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Topology-driven phase transitions in the classical monomer-dimer-loop model
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In this work, we investigate the classical loop models doped with monomers and dimers on a square lattice,
whose partition function can be expressed as a tensor network (TN). In the thermodynamic limit, we use the
boundary matrix product state technique to contract the partition function TN, and determine the thermodynamic
properties with high accuracy. In this monomer-dimer-loop model, we find a second-order phase transition
between a trivial monomer-condensation and a loop-condensation (LC) phase, which cannot be distinguished
by any local order parameter, while nevertheless the two phases have distinct topological properties. In the LC
phase, we find two degenerate dominating eigenvalues in the transfer-matrix spectrum, as well as a nonvanishing
(nonlocal) string order parameter, both of which identify the topological ergodicity breaking in the LC phase and
can serve as the order parameter for detecting the phase transitions.
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Introduction. The two-dimensional (2D) monomer-dimer
model has a quite venerable history in statistical mechanics
[1–4]. The monomer-dimer model can be used to describe
the absorption of molecules on the surface: the molecule can
occupy two nearest neighboring sites and form a dimer, while
the empty site is regarded as a monomer [1]. The monomer-
dimer model can also be related to other statistical models such
as Ising and height models [2,5], etc., thus it plays the role
as a quite fundamental statistical model. On a square lattice,
the fully packed dimer model is found to possess algebraic
decaying dimer-dimer correlation, however, doping the system
with monomers will drive the system out of the criticality and
no phase transition occurs in a noninteracting monomer-dimer
model at finite temperatures [6–8]. On the other hand, if one
introduces pairing interactions between the dimers, there exist
phase transitions between the low-T ordered phase and high-T
disordered one (Kosterlitz-Thouless type for the fully packed
case [6], and second order after monomer doping [7,8]).

Loop models are also widely studied in statistical mechan-
ics, which is relevant for realistic physical systems and also
constitutes a quite fundamental mathematical problem [9–12].
The loop structure also plays an important role in certain
quantum cases, like in the ground state of toric code [13], the
string-net model [14], and the resonating Affleck-Kennedy-
Lieb-Tasaki loop spin liquid states [15], etc. In Ref. [16],
Castelnovo and Chamon couple the toric code model to a
thermal bath, and consider the thermal superposition of all
possible loop coverings. They found that the concept of
topological order also applies in this classical loop system,
where the low-energy phase space decomposes into several
distinct topological sectors. The existence of distinct topologi-
cal sectors breaks ergodicity. One needs to create or annihilate
a loop with length proportional to system size, which has huge
energy cost and rare probability to happen, in order to tunnel
from one sector to another; it thus leads to the topological
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glass behavior [17]. The notion of topological entropy can
be generalized to detect such nontrivial topological order in
classical systems, by noticing that the topological constraint
would also reduce the entropy in the classical case [16].
Recently, Hermanns and Trebst have generalized this entropy
characterization to general classical string nets and verify that
there are corresponding universal topological corrections in the
Renyi entropy for a number of SU(N )k anyonic theories [18].

In this work, we combine the two classical models and
introduce a monomer-dimer-loop (MDL) model on a square
lattice. The MDL model has a rather compact tensor network
(TN) representation with a small bond dimension (D = 3),
and is thus amenable to high precision TN numerical sim-
ulations. TN-based numerical methods have been widely
used to tackle statistical models and have been proved to
be a very accurate and reliable tool [8,19–21]. Through the
TN numerical simulations, we show that the MDL model
has a trivial disordered phase and a topologically ordered
loop-condensation (LC) phase, with a second-order transition
separating them. In addition, we characterize the LC phase
with the vanishing gap of transfer-matrix spectrum and a
nonlocal string order parameter (SOP), both of which can be
used to pinpoint the phase transition.

Model and method. Snapshots of several classical config-
urations in different phases of a MDL model are shown in
Fig. 1, where the allowed configurations consist of monomers
and loops [Fig. 1(b)], dimers [Fig. 1(c)], and even branching
loops [Fig. 1(d)].

Summing over all possible classical configurations of the
MDL model, we have the partition function

� =
∑
{c}

exp [−β(μNm + νNb + uNd )], (1)

where {c} means the set of all classical monomer-dimer-loop
configurations; Nm is the total number of vertices occupied by
monomers, with an energy cost μ (per monomer); Nb counts
the number of edges occupied by a loop, and ν is the energy per
bond of a loop; and Nd is the total number of vertices linked
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FIG. 1. (Color online) Snapshots of the classical phases of the
MDL model on a square lattice: (a) The trivial monomer-condensation
phase; A,B label the two sublattices, and the (red) dots are
monomers;. (b)–(d) The loop condensation phase in the monomer-
loop, monomer-dimer-loop, and the branching monomer-loop mod-
els, respectively.

by a dimer (with energy per dimer as 2u). In the following,
ν = 1 is set as the energy scale if not otherwise specified.

The partition function of the monomer-loop model has
a simple TN representation for the partition function Z,
which forms a π/4 tilted square lattice as shown in
Fig. 2(a). It consists of tensors Ts1,s2,s3,s4 located at each
vertex, the bond indices si ∈ {0,1,2} (i.e., bond dimen-
sion D = 3): si = 0 (1) means the absence (presence) of a
loop bond; si = 2 represents the presence of a dimer, on
the specific edge si . Since a specific lattice site is either
occupied by a loop [T1,1,0,0 = T1,0,1,0 = T1,0,0,1 = T0,1,1,0 =
T0,1,0,1 = T0,0,1,1 = exp (−ν/T )], a monomer [T0,0,0,0 =
exp (−μ/T )], or by a dimer [T2,0,0,0 = T0,2,0,0 = T0,0,2,0 =
T0,0,0,2 = exp (−u/T )], we get all nonzero tensor elements
and the rest of the elements are zero (forbidden).

By efficiently contracting the partition function TN, we
calculate the thermodynamic properties (free energy per site
f , energy per site e, etc.) of the MDL model in a high accuracy.
In this work, we define the system on two kinds of geometries:
infinite 2D lattice system and cylinders. For the former,

T(a)

contract
tensorsw

T

T

T

(b)

M
T
T
T
T

FIG. 2. (Color online) (a) TN representation of the partition func-
tion, on a π/4 tilted square lattice, which is obtained by connecting
the central points of one-half plaquettes on the original square lattice
in Fig. 1. (b) The construction of the transfer matrix M on a cylindrical
geometry by contracting a column of (w) rank-4 tensors. The dashed
lines denote the contractions between two tensors.

we adopt the infinite-system time-evolving-block-decimation
(iTEBD) method [22,23] for accurate contractions; for the
latter with finite (small) circumferences and infinite length,
exact contractions can be performed. iTEBD was initially
proposed for efficient simulations of the time evolution and the
ground state property (through imaginary-time evolution) of
one-dimensional (1D) quantum systems, and then generalized
to calculate the thermodynamics of 2D classical statistical
models [23] and 1D quantum lattice models at finite tem-
peratures [24]. In practical simulations, we perform contrac-
tions of matrix product states (MPS) with transfer matrix
product operators iteratively until the prescribed convergence
criterion—say, free energy per site converges to 10−14—is
reached, leading to a total number of iterations around 103–4.
The retained bond dimension of the boundary MPS Dc ≈ 100,
the convergence with Dc is always checked, the truncation
error is less than 10−6 at the critical point, and reaches the
machine precision away from the critical points.

Monomer-loop model. Consider that the dimer occupation
is forbidden [i.e., u → ∞ in Eq. (1)]; the full MDL model is
thus reduced to a monomer-loop model, which can be related
to the well-known Ising model. For instance, the triangular
lattice Ising model can be mapped to a monomer-loop model
on its dual honeycomb lattice, where the loops are the magnetic
domain walls separating spins of opposite orientations, and the
monomers are the topological excitations on top of that [17].
Notice that in our present monomer-loop model, monomer
energy μ becomes tunable (with fixed ν = 1), which is thus
beyond the exact Ising model mapping [25].

First, we investigate the monomer-loop model with
μ = 0, ± 0.2. The specific heat CV curve is shown in
Fig. 3(a), which is computed by taking first-order derivative
(versus T ) of the energy per site. The latter is calcu-
lated via e = Z∗/Z, where Z∗ is obtained by contract-
ing the TN with one T tensor replaced with an impu-
rity tensor T I = μT0,0,0,0 + ν(T1,1,0,0 + T1,0,1,0 + T1,0,0,1 +
T0,1,1,0 + T0,1,0,1 + T0,0,1,1). In Fig. 3(a), specific heat curves
show divergent peaks at Tc ≈ 0.927,1.1573,1.39, for μ =
0.2,0, − 0.2, respectively, indicating the presence of second-
order phase transitions.

In addition, to confirm the existence of the phase transition,
we calculate the correlation length ξ by the following formula:

ξ = 1/ ln

(
λ1

λ2

)
, (2)

FIG. 3. (Color online) (a) The specific heat CV of the monomer-
loop model with μ = 0, ± 0.2 and ν = 1, where Tc’s correspond to
0.927, 1.1573, and 1.39, respectively. (b) The correlation length ξ

versus T , the heights of the peaks at Tc enhance by increasing Dc.
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FIG. 4. (Color online) (a) The mean bond occupation number nA

and nB on the vertices A and B in the monomer-loop model (μ =
0, ν = 1); the horizontal dashed line shows the bond density in the
T = ∞ limit. The inset amplifies and shows the low temperature
behaviors. (b) The entropies S and SE versus temperatures (with μ =
0, ν = 1). Inset shows the first-order derivative of entropy dS/dT .

where λ1 (λ2) is the largest (second-largest) eigenvalue of
the transfer matrix M (in the case the largest eigenvalues are
n-fold degenerate, λ2 is the n + 1 largest one). In Fig. 3(b), we
observe that the correlation length ξ also shows a divergent
peak at Tc, confirming the criticality at the transition point.

However, interestingly, we find no local order parameters
for detecting this phase transition, since both the high- and
low-T phases are disordered and have no symmetry breaking.
We show the numerical results of bond density (nA and nB)
in Fig. 4(a), which counts the average bonds (of the loops)
per site. The results (with μ = 0) are shown in Fig. 4(a), from
which we can see that the low-T phase has relatively low bond
density and thus can be regarded as monomer condensation
(MC), while the high-T region is a loop-condensation (LC)
phase. Although nA and nB change from zero to nonzero values
when T increases, they change smoothly through the transition
point. In addition, the same bond densities nA = nB are ob-
served for all temperatures T , which suggests that the symme-
try between two sublattices is also intact. Therefore, we con-
clude that the bond density n cannot serve as a local order pa-
rameter for distinguishing two phases. In addition, in Fig. 4(a),
we also show the bond density n = 1.602 944 603 316 996
(with 16 converged significance digits) in the T = ∞ limit,
where the state is an equal-weight (classical) superposition of
all possible monomer-loop configurations. Compared to the
dimer density nd = 0.638 123 109 228 547 in the monomer-
dimer model [8], we find that n > 2nd here.

We also investigate the entropy of the system, including
two kinds of entropies, i.e., the conventional thermodynamic
entropy S = (U − F )/T and the formal “entanglement en-
tropy” SE evaluated from the boundary MPS. The latter can
be obtained by SE = −∑

i �
2
i ln(�2

i ), where �i’s are the
Schimidt spectrum of the decomposition on the ith bond. As
shown in Fig. 4(b), the bipartite entanglement entropy SE of
the classical loop model shows a clearly divergent peak at Tc,
indicating the occurrence of a phase transition. On the contrary,
the conventional thermodynamic entropy S is smooth around
Tc. However, its first-order derivative has a divergent peak,
as shown in the inset of Fig. 4(b), which is not surprising
since ∂S

∂T
= CV

T
. Therefore, we see that this “entanglement

entropy” SE is more sensitive to the phase transition (than
the thermodynamic entropy S), and serves as a very useful
numerical tool detecting phase transitions. Similar behaviors

FIG. 5. (Color online) Topological characterization of the
monomer-loop model for various cylinder widths w. (a) The gap of
the transfer matrix δ vanishes when T > Tc; the inset shows that
the extrapolated δ ∼ 0 in the w = ∞ limit. (b) The odd string order
parameter �o is zero when T � Tc and nonzero T > Tc; �e also
changes its behavior at Tc.

have already been seen in our previous tensor-network study
of the monomer-dimer model [8].

In order to further investigate the phase transitions, we
also define the MDL model on cylindrical geometries. On the
cylinders with finite circumferences (and infinite length), we
can contract the TN exactly and calculate the thermodynamic
quantities. Specifically, we start from both ends, and contract
the boundary vectors with the transfer matrix M consisting
of a column of rank-4 tensors [see Fig. 2(b)]. Repeating the
contractions until both boundary vectors converge, with which
we can evaluate the observables like the energy expectation
values. As the cylinder widths increase, the observables
should eventually converge to the thermodynamic limit results
obtained with iTEBD contractions above.

We calculate the (normalized) gap of the transfer matrix
δ = | λ1−λ2

λ1
| for various cylinder widths w, which is shown in

Fig. 5(a). In the T > Tc region, we observe two degenerate
dominating eigenstates in the spectrum of transfer-matrix M .
In particular, as shown in the inset of Fig. 5(a), δ extrapolates
to zero at critical point T = Tc, in the thermodynamic limit.
Therefore, δ can be taken as an order parameter detecting the
phase transition between the low- and high-T phases.

We are also interested in the parity of the dominating
eigenvector χ of transfer matrix M . Since the loops are closed
in the MDL model, M conserves the parity symmetry. When
the cylinder is cut into two halves vertically, the number of
intersected bonds by the cut is either even or odd, which defines
the parity of eigenvector χ . For cylinders with open ends (i.e.,
no dangling bonds on the edges), all the allowed configurations
constitute the even sector, and the dominating eigenvector χe

in this sector is with even parity. On the other hand, if we intro-
duce an odd number of open strings on the cylinder, stretching
from the very left boundary to the rightmost side, then all
the allowed configurations constitute an odd sector, with
dominating eigenvector χo of odd parity. Figure 5(a) shows
that the dominating even and odd eigenvectors (χe and χo)
become degenerate when T > Tc.

Furthermore, we introduce a string operator � winding
around the cylinder to measure the parity of eigenvectors χ .
The string operator � = ∏w

i=1 Pi is a product of the operator

P =
(1 0

0 −1

)
(3)
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FIG. 6. (Color online) The topological properties of the
monomer-loop model with μ = ±0.2 and ν = 1 for various cylinder
widths w. (a) The gap of transfer matrix δ vanishes when T > Tc;
the inset shows δ extrapolates to zero at Tc. (b) The string order
parameters �o and �e.

which lives on the horizontal edge [25]. P = 1 (−1) if the
edge is not occupied (occupied by a bond). Therefore, the
expectation value of the product of P tells whether the system
is in the even or odd sector. In Fig. 5(b), we thread an
open string in the cylinder, and show the numerical results
of �o = |χo�Mχ∗

o /(χoMχ∗
o + χeMχ∗

e )| for various cylinder
widths, where the partition function χe (χo) is the even (odd)
dominating eigenvectors. We observe that �o is a constant
zero for T < Tc, and becomes nonzero when T > Tc. In the
meantime, we also show the even �e = |χe�Mχ∗

e /(χoMχ∗
o +

χeMχ∗
e )|, which is a constant one in the trivial MC phase,

while also changes its behavior right at Tc. Thus, �o can also
be taken as a nonlocal order parameter for the system.

In addition to the μ = 0 case, Fig. 6 shows the corre-
sponding results of the monomer-loop model with μ = ±0.2,
including the (normalized) gap δ in Fig. 6(a) and SOP in
Fig. 6(b). Similar behaviors can be seen as in the μ = 0
case. In Fig. 7, we tune the monomer doping parameters
μ, collect the phase transition points of the monomer-loop
model with various parameters μ, and obtain the μ − T

phase diagram. When μ < 1, there exist second-order phase
transitions separating the low- and high-T phases. Tc decreases
with increasing monomer energy until μ = 1, where Tc = 0,
i.e., no phase transitions.

Here we would like to address some remarks on the classical
topological order in the monomer-loop model. As a conse-
quence of the loop condensation [Fig. 1(b)], there exist two
degenerate eigenvectors χ in the high-T phase, meaning that
the phase space is decomposed into two distinct topological
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FIG. 7. (Color online) The phase diagram μ − T of the
monomer-loop model. The disordered MC and topologically ordered
LC phases are separated by a second-order transition line when
μ ∈ (−∞,1].

FIG. 8. (Color online) The topological properties of the MDL
model with μ = 0, ν = 1, u = 3 for various cylinder widths w.
(a) The gap of transfer matrix δ serves as an order parameter. Inset:
δ at Tc for various cylinder widths and their extrapolation. (b) The
string order parameters �o and �e.

sectors, which leads to a topological ergodicity breaking. One
gets exactly the same results by evaluating the thermodynamic
quantities in either sector, while it is not possible to shift from
one sector to the other by changing the loop configurations
only locally. This glassy behavior of the LC phase is due to
topological reasons, therefore the LC phase can also be called
a topological glass [17], and the phase transition between MC
and LC phases is thus a topology-driven transition.

Monomer-dimer-loop model. In the monomer-loop model,
the dimer occupation was not allowed [i.e., effectively u = ∞
in Eq. (1)]. The dimer can be regarded as the “minimal” loop
of length two [shown in Fig. 1(c)]. In the following, we switch
on dimer coverings, and study the full MDL model with u = 3
(and μ = 0, ν = 1).

As in the monomer-loop model case, we also calculate
the specific heat CV , the correlation length ξ , bond density
n, and the entropy (the thermodynamic entropy S and the
entanglement entropy SE) of the system [25]. CV , ξ , SE and
the first-order derivative of the thermodynamic entropy all
show a divergent peak at Tc ≈ 1.179, indicating the occurrence
of a second-order phase transition. On the other hand, the
bond density (a dimer is counted as two overlapping bonds) is
smooth around Tc and nA = nB . Thus the bond density again
cannot serve as a local order parameter.

The normalized gap δ and SOP �o in the MDL model are
shown in Fig. 8. In Fig. 8(a), we again see a twofold degeneracy
in the transfer matrix spectrum in the LC phase, indicating that
the LC phase is also topologically ordered in the MDL model.
The inset of Fig. 8(a) shows δ extrapolates to zero (in the
thermodynamic limit) at Tc. In Fig. 8(b), �o,e are shown, in
which �o is nonvanishing in the LC phase, suggesting that it
can also identify the classical topological order in the MDL
model. In summary, similar to the monomer-loop case, the
classical topological order exists in the LC phase of the general
MDL model and the second-order phase transition separates
the trivial disordered MC and topological LC phases. Again,
δ and �o can be used as order parameters to characterize the
topology-driven classical phase transitions.

Now, some remarks on the criticality of the phase transition
are in order. Doping the loop system with monomers and
dimers blurs the exact mapping to the Ising model, which
potentially might lead to different behaviors. However, our
calculations show that this is not the case: The high-T
phase is in the same universality class as the Ising model
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at infinite-high temperature [26]. To confirm this, we have
calculated and fitted the formal “entanglement entropy” at the
critical point [27–30], and determine the conformal central
charge to be c = 0.5, indicating an Ising criticality [25].

Conclusion and outlook. In this work, we have systemati-
cally studied the classical loop model with monomer and dimer
doping. Using the boundary MPS method for contracting
the partition function TN, we calculate the thermodynamic
properties including the specific heat CV , correlation length
ξ , and entropies. There exist second-order phase transitions
separating the trivial monomer-condensation and the loop-
condensation phases, which cannot be described by the local
order parameters such as bond density n. However, in the LC
phase, we find twofold degenerate dominating eigenvalues in
the transfer matrix spectrum, one in even and the other in odd
topological sectors. The existence of two topological sectors
actually breaks the ergodicity. The nonvanishing nonlocal
order parameter SOP �o can also be used to distinguish
two sectors and thus detect the phase transition. Therefore,
these two phases can be identified by their distinct topological
properties, and the phase transition between them belongs to
a topology-driven type.

Besides the closed loop cases studied in the MDL model
above, it is also interesting to consider the model with the
branching loops [see Fig. 1(d)], i.e., the classical string-net
model. It is quite straightforward to generalize the tensor-
network representation here to the classical string nets, and
our preliminary calculations show that there also exists a
second-order phase transition between the LC and MC phases.
However, owing to the existence of branching loops, the
transfer matrix breaks the parity symmetry and no longer has
the well-defined even and odd topological sectors as the MDL
model has here. Our study of the classical string nets will be
published elsewhere.
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