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Simplex valence-bond crystal in the spin-1 kagome Heisenberg antiferromagnet
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We investigate the ground-state properties of a spin-1 kagome antiferromagnetic Heisenberg model using
tensor-network (TN) methods. We obtain the energy per site e0 = −1.410 90(2), with D∗ = 8 multiplets retained
(i.e., a bond dimension of D = 24), and e0 = −1.4116(4) from large-D extrapolation, by accurate TN calculations
directly in the thermodynamic limit. The symmetry between the two kinds of triangles is spontaneously broken,
with a relative energy difference of δ ≈ 19%, i.e, there is a trimerization (simplex) valence-bond order in
the ground state. The spin-spin, dimer-dimer, and chirality-chirality correlation functions are found to decay
exponentially with a rather short correlation length, showing that the ground state is gapped. We thus identify the
ground state to be a simplex valence-bond crystal. We also discuss the spin-1 bilinear-biquadratic Heisenberg
model on a kagome lattice, and determine its ground-state phase diagram. Moreover, we implement non-Abelian
symmetries, here spin SU(2), in the TN algorithm, which improves the efficiency greatly and provides insight
into the tensor structures.
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Introduction. Geometrical frustration, as a particularly in-
teresting phenomenon in quantum antiferromagnets, has raised
enormous interest recently [1]. It arises when any classical
(Ising) spin configuration cannot satisfy simultaneously all the
local terms in the Hamiltonian, which leads to a macroscopic
degeneracy and thus greatly enhances quantum fluctuations.
Frustration might melt semiclassical spin orders (including
magnetic or valence-bond order, etc.), driving the system into
an exotic quantum state called a quantum spin liquid [2,3].
Some typical frustrated antiferromagnets include the spin-1/2
and spin-1 Heisenberg models on the triangular lattice [4,5],
the spin-1/2 J1-J2 square [6–10], and the pyrochlore [11]
lattices. Among others, the spin-1/2 kagome Heisenberg
antiferromagnetic (KHAF) model is one of the most intriguing
frustrated models: Its ground state is widely believed to be a
spin liquid [12–18], but its nature is still under debate [19].

KHAF models with higher spins [20] are less well
studied, despite their physical realizations in experiments,
e.g., organic compound m-MPYNN · BF4 [21–26] and
YCa3(VO)3(BO3)4 [27], where the measurements reveal a
gapped nonmagnetic state with only short-range spin ordering.
Interesting variational wave functions have been proposed for
the relevant spin-1 KHAF model, for instance, the static or
resonating Affleck-Kennedy-Lieb-Tasaki (AKLT) loop state
states [28–30], and the hexagon-singlet solid state [31], etc.,
yielding some preliminary advances towards understanding
the nature of the ground state. Notably, Cai et al. considered
a fully trimerized variational wave function on the kagome
lattice [30], with all the spin-1’s in each A (or B) triangle
forming a singlet (trimerization). However, its corresponding
variational energy for the spin-1 KHAF model is e0 = −1 per
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site, much higher than that of the topologically ordered resonat-
ing AKLT-loop state (a quantum equal-weight superposition
of all possible AKLT-loop coverings, e0 ≈ −1.27) [29]. The
nature of the ground state of the spin-1 KHAF model is still
an open question.

In this Rapid Communication, we employ state-of-the-
art tensor-network (TN) algorithms [32–34] based on the
projected entangled-pair state (PEPS) to study the proper-
ties of spin-1 KHAF model, and determine the variational
ground-state energy as e0 � −1.41 on an infinitely large
two-dimensional (2D) lattice [Fig. 1(a)]. Lattice inversion
(reflection) symmetry is found to be broken, where the
two kinds of triangles (or simplexes) have different ener-
gies [Fig. 1(b)]. We thus call the ground state a simplex
valence-bond crystal (SVBC). We also consider the spin-1
bilinear-biquadratic (BLBQ) Heisenberg model, and obtain its
ground-state phase diagram, where we find an extended SVBC
phase and observe a quantum phase transition between the
SVBC and ferroquadrupolar phases at θc � −0.04π . Some of
our results were obtained with an SU(2)-invariant implemen-
tation of PEPS, coded using the QSpace tensor library [35],
which greatly reduces the costs (see the Supplemental
Material [36]).

Model and method. We consider the quantum spin-1 KHAF
model with only nearest-neighbor isotropic exchange interac-
tions [i.e., Hamiltonian (1) with θ = 0]. We use the PEPS as
a wave-function ansatz [37], and invoke an imaginary-time
evolution (through the Trotter-Suzuki decomposition [38]) for
optimizations. The initial hexagonal TN [Fig. 1(a)] consists of
tensors TA and TB , associated with all A and B triangles of the
lattice, respectively. Such a TN ansatz has also been employed
to study the spin-1/2 KHAF model [16].

After each step of the imaginary-time evolution, we have to
reallocate the three physical indices (from TA to TB , or the other
way round) and truncate the bond state space. Here we use the
single-triangle (ST) or double-triangle (DT) update schemes
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FIG. 1. (Color online) (a) Kagome lattice (dotted lines) and the
initial setup of the tensor-network wave function (solid lines). D is
the bond dimension, and TA (TB ) are triangle tensors, with which the
physical indices can be associated for convenience. (b) Illustration
of the simplex valence-bond crystal. The two kinds of triangles or
“simplexes” [of type A (blue) and B (pink)] have different energies,
and a lattice inversion symmetry is spontaneously broken.

for truncations (see the Supplemental Material [36]), following
Refs. [16,33,34,39]. We find good agreement between ST and
DT calculations once the bond dimension D is sufficiently
large (see, e.g., Figs. 2 and 5), indicating that ST calculations
are sufficient to accurately capture the ground-state properties.

We has also implemented SU(2) symmetry in the TN
algorithms, greatly improving the numerical efficiency. To
this end, we employed the tensor library QSpace [35], which
implements non-Abelian symmetries in TNs in an efficient and
transparent framework. We have run data for D∗ = 3–8, where
D∗ is the number of multiplets retained on the geometric bonds
[see Figs. 3(b) and 3(c)], as compared to the actual number of
states D. In the imaginary-time evolution, we only specify the
number D∗ of retained multiplets, while the representations
with respect to SU(2) spin symmetry are free to change
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FIG. 2. (Color online) The variational ground-state energy per
site e0 is shown vs 1/D, obtained from iPEPS contractions [with
and without implementing SU(2) symmetry] on the infinite kagome
lattice, using both ST and DT update schemes. The inset shows that
the D � 12 data (i.e., left-hand side of the dashed line) converge
exponentially to the infinite D limit, which is extrapolated as
e∞

0 = −1.4116(4). The convergence of e0 vs truncation parameters
dc have always been checked (see the Supplemental Material [36]),
and the data above are obtained with dc = 40–60 and 100–120 for
plain and SU(2) iPEPS contractions, respectively.

FIG. 3. (Color online) (a) Illustration of the cylinders. For XC
(YC) geometries, X (Y) direction is with the periodic boundary
condition, and length unit ax(ay), V is the boundary vector obtained
by exact contractions of cylinder PEPS. (b) Implementation of
SU(2) symmetry in local tensors: The arrows indicate how the spin
multiplets are fused together [40]. The table in (c) shows the specific
spin representations Qa,b (and corresponding plain bond dimensions
Da,b) of the optimized tensors for various D∗ (i.e., number of kept
bond multiplets). Here S(m) means m multiplets with spin S.

during the optimization process, and eventually converge to
the integer ones specified in Fig. 3(c).

Given the optimized tensors [with or without SU(2)
symmetry], we consider two geometries for evaluating the
expectation values: (a) an infinitely large 2D lattice and (b) an
infinitely long cylinder with a finite circumference (Fig. 3). For
case (a), we adopt the infinite PEPS (iPEPS) technique [41–43]
to contract the double-layer TN, with the boundary matrix
product state (MPS) retaining dc bond states. For case (b), we
wrap the TNs on the X or Y cylinders (denoted XC or YC
in previous work on kagome cylinders [12,13]), and contract
the boundary vector [V in Fig. 3(a)] with a column of tensors,
repeating this process until convergence is reached.

Ground-state energy and valence-bond crystal. Figure 2
presents our results of energy per site e0. The inset shows that
e0’s are well converged with retaining dc � 40 bond states in
the boundary MPS. The main panel, where dc = 40, shows
that the energy decreases monotonically with increasing bond
dimension D, reaching e0 = −1.410 90(2) for D∗ = 8 (i.e.,
D = 24). In the inset of Fig. 2, we find that the D � 12
data are well in the exponential convergence region, and the
corresponding fit suggests e∞

0 = −1.4116(4) in the infinite D

limit. This constitutes our best estimate of the ground-state
energy in the thermodynamic limit.

In Fig. 4, we show the spin-spin, dimer-dimer, and chiral
correlation functions, all evaluated between equivalent sites
of two triangles of the same kind, say, A triangles. The
spin-spin correlation function is defined by 〈Sz

i S
z
j 〉, and

the dimer-dimer one by 〈DiDj 〉 = 〈(Sz
i S

z
i+1) · (Sz

jS
z
j+1)〉 −

〈Sz
i S

z
i+1〉 · 〈Sz

jS
z
j+1〉, where i and j belong to different triangles.

The chiral correlation function is defined as 〈CmCn〉 =
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FIG. 4. (Color online) Spatial dependence of various correlation
functions (symbols) on a log-linear scale, together with exponential
fits y = c exp (−x/ξ ), with ξ indicated with each line. The correlation
functions are calculated by iPEPS. x is the distance between triangles
with length unit ax [see Fig. 3(a)]. Note that the square of the
converged 〈Sz

i S
z
i+1〉 �= 0 has been subtracted in the definition of

dimer-dimer correlations.

〈[Sm1 · (Sm2 × Sm3 )][Sn1 · (Sn2 × Sn3 )]〉, where m,n label the
positions of two triangles, and mi,ni label the positions of
the three sites within a triangle. Figure 4 shows that all these
correlation functions decay exponentially, implying that the
ground state of the spin-1 KHAF model is nonmagnetic and
gapped.

Figure 5 shows the energy difference �E = 2
3 |EA − EB |

between the A and B triangles, as a function of D. The fact of
nonvanishing �E means that the ground state spontaneously
breaks lattice inversion symmetry. Note that, although our
method is initially biased in its treatment of A and B triangles
in the ST update, by the end of the projections we reduce
the Trotter slice to 10−5, restoring the equivalence between
the two kinds of triangles. Besides the ST update, we have
also employed the DT update, where the two triangles are
treated on equal footing, for determining the ground state. The
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FIG. 5. (Color online) (a) Energy difference between A and
B triangles, �E = 2(EA − EB )/3, where EA(B) = 9〈Sz

i S
z
i+1〉A(B),

evaluated at the Heisenberg point (θ = 0) with the iPEPS contraction,
and plotted vs 1/D, which show clearly a nonvanishing value
(δ = �E/e0 ≈ 19% for D = 24). The minimal bond dimension
needed to capture the SVBC order is D � 7 [or D∗ = 3; see the table
in Fig. 3(c)]. For smaller D, �E vanishes, and hence is not shown
here. The inset shows that �E vanishes when θ < −0.04π , where
the ferromagnetic quadrupolar order (Q1) sets in. (b) Ground-state
phase diagram of the spin-1 BLBQ model on the kagome lattice.

FIG. 6. (Color online) (a) Energy per site and (b) von Neumann
entanglement entropies of the tensor-network variational wave func-
tions on cylinders. The X(Y)C geometry is shown in Fig. 3(a), and
L = 2,4,6 means infinite X(Y)C4, 8, 12 cylinders, respectively.

quantitative agreement between the ST and DT results in Fig. 5
confirm the stability of the spontaneous trimerization order.

Bilinear-biquadratic Heisenberg model. We also studied
the spin-1 BLBQ Heisenberg model with the Hamiltonian

H =
∑

〈ij〉
[cos θ (Si · Sj ) + sin θ (Si · Sj )2], (1)

which recovers the KHAF model when θ = 0. When we tune
θ away from the Heisenberg point, we see that the SVBC state
belongs to an extended phase. The results are shown in the inset
of Fig. 5(a). The energy differences are verified to be robust for
various θ ’s. Interestingly, when we tune θ to the negative side,
a phase transition occurs at the transition point θc � −0.04,
where the trimerization vanishes, and the system turns into a
ferroquadrupolar (FQ) phase, with Q1 = 〈S2

x − S2
y 〉 �= 0.

Figure 5(b) shows the ground-state phase diagram of
the spin-1 kagome BLBQ Heisenberg model obtained by
exploring other θ values. There are four phases in total: a FQ
phase (−3/4π < θ < −0.04π ), a SVBC phase (−0.04π <

θ < 0.37π ), an antiferroquadrupolar (AFQ) phase (0.37π <

θ < 1/2π , Qtot = ∑
i∈
 Qi = 0, but Qi �= 0), and a ferromag-

netic (FM) phase (1/2π < θ < 5/4π ). Note that the SU(3)
point (θ = π/4) lies in the SVBC phase, thus the SU(3)
Heisenberg model also has a trimerized ground state. This
observation is in agreement with a previous study of the SU(3)
model [44,45]. Note also that Fig. 5(b) is similar to the phase
diagram of the spin-1 BLBQ model on a triangular lattice [5],
but the antiferromagnetic phase there is replaced by the SVBC
phase, and the SU(3) point there is no longer a phase transition
point here.

Exact contractions with SU(2) PEPS. The implementation
of non-Abelian symmetries leads to a huge numerical gain in
efficiency, especially in the contractions of double-layer TNs.
For example, we are able to perform exact contractions on
a cylinder as large as XC12 for the D∗ = 3 state, owing to
a factor of 340 reduction in the memory (from about 2000 to
6 GB—see the Supplemental Material [36]). A very promising
future application would be an iPEPS full update which scales
as D10∼12 [41]; due to the very large exponent, the numerical
gain from tracking D∗ multiplets rather than D individual
states per bond can be expected to be huge.

Figure 6(a) shows the energy expectation values up to XC12
(L = 6). For the D∗ = 3 case, the DT offers slightly better
energy compared to the ST data. Owing to the implementation
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of SU(2) symmetry, we are able to evaluate an optimized
D∗ = 6 state on XC8 (L = 4), yielding a variational energy of
e0 = −1.411 96, a variational upper bound of e0 on a given
cylinder, and it agrees well with the iPEPS results in Fig. 2.
In addition, trimerization can also be clearly identified in the
optimized D∗ = 3,4,5,6 states, again with a relative difference
∼20%.

Entanglement entropy. We cut the cylinder PEPS into two
halves, and evaluate the von Neumann entropy [46], S =
−Tr[ρ log(ρ)], fitting it to S � cL − γ . For the topological
states, γ extrapolates to a nonzero constant [14], called the
topological entanglement entropy (TEE) [47,48]. Figure 6(b)
shows the von Neumann entropies of the D∗ = 3 states
(obtained with ST or DT updates) on XC and YC geometries
with L = 2,4,6. In the ST update case, owing to the PEPS
construction, the cylinder can be cut in two inequivalent ways,
called an even or odd cut [see Fig. 3(a)]. In the DT case,
where the unit cell tensor is larger, we can cut the cylinder in
a uniform way [Fig. 3(a)]. Besides the D∗ = 3 state, Fig. 3(b)
also shows the entanglement entropies of D∗ = 4,5 states
evaluated on various YC geometries; the “even” cut there
means the entropies are calculated when the physical indices
are associated with TA in Fig. 3(a). All the entanglement results
extrapolate to γ � 0, suggesting a topologically trivial state.

Conclusions and discussion. We find the ground state of
the spin-1 KHAF model to be a gapped SVBC, evidenced
by the spontaneous lattice symmetry breaking between two
neighboring triangles. An important technical innovation of
our work is the explicit implementation of SU(2) symmetry
in our PEPS-based algorithms; this not only enhances their
numerical performance, but also provides us with useful infor-
mation about the bond multiplets. To be concrete, the SVBC
state and the fully trimerized (trivial) state share some common
virtual-spin representations and fusion channels in the tensors.
This suggests that the two states are adiabatically connected.
In the Supplemental Material [36] we show numerically that
this is indeed the case.

Lastly, we address some remarks on the relation to
experimental observations. The susceptibility measurements
of the organic spin-1 magnet m-MPYNN · BF4 reveal a
gapped, nonmagnetic ground state [22–24], consistent with
our SVBC picture, which is nonmagnetic and has a spin gap.
However, the specific heat measurement shows a round peak at
T/2J ′ ∼ 1/2 (2J ′ ≈ 3K , the coupling strength), suggesting
only a short-range ordering. This observation suggests that
other complications in the materials (such as next-nearest
couplings, distortions, single-ion anisotropy, etc.) should be
taken into account, which we leave for a further study.

Note added. Recently, we became aware of three articles,
two on a density matrix renormalization group study of the
same model [49,50], and the other on a tensor-network study
of magnetization curves of the spin-1 kagome model and
others [51]. Two of the articles had conclusions consistent
with ours [49,51], while the other proposed a different ground
state [50]. The striking contrast between the conclusions of
Refs. [49,50] suggest that the spin-1 KHAF model constitutes
an challenging problem for finite-size DMRG simulations,
however, our conclusions based on infinite-size tensor-network
simulations do not have such kind of ambiguity.
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