0) d̂σ ,

with δ(ω) the Dirac delta function, Ĥ the Hamiltonian, and E0

the ground-state energy. The spectral operator Â measures the
likelihood of raising or lowering the energy by ω upon adding
or removing an electron from the dot. When AG is viewed
as function of ω (implicit in our notation), the ground-state
spectral function exhibits a striking, sharp peak near the Fermi
level, the so-called Kondo-Abrikosov-Suhl resonance [21],
whose width is a measure of the Kondo temperature TK . This
resonance is characteristic for the spectral function

A� = 〈�|Â|�〉 (2)

of any quantum state |�〉 for which both, the average energy
and energy uncertainty,

E� = 〈�|Ĥ − E0|�〉, (3a)

�E� =
√

〈�|(Ĥ − E0)2|�〉 − E2
� (3b)

lie below TK . However, the resonance weakens and eventually
disappears once E� and/or �E� becomes larger than
TK (examples are shown in the following). As a result,
the Kondo resonance causes a striking enhancement in
the transmission through the dot if the temperature and
source-drain bias are lowered to become smaller than TK ,
causing a zero-bias anomaly that has been observed in
numerous experiments [22–24].

An accurate description of Kondo correlations in general
and the LDOS in particular requires sophisticated theoretical
tools. In this regard, the NRG has proven itself to be a
particularly powerful and versatile method for studying various
quantum impurity models [14,15]. NRG employs a logarithmic
discretization of the conduction band and maps the model onto
a tight-binding chain with exponentially decaying hoppings
tn ∼ �−n/2 with dimensionless discretization parameter � �
2, the so-called Wilson chain. This chain is diagonalized
iteratively by adding one site at a time [14], and the eigenstates
calculated during this iterative scheme [25,26] can be used
to construct a complete many-body basis of approximate
eigenstates of the Hamiltonian, the Anders-Schiller (AS)
basis [25,26]. Using the AS basis, it is possible to accurately
calculate spectral functions of local operators [27,28] and
in particular to reliably determine the shape of the Kondo
resonance. Moreover, the time evolution |�t 〉 of an arbitrary
initial quantum state |�〉 can be calculated by representing
the latter in the AS basis [25,26]. With this approach, called
time-dependent NRG (tNRG), it is possible to explicitly
calculate the evolution of operator expectation values, such
as that of the spectral operator Â.

Since tNRG treats the entire many-body Hilbert space as
a closed quantum system when calculating the time evolution
|�t 〉, it is ideally suited to studying thermalization and the
ETH for interacting many-body systems. In this paper, we do
this for the SIAM. We consider a variety of initial states |�〉,
some correlated, some not, explore how Kondo correlations

emerge in the long-time limit, and analyze to what extent the
results correspond to those expected for a thermal state. We
will use the time-dependent expectation value of the spectral
operator

At = 〈�t |Â|�t 〉 (4)

as diagnostic tool for the emergence of Kondo correlations
with time: they lead to the emergence of a Kondo resonance
in At , when viewed as function of ω for a series of fixed
but ever larger values of t . (Note that t and ω here are not
conjugate Fourier variables.) Moreover, the width of the Kondo
resonance in At for t → ∞ can serve as a measure of the
effective temperature of the system in the long-time limit as
long as this width is larger than TK . Note, however, that the
simultaneous t and ω dependence of At will presumably not
be accessible experimentally; thus, At is to be regarded mainly
as a useful diagnostic tool for theoretical analysis.

To study the dynamics of the system and assess the
applicability of the ETH, we compare the long-time limit
of the LDOS to the LDOS calculated within three different
ensembles: (i) diagonal ensemble which is characterized by
a density matrix that is diagonal in the energy eigenbasis;
(ii) the microcanonical ensemble corresponding to a fixed
energy E� [cf. Eq. (3)]; and (iii) the standard thermal grand-
canonical ensemble [27] at comparable temperature T ∼ E� .
We study the process of thermalization for the ground state and
a few excited states, where the excitations are created either
in the bath or at the impurity. More specifically, we consider
the states which are created by acting with a single-particle
operator or a density operator on the full many-body ground
state of the system. We also analyze the dynamics and long-
time behavior of the system for an initial state in which the dot
is decoupled from the leads, and for a state with single-particle
excitation in the dot. We show that when starting the time
evolution with a state for which the excitation was created
within the Wilson chain by adding or removing charge, we
get a local density of states that is similar to that obtained
with a microcanonical ensemble of corresponding energy. By
calculating the expectation values of the spectral function at
the Fermi level and the dot occupancy for energy eigenstates
relevant for the microcanonical ensemble, we demonstrate
that, indeed, thermalization occurs and that ETH applies.
However, a rather different behavior is observed for states
that only involve local rearrangement of any of the conserved
charges. We show that here the time evolution needs to be
interpreted as a microscopic quantum quench that occurs on
top of a given initial statistical ensemble. We also note that
quantum quenches and their dynamics in correlated systems
have already been extensively studied [29–37]. However, this
problem in the context of the ETH for Kondo-correlated
quantum dots remains to a large extent unexplored.

The paper is organized as follows. In Sec. II, we describe
the general concept of the ETH, the model and Hamiltonian,
as well as the different ensembles used to study the dynamics
of the system. Section III is devoted to testing the process of
thermalization and the ETH for different initial states. The
conclusions are given in Sec. IV, while the details of the
construction of respective statistical ensembles using the NRG
eigenbasis are presented in the Appendixes.
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II. THEORETICAL DESCRIPTION

A. General statement of the ETH

Consider a generic isolated quantum system with Hamil-
tonian Ĥ , with its complete many-body eigenbasis given by
|s〉, i.e., Ĥ |s〉 = Es |s〉. Suppose the system is initialized at
time t = 0 in a pure quantum state |�〉 = ∑

s Cs |s〉, with
Cs = 〈s|�〉. To what extent does the expectation value of an
observable Ô,

Ot = 〈�t |Ô|�t 〉 , (5)

with |�t 〉 ≡ e−iĤ t |�〉, depend on the initial state |�〉 in the
long-time limit t → ∞?

Since the system is closed, quantum mechanics gives the
answer

O∞ =
∑

s

|Cs |2Oss , (6)

where Oss ′ ≡ 〈s|Ô|s ′〉, which assumes that the contribution
of the off-diagonal matrix elements averages to zero due
to phase cancellations, i.e., limt→∞

∑
s 
=s ′ ei(Es−Es′ )tOss ′ = 0.

Thus, the long-time limit is described by a diagonal ensemble,
characterized by a density matrix that is diagonal in the energy
eigenbasis

Odiag = Tr[ρ̂diagÔ], (7a)

with ρ̂diag ≡
∑

s

|Cs |2P̂s , (7b)

where P̂s ≡ |s〉〈s| is the projector onto eigenstate |s〉.
However, standard statistical mechanics gives a different

answer: it assumes that the long-time limit is well described
by a microcanonical ensemble

Omicro = Tr[ρ̂microÔ], (8a)

with ρ̂micro ≡ 1
N�

∑
|Es−E� |�δE�

P̂s , (8b)

characterized by the initial state’s average energy E� and
a (narrow) energy window δE� � �E� [cf. Eq. (3)], with
N� the number of states in the energy window that is
being summed over. The system is said to behave thermally
if in the long-time limit the expectation values calculated
using diagonal and microcanonical ensembles are equal, i.e.,
Odiag = Omicro. One possible scenario for which this occurs,
discussed by Deutsch and Srednicki [5,6], is the eigenstate
thermalization hypothesis, which assumes that the eigenstate
expectation values Oss show only very weak state-to-state
fluctuations for states that are close in energy. If this is the case,
the knowledge of the expectation value Oss of observable Ô
for a single eigenstate with appropriately chosen energy is
sufficient to describe the system’s behavior in the long-time
limit.

Given the difference in form between Eqs. (7) and (8), the
intriguing question arises: Under what conditions are the two
equivalent? Does the eigenstate thermalization hypothesis also
hold for truly interacting, nontrivial many-body systems? The
main goal of this paper is to address these questions for the
single-impurity Anderson Hamiltonian.

B. Model Hamiltonian and NRG basics

1. Model Hamiltonian

The SIAM describes a single-level quantum dot that is
tunnel coupled to a conduction band of free electrons. Its
Hamiltonian takes the form [16]

Ĥ = Ĥlead + Ĥdot + Ĥtun︸ ︷︷ ︸
≡Ĥloc

, (9a)

where

Ĥlead =
∑
kσ

εkĉ
†
kσ ĉkσ , (9b)

Ĥdot =
∑

σ

εd d̂
†
σ d̂σ + Ud̂

†
↑d̂↑d̂

†
↓d̂↓, (9c)

Ĥtun =
∑
kσ

v(ĉ†kσ d̂σ + d̂†
σ ĉkσ ). (9d)

Ĥlead describes a band of noninteracting conduction electrons,
where ĉ

†
kσ creates an electron with spin σ ∈ {↑,↓} at energy

εk . Ĥdot describes a dot state with level energy εd , creation
operator d̂†

σ , and local Coulomb energy U . Ĥtun accounts
for tunneling between the dot and the conduction band, with
energy-independent hopping matrix element v. Therefore, Ĥloc

accounts for the local part of the Hamiltonian that includes the
quantum dot as well as the bath degrees of freedom at the
location of the impurity.

If ndσ � 1
2 , the electronic correlations can lead to the

Kondo effect at low temperatures, when due to spin-flip
cotunneling processes the dot’s spin becomes screened by the
conduction electrons. To resolve the Kondo physics, we use
NRG [14,15,25–27]. There, the total system Hamiltonian is
described by Ĥ ≡ limN→∞ ĤN with

ĤN = Ĥloc +
N−1∑
n=0

tn
∑

σ

(f̂ †
nσ f̂n+1σ + H.c.), (10a)

such that Ĥ0 ≡ Ĥloc, where

Ĥloc = Ĥdot +
√

2


π

∑
σ

(d̂†
σ f̂0σ + H.c.). (10b)

The operators f̂nσ act on the nth shell of the Wilson
chain, with tn the respective nearest-neighbor hoppings along
the chain. For simplicity, a constant hybridization strength

(ω) ≡ 
ϑ(D − |ω|) is assumed, with level half-width 
 ≡
πρ|v|2 and half-bandwidth D := 1, taken as the unit of energy
throughout. Similarly, units of time and temperature are fixed
by using � = kB = 1, respectively.

2. Complete basis sets

The NRG Hamiltonian in Eq. (10) can be solved in an iter-
ative way, by constructing and diagonalizing the Hamiltonian
shellwise. Due to exponentially growing Hilbert space with
increasing the iteration number n, one needs to truncate the
space by keeping only MK lowest-energy states at a given
iteration. Thus, each Wilson shell, up to the last iteration
n = N , contains the low-energy states retained for the next
iteration, i.e., the kept (K) states, and the discarded (D) states
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FIG. 1. (Color online) Matrix product state (MPS) representation
of the kept (K) and discarded (D) states on the Wilson chain. The nth
box represents the tensor block Xn (X ∈ {K,D}), while its bottom,
left, and right legs carry the labels of the local states |σn〉, the
kept states |se〉K

n−1, and the kept (discarded) states |se〉K
n (|se〉D

n ),
respectively.

(starting from shells, n � n0, where n0 is the iteration at which
one first begins to truncate), while at the last shell (for n = N )
all states are regarded as discarded. The discarded states can
be used to define a complete eigenbasis of the Hamiltonian

1 =
N∑

n�n0

∑
se

|se〉Dn D
n 〈se|, (11a)

which, to a good approximation due to presence of energy scale
separation along the Wilson chain, also forms an eigenbasis of
the full Hamiltonian [25,26]

Ĥ |se〉Xn � EX
ns |se〉Xn . (11b)

Here, |se〉Xn denotes a kept or discarded (X ∈ K,D) state s on
the Wilson chain at shell n, e is an index labeling environmental
states describing the rest of the chain (shells with larger n),
and EX

ns is the corresponding approximate eigenenergy. Note
that the discarded states are defined on the Wilson shells from
n = n0 to N . The states obtained by diagonalizing the NRG
Hamiltonian can be conveniently expressed in terms of matrix
product states (MPS) [27,38] (see Fig. 1). The coefficients of
any state |�〉 in this complete eigenbasis will be denoted by
CD

nse ≡ D
n 〈se|�〉.

3. Model parameters

We use the following parameters throughout this paper:
U = 0.12, 
 = 0.01, and εd = −U/3. This yields the Kondo
temperature [39] TK � 3.7 × 10−4 (in units of D = 1). For
the Wilson chain we take the following parameters: the
discretization � = 2, the chain length N = 50, and we keep
MK = 1024 states for each iteration, unless stated otherwise.
Moreover, in calculations we used the Abelian symmetry for
the total charge and the total spin zth component. Using the
complete eigenbasis, we calculate the relevant matrix elements
and collect the discrete spectral function data points in a dense
logarithmic mesh. In order to represent the continuum model,
this discrete data subsequently need to be broadened. Here,
we follow the standard prescription [15,27] of approximating
the Dirac delta function by log-Gaussian distributions, while
smoothly switching to a standard Gaussian distribution for
|ω| < ω0 in order to broaden across ω = 0, with ω0 = E� ,
unless stated otherwise. The latter is required since the
resolution of NRG below temperature, here more broadly the

energy of the system, is intrinsically limited by energy scale
separation [27].

C. Density matrices

Using the complete eigenbasis of the NRG Hamiltonian,
it is possible to calculate the thermal grand-canonical expec-
tation value Ogrand = Tr[ρ̂grandÔ] of any operator, with the
grand-canonical density matrix represented as [27]

ρ̂grand =
∑

n

∑
se

|se〉Dn
e−βED

ns

Z

D
n 〈se|

≡
∑

n

wgrand
n ρ̂grand

n , (12)

with the chemical potential set to zero, μ = 0, and β = 1/T .
Here, ρ̂

grand
n is the density matrix of shell n within the state

space s ∈ D, w
grand
n = dN−nZn/Z is the total weight of shell

n, with the partition function Zn and d = 4 the dimension
of the local state space of a Wilson site. Henceforth, we use
the abbreviated notation

∑
n ≡ ∑N

n�n0
for the sum over the

Wilson shells with n � n0. This notation will be used for all
ensembles considered in this paper.

With the complete eigenbasis, the density matrices for
the microcanonical and diagonal ensembles can also be
constructed. Similarly to ρ̂grand, any of the ensembles E have
a decomposition over the Wilson shells of the general form

ρ̂E =
∑

n

wE
n ρ̂E

n . (13)

The NRG specific details of the implementation of the
aforementioned ensembles can be found in Appendix A.

III. RESULTS AND DISCUSSION

In the following, we study the dynamics of the system
for various excitations on top of the ground state of the
system. In particular, this includes single-particle excitation by
adding or removing a particle using |�〉 = f̂

†
nσ |G〉 (Sec. III A),

densitylike excitations such as |�〉 = f̂
†
nσ f̂nσ |G〉 (Sec. III B),

and quantum quenches in the hybridization of the impurity
(Sec. III C). Here, the order in which we discuss these cases
is chosen such that displaced charge, i.e., charge that needs to
flow to or from infinity, is maximal in the first case while it is
smallest in the last case. Accordingly, as will be shown in the
following, thermalization and hence the ETH is best satisfied
in the first case, but not in the last.

The expectation value we are interested in is the full
many-body spectral function AE (ω) of the dot level (local
density of states, LDOS) for a specified ensemble E , as
this is most sensitive to correlations within the system.
Here, A(ω) = − 1

π

∑
σ Im GR

dσ (ω), where GR
dσ (ω) denotes the

Fourier transform of the retarded Green’s function GR
dσ (τ ) =

−iθ (τ )〈{d̂σ (τ ),d̂†
σ (0)}〉E . The spectral operator Â is defined by

Â = 1

π

∑
σ

∫ ∞

0
dτ {d̂σ (τ ),d̂†

σ (0)} eiωτ , (14)
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which for the ground state of the system yields Eq. (1). The
corresponding spectral function is given by

AE = Re{Tr[ρ̂E Â]} , (15)

with the density matrix ρ̂E for a specific statistical ensemble E
given by Eq. (13), or for a single state |�t 〉 by ρ̂�t

= |�t 〉〈�t |.
Here, three different ensembles have been analyzed: the

grand canonical, the microcanonical, and the diagonal. The
spectral function for the grand-canonical ensemble Agrand

was calculated at an effective temperature T� , such that
E� = Tr[ρ̂grandĤ ], unless stated otherwise. As in Eq. (3),
the energy E� was measured relative to the ground-state
energy E0 throughout. The calculation of the spectral function
for the diagonal and microcanonical ensembles using the
respective density matrices can be performed in a way similar
to the full density matrix calculations [27] (see Appendix A).
Having generated the eigenbasis of the NRG Hamiltonian
in a forward sweep over the Wilson chain, a subsequent
backward sweep is performed to determine the respective
density matrices with corresponding weights. This basically
enables the calculation of all relevant operator expectation
values including, in particular, the expectation value of the
spectral function operator Â.

Moreover, we have also calculated the spectral function for
the initial state A� = 〈�|Â|�〉, and for the time-evolved state
in the long-time limit

Atime = 1

δt

∫ tfin

tfin−δt

dt At , (16)

where tfin is the final time and δt is the time over which the
averaging is performed. In calculations we use tfinTK = 104

and δt = 0.2tfin. The details of the calculation of time-averaged
spectral function are presented in Appendix B.

To begin with and also for later reference, let us start with
analyzing the behavior of the normalized spectral function
π
AG for the ground state of the system, i.e., |�〉 = |G〉. Its
peak height for the parameters chosen here, slightly away from
particle-hole symmetry, is π
A(ω = 0) � 0.99, consistent
with the Friedel sum rule (see Fig. 2). The spectral function
displays two broad maxima at resonant energies ω = εd and
εd + U , and a narrow Kondo resonance [21] of width TK

pinned at the Fermi level ω = 0.
The spectral functions shown in Fig. 2 are calculated by

using the diagonal ensemble Adiag, the microcanonical en-
semble Amicro, and grand-canonical ensemble Agrand. Because
|�〉 = |G〉 is an eigenstate of the Hamiltonian, the diagonal,
microcanonical, and grand-canonical (at temperature T <

�−N/2) density matrices have only a single nonzero entry, i.e.,
from the state |se〉Dn=N = |G〉. Consequently, by construction,
one finds Adiag = Amicro = Agrand = A� . In principle, also the
time-averaged spectral function Atime should be exactly equal
to A� . However, as seen in the inset in Fig. 2, here some
small differences arise from the fact that to calculate Atime

[cf. Eq. (B2)], one needs to insert one additional completeness
relation (11) as compared to the calculation of A from a density
matrix. Due to the NRG approximation in Eq. (11b), indeed,
this can lead to slightly different numerical results.

Wilson shell index
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Ψ
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t
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K
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π
Γ
A
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π
Γ
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E
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wdiag
n

wmicro
n

wgrand
n

U = 0.12
εd = −0.04
Γ = 0.01
Λ = 2

EΨ = 0
ΔEΨ = 0
NΨ = 1

FIG. 2. (Color online) The normalized spectral function π
AE
of the dot level at T = 0 calculated by using the diagonal ensemble
Adiag, the microcanonical ensemble Amicro, the grand-canonical
ensemble Agrand, the time-evolved state in the long-time limit Atime,
as well as the spectral function A� calculated for the initial state
|�〉 = |G〉. The left inset displays the weights on the Wilson chain wn

for the diagonal (wdiag
n ), microcanonical (wmicro

n ), and grand-canonical
(wgrand

n ) ensembles for fixed finite length N = 50, while the right inset
represents a zoom of the spectral data around the Kondo peak.

A. Single-particle excitations in the bath

While the eigenstate thermalization hypothesis is trivially
satisfied for the ground state of the system (see Fig. 2 above),
the validity of the ETH is not at all clear for other eigenstates
of the system. In the following, more generally, we analyze
thermalization by starting from pure states which are not
necessarily also eigenstates of the full Hamiltonian. Here, in
particular, we consider excited states of the bath obtained
by adding or removing a single particle at energy shell k

within the bath on top of the Kondo ground state. To be
specific, we consider |�〉 = f̂

†
k↑|G〉 with k = 18, 23, 28 for

the same model parameters as in Fig. 2. The energy of such an
excitation is approximately proportional to ωk � D�−k/2. For
the parameters chosen here, shell k = nK � 23 corresponds
to the energy scale of the Kondo temperature TK , whereas
k = 18 (k = 28) corresponds to a larger (smaller) energy scale,
respectively. The spectral functions calculated using different
ensembles are displayed in Fig. 3. The top panels present the
dependence of weights of the corresponding ensembles on
the Wilson shell index n, while the bottom panels show the
corresponding spectral functions.

It is instructive to compare the shapes of the spectral func-
tions of these excited states to that of the ground-state spectral
function in Fig. 2. Since the energies of these excited states
are still significantly smaller than the energies corresponding to
the Hubbard resonances E� � |εd |,εd + U , the high-energy
features of the spectral functions remain essentially unaltered.
What is most affected for given parameter set is the height
of the resonance at the Fermi level, which is a measure of
the respective strength of electronic correlations leading to
the Kondo effect. As expected, the overall trend seen in the
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FIG. 3. (Color online) The density matrix weight distributions for the diagonal, microcanonical, and grand-canonical ensembles as a
function of the Wilson shell index n [(a), (c), (e)], and the normalized spectral functions [(b), (d), (f)] calculated for a few excited states
obtained after acting with the spin-up creation operator of shell n, f̂

†
n↑, on the ground state: (a), (b) |�〉 = f̂

†
18↑|G〉, (c), (d) |�〉 = f̂

†
23↑|G〉, and

(e), (f) |�〉 = f̂
†

28↑|G〉. The number of states contributing to the microcanonical ensemble is denoted by N� , where the notation n = (n1 . . . n2)
indicates the contributing shells. The insets present the zoom of the spectral functions around the Kondo peak.

lower panels of Fig. 3 is that for k < nK , the Kondo resonance
is significantly suppressed [see Fig. 3(b)], for k = nK , the
normalized spectral functions reach approximately one half
[see Fig. 3(d)], while for k > nK , the Kondo resonance almost
reaches its maximum possible height [see Fig. 3(f)]. In other
words, hitting the ground state with an operator acting on
energy shell k destroys low-energy correlations at energies
ωn � ωk , i.e., n > k.

Let us now focus more carefully on the particular behavior
of A for different ensembles and the implications of our
numerical results for the ETH. The first row of Fig. 3
shows the corresponding weights wE

n [see Eq. (13)] of the
diagonal, microcanonical, and grand-canonical ensembles.
For a given state |�〉 = f̂

†
k↑|G〉, throughout, the normalized

weights become nonzero at energy shells n � k, exhibit a
pronounced maximum around n ∼ k + 4, which is followed
by a rapidly decaying tail towards larger n, i.e., smaller energy
scales. The shift of the maximum in wn relative to k depends
on �, and results from the fact that although the energy of state
E� is comparable to the energy scale of given iteration n, the
representative states relevant for the microcanonical ensemble,
satisfying |ED

ns − E� | � δE� , belong to iterations n > k.
This also underpins the choice for the effective temperature

T� � E�/4 for the grand-canonical ensemble which ensures
that n

grand
max � n

diag
max.

By construction, the weight distributions wmicro
n are sig-

nificantly narrower, yet also with their maximum at nmicro
max ∼

k + 4. The number of Wilson shells relevant for the micro-
canonical ensemble are comparable for all states considered in
Figs. 3(a), 3(c), and 3(e). In contrast, the weight distributions
w

diag
n and w

grand
n for the diagonal and grand-canonical ensem-

ble, respectively, are nonzero over a wider range of shells
and spread to the end of chain. Nevertheless, the maximum
weight occurs at a comparable energy shell for all these
cases, and therefore n

diag
max � nmicro

max � n
grand
max . Because of that,

all the three ensembles give comparable results, which become
basically identical once k > nK [see Fig. 3(f)]. Therefore, with
Adiag � Amicro, this suggests that for the initial states with
single-particle excitations in the bath, A behaves thermally
and, in the long-time limit, can be described by a proper
statistical-mechanical ensemble.

The detailed energy dependence of the matrix elements of
the diagonal density matrix

∑
e |CD

nse|2 versus ED
ns is presented

in Fig. 4 for the same three excited states as analyzed in Fig. 3.
The overall behavior of the matrix elements |CD

nse|2 is reflected
in the integrated weights resulting in the diagonal density
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FIG. 4. (Color online) The matrix elements of the diagonal den-
sity matrix

∑
e |CD

nse|2, calculated for different excited states |�〉 =
f̂

†
n↑|G〉, as indicated in the figure panels. The matrix elements are

plotted as a function of energy ω ≡ ED
ns measured relative to the

ground-state energy EG . The solid lines display the integrated weights
w

diag
n of the diagonal ensemble plotted as a function of energy of a

given iteration n, ω = α�−n/2, with α a numerical constant taking
into account the energy spread of each iteration. The vertical dashed
lines indicate the average energy of state |�〉, E� .

ensemble w
diag
n (solid lines with bullets). Its distribution is

clearly peaked around the average energy E� (red-dashed
vertical lines in Fig. 4), with a linear decay towards lower
energies. The physical relevance of the latter will be analyzed
in detail in Sec. III C and Fig. 13.

The long-time behavior of the system is approximately de-
scribed by the microcanonical ensemble. This is demonstrated
in Fig. 5 which shows the dependence of the height of the
Kondo resonance π
A(0) on the Wilson shell index k for
the initial state |�〉 = f̂

†
k↑|G〉. This static observable can be

directly related to the linear conductance at given temperature
G/G0 = π
A(0), with G0 = 2e2/h. One can see that with
increasing k, π
A(0) shows a small resonance for k ≈ 10,
which corresponds to the energy scale of the hybridization 
.
This linear conductance increases further all the way down
to the Kondo energy scale nK � 23. For k > nK , finally,
π
A(0) saturates and reaches unity. The fact that Adiag �
Amicro holds [7] supports the eigenstate thermalization hypoth-
esis [5,6], which states that the eigenstate expectation values
do not fluctuate between eigenstates that are close in energy.

To check whether the ETH really holds for our strongly
correlated electron system, instead of the above single-particle
excited states, we also analyze the behavior of the actual
many-body eigenstates. For this purpose, Fig. 6 presents the
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FIG. 5. (Color online) The normalized spectral function at en-
ergy ω = 0, π
A(0), calculated using the diagonal and microcanon-
ical ensembles for the initial state |�〉 = f̂

†
k↑|G〉 as a function of

the Wilson shell index k. The spectral data were broadened with
ω0 = E� . The predictions based on microcanonical ensemble agree
reasonably well with those based on the diagonal ensemble, which
indicates that the system behaves thermally.

energy expectation values of two specific physical quantities
for individual NRG eigenstates |E〉 ≡ |se〉Dn relevant for the
microcanonical ensemble, i.e., satisfying |E − E� | � δE� for
some given reference state |�〉: Fig. 6(a) shows the dot occupa-
tion nd ≡ 〈E|n̂d |E〉 with n̂d = ∑

σ d̂†
σ d̂σ , where in the thermal

case nd = ∫
dωA(ω)f (ω) with f (ω) the Fermi distribution

function, and Fig. 6(b) depicts the normalized spectral function
operator Â taken at energy ω = 0, i.e., π
 〈E|Â(0)|E〉.

The expectation values are calculated for the reference state
|�〉 = f̂

†
23↑|G〉 where the single-particle excitation occurs at

the energy shell k = nK � 23 corresponding to TK . They
are compared with the microcanonical expectation values
Tr[ρ̂micron̂d ] and Amicro, respectively (see the dashed horizontal
lines in Fig. 6). The different colors (symbols) indicate those
Wilson shells at which the weights of the microcanonical
density matrix are finite [see left inset in Fig. 6(a)]. The
largest contribution comes from iteration n = 27, where wmicro

n

is maximum.
Let us first discuss the behavior of the expectation value

of the dot occupation nd in Fig. 6(a). While it grows weakly
with increasing E, the histogram of the data in the right inset
of Fig. 6(a) clearly shows that the energy expectation values
are centered at the microcanonical expectation value (vertical
dashed lines). The spread of the data is extremely small due to
the simplicity of the measured operator which, by itself, is in-
sensitive to Kondo correlations. Overall, however, this clearly
indicates that for given operator the knowledge of a single
energy-eigenstate within a narrow energy window is sufficient
to find the expectation value 〈n̂d〉 in the long-time limit.

In contrast, the energy expectation value of the normalized
spectral operator at the Fermi level π
Â(0) is significantly
more sensitive to the specific energy eigenstate, as shown
in Fig. 6(b). The reason for this is that in given case, by
construction, π
Â(0) derives from a dynamical correlator that
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FIG. 6. (Color online) Energy-resolved expectation values rele-
vant for the microcanonical ensemble of (a) the dot occupation
nd = 〈E|n̂d |E〉, and (b) the normalized spectral function operator
π
〈E|Â(0)|E〉 taken at ω = 0. Here, the microcanonical ensemble
was based on the initial state |�〉 = f̂

†
23↑|G〉, and the energy

expectation values are computed for individual energy eigenstates
|E〉 ≡ |se〉D

n . For (b), the spectral data were broadened using ω0 =
E� . The dashed horizontal lines display Tr[ρ̂micron̂d ] and Amicro for
panels (a) and (b), respectively. The left inset in (a) presents the
distribution of weights of the microcanonical density matrix wmicro

n on
the Wilson chain, where the different symbols differentiate between
specific energy shells. The same symbols are also used when plotting
the energy expectation values in the main panels. The right insets in
(a) and (b) show the corresponding energy-shell-resolved histograms
of the data from the main panel.

is strongly sensitive to Kondo correlations. In Fig. 6(b), due to
the discrete nature of the Wilson chain at intermediate iteration
n, the data appear in bunches. Similar to Fig. 6(a), each of
these bunches shows a slight upward trend with increasing
energy E, while the overall trend from shell to shell is slightly
downward. Nevertheless, although the fluctuations of the data
are larger than in Fig. 6(a), the main contribution is centered
at the microcanonical expectation value Amicro, as seen in the
insets to Fig. 6(b). This again suggests that the ETH can be
invoked as the mechanism responsible for thermalization in the
considered system. The knowledge of an expectation value for
a representative energy eigenstate, i.e., an energy eigenstate
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FIG. 7. (Color online) The weights of the diagonal ensemble
w

diag
n as a function of the Wilson shell index n calculated for states

|�〉 = n̂28↑|G〉 and |�̃〉 = (1 − |G〉〈G|)|�〉.

|E〉 around E� satisfying |E − E� | � δE� , can be thus used
to predict the behavior of the system in the long-time limit.

B. Density excitations in the bath

We now study the process of thermalization and time
evolution for initial states obtained after acting with a
single-particle density operator onto the ground state of the
system |�〉 = n̂k↑|G〉 with n̂k↑ ≡ f̂

†
k↑f̂k↑. This corresponds

to a projection of the ground state |G〉 onto its component
where site (k↑) is fully occupied. The weights of the diagonal
density matrix w

diag
n for k = 28 are shown in Fig. 7. The

distribution of w
diag
n has a maximum for iterations slightly

larger than the Wilson shell on which the density operator
acts, yet also has a deltalike contribution at the very end
of the finite Wilson chain of length N considered. In fact,
approximately half of the weight is transferred to the last
shell n = N . This can be understood by realizing that for
given case w

diag
n = ∑

se |Dn〈se|n̂k↑|G〉|2 has a singular static
contribution for |se〉n = |G〉, namely, |〈G|n̂k↑|G〉|2 � 1

4 due to
half-filling which, after including the normalization of |�〉
above, becomes ∼ 1

2 . This simple static contribution needs to
be dealt with separately. The remainder gives rise to a broad
distribution around the excitation energy.

For the discussion of statistical ensembles, we focus on the
latter term only. For this, we project out the ground state and
use the state |�̃〉 = (1 − |G〉〈G|)|�〉 to study the process of
thermalization (in practice, this state |�̃〉 can be constructed
exactly by orthonormalizing both states, |�〉 as well as
〈G|�〉|G〉 towards the Wilson shell k at which the excitation
was created, and then perform the orthonormalization of |�〉
with respect to representation of |G〉 there). The resulting
weight distribution for state |�̃〉 is shown in Fig. 7. This now
again resembles the distribution of a thermal ensemble. We
have studied the expectation values of the spectral operator for
state |�̃〉 = (1 − |G〉〈G|)n̂k↑|G〉 as a function of the Wilson
shell index k (not shown), and found that again for all k the
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microcanonical ensemble describes very well the behavior of
the system in the long-time limit.

C. Relevance of microscopic quantum quenches
and Anderson orthogonality

The ensembles in Sec. III A (Fig. 3) were constructed
from a single-particle excitation onto the ground state of
the system. Foremost, this corresponds to a microscopic
quantum quench at zero temperature [29–37]. The spectral
functions Atime and A� analyzed in Fig. 3 are based on
the states |�〉 with or without time evolution with respect
to the full Hamiltonian, respectively. Nevertheless, after real-
time evolution to infinite times (see also diagonal ensemble)
the Kondo resonance at ω = 0 is not fully restored with only a
slight difference between A� and Atime [Figs. 3(b) and 3(d)].
This is essentially due to the fact that the Hilbert space,
although exponentially large, is based on a coarse-grained bath
through the logarithmic discretization parameter � of NRG.
Consequently, the energy of a microscopic excitation cannot be
fully dissipated to infinity, and one can only resolve the physics
at energy approximately equal or larger than the corresponding
excitation energy. This is in agreement with the simple fact [40]
that Wilson chains are not true thermal reservoirs and as such
cannot fully transfer local microscopic energy to infinity. In
particular, due to the lack of real-space association within
the Wilson chain, energy cannot be dissipated to the end of
the chain since for a given Wilson shell n, all shells n′ > n

represent and thus can absorb only exponentially small energy
∝�−n/2. Therefore, due to the exponential decrease of hopping
matrix elements along the Wilson chain, the energy of an
excitation that is created at a given site cannot travel away
very far in either direction along the Wilson chain since there
is an energy mismatch in both directions (see also Fig. 12).

A microscopic local quantum quench within a Fermi sea
can also be analyzed through the viewpoint of Anderson
orthogonality (AO) [41–43]. The decay of the overlap of
ground-state wave functions for initial (I ) and final (F ) states
|�I 〉 and |�F 〉, respectively, is given by [41]

|〈�I |�F 〉|2 ∝
(

1

L

)−�n2
loc

, (17a)

where [42]

1

L
∝ ω(n) ∝ �

− n
2 , (17b)

with L the system size and 1
L

∝ ω(n) the finite-size level-
spacing. Hence, in the NRG context, a Wilson chain of
linear length n translates into an exponentially large (effec-
tive) system size. Therefore, the AO power-law decay in
Eq. (17a) translates into an exponential decay along the Wilson
chain [42]. When plotted versus the energy scale ωn, the fitted
exponent reflects the charge �nloc that is displaced to or from
infinity. For example, the exponent seen in Fig. 4 for small
energies ω suggests |�nloc| = 1, which is in perfect agreement
with the fact that the extra particle f̂

†
nσ that has been inserted

in |�I 〉 = f̂
†
n↑|G〉 will be dissipated to infinity.

The decay of the wave-function overlap in Eq. (17a) is not
necessarily constrained to the overlap of explicit ground-state

wave functions. In particular, it describes an arbitrary local
quantum quench [43], say at time t = 0, on top of the ground
state of given (final) Hamiltonian [|�(t = 0)〉 = |�I 〉 can be
considered the ground state of a fictitious initial Hamiltonian].
As time proceeds, a larger and larger volume L will be affected
through the quantum quench, which justifies the association
that L ∼ vF t ∝ 1/ω, with vF the Fermi velocity.

Furthermore, the overlap in Eq. (17a) can be computed
with respect to an ensemble average at given energy scale
ωn ∝ 1/L [42], and thus the left-hand side of Eq. (17a) directly
relates to the diagonal weight distributions w

diag
n :

w
diag
n;F ∝ ρ

diag
n;I

(
1

L

)−�n2
loc

, (18)

where ρ
diag
n;I ≡ ∑

n′�n w
diag
n′;I describes the cumulative weight of

the diagonal density matrix of the initial system for shells
n′ � n. Therefore, adding or removing a particle strongly
affects the weight distributions w

diag
n of the final state. This

is the underlying mechanism that essentially allows the very
different earlier interpretation above of a (close to) thermalized
state, despite having applied a microscopic single-particle
excitation. There, the resulting state mimics a macroscopic
ensemble while caveats apply (see Sec. III D). All of this, of
course, is very specific and hence tightly connected to the
underlying logarithmic discretization and hence to the NRG
perspective.

While in the above sense, Fig. 3 does allow an approximate
effective interpretation of single-particle excitations within the
Wilson bath in terms of effective thermodynamic ensembles (a
more careful analysis will be given in Sec. III D), clearly, this
interpretation is not always possible. Motivated by the above
AO-based arguments, in the following we contrast two local
quantum quenches at the impurity: (i) using |�〉 = d̂

†
↑|G〉 and

(ii) using the ground state of the decoupled bath, |�〉 = |G〉
=0,
which is equivalent to a quantum quench by turning on 
.
The former inserts a particle, while the latter turns on the
hybridization of the impurity, which mostly results in only
local rearrangement of charge.

Figure 8 presents the weight distributions of the corre-
sponding ensembles and the spectral functions. The analysis
of the state |�b〉 = d̂

†
↑|G〉 [Figs. 8(a) and 8(b)] is similar in

spirit to the analysis in Fig. 3, with the minor difference
that the single-particle excitation does not occur within the
logarithmically discretized bath through the application of
some operator f̂

†
k↑ which is delocalized in real space, but

rather through the application of d̂
†
↑ which acts locally at

the impurity itself. Therefore, the initial spectral function
A� shows significant shift of spectral weight from the lower
towards the upper Hubbard resonance at ω/U � 0.6 since
creating an extra particle in the dot enhances the double
occupancy. Over time, however, this again relaxes back to
the lower Hubbard resonance [see Fig. 8(b)]. Furthermore, by
adding a particle, its charge eventually has to be dissipated
to infinity. Hence, similar to Fig. 3, starting from the energy
scale of the excitation, i.e., quantum quench, strong AO effects
again cut off the weight distribution towards later Wilson
shells. Therefore, all the weight distributions and the spectral
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FIG. 8. (Color online) Weight distribution of various ensembles
(upper panels) and the corresponding normalized spectral function
π
AE (lower panels) for the state |�〉 = d̂

†
↑|G〉 (left panels) and

|�〉 = |G〉
=0 (right panels). The grand-canonical spectral function
was calculated at an effective temperature T� specified in the figure,
together with ω

grand
0 = T� . For the other spectral functions Adiag,

Amicro, Atime, and A� , we optimized the broadening parameters such
that all unphysical features due to discretization were smeared out,
with the respective values for ω

diag
0 , ωmicro

0 , ωtime
0 , and ω�

0 specified in
the panels. The inset to panel (c) shows the weights of the diagonal
ensemble w

diag
n plotted on logarithmic scale as a function of Wilson

shell index.

functions for the different statistical ensembles show similar
behavior, including Adiag � Amicro.

Now, consider the dynamics starting from the decoupled
quantum dot in the state |�〉 = |G〉
=0 [Figs. 8(c) and 8(d)].
Since there are no Kondo correlations in the initial state |�〉,
clearly, A� shows no Kondo resonance at all. Using an effec-
tive temperature such that E� = Tr(ρ̂grandĤ ) � 2.85 
, this
leads to T� � 0.7 
 � TK . Therefore, the Kondo resonance
is clearly also absent in the grand-canonical spectral function.
For the same reason, the results for the microcanonical spectral
function are also very similar. As seen in Fig. 8(c), both have a
maximum in their weight distribution at early iterations which
correspond to the energy scale of 
.

In stark contrast, however, the weight distribution for the
diagonal ensemble in Fig. 8(c) has its maximum significantly
shifted to later energy shells, which clearly lies beyond
nK � 23. As a direct consequence, the spectral data in Fig. 8(d)
clearly shows an emerging Kondo resonance. Overall, this
results in a strong mismatch Adiag 
= Amicro, which contradicts
and thus cannot be explained through the ETH. Instead, here
only the elementary description in terms of a microscopic
quantum quench in 
 applies: by dissipating the inserted
microscopic energy to infinity, from the point of view of the im-
purity the system returns to its fully interacting ground state. In
this view, however, one would expect that the Kondo resonance
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FIG. 9. (Color online) (a) The weights of the diagonal density
matrix w

diag
n and (b) the contribution to the total energy coming from

a given Wilson shell n, En
� = w

diag
n ωn, calculated for the state |�〉 =

|G〉
=0 and plotted as a function of energy ω ∝ α��−n/2, with α�

being a constant of the order of unity chosen in such a way that
the maximum of weight distribution occurs at the same energy for all
values of � presented in the figure. The insets show the corresponding
data plotted on the y-axis linear scale. The vertical dashed lines in
(a) and its inset mark the energy scales corresponding to TK and 
,
respectively.

fully reemerges in the thermodynamic limit. Nevertheless, in
Fig. 8(d), a somewhat suppressed Kondo peak is seen for Adiag

as compared to T = 0 (see Fig. 2). Because w
diag
n is peaked

around TK , the spectral data for smaller energies are limited
due to the lack of spectral resolution for ω � TK for NRG
specific technical reasons. A more careful inspection of the
weight distribution w

diag
n [see inset to Fig. 8(c)] also reveals an

enhanced weight around the energy scale of 
 (n ≈ 13). This is
required since for the noninteracting bath under consideration,
even in the continuous, i.e., nondiscretized model, particle
or particle-hole excitations which are generated close to the
impurity at finite energy can be emitted to spatial infinity.
There, however, they represent long-lived particles due to the
absence of interaction, and hence no longer thermalize. This
is precisely also reflected within the NRG, where the Wilson
chain represents a closed yet exponentially large system. Being
discrete, the energy E� ∼ 
 must be contained around its
respective energy shell.

The energy dependence of the diagonal weight distribution
for different discretization parameter � is explicitly shown
in Fig. 9(a). The weights are plotted as a function of ω =
α��−n/2, with α� ∼ 1 being a constant of the order of unity
chosen such that the maximum in w

diag
n occurs at the same
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FIG. 10. (Color online) The normalized spectral function for the
time-evolved state Atime starting from |�〉 = |G〉
=0 calculated at
different final times tfin as indicated in the figure. The spectral data
were broadened with a time-dependent broadening parameter ω0 =
max(1/tfin,TK ), with ω0 = 
 for tfin = 0, and averaged over time
interval (tfin − δt,tfin), with δt = 0.2tfin. The spectral functions are
shifted by 0.01 (0.1) along the x axis (y axis) to increase visibility.

energy for all values of � considered in the figure. Clearly,
irrespective of �, the structure of the weight distribution
remains exactly the same and features two peaks: the first
one occurs for energies of the order of the coupling strength
ω ≈ 
, while the second one is located around ω ≈ TK .
Since the total energy is given by E� � ∑

nw
diag
n ωn, with

ωn ∝ �−n/2, almost all energy (more than 99%) is carried
by the weight for iterations up to n′ � nK (ω � TK ) [see
Fig. 9(b)]. The peak around ω ≈ TK and with it the drop
of the weight distribution for n > nK (ω < TK ), finally, again
can be understood through Anderson orthogonality: The initial
state (
 = 0) has no Kondo correlations at all, while the
final state develops a fully screened impurity spin, i.e., a
Kondo singlet. This is associated with a phase shift of π/2 or,
equivalently, an effective shift in local charge by half a charge
for spin up and spin down, individually. This is clearly also
reflected in the AO exponent derived for small energies ω, as
shown in Fig. 9(a). In summary, in given case of |�〉 = |G〉
=0,
the effective temperature is therefore not set by E� . Rather,
from the point of view of the impurity, the system can be
interpreted as having an effective approximate temperature
of T ∗

� � TK superimposed with the single-particle excitations
that moved to spatial infinity. Therefore, E� � T ∗

� . This is the
reason why in this case Adiag 
= Amicro.

The emergence of the Kondo resonance in the spectral
function as a function of time for |�〉 = |G〉
=0 at t = 0 is
explicitly shown in Fig. 10. There, Atime is calculated at dif-
ferent final times tfin using ω0 = max(1/tfin,TK ). As expected,
the characteristic time scale, at which the Kondo correlations
develop, is of the order of tfin ∼ 1/TK . In the long-time limit,
the Kondo resonance saturates at the height π
Atime(0) ∼ 0.7
which, indeed, is consistent with an effective temperature
T ∗

� � TK . This long-time limit of Atime, by construction, is

equivalent to the spectral function Adiag [see Fig. 8(d)]. We note
that since the simultaneous dependence of the spectral function
on energy and time is rather not accessible experimentally,
Atime needs to be considered a theoretical quantity for studying
the development of Kondo correlations in time.

Summarizing Secs. III A to III C, microscopic quantum
quenches first and foremost need to be viewed from the
perspective of Anderson orthogonality. Their interpretation in
terms of a thermalization to a macroscopic statistical ensemble
is peculiar to the logarithmic discretization underlying NRG
as will be analyzed in more detail next.

D. Thermodynamic limit

Thermalization of a macroscopic system in the ground
state to finite temperature through application of a single-
particle (written as one-particle in the following) excitation
appears to be a contradiction. Nevertheless, for standard
discretization parameters (i.e., � � 2), NRG comes very close
to this description. On the other hand, in the thermodynamic
limit � → 1+, this prescription must fail and, eventually,
macroscopically many one-particle excitations will be required
for thermalization. While the location of the maxima in
the weight distribution wn along the Wilson energy shells
essentially will remain unaltered, the clear difference will
be in the tails of these weight distributions. Therefore, this
section is devoted to the discussion of the behavior of these
tails for different discrete coarse graining �, as well as their
behavior after subsequent multiple one-particle excitations
towards exact thermalization. For the sake of energy scale
separation, however, in practice � � 1.4 will be used.

1. Single one-particle excitation

Figure 11 shows the weights of the diagonal, grand-
canonical, and microcanonical density matrices calculated for
a single one-particle excitation |�〉 = f̂

†
k↑|G〉 for different

values of the discretization parameter �. The discretization
parameter was chosen such that the excitations occurred at
comparable energy, i.e., �(k) = E−2/k for fixed E = TK . The
weights are plotted as a function of energy ω = α��−n/2,
where α� is a discretization dependent but otherwise constant
factor of order 1, chosen such that the maximum of w

grand
n

occurs at the same energy for all �. The vertical dashed lines
in Fig. 11(a) show the corresponding energies E� , at which
the excitation was created, which without rescaling by α�

would have occurred at approximately the same energy. The
weights of the diagonal ensemble in Fig. 11(a) were averaged
over two consecutive Wilson shells to suppress the otherwise
strong even-odd oscillations, in particular, for larger �. In
stark contrast, w

grand
n in Fig. 11(b) does not exhibit even-odd

effects [44].
By construction, the behavior of the weight for the mi-

crocanonical ensemble in Fig. 11(c) is entirely different from
w

diag
n and w

grand
n , in that wmicro

n is nonzero only in a narrow
energy window. Hence, the following discussion will focus on
w

diag
n and w

grand
n shown in Figs. 11(a) and 11(b), respectively.

Also, as seen in Fig. 11(a), the decay of the weight distribution
at large energies, i.e., for energies larger than those at which
the weight maximum occurs, is extremely fast for both w

diag
n
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FIG. 11. (Color online) The weight distributions of (a) the diag-
onal w

diag
n , (b) the grand-canonical w

grand
n , and (c) the microcanonical

wmicro
n density matrices as a function of energy ω = α��−n/2, with

α� of order 1 (see text). These distributions were calculated after
application of a single one-particle excitation |�〉 = f̂

†
k↑|G〉 at shell

k, where for a given Wilson shell k, the discretization parameter � was
chosen such that the excitation occurred at comparable energy, i.e.,
�(k) = E−2/k for E = TK . The vertical dashed lines in (a) present
the corresponding energies at which the excitation occurred.

and w
grand
n , much faster than power law or even exponential.

In fact, by construction, wdiag
n becomes strictly zero for Wilson

shells larger than the shell at which the excitation occurred.
In contrast, the decay for small energies shows charac-

teristic power-law behavior. As seen in Fig. 11(a), w
diag
n

decays linearly for small ω, i.e., w
diag
n ∝ ω1, which is thus

independent of �. This is contrary to w
grand
n [Fig. 11(b)],

which decays with n like d−n [27,44], for small energies
(i.e., large n), where d = 4 is the dimension of the local state
space of a single Wilson site. Hence, when plotted versus
ω, w

grand
n becomes dependent on the discretization parameter

�. With the slope for small ω in Fig. 11(b) decreasing with
increasing �, the slopes of w

diag
n and w

grand
n eventually coincide

for large � = d2 (having d = 4 here, � = 16; not shown).
Then, the diagonal and grand-canonical density matrices will
have similar dependence on energy, and therefore a single
one-particle excitation suffices to immediately thermalize
the system. However, with decreasing �, more and more
single-particle excitations will be required to fully thermalize
the system. Nevertheless, as will be shown in the following, for
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FIG. 12. (Color online) The occupations on the Wilson chain for
(a) � = 1.5, (b) � = 2, and (c) � = 3 calculated for initial state
(a) |�〉 = f̂

†
39↑|G〉, (b) |�〉 = f̂

†
23↑|G〉, and (c) |�〉 = f̂

†
15↑|G〉 and

for diagonal ensemble as a function of the Wilson shell index n.
The excitation was created at the same energy scale for all �. The
spin-up occupations obtained using ρ̂diag after having applied nx = 10
single-particle excitations are shown for comparison. The inset in (b)
presents the buildup of spin-up charge vs shell index n when applying
up to a total of nx excitations. The inset in (c) shows the change of
the total charge of the system �Ntot as a function of nx .

a typical value of � � 2, still very few one-particle excitations
suffice to thermalize the system.

2. Multiple one-particle excitations

In Fig. 12, we show the occupations of the Wilson chain as
a function of shell index n, computed through 〈�|n̂nσ |�〉 and
also by using the diagonal density matrix Tr[ρ̂diag n̂nσ ], which
describes the effective long-time limit after a quench by a local
excitation. These occupations are calculated for three values of
discretization parameter � ∈ {1.5, 2, 3} in Figs. 12(a)–12(c),
respectively.

We start by analyzing a state with a single excitation,
i.e., nx = 1 with |�〉 = f̂

†
k↑|G〉, where the Wilson shell k at

which the operator acts, was chosen such that the excitation
energy was comparable (∼TK ) for all �. Thus, for � = 1.5
[Fig. 12(a)] the excitation was created at shell k = 39, for
� = 2 [Fig. 12(b)] at k = 23, and for � = 3 [Fig. 12(c)] at
k = 15. Irrespective of the value of discretization parameter,
the behavior of the chain occupations is qualitatively the same.
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First, since the spin-up creation operator was applied, the spin-
down occupations are hardly affected. Second, 〈�|n̂n↑|�〉
reaches unity at the shell k on which the excitation was created
and then for n > k, it shows somewhat more pronounced
even-odd oscillations. Third, after having evolved the system
to infinite time, the additional particle that had been inserted
locally smears over several Wilson shells. However, the
underlying logarithmic discretization of the Wilson chain
prohibits the particle to leave the range of sites that represent
its energy shell.

As discussed above, within the NRG, a single one-particle
excitation is typically close but not exactly sufficient to fully
thermalize the system for typical values of the discretization
parameter � � 2. We therefore test if it is possible to
thermalize the system by sequential application of multiple
one-particle excitations with intermediate relaxation. For this,
we start with the system in its ground state, to which a first
one-particle excitation is applied (nx = 1) at some shell k that
resembles the energy scale of a fixed temperature T = TK .
After we allow the system to equilibrate, i.e., to time evolve
to t → ∞, it is described by the corresponding diagonal
ensemble, i.e., the diagonal density matrix ρ̂

[1]
diag ≡ ρ̂diag and

the weights w
diag
n ≡ w

diag
[1];n. Now, given this state, which is no

longer described by a pure density matrix, we apply a second
one-particle operator (nx = 2), and again let it time evolve to
infinity. This generates a new diagonal ensemble described by
the density matrix ρ̂

[2]
diag and weights w

diag
[2];n. This procedure can

be repeated up to a total of nx excitations applied to the system,
which results in the equilibrated diagonal ensemble ρ̂

[nx ]
diag,

represented by the weight distribution w
diag
[nx ];n. The underlying

MPS diagrams that describe the required numerical procedures
are discussed in detail in Appendix C.

The occupations of the Wilson chain as a function of shell
index n for different number nx of one-particle excitations
applied to the system are shown in the inset of Fig. 12(b),
while Tr[ρ̂[10]

diag n̂n↑] is additionally shown in each panel of
Fig. 12. One can see that repeated application of the same
spin-up creation operator at the same shell k leads to an
increase of the overall occupation for spin up. This increase,
however, quickly saturates, as seen in the analysis of the
change of the total number of particles on the Wilson chain
�Ntot in the inset to Fig. 12(c). For the rather broad range
of discretizations analyzed, � ∈ [1.5, 3], repeated application
of the same creation operator with intermediate equilibration
allows to insert a total of at most three particles into the system
due to the underlying logarithmic discretization. For the well-
saturated value of nx = 10, the inserted particles remain in the
close vicinity of the shell to which they have been inserted.

A more detailed behavior of the system can be seen in
Fig. 13 where the weights of the diagonal ensemble are plotted
as a function of energy ω ∝ �−n/2 for different number nx of
excitations created in the system. The case when the same
spin-up creation operator was applied to the shell at which
the grand-canonical weights have its maximum, k = n

grand
max ,

is presented in Fig. 13(a). One can see that for nx = 1 the
low-energy tail of w

diag
n scales linearly with energy [this exactly

reflects the situation already seen in Fig. 11(a)]. Now, after
applying the same operator a second time (nx = 2), the low-
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FIG. 13. (Color online) The weights of the diagonal wdiag
n density

matrix plotted on logarithmic scale as a function of energy ω ∝ �−n/2

calculated for single-particle excitations applied to the ground state
(nx = 1) and then consecutively to the diagonal density matrix (nx >

1). In (a), f̂ †
k↑ was applied at shell n

grand
max , at which w

grand
n is maximum.

In (b), the operators f̂
†
k↑ and f̂k↑ were applied at shell n

grand
max in an

alternating way, whereas in (c) the same operators were applied with
probability p(k) determined by w

grand
n . The dashed lines show the

corresponding asymptotic lines. After nx � 5 excitations the slope of
w

diag
n becomes equal to that of w

grand
n (black dashed line). This figure

was calculated for � = 2.21, for which the dependence of w
grand
n on

energy is w
grand
n ∝ ω3.5.

energy dependence changes to ∝ω2, and finally after nx � 4,
the slope of w

diag
n saturates and coincides with that of w

grand
n

(at ultrasmall ω, nx = 3 still bends over to a ω3 power-law
behavior; not shown). Similar behavior can be observed when
both creation and annihilation operators are applied in an
alternating way to the same shell k = n

grand
max , yet as always

with intermediate relaxation [see Fig. 13(b)]. Figure 13(c),
finally, also relaxes the constraint of fixed k, in that creation and
annihilation operators are applied alternatively at shell k where
k is chosen with probability p(k) determined by the distribution
of w

grand
n calculated at temperature Tgrand = TK . With this, the

behavior of w
diag
n becomes even more similar to that of w

grand
n .

The remaining sharp truncation of the distribution towards
large ω is due the finite sampling in nx . But, as seen in
Fig. 13(c), this edge can be moved towards larger frequencies
(Wilson shells).

Note that the increasing exponent in the power law ∝ωnx

for the low-energy behavior of the diagonal weight distribution
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after nx applications of local creation or annihilation operators
with intermediate relaxation is perfectly consistent with the
concept of AO as indicated in Eq. (18): with ρ

diag
n;I=nx

∝ ω−nx

and �nloc = 1, it follows w
diag
n;nx+1 ∝ ω−(nx+1). Specifically, at

every iteration of nx another full particle needs to be moved to
or from infinity. For example, even if the number of particles
in the system saturates [inset to Fig. 12(c)], application of the
same single-particle annihilation operator always meets with
a previously relaxed state and hence does not fully destroy the
entire state. However, (i) it projects out the part of the state
where site k has been occupied, hence this is fully removed
from the later dynamics, and (ii) fills site k for the (small)
fraction of the previously relaxed state which had no particle
at site k. Therefore, in any case, as long as the applied operator
does not annihilate a given state such that the resulting state
can again be normalized, AO applies with integer exponents
when creating or annihilating particles without altering the
Hamiltonian otherwise [43].

The AO exponent that resembles the repeated quantum
quenches is only visible at the smallest energies, an energy
scale that quickly diminishes to zero with increasing nx .
Therefore, eventually the exponent in the low-energy regime
is limited by the NRG exponent for a fully thermal distribution
at a given finite effective temperature T , i.e. wn ∝ d−n =
(�−n/2)2 ln(d)/ ln(�) for n > nT (see Sec. II C). This translates
into a fully mixed state space for ω � T .

In Fig. 13, the NRG discretization parameter � = 2.21 had
been chosen such that the thermal distribution w

grand
n has the

noninteger exponent 2 ln(d)/ ln(�) � 3.5 for the low-energy
tail. Nevertheless, repeated application of a few local operators
with integer AO exponents clearly allows to thermalize the
system to the corresponding NRG specific thermal exponent.
Within the MPS framework, however, this just implies that
the remainder of the system becomes completely randomized
since the grand-canonical exponent simply implies full degen-
eracy with respect to the rest of the system.

Finally, an overall trend seen in all panels of Fig. 13 is that
by repeated applications of local quenches, the maximum of
w

diag
n shifts towards larger energies with nx . Clearly, this can be

interpreted as heating of the system, and is analyzed in detail by
extending Fig. 13(c) to significantly larger nx , with the results
shown in Fig. 14. Figure 14(a) analyzes the total energy Ediag

of the system based on the diagonal ensemble as a function of
nx for three exemplary individual stochastic runs by sampling
a larger set of excitations f̂

(†)
kσ in k and spin σ according to a

given temperature T (see caption of Fig. 14). The energy Ediag

is plotted in units of Egrand, i.e., the total energy of the system
obtained from the grand-canonical ensemble at temperature
Tgrand = TK . We also show the ensemble average of Ediag

over 100 runs, which shows a slow but steady logarithmic
increase, as demonstrated by the inset in Fig. 14(a). This
shows, indeed, that the system is being heated up by the
application of multiple one-particle excitations. Due to the
underlying logarithmic discretization, however, this heating is
slowed down logarithmically.

The ensemble-averaged weights 〈wdiag(ω)〉100 (averaged
over 100 runs) of diagonal density matrix are shown in
Fig. 14(b) as a function of energy ω on a linear scale, where
wdiag(ω) ≡ w

diag
n �n/2 (the last factor is justified by the fact that
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FIG. 14. (Color online) (a) Total energy Ediag of the system
calculated using diagonal ensemble vs the number of excitations nx

and (b) the weights of the diagonal ensemble w
diag
n as a function of

energy after having applied nx single-particle operators, either f̂
†
k↑

or f̂k↑, selected randomly, and applied to shell k with probability
p(k) determined by w

grand
n . Tgrand is the temperature used for grand-

canonical ensemble and Egrand is the corresponding energy of the
system. In (a), Ediag for three exemplary runs is shown together
with its ensemble-averaged (over 100 runs) value, which shows a
steady logarithmic increase with nx [inset in (a)]. Panel (b) presents
the ensemble-averaged weights 〈wdiag(ω)〉100 (over 100 runs) of
diagonal density matrix plotted as a function of energy ω with
wdiag(ω) ≡ w

diag
n �n/2. The dashed line shows the weights of the

grand-canonical density matrix wgrand(ω) ≡ w
grand
n �n/2 as a function

of ω.

w
diag
n represents the integrated weight over an energy interval

of width ∝�−n/2). The dashed line presents the weights of
the grand-canonical density matrix wgrand(ω) ≡ w

grand
n �n/2.

Again, one can see that the maximum of 〈wdiag(ω)〉100 moves
towards larger energies with nx .

IV. CONCLUSIONS

In this paper, we have studied the dynamics of the single-
level quantum dot in the Kondo regime, with a special focus on
thermalization. The dot was modeled by the single-impurity
Anderson Hamiltonian, which was analyzed by the numerical
renormalization group. Using the complete eigenbasis of the
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Hamiltonian obtained by NRG, we calculated the spectral
functions of the dot level by using different statistical ensem-
bles. In particular, we determined the spectral function using
the grand-canonical, microcanonical, and diagonal ensembles,
which were compared to the spectral function calculated for a
state, time evolved with respect to the full Hamiltonian. The
main goal was to test whether the eigenstate thermalization
hypothesis also holds for truly many-body systems displaying
nontrivial correlations, such as the ones leading to the Kondo
effect. The ETH states that, in the long-time limit, the system
can be described by relatively small number of representative
states, as given by the microcanonical ensemble.

We checked the validity of the ETH for a few different
states of the system, including the ground state, the ground
state of decoupled dot, and a few states after having generated
an excitation in the bath with either single-particle or density
operator. We showed that for initial states where the excitation
is created in the bath, the microcanonical ensemble correctly
describes the behavior of the system in the long-time limit.
Moreover, by calculating the expectation values of the spectral
function operator at the Fermi level and the dot occupancy for
energy eigenstates relevant for microcanonical ensemble, we
showed that the ETH can be indeed invoked to understand
the process of thermalization. The eigenstate thermalization
hypothesis is thus valid for initial states with an excitation
in the bath which, in the NRG context, can be interpreted as
macroscopic excitations. However, for states with an excitation
in the dot, the long-time behavior cannot necessarily be
described by a statistical-mechanical ensemble and, as such,
the reference to the ETH is not meaningful. This mandates
an entirely different interpretation in terms of quantum
quenches. In particular, acting locally at the impurity leaves
the macroscopic system essentially in its ground state, i.e., at
zero temperature. Consequently, it clearly eludes the ETH, and
therefore needs to be distinguished from truly thermodynamic
statistical ensembles.
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APPENDIX A: NRG IMPLEMENTATION
OF DIFFERENT ENSEMBLES

We study the behavior of an expectation value of observable
Ô in the long-time limit under the time evolution with respect
to the Hamiltonian Ĥ . The time evolution of a many-body state
of the system |�〉 is given by |�t 〉 = e−iĤ t |�〉. Expanding in
the eigenbasis of the Hamiltonian, the time evolution of state
|�〉 becomes

|�t 〉 ∼=
∑

n

∑
se

e−iED
ns t CD

nse|se〉Dn , (A1)

where the coefficients are defined as CD
nse ≡ D

n 〈se|�〉. Given
an observable Ô, the time evolution of its quantum mechanical
expectation value Ot is described by

Ot =
∑
nn′

∑
se s ′e′

ei(ED
ns−ED

n′s′ )t
(
CD

nse

)∗ODD
nse,n′s ′e′ C

D
n′s ′e′ , (A2)

where ODD
nse,n′s ′e′ = D

n 〈se|Ô|s ′e′〉Dn′ denote the matrix elements
of the operator Ô. In general, the evaluation of this expectation
value is not trivial, as it includes double sum over the
discarded states of the Wilson chain. However, as discussed
in Appendix D [see Eq. (D2)], a double sum over discarded
states of the Wilson chain can be converted to a single sum
with contributions from both kept and discarded states [25,26],
and the above formula becomes

Ot =
∑

n

∑
ss ′e


=KK∑
XX′

ei(EX
ns−EX′

ns′ )t
(
CX

nse

)∗OXX′
nse,ns ′e CX′

ns ′e . (A3)

In this way, a time-dependent expectation value of any
observable Ô can be calculated shellwise in an iterative way
by performing a single sweep over the Wilson chain. Note
that for more complex operators Ô, such as the spectral
function operator Â, the formula for the expectation value
[Eq. (A2)] may involve more sums than just two, but it can
still be written in a single-sum fashion, with summations over
different combinations of matrix elements between kept and
discarded states, except for the case when all states are kept
[see Eqs. (D3) and (D4)].

1. Diagonal ensemble

Equation (A3) implies that the infinite-time average of the
observable Ô is given by a diagonal ensemble [7]

Odiag =
∑
nse

∣∣CD
nse

∣∣2ODD
nse,nse, (A4)

where the coefficient |CD
nse|2 gives the weight of state |se〉Dn

in the ensemble. These coefficients can be used to define a
diagonal density matrix

ρ̂diag ≡
∑
nse

∣∣CD
nse

∣∣2 |se〉Dn D
n 〈se|. (A5)

It can be written in terms of shell-diagonal density matrices
ρ̂

diag
n as

ρ̂diag ≡
∑

n

wdiag
n ρ̂diag

n , (A6)

where w
diag
n ≡ ∑

se |CD
nse|2, with

∑
n w

diag
n = 1, describes the

cumulative weight of shell n to the density matrix ρ̂diag. A

diagram for the calculation of the coefficients |CD
nse|2 is shown

in Fig. 15. By using Eq. (A4), the expectation value of operator
Ô using the diagonal density matrix can be written as

Odiag =
∑

n

wdiag
n Trsn

(
ρ̂diag

n Ôn

)
, (A7)

with (On)ss ′ ≡ D
n 〈s|Ô|s ′〉Dn , where Trsn

denotes the trace over
states s ∈ D at shell n.
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FIG. 15. (Color online) MPS representation of the coefficients∑
e |CD

nse|2 = ∑
e〈�|se〉D

n
D
n 〈se|�〉, where the discarded state |se〉D

n

is defined graphically in Fig. 1. The kept and discarded blocks are
denoted by X = K (X = D), respectively, while the corresponding
blocks of the state |�〉 are denoted by ψn for shell n. The star denotes
complex conjugation.

2. Microcanonical ensemble

Now, according to the eigenstate thermalization hypothe-
sis [5–7], to describe the long-time behavior of the system it is
sufficient to consider just a number of representative states of
appropriate energy, as given by the microcanonical ensemble

Omicro = 1

N�

∑
nse

|ED
ns − E� | � δE�

ODD
nse,nse. (A8)

Here, E� is the energy of state |�〉 as in Eq. (3), i.e., relative
to the ground-state energy E0 = 〈G|Ĥ |G〉, with |G〉 the full
ground state of the system. Furthermore, δE� characterizes
the energy fluctuations, and N� is the number of energy
eigenstates in interval |ED

ns − E� | � δE� .
Regarding the energy uncertainty δE� , however, consider

first the relative energy uncertainty �E�/E� as defined in
Eq. (3). For excited states of the form |�〉 = f̂

†
k↑|G〉, this

is evaluated and presented in Fig. 16 as a function of the
Wilson shell index n, where each panel corresponds to a
different discretization parameter �, as indicated. Clearly, this
needs to be distinguished from δE�/E� , which determines
the energy window that enters the microcanonical expectation
value Omicro. While for an energy eigenstate one trivially
has �E� = 0, for a general state |�〉, �E�/E� > 0. As
can be seen in Fig. 16, for excited states obtained after
acting with a creation operator f̂

†
k↑ on the ground state of

the system, �E�/E� is smaller than unity, but clearly finite,
and for late iterations reaches �E�/E� ≈ 0.65, irrespective
of discretization parameter � [for Fig. 16(a) the Wilson
shell index is not sufficiently large to resolve the underlying
low-energy fixed point, as seen in the later panels; essentially
the panels zoom out to reach smaller energy scales for later
panels, i.e., with increasing �]. However, in the continuum
limit � → 1+, one would expect that |�〉 in the long-time limit
behaves similar to an energy eigenstate with energy E� and the
energy fluctuations are suppressed, i.e., δE� � �E� < E� .
However, due to finite-energy resolution when using NRG,
it is not possible to take δE� � �E� since otherwise the
energy window for the microcanonical ensemble in Eq. (8)
may contain only very few states or no states at all. Therefore,
for the results presented in the main part of the paper, we took
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FIG. 16. (Color online) The dependence of relative energy uncer-
tainty �E�/E� on Wilson shell index for excited states |�〉 = f̂

†
k↑|G〉

and for different discretization parameters: (a) � = 1.5, (b) � = 2,
(c) � = 3, and (d) � = 4. The horizontal dashed lines indicate the
estimate for the relative energy uncertainty δE�/E� = 1 − �−1.

the finite-energy window for the microcanonical ensemble

δE�

E�

= 1 − 1

�
, (A9)

which is also indicated by the horizontal dashed lines in
Fig. 16. This choice has the correct thermodynamic limit,
lim�→1+(δE�/E�) = 0+. The motivation for Eq. (A9) is
given by the underlying logarithmic discretization: If one con-
siders the bath alone and takes an arbitrary state at energy scale
E� , then based on the underlying single-particle energies, one
expects an energy resolution in terms of the single-particle
level spacing E�[1 − �−1,1 + �], the minimum of which
was used to set δE� . This choice guarantees that one has
a comparable number of representative energy eigenstates
within a given energy window. Moreover, with δE�/E�

clearly smaller than 1, only a finite window of Wilson shells of
comparable width will contribute to microcanonical ensemble
for a given state |�〉.

For the microcanonical ensemble then one can use the
complete NRG eigenbasis to define a microcanonical density
matrix ρ̂micro in the following manner. First, we calculate the
energy E� for state |�〉. Then, we find all the eigenstates |se〉Dn
of energy ED

ns that obey |ED
ns − E� | � δE� and the shells they

belong to, n = n1, . . . ,n2. Let Nn denote the number of such
states that contribute for given shell n. Then, the effective
total number of contributing states within the NRG is given by
N� = ∑n2

n=n1
Nnd

n2−n, where d = 4 is the dimension of the
local space and we have also taken into account the degeneracy
of the environmental states. We can thus build a normalized
mixed density matrix for each shell, ρ̂micro

n . Knowing the mixed
density matrices, one can construct the full microcanonical
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density matrix

ρ̂micro ≡
∑

n

wmicro
n ρ̂micro

n , (A10)

where the weights wmicro
n take into account the effect of

degeneracies. They are given by wmicro
n = Nnd

n2−n/Z, for
n = n1, . . . ,n2, and wmicro

n = 0 otherwise, with the partition
function Z chosen such that

∑
n wmicro

n = 1. The microcanon-
ical expectation value (A8) can be simply written then as

Omicro =
∑

n

wmicro
n Trsn

(
ρ̂micro

n Ôn

)
. (A11)

3. Grand-canonical ensemble

The grand-canonical expectation value Ogrand can be obtained
from

Ogrand =
∑

n

wgrand
n Trsn

(
ρ̂grand

n Ôn

)
, (A12)

with the density matrix and corresponding weights as defined
in Sec. II C.

APPENDIX B: TIME-AVERAGED SPECTRAL FUNCTION

The time-averaged spectral function can be calculated from
Eq. (16), where At is explicitly given by [cf. Eq. (A3)]

At =
∑
nss ′e


=KK∑
XX′

ei(EX
ns−EX′

ns′ )t
(
CX

nse

)∗AXX′
nse,ns ′e CX′

ns ′e. (B1)

The calculation is not trivial since it in general involves triple
sums over discarded states of the Wilson chain. In particular, a
contribution to At due to, e.g., d̂σ (τ )d̂†

σ (0), is explicitly given
by

A
(1)
t =

∑
nss ′s ′′e


=KKK∑
XX′X′′

ei(EX
ns−EX′′

ns′′ )t δ
(
ω + EX

ns − EX′
ns ′

)

×(
CX

nse

)∗
(dσ )XX′

nse,ns ′e(d†
σ )X

′X′′
ns ′e,ns ′′eC

X′′
ns ′′e, (B2)

the second line of which is illustrated in Fig. 17. Note that
in Eq. (B2) we have used the property (D4) to convert
the triple sum over discarded states into a single sum over
the Wilson chain with contributions coming from all but
KKK states. Using Eq. (B2), the corresponding data points
can be calculated efficiently in a single-sweep fashion. At
given iteration n, one needs to perform all the contractions
illustrated in Fig. 17, sum over the combinations of discarded
and kept states with XX′X′′ 
= KKK while multiplying the
open indices with proper exponentials, and finally sum up the
contributions from all Wilson shells with n = n0, . . . ,N . The
second contribution A

(2)
t to the time-averaged spectral function

Atime due to d̂†
σ (0)d̂σ (τ ) has a form similar to Eq. (B2), with

d̂σ ↔ d̂†
σ . The time averaging is eventually performed by

integrating the phase factors exp[i(EX
ns − EX′′

ns ′′ )t], occurring
in Eq. (B2), over time interval (tfin − δt,tfin) and dividing by
δt [see Eq. (16)]. We also note that the calculation of A� , i.e.,
for |�t=0〉, is much simpler than the calculation of Atime since
it requires only a double summation over discarded states.

FIG. 17. (Color online) MPS representation of a contribution to
the time-averaged spectral function of the system due to d̂σ (τ )d̂†

σ (0).
The open indices need to be summed and multiplied with appropriate
exponentials and matrix elements [see Eq. (B2)]. Summation over
shells n = n0, . . . ,N and states XX′X′′ 
= KKK also needs to be
applied.

APPENDIX C: LOCAL OPERATOR APPLIED
TO DIAGONAL DENSITY MATRIX

Consider a density matrix ρ̂. Its decomposition over the
Wilson shells n will have the contributions ρ̂XX′

n , with XX′ 
=
KK . In the long-time limit, the off-diagonal matrix elements
average out and the density matrix becomes diagonal

ρ̂diag =
∑
ns

|s〉Dn D
n 〈s|ρdiag

n,ss , (C1)

with w
diag
n = Tr[ρ̂diag

n ], and the environment w.r.t. shell n

already traced out and included in ρ
diag
n,ss . By construction of

complete basis sets, this density matrix is diagonal in the space
of discarded states. Reintroducing the state space for the full
Wilson chain including the environmental states e, it can be
written as

ρ̂
[1]
diag =

∑
nse

|se〉Dn D
n 〈se| ρ

diag
n,ss

dN−n
. (C2)

Now, assume a one-particle excitation is applied at shell k, say
f̂

†
kσ , onto the given density matrix ρ̂

[1]
diag. This results in a new

nondiagonal density matrix

ρ̂new ≡ f̂
†
kσ ρ̂diag f̂kσ . (C3)

Again, assuming that in the long-time limit the off-diagonal
matrix elements average out, this density matrix can be
projected onto its diagonal matrix elements, resulting in the
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FIG. 18. (Color online) MPS representation of contributions to
element of the new diagonal density matrix ρnew

n′,s′s′ [see Eqs. (C4)

and (C5)] after having applied a local operator f̂
†
kσ at shell k. Note

that consistent tracking of environmental degeneracy leads to the
additional factor dN−n′

/dN−n = 1/dn−n′
.

new diagonal density matrix

ρ̂
[2]
diag =

∑
n′s ′e′

|s ′e′〉Dn′
D
n′ 〈s ′e′|ρnew

n′,s ′s ′ , (C4)

with the diagonal matrix elements

ρnew
n′,s ′s ′ ≡

∑
e′

D
n′〈s ′e′|ρ̂new|s ′e′〉Dn′

=
∑
nse,e′

D
n′〈s ′e′|f̂ †

kσ |se〉Dn
ρ

diag
n,ss

dN−n

D
n〈se|f̂kσ |s ′e′〉Dn′ . (C5)

This involves two independent summations over Wilson
shells, which in the usual spirit of Anders-Schiller (AS)
basis [25,26] can be reduced to a single sum over shells based
on energy scale separation (see also Appendix D). Therefore,
the new density matrix is defined by its contributions for each
shell. The main nontrivial contributions arise from the terms
(n,n′) � k, with the contributions n � n′ (n < n′) depicted in
Figs. 18(a) and 18(b), respectively, using the MPS diagrams.
Note that in Fig. 18(a) the degeneracy factor dn−N in ρ̂diag

[see Eq. (C2)] again drops out. In contrast, in Fig. 18(b) the
overall degeneracy factor acquires the correction dn−n′

. The
sum

∑n�n′
n in Fig. 18(a) can be computed in a single prior

backward sweep, similar to the full-density-matrix (fdm)-NRG
spirit [44]. Moreover, also the sum

∑k�n<n′
n in Fig. 18(b) can

be computed in a single convoluted forward sweep.

In addition, there is one further relevant, yet simple,
contribution to ρ̂

[2]
diag where either n or n′ are smaller than

k. The only nonzero contribution of this type is (n = n′) < k,

ρnew
n′,s ′s ′ = ρ

diag
n′,s ′s ′ 〈f̂ †

kσ f̂kσ 〉T =∞ = 1
2ρ

diag
n′,s ′s ′ . (C6)

This, of course, is only relevant for iterations n′ where the
initial density matrix had a finite contribution w

diag
[1];n′ to start

with.

APPENDIX D: USEFUL RELATIONS

In this Appendix, we collect some relations that are very
useful for explicitly performing (multiple) sums over complete
sets of NRG basis states. One such identity is that the sum over
discarded eigenstates of shells n′ > n is equal to the sum over
kept eigenstates of single shell n:∑

n′>n

∑
se

|se〉Dn′
D
n′ 〈se| =

∑
se

|se〉Kn K
n 〈se|. (D1)

Henceforth, this will be simply abbreviated by writing∑D
n′>n = ∑K

n′=n. Note that the summation
∑X

n is the
shorthand notation for summing over discarded (X = D) or
kept (X = K) states of a given shell n and summing over the
shells. The above identity basically allows one to perform the
calculations of various expectation values in a single sweep
over the Wilson chain.

The double sum over the discarded states can be then written
as [25,26]

DD∑
nn′

=
DD∑
nn′

n = n′

+
DD∑
nn′

n < n′

+
DD∑
nn′

n > n′

=
DD∑
n

+
DK∑
n

+
KD∑
n

=
∑

n


=KK∑
XX′

, (D2)

where this double sum has been split into three terms, the first
one with n = n′ and the second (third) sum with n < n′ (n >

n′), and then the property (D1) has been exploited.
In a similar way, for triple sum over discarded states we can

then write

DDD∑
nn′n′′

=
DDD∑
nn′n′′

n = n′ = n′′

+
DDD∑
nn′n′′

n < n′n′′

+
DDD∑
nn′n′′

n′ < nn′′

+
DDD∑
nn′n′′

n′′ < nn′

+
DDD∑
nn′n′′

n = n′ < n′′

+
DDD∑
nn′n′′

n′ = n′′ < n

+
DDD∑
nn′n′′

n = n′′ < n′

=
DDD∑

n

+
DKK∑

n

+
KDK∑

n

+
KKD∑

n

+
DDK∑

n

+
KDD∑

n

+
DKD∑

n

=
∑

n


=KKK∑
XX′X′′

. (D3)

Generalizing the above relations, expressions involving M

sums over discarded states can be written in the following
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single-sum form:

DD...D∑
n1n2...nM

=
∑

n


=KK...K∑
X1X2...XM

. (D4)

This formula enables the calculation of various operator
expectation values in a single sweep fashion by collecting
all the kept-discarded contributions, excluding terms where all
the states belong to the kept state space.
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