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We study how the conductance of a quantum point contact is affected by spin-orbit interactions, for
systems at zero temperature both with and without electron-electron interactions. In the presence of
spin-orbit coupling, tuning the strength and direction of an external magnetic field can change the
dispersion relation and hence the local density of states in the point contact region. This modifies the effect
of electron-electron interactions, implying striking changes in the shape of the 0.7-anomaly and introducing
additional distinctive features in the first conductance step.
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Spin-orbit interactions (SOI) play an important role
in a variety of fields within mesoscopic physics, such as
spintronics and topological quantum systems. In this Letter
we study the effects of SOI on the conductance of a
quantum point contact (QPC), a one-dimensional constric-
tion between two reservoirs [1,2]. The linear conductance
G of a QPC is quantized in multiples of GQ ¼ 2e2=h,
showing the famous staircase as a function of gate voltage.
In addition, at the onset of the first plateau, measured
curves show a shoulderlike structure near 0.7GQ [3]. In this
regime QPCs exhibit anomalous behavior in the electrical
and thermal conductance, noise, and thermopower [3–11].
The microscopic origin of this 0.7-anomaly has been the
subject of a long debate [12–18]. It has recently been
attributed to a strong enhancement of the effects of
electron-electron interactions (EEI) by a smeared van
Hove singularity in the local density of states (LDOS)
at the bottom of the lowest QPC subband [15,18]. While
this explains the 0.7-anomaly without evoking SOI, the
presence of SOI can change the dispersion relation and
hence the LDOS, thus strongly affecting the shape of the
0.7-anomaly. Previous studies of SOI in QPCs exist
[19–23], but not with the present emphasis on their inter-
play with the QPC barrier shape and EEI, which are crucial
for understanding the effect of SOI on the 0.7-anomaly.
Setup.—We consider a heterostructure forming a two-

dimensional electron system (2DES) in the xy plane. Gate
voltages are used to define a smooth, symmetric potential
which splits the 2DES into two leads, connected by a short,
one-dimensional channel along the x axis: the QPC [1,2].
The transition between the leads and the QPC is adiabatic.
We also assume the confining potential in the transverse
direction to be so steep that the subband spacing is much
larger than all other energy scales relevant for transport, in
particular those related to the magnetic field and SOI, and
consider only transport in the first subband, corresponding
to the lowest transverse mode. This can be described by a
one-dimensional model with a smooth potential barrier and

local EEI [18]. The magnetic field B is assumed to be in the
xy plane, acting as a pure Zeeman field, without orbital
effects.
A moving electron in an electric field can experience an

effective magnetic field BSOI proportional to its momentum
ℏk. Depending on the origin of the electric field one
distinguishes between Rashba and Dresselhaus terms, the
former resulting from the gradient of the external potential,
and the latter from the asymmetry of the ionic lattice [24].
To be able to rotate B through any angle φ w.r.t. BSOI
we require that BSOI also lies in the xy plane. Without loss of
generality (see the Supplemental Material [25]), we choose
the y axis to be parallel toBSOI, such that the SOI contribution
to the Hamiltonian is −ασyk, where α characterizes the
strength of the (Rashba) SOI and σy is a Pauli matrix [26].
We only consider the leading SOI contribution proportional
to k and choose the spin quantization direction along B.
Without SOI, the dispersion relation ℏ2k2=2m of a

homogeneous one-dimensional model with effective
mass m splits in the presence of a Zeeman field into
two identical branches offset in energy by �B=2. On the
other hand, without a Zeeman field, the momentum-
dependent SOI splits the dispersion in k direction and also
yields a negative spin-independent energy offset of mag-
nitude ΔESOI ¼ α2m=2ℏ2. In the following, we shift the
energy origin by −ΔESOI and quote all energies w.r.t. the
new origin. If both B and BSOI are nonzero, their interplay
depends on φ, as illustrated in Fig. 1(a1)–(a3). In (a1),
where the fields are parallel (φ ¼ 0), the energy offsets
simply add, while for nonparallel fields a spin mixing
occurs, resulting in an avoided crossing [27]. For orthogo-
nal fields (φ ¼ π=2), the lower dispersion branch exhibits
either one broader minimum at k ¼ 0 if B ≥ 4ESOI, or two
minima at finite k and a maximum at k ¼ 0 otherwise. The
latter case is shown in Fig. 1(a2)–(a3).
Model.—For the lowest subband we model the QPC by a

symmetric potential barrier which is quadratic around its
maximum,
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VðxÞ≃ Vg þ μ − Cbx2=2; ð1Þ
and vanishes smoothly at the boundary of the QPC. The
barrier height Vg, measured w.r.t. the chemical potential μ,
mimics the role of the gate voltage. If Vg is swept
downwards through zero, the conductance g ¼ G=GQ
increases from 0 to 1. For B ¼ 0 this occurs in a single
step whose width is given by the energy scale
Ωx ¼

ffiffiffiffiffiffiffiffiffiffiffi
CbCd

p
, which is set by the fixed curvature of the

barrier Cb and the curvature of the bulk dispersion at its
minimum Cd [28]. For φ ¼ 0, Cd ¼ ℏ2=m.
For numerical purposes, we discretize real space and

obtain an infinite tight-binding chain with spacing a, taking
B and α constant throughout the chain. The noninteracting
Hamiltonian is

H0¼
X

j;σ;σ0
d†jσ

�

ðVjþ2τÞδσσ0 −
1

2
ðσ ·BÞσσ0

�

djσ0

þ
X

j;σ;σ0

�

d†jþ1σ

�

−τ0δσσ0 þ
iα
2
ðσyÞσσ0

�

djσ0 þH:c:

�

; ð2Þ

where djσ annihilates an electron with spin σ ∈ f↑;↓g≡
fþ;−g at site j. The effective mass of the charge carrier is
m ¼ ℏ2=2τa2 with τ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ20 þ α2

p
[29]. We keep τ fixed

when varying α. The QPC barrier potential Vj ¼ VðjaÞ

(and later EEI) are nonzero only in a region of length
L ¼ 2Na centered around j ¼ 0, representing the QPC. All
results shown are for N ¼ 50. We use the smooth function
VðxÞ ¼ ðVg þ μÞ expf−ð2x=LÞ2=ð1 − ½2x=L�2Þg for the
potential, with μ ¼ 2τ. Sites j < −N and j > N represent
two leads with bandwidth 4τ. The strength of SOI in a QPC
is determined by the dimensionless parameter

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔESOI

Ωx

s

¼ α

ℏ

ffiffiffiffiffiffiffiffi
m
2Ωx

r

: ð3Þ
SOI strengths of up to α≃ 10−11 eVm have been reported in
the literature [19,27,30,31]. Typical values of Ωx ≃ 1 meV
andm≃ 0.05me for InGaAs yield R≃ 0.2. A stronger spin-
orbit effect due to an enhancement of the anisotropic Lande
g-factor is reported in Ref. [32]. Hole quantum wires have
been used to observe the spin-orbit gap [27] and the
anisotropic Zeeman splitting [33]. For hole QPCs, the larger
effective hole mass and the resulting smaller Ωx imply larger
values of R. Here we consider both small and large R, where
R≲ 0.4 is a realistic scale for electron systems and R≳ 1 is
accessible using hole systems [34], for QPCs with small
barrier curvature Cb and hence small Ωx.
System without EEI.—Many insights on the interplay

between SOI and geometry can already be gained from the
modelwithoutEEI, as shown in the left part (a1)–(d3) ofFig. 1.

FIG. 1 (color online). Effect of SOI on the model without EEI, left columns (a1)–(d3), and with EEI, right column (e1)–(e4). The left
columns (a1)–(d1), (a2)–(d2), and (a3)–(d3) represent different combinations of SOI strength R and angle φ between B and BSOI. They
highlight the correspondence between the dispersion relation ωðkÞ in a homogeneous system (a1)–(a3), the LDOS for fixed ω ¼ μ
as function of Vg on the central site of a QPC with potential barrier (b1)–(b3), the conductances of the two QPC transmission channels
(c1)–(c3), and the total conductance of the QPC for several equally spaced magnetic field values between B ¼ 0 and B ¼ 0.88Ωx
(d1)–(d3). In (a1)–(c3), the magnetic field is fixed at B ¼ 0.88Ωx, with dashed lines showing the case B ¼ 0 for comparison. The line
colors in (a1)–(a3) quantify the contribution of each spin state (red ¼ ↑, blue ¼ ↓) in the dispersion branches, to illustrate the spin
mixing at φ ≠ 0. The right column (e1)–(e4) shows the total conductance forU > 0, with φ ¼ π=2 and several combinations of R and B
[the latter were chosen smaller than in (d1)–(d3), since EEI enhance the g-factor [18]].
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We discuss exact results for two physical quantities, whichwe
also relate to the bulk dispersion relation: the linear conduct-
anceg and theLDOSAσ

j ðωÞ ¼ −ImGσσ
jj ðωÞ=πa,whereGσσ0

jj0 is
the retarded propagator from site j0 with spin σ0 to site j with
spin σ. Due to SOI, spin is not conserved for φ ≠ 0 and hence
Gσσ0
jj is not spin-diagonal. However at j ¼ 0 its off-diagonal

elements turn out to be negligible compared to the diagonal
ones. Thus it is meaningful to analyze the LDOS at j ¼ 0 for
given σ. The linear conductance at zero temperature can be
calculated via g ¼ g1 þ g2 ∝ Trðt†tÞ [35], where tσσ

0 ¼
Gσσ0
−N;NðμÞ is the transmission matrix of the QPC and Trðt†tÞ

equals the sumof the eigenvalues of t†t. The spin structure of t
depends on N, but the eigenvalues of t†t, which yield the
conductances g1 and g2 of the two transmission channels,
do not.
For φ ¼ 0 (Fig. 1, left column) spin is conserved and

SOI have no influence on the LDOS and the conductance.
This case is analogous to the one discussed in Ref. [18].
The bulk [i.e., VðxÞ ¼ 0] LDOS,

Aσ
bulkðωÞ ∝

∂k
∂ω

�
�
�
�
σ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m
2ℏ2ðωþ σB=2Þ

r

; ð4Þ

has a van Hove singularity, diverging at the minimum
ω ¼ −σB=2 of the corresponding dispersion branch, where
the electron velocity vanishes. In the QPC, the x-dependent
LDOS is shifted in energy by the barrier potential VðxÞ.
Since the barrier breaks translational invariance, the van
Hove singularity is smeared out on a scale set by Ωx [15],
forming a ridgelike structure, called van Hove ridge
in [18]. The LDOS height becomes finite, of order
O(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m=ðℏ2ΩxÞ

p
), determined by Ωx and the curvature

ℏ2=m of the bulk dispersion. At a given position x, the
LDOS maximum occurs at an energy which isOðΩxÞ larger
than the corresponding potential energy VðxÞ−σB=2. Here
andhenceforthwequote theLDOSas a functionofVg at fixed
ω ¼ μ. Figure 1(b1) shows it at the central site j ¼ 0; the
spatially resolved LDOS is shown in Fig. 1 of the
Supplemental Material [25]. The LDOS has the same shape
for both spins. Its structure is clearly inherited from that of
the dispersion in (a1), with peak energies aligned with the
dispersion minima up to the shift of OðΩxÞ. Similarly, the
conductances g1ðVgÞ and g2ðVgÞ of the two channels in (c1)
showstepsof the sameshapewithwidths∝ Ωx [28], split byB
and aligned with the dispersion minima. This causes the total
conductance gðVgÞ in (d1) to split symmetrically into a double
step with increasing field, just as for a QPC without SOI.
Next consider the case φ¼π=2 shown in Fig. 1(a2)–(d3).

Spin mixing leads to an avoided crossing with spin gap ∝ B,
which splits the dispersion into an upper branch with a
narrow minimum and a lower branch with two minima and
one maximum (for B < 4ESOI). Note that bulk LDOS
structures separated in energy by less than Ωx are not
resolved within the QPC. In the following, we give an
intuitive explanation of how the dispersion minima relate to
the properties of the LDOS peaks and the conductance steps.

The curvatures of the lower and upper dispersion branches
are, respectively, smaller or larger than in (a1), Cd1 < Cd <
Cd2 (loosely speaking,Cd1 is the effective curvature obtained
by smearing the double dispersionminimumbyΩx, yielding a
single minimum). Because the barrier curvature Cb is fixed,
this results in two modified energy scales Ωxi ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
CbCdi

p
,

with Ωx1 < Ωx < Ωx2, which determine the LDOS peak
heights and widths, as well as the conductance step widths.
Consequently, in (b2) the LDOS peak for A↓

0 is lower and

wider than forA↑
0 . Likewise, in (c2) the conductance step for

g2ðVgÞ iswider than for g1ðVgÞ, causinggðVgÞ in (d2) to show
a strikingasymmetry for itsB-induced evolution froma single
to a double step. This asymmetry is reminiscent of but
unrelated to that known for the 0.7-anomaly—the latter is
driven by EEI, as discussed below—but should be observable
in higher conductance steps, where EEI are weaker.
For R≳ 1 more structures emerge, see Fig. 1(a3)–(b3).

Spin-mixing produces an additional “emergent” peak inA↓
0

(b3) and an additional step in g2ðVgÞ (c3) near Vg ≃ 0.
Between the two steps, the transmission g2ðVgÞ has a
minimum, corresponding to the spin gap, and the total
conductance gðVgÞ in (d3) likewise develops a spin gap
minimum with increasing B. These features can be under-
stood by looking at the spin composition of the two bulk
dispersion branches, depicted quantitatively through the
colors in Fig. 1(a1)–(a3). At k ¼ 0 the SOI field is zero
and we have pure spin-states w.r.t. the chosen quantization.
At larger jkj the SOI field increases, leading to spin-mixing.
In fact in the limit k → ∞ we find a fully mixed state
with equal up and down contributions. Since the upper
branch minimum at k ¼ 0 is in a pure spin-down state, it
corresponds to a peak only in A↓. But the minima of the
lower branch are shifted away from k ¼ 0 and have a spin-
down share besides the dominant spin-up contribution. This
causes the emergent peak in A↓ at low frequencies, whose
height increases with R, due to the stronger spin-mixing.
Interacting system.—We now include EEI via Hint ¼P
jUjd

†
j↑dj↑d

†
j↓dj↓. The on-site interaction Uj ¼ UðjaÞ

is switched on smoothly over the QPC according to
UðxÞ ¼ U expf−ð2x=LÞ6=½1 − ð2x=LÞ2�g. We set Uj ¼ 0
for jjj > N, because outside the QPC region transverse
confinement is weak or absent, and screening strong
[18,36]. We calculate the conductance at zero temperature
with the functional renormalization group technique in
the one-particle irreducible version [29,37–40] using the
coupled ladder approximation, which was presented in
Ref. [36] for a model without SOI. Generalizations neces-
sary in the presence of SOI are described in the
Supplemental Material [25].
The B dependence of the conductance for φ ¼ π=2 and

differentR in the presence ofEEI is shown in the right column
(e1)–(e4) of Fig. 1 and the corresponding transconductance
dg=dVg in Fig. 2(b)–(f). The case R ¼ 0 [see Figs. 1(e1)
and 2(a)–(c)], which is equivalent to φ ¼ 0, has been
discussed in Refs. [18,36]: once a finite magnetic field breaks
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the spin degeneracy a surplus of spin-up electrons develops in
the QPC, so that spin-down electrons experience both a
Zeeman and a Coulomb energy cost. This Stoner-type effect
depends on the LDOS at μ and hence is strongest when the
apex of the van Hove ridge touches the chemical potential,
i.e., when Vg is within≃0.5Ωx below 0 [18]. This causes an
asymmetry w.r.t.Vg ¼ 0 in theB-induced evolution of gðVgÞ
from a single to a double step in Fig. 1(e1), in contrast to the
case without EEI in Fig. 1(d1). This asymmetry is character-
istic of the 0.7-anomaly. The corresponding transconductance
in Fig. 2(b)–(c) shows a double peakwhose spacing increases
roughly linearly with B (with an EEI-enhanced g-factor),
as seen in numerous experiments [3,10,18].
The Stoner-type Coulomb enhancement of a field-

induced population imbalance is amplified when R ≠ 0,
as shown in Figs. 1(e2)–(e4) and 2(d)–(f), because of the
height imbalance for the spin-up and spin-down LDOS
peaks caused by SOI. Correspondingly, with increasing R
the double-step structure in the conductance becomes more
pronounced, the second substep becoming much broader
than the first [see Figs. 1(e2)–(e3)] and the transconduct-
ance in Fig. 2(d)–(e) shows a weakening of the lower-Vg

peak with increasing R. This reflects the increasing
curvature Cd2 of the upper dispersion branch (and hence
larger step width Ωx2). For R≳ 1, additional features,
inherited from the noninteracting case, emerge for gðVgÞ
in Fig. 1(e4): a local maximum (marked by an arrow),
followed by a spin gap minimum at lower Vg. For the
transconductance, Fig. 2(f), these features show up as a
strong secondary peak around Vg=Ωx ≃ −1 (marked by an
arrow), followed by a region of negative transconductance
(black). EEI also induce a secondary 0.7-type double-step
feature in gðVgÞ for Vg=Ωx between 0 and −1, Fig. 1(e4),
which is similar to, but narrower than that for R ¼ 0. It
originates from themainLDOSpeak inA↑

0 and the emergent

peak in A↓
0 . Unlike the regular A↓

0 peak aligned with the
upper dispersion branch, whose Vg position is governed by

the magnetic field, the emergent A↓
0 peak occurs, due to

strong spin-mixing, at nearlyB-independent energy close to
theA↑

0 peak. As a result, the two transconductance maxima
in Fig. 2(f) remain parallel with increasing B, in strong
contrast to the situation for R < 1 in Fig. 2(c)–(e).

Figures 2(g)–(l) show, for two fixed values of B, how the
transconductance evolves as jφj is increased from 0 to π=2,
thus switching on the effects of SOI. The decrease in peak
spacing with increasing jφj in Fig. 2(l) strikingly reflects
the increasing importance of spin mixing. The strong angle
dependence predicted here is a promising candidate for an
experimental test of our theory [41].
At small nonzero temperature, inelastic scattering

causes a Fermi-liquid-type reduction of the conductance,
gðT; VgÞ=gð0; VgÞ ¼ 1 − ðT=T�Þ2 for T ≪ T�, with a
Vg-dependent low-energy scale T�ðVgÞ. We expect its
magnitude to be similar to the case without SOI, typically

≃1 K]18 ]. Thus, for T ≲ 0.1 K, the T-dependence should
be very weak and the T ¼ 0 predictions applicable.
In summary, we have shown that in the presence of SOI,

the changes in the dispersion induced by the interplay of B
and BSOI can strongly affect the shape of the 0.7-anomaly.
In the absence of EEI, SOI cause an anisotropic response of
the spin splitting to the applied in-plane magnetic field.
With EEI, the 0.7-anomaly also develops an anisotropic
response to magnetic field, and if SOI are strong, the
conductance develops additional features due to the inter-
play of EEI and SOI: for φ ¼ π=2 these include a field-
induced double step in the conductance that does not split
linearly with B, followed by a spin gap minimum. The
dependence of the conductance on the angle between B and
BSOI is already apparent for R≃ 0.4, which is accessible in
experiments with electron QPCs. Hole QPCs with R≳ 1
would allow access to regimes with strong SOI.
An experimental verification of our predictions would

highlight the influence of LDOS features on the conduct-
ance and thus lend further support to the van Hove scenario
of Ref. [18] as microscopic explanation for the 0.7-
anomaly. More generally, our work lays out a conceptual
framework for analyzing the interplay of SOI, EEI, and

FIG. 2 (color online). Functional renormalization group results
for the conductance g and transconductance dg=dVg, for U ¼
3.36

ffiffiffiffiffiffiffiffi
Ωxτ

p
at zero temperature. Top row: 3d or color-scale plots of

the conductance (a) and the transconductance (b) and (c) as
functions of Vg and B, for R ¼ 0. Three bottom rows (d)–(l):
Color-scale plots of the transconductance for three choices of R
(three columns), plotted as a function of Vg and either B for fixed
φ ¼ π=2 (second row) or of φ for fixed B ¼ 0.18Ωx (third row)
and B ¼ 0.88Ωx (fourth row).
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barrier shape in quasi-1D geometries: examine how SOI
and barrier shape modify the (bare) LDOS near μ—
whenever the LDOS is large, EEI effects are strong. We
expect this to be relevant for the more complicated hybrid
superconductor-semiconductor junctions currently studied
by seekers of Majorana fermions [42–44]. A proper
analysis of such systems would require a generalization
of our approach to include superconducting effects.
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