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We exploit a natural projected entangled-pair state (PEPS) representation for the resonating Affleck-Kennedy-
Lieb-Tasaki loop (RAL) state. By taking advantage of PEPS-based analytical and numerical methods, we
characterize the RAL states on various two-dimensional lattices. On square and honeycomb lattices, these states
are critical since the dimer-dimer correlations decay as a power law. On the kagome lattice, the RAL state
has exponentially decaying correlation functions, supporting the scenario of a gapped spin liquid. We provide
further evidence that the RAL state on the kagome lattice is a Z2 spin liquid, by identifying the four topological
sectors and computing the topological entropy. Furthermore, we construct a one-parameter family of PEPS states
interpolating between the RAL state and a short-range resonating valence bond state and find a critical point,
consistent with the fact that the two states belong to two different phases. We also perform a variational study of
the spin-1 kagome Heisenberg model using this one-parameter PEPS.
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I. INTRODUCTION

The quest for physical systems harboring quantum spin
liquid states has been a long-standing challenge in condensed
matter physics [1]. These states do not exhibit any symmetry
breaking and thus admit no descriptions in terms of local
order parameters. In contrast to conventional ordered states,
spin liquids may have topological order [2,3] and support
exotic fractional excitations. Among various theoretical con-
structions, a class of gapped Z2 spin liquids has been well
studied and recently receives strong numerical support [4–7] as
candidate ground states of some physical spin Hamiltonians on
frustrated lattices. Their ground-state wave functions contain
long-range entanglement and the low-energy effective theory
is conveniently described by an emergent Z2 gauge theory
[8,9], which also offers an intuitive picture for the highly
entangled ground state: a soup of fluctuating Z2 electric
field lines [10]. Moreover, if the spin system has SO(3)
symmetry, the Z2 gauge charges and fluxes in different
spin liquid states may transform as linear (integer spin) or
projective (half-integer) representations under the action of
the symmetry group, i.e., they may belong to different classes
of symmetry-enriched topological (SET) phases [11–15].

In this paper, we characterize a type of spin-1 spin liquids
[16–23]. The representative wave function of these states is
a superposition of strongly fluctuating, fully packed loops
(see Fig. 1), where each loop carries an Affleck-Kennedy-
Lieb-Tasaki (AKLT) state [24]. We call this state a resonating
AKLT loop (RAL) state following Ref. [25], where it was
considered as an example of nontrivial SET phases. We
provide an explicit projected entangled-paired state (PEPS)
representation of the state [26,27], which allows us to exploit
efficient PEPS-based analytical and numerical techniques
to characterize these wave functions on various lattices.
We demonstrate that on bipartite lattices (e.g., square and
honeycomb lattices) these states have algebraically decaying
dimer-dimer correlations and exponentially decaying spin-spin

and quadrupole-quadrupole correlations, indicating a gapless
spin liquid. On the nonbipartite kagome lattice, all correlation
functions we have tested (spin, dimer, and quadrupole) decay
exponentially, whose correlation lengths do not increase with
the system size. Additionally, we compute the topological
entanglement entropy [28,29] of these wave functions on a
long cylinder and obtain a universal value γ ≈ ln 2. All these
results are indicative of a gapped Z2 spin liquid.

The AKLT state is a paradigmatic example of symmetry-
protected topological phase in one dimension [30–32], featur-
ing degenerate spin- 1

2 excitations on boundaries protected by
the SO(3) spin rotation symmetry. With no surprise, the RAL
state also exhibits interesting symmetry properties. Namely,
terminations of the loops always carry spin- 1

2 degrees of
freedom. In contrast, the spin-1 short-range RVB state, unlike
its spin- 1

2 counterpart [33,34], does not support deconfined
spin- 1

2 excitations. We discuss the manifestation of this
interesting symmetry enrichment in the construction of the
degenerate topological sectors on an infinitely long cylinder.
As a demonstration, we construct a one-parameter family
of PEPS states interpolating between the RAL state and the
resonating valence bond (RVB) state. We find a critical point
along the path, where the dimer-dimer correlation function
decays algebraically. We also use these states as variational
wave functions for the spin-1 kagome Heisenberg model and
find an upper bound for the ground-state energy.

The rest of the paper is organized as follows. In Sec. II,
we introduce the PEPS representations of the RAL states and
related PEPS algorithms for extracting physical quantities. In
Sec. III, we show that the RAL states are critical on square and
honeycomb lattices. In Sec. IV, we exploit a combination of
analytical and numerical techniques to provide evidence that
the RAL state on a kagome lattice is a gapped spin liquid with
Z2 topological order. In Sec. V, a one-parameter PEPS based
on the RAL state is utilized for a variational study of the spin-1
Heisenberg model. Lastly, Sec. VI is devoted to a summary.
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FIG. 1. (Color online) Illustration of typical AKLT loop configu-
rations in the RAL states on (a) square and (b) kagome lattices. Each
green long oval represents a valence bond inside, while the small red
dots represent the constituting spin- 1

2 ’s.

II. PEPS REPRESENTATION AND ALGORITHMS

In this section, we introduce the PEPS representation of the
RAL state and describe the PEPS algorithms utilized to extract
physical quantities.

A. PEPS representation for RAL states

Let us introduce the RAL state on a square lattice. In this
case, we associate each lattice site with four virtual particles,
each of which has three basis states |0〉 ≡ |∅〉, |1〉 ≡ | ↑〉, and
|2〉 ≡ |↓〉 representing a spin-0 vacancy and a spin- 1

2 doublet,
respectively. In the PEPS language that we shall extensively
use in the following, the virtual Hilbert space is denoted by
the SU(2) representation 0 ⊕ 1

2 (i.e., direct sum of spin 0 and
spin- 1

2 ), whose dimension is called bond dimension, denoted
by D. Thus, we have D = 3 in the present case. The RAL state
can be constructed as

|�RAL〉 =
N⊗

i=1

Pi

⊗

〈ij〉
|ε〉ij , (1)

where |ε〉ij is a maximally entangled bond state connecting the
virtual particles between neighboring sites i and j , defined by
|ε〉 = |0,0〉 + |1,2〉 − |2,1〉, and Pi is a local projector acting
on site i, which maps two virtual spin- 1

2 states, out of the
four virtual particles, onto the physical spin-1 Hilbert space
[see Fig. 2(a) for an illustration]. More explicitly, P can be
written as

P =
∑

1�l<l′�4

Pl,l′ , (2)

where, for instance, P1,2 is given by

P1,2 =
∑

m

∑

μ1μ2μ3μ4

Cm
μ1,μ2

δμ3,0δμ4,0|m〉〈μ1,μ2,μ3,μ4|. (3)

Here, m ∈ {±1,0} and μ1,μ2,μ3,μ4 ∈ {0,1,2} denote the
physical and virtual Hilbert spaces, respectively. Cm

μ1,μ2
is the

Clebsch-Gordan (CG) coefficient symmetrizing two spin- 1
2

particles into a physical spin-1, with nonvanishing coefficients
being C1

1,1 = C−1
2,2 = 1 and C0

1,2 = C0
2,1 = 1/

√
2.

To uniquely define the wave function, one needs to specify
the orientation of the virtual singlets |ε〉 up to a gauge

FIG. 2. (Color online) (a) The PEPS projector P for the RAL
state on square lattice, mapping four virtual particles (0 ⊕ 1

2 )⊗4 onto
the physical spin-1 Hilbert space. (b) PEPS representation of the RAL
state on a honeycomb lattice. (c), (d) Two sign conventions for the
RAL states on a kagome lattice. Arrows denote the orientations of
the virtual singlets.

choice. For square and honeycomb lattices, we use the sign
conventions shown in Figs. 2(a) and 2(b), where the singlets
are oriented according to the arrows. For the kagome lattice, we
consider two inequivalent sign conventions shown in Figs. 2(c)
and 2(d).

Up to now, we have introduced the RAL state (1) in the
PEPS language. If we substitute (2) into (1) and expand the
product

⊗N
i=1 Pi , the resonating AKLT loop picture of (1)

shown in Fig. 1 also becomes transparent, as each configuration
contains different patterns of fully packed spin-1 AKLT loops
covering the whole lattice. Since the projector in (2) gives the
same weight to all allowed ways of combining two spin- 1

2 ’s
into a physical spin-1, the wave function (1) can be viewed
as an equal weight superposition (up to a sign depending on
the sign convention) of all possible AKLT loop configurations,
which was first proposed in Ref. [25].

At this point, we note that our PEPS representation naturally
generalizes to more complicated resonating loop states, where
the loops carry other one-dimensional (1D) matrix-product
states [e.g., SO(2n + 1) AKLT state [35]].

B. RAL states on the kagome lattice

A straightforward construction of the RAL state on the
kagome lattice proceeds along the description in the previous
section. As shown in Fig. 3(a), there are four virtual particles
on each vertex, in the representation 0 ⊕ 1

2 , and the onsite
projection operator P is exactly the same as Eq. (3).

For the RAL state on the kagome lattice, this PEPS
representation has a redundancy which can be revealed by
the following procedure: we group the two virtual particles
belonging to the same triangle [see, e.g., σ,τ in Fig. 3(a)] and
block them into a single virtual particle [see ν in Fig. 3(b)]. It
turns out that not all virtual degrees of freedom survive after

174411-2



TOPOLOGY AND CRITICALITY IN THE RESONATING . . . PHYSICAL REVIEW B 89, 174411 (2014)

FIG. 3. (Color online) (a) The PEPS construction of the pure
kagome RAL state. (b) The simplified PEPS construction based on
combining virtual particles.

this blocking procedure. After removing this redundancy, we
find that the new virtual particle ν is in the SU(2) representation
0 ⊕ 1

2 ⊕ 1 and has dimension D = 6 [see Fig. 3(b)], instead
of D = 9 from a naive counting of the dimension of the tensor
product (0 ⊕ 1

2 ) ⊗ (0 ⊕ 1
2 ). Let us note that this procedure

is exact and the removal of redundancy allows us to reduce
computational costs in our numerical calculations.

Furthermore, in our framework it is straightforward to
introduce a one-parameter family of PEPS, which interpolates
between the RAL and the spin-1 RVB states. This is done
by extending the virtual representation [σ,τ in Fig. 3(a)]
from 0 ⊕ 1

2 to 0 ⊕ 1
2 ⊕ 1. Thus, the virtual bonds in (1) are

modified as |εmix〉 = |0,0〉 + |1,2〉 − |2,1〉 + (|3,5〉 − |4,4〉 +
|5,3〉)/√3, where |3,4,5〉 denotes the three states in the virtual
spin-1 space. Accordingly, the projector P in (2) has to be
modified as

P ′ = (1 − α)P + αW, (4)

where W is a local projector which maps one virtual spin-1
state, out of the four virtual spin-1 particles, onto the physical
spin-1 Hilbert space. Its explicit form is given by

W =
4∑

l=1

Wl, (5)

where, for instance, W1 is defined as

W1 =
∑

m

∑

μ1μ2μ3μ4

Cm
μ1,0δμ2,0δμ3,0δμ4,0|m〉〈μ1,μ2,μ3,μ4|.

(6)
Here, Cm

μ,0 store the trivial CG coefficients C1
3,0 = C0

4,0 =
C−1

5,0 = 1. In this one-parameter PEPS, we recover the RAL
state (1) for α = 0 and the RVB state for α = 1. Hence, we
have a continuous family of “mixed” RAL states parametrized
by the weight α controlling the density of the spin-1 valence
bonds in the mixed loop-dimer configuration. As in the pure
RAL state, we can combine two virtual particles σ,τ into a
single virtual particle ν (see Fig. 3). As a result, the virtual
particle ν is also in the representation 0 ⊕ 1

2 ⊕ 1 and thus the
resulting PEPS has bond dimension D = 6.

C. PEPS algorithms

In our numerical simulations, we mainly deal with the
RAL states defined on (i) a cylinder with finite circumference
and infinite length and (ii) infinite-size two-dimensional (2D)

FIG. 4. (Color online) Boundary-MPS contraction scheme in the
iPEPS algorithm. The double-layer tensor network is contracted
iteratively, by successively contracting the boundary MPS with the
transfer operator. The boundary MPS is translationally invariant and
includes AL and AR . The correlation function can be evaluated by
sandwiching two (converged) boundary MPS with one column of
the transfer operators, including impurity tensors Oi(j ) denoting the
operator at site i(j ).

lattices. For the former, when the circumference Ly is
relatively small (Ly � 5 for RAL state), we perform exact
contractions for extracting physical observables (e.g., correla-
tion functions) and entanglement properties. In the latter case,
we employ the infinite-PEPS (iPEPS) algorithm [36,37] for
approximate contractions with high precision.

First, let us briefly explain the exact contraction method on
a cylinder. In order to evaluate the norm of the wave function,
or the expectation values of concerned physical quantities, we
need to calculate the inner product of two PEPS wave functions
by contracting the double-layer tensor network from both open
ends along the (infinitely long) horizontal direction. In each
step, the boundary vector is contracted with a single column
of transfer operators, and the size of the boundary vectors does
not grow up after a step of contraction. Therefore, this process
can be repeated until the vectors, as well as the concerned
observables, converge. In practice, it takes 10 ∼ 20 iteration
steps to converge. However, when treating topological PEPS,
we note that the initial boundary vector has to be chosen with
special care since it plays an important role in selecting the
topological sectors, as we shall show in later sections.

When both directions of the lattice are infinite, exact
contraction is no longer feasible. In this case, we utilize the
iPEPS technique [36,37] to contract the tensor network with
high accuracy. The basic idea is to (approximately) express the
boundary vector in the form of a translation-invariant boundary
matrix-product state (MPS), and to contract the boundary MPS
with the transfer operator (in a matrix-product operator form,
see Fig. 4) of the double-layer tensor network. The size of
the boundary MPS, i.e., the dimension of its virtual bonds
(see Fig. 4), increases exponentially with contraction steps.
Therefore, in order to make the contraction process sustain-
able, it is necessary to truncate the virtual bond space of the
boundary MPS after a few steps. This introduces the truncation
bond dimension, denoted by Dc. We adopt both the standard
canonicalization [38] and bicanonicalization [39] truncation
techniques, and compare the results with the extrapolated value

174411-3



LI, YANG, CHENG, LIU, AND TU PHYSICAL REVIEW B 89, 174411 (2014)

0 5 10 15 20 25

100

10−2

10−4

co
rr

el
at

io
n 

fu
nc

tio
ns Dc=120, spin−spin

Dc=120, quad−quad

0 5 10 15 20

−0.03

−0.02

−0.01

0

0.01

|i−j|

C
D

D
(i,

 j)

Dc=120, dimer−dimer

10

10

10

0 5 10 15

100

10−3

10−6

10−9

Dc=100, spin−spin
Dc=100, quad−quad

0 5 10 15 20

−4

−2

0

2

4
x 10−3

|i−j|

Dc=100, dimer−dimer

10

10

10

square

log−loglog−log

(b) (d)

iPEPS

(a) (c) honeycomb

honeycombsquare

iPEPS

FIG. 5. (Color online) Spin-spin, quadrupole-quadrupole, and
dimer-dimer correlation functions of the RAL states on (a), (b) square
and (c), (d) honeycomb lattices. Note the distances |i − j |, in both
cases, are measured on the square-lattice geometry, and the unit-cell
size of square lattice is adopted as the length unit.

obtained in exact contractions to double check the reliability
and accuracy of our numerical calculations.

III. CRITICALITY ON BIPARTITE LATTICES

In this section, we consider the RAL states on two
bipartite lattices, i.e., square and honeycomb lattices. For the
honeycomb RAL state [see Fig. 2(b) for its PEPS form],
we block two nearest-neighbor sites together and thus obtain
effectively a square-lattice PEPS. When computing two-point
correlation functions, the distances are measured along a line
on the effective square lattice, which corresponds to a zigzag
line on the original honeycomb lattice.

We employ the iPEPS method to accurately evaluate the
correlation functions. When doing this, we have checked the
convergence of the results with different truncation parameter
Dc. The calculated correlation functions are shown in Fig. 5.

The spin-spin correlation function CSS(i,j ) = 〈Sz
i S

z
j 〉 and

the quadrupole-quadrupole correlation function CQQ(i,j ) =
〈Qz

i Q
z
j 〉, where Qz = 1√

3
[3(Sz)2 − 2], both decay exponen-

tially as can be seen in Figs. 5(a) and 5(c), suggesting the
absence of Néel or quadrupolar long-range order. However, the
dimer-dimer correlation function CDD(i,j ) = 〈(Si · Si+1)(Sj ·
Sj+1)〉 − 〈Si · Si+1〉〈Sj · Sj+1〉 decays algebraically on both
lattices, as shown in Figs. 5(b) and 5(d). Therefore, we
conclude that the RAL states are critical on square and
honeycomb lattices [25]. We expect that it is a consequence
of the fully packed arrangement of the loops, similar to those
critical loop models in classical statistical mechanics [40,41].

IV. RAL STATES ON A KAGOME LATTICE

A. Z2 topological order

Now, we turn to the nonbipartite kagome lattice and provide
numerical evidence that the kagome RAL state is gapped

FIG. 6. (Color online) (a) Spin-spin, dimer-dimer, and
quadrupole-quadrupole correlation functions of the RAL state
on the kagome lattice (measured on the square-lattice geometry).
(b) The von Neumann entropy S(Ly) of the kagome RAL state in
the two topological sectors with Gv = 1. S(Ly) for circumferences
Ly = 3,4,5 are used in the fit. (c) The energy expectation value
(estimated from NN spin-spin correlation function) of four
topological sectors, all of which draw near the iPEPS result when Ly

increases. The sign convention of the RAL state is given in Fig. 2(d).

and possesses Z2 topological order. In this section, we only
present results of the RAL state with sign convention shown in
Fig. 2(c). For the other sign convention as in Fig. 2(d), the re-
sults lead to the same conclusion and thus are not present here.

We first compute the spin-spin, dimer-dimer, and
quadrupole-quadrupole correlation functions. These results
are shown in Fig. 6(a). We note that, by adopting the
simplex construction in Fig. 3(b), one obtains an effective
honeycomb-lattice representation of the RAL states, which
can then be transformed to a square-lattice PEPS as we did
in the previous section. The correlation functions are thus
measured along a line of this coarse-grained square lattice.
The correlation functions in Fig. 6(a) all exhibit exponentially
decaying behaviors, supporting that the kagome RAL state is
a gapped spin liquid.

To characterize the RAL state on the kagome lattice, we
compute the entanglement entropy on an infinite cylinder
following the scheme described in Ref. [42], utilizing the PEPS
technique in Ref. [43]. The cylinder is assumed to be periodic
(open) along the vertical (horizontal) direction. We trace over
the states on half of the cylinder to obtain the reduced density
matrix and the entanglement entropy. Before presenting the
numerical results, we first analyze the topological sectors on
the cylinder to construct the so-called minimally entangled
states [44–49]. Since the wave function closely resembles the
string picture of a Z2 topological phase (or a Z2 gauge theory),
we use the language of the Z2 gauge theory throughout our
discussion.

We can easily identify four topological sectors distin-
guished by two nonlocal operators, the magnetic flux along
the horizontal (vertical) direction denoted by Ph(v), which
counts the parity of the number of AKLT valence bonds
along a horizontal (vertical) cut. First, we set both ends of
the cylinder open (i.e., AKLT lines can not terminate on the
ends). The two sectors can be chosen as eigenstates of Ph with
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FIG. 7. (Color online) Illustrations of topological sectors of the
kagome RAL state. (a) Ph = Pv = 1. (b) Ph = −1, Pv = 1. (c) Ph =
1, Pv = −1. (d) Ph = Pv = −1. Vertical (horizontal) direction of the
cylinder is periodic (open). Gv means shifting the valence bonds along
the vertical direction, which is a global move changing the winding
number of the loops around the cylinder circumference and thus the
parity of Ph.

eigenvalues ±1, as shown in Figs. 7(a) and 7(b). Shifting the
virtual valence bonds around the circumference of the cylinder
toggles between the two sectors. This operator is exactly the
Wilson loop denoted by Gv , i.e., create a pair of spinons by
breaking a virtual valence bond, wind one spinon out of the
two around the cylinder, and annihilate them again on the
other side. In practice, we insert a line of diagonal v matrices
to the PEPS (i.e., thread a magnetic flux along the cylinder,
see Fig. 8 for illustration), and then construct two eigenstates
of Gv: |Gv = ±1〉 = 1√

2
(|Ph = 1〉 ± |Ph = −1〉) which are

minimally entangled [44] and ready for entanglement entropy
calculation.

In order to construct the other two sectors, we are enforced
to introduce virtual polarized spin- 1

2 spinons [between which
there is an open string of AKLT state, see Figs. 7(c) and 7(d)]

FIG. 8. (Color online) By threading a magnetic flux (vision line)
and/or introducing an open electric field line (connecting the
two boundary spinons) along the cylinder, we can generate four
topological sectors (Gv = ±1, Pv = ±1) of the kagome RAL states.
The dashed line consisting of diagonal v matrices is a vision line. ↑
(↓) on the boundary is spinon with up (down) spin.

FIG. 9. (Color online) (a) The spin-spin and dimer-dimer corre-
lation functions of spin-1 RVB state, both of which decay exponen-
tially. (b) The variational energies of four topological sectors, all of
which converge rapidly to the iPEPS result in the thermodynamic
limit. (c) Entanglement entropies of the spin-1 RVB state in the
topological sectors with Gv = 1. By extrapolating the data, the
topological entanglement entropy is found to be γ = 0.79, close to
ln 2.

on the two boundaries of the cylinder. They act as two Z2

charges where the electric field lines can terminate. It is easy
to see that a vertical path necessarily cuts through odd number
of virtual spin- 1

2 valence bonds with these particular boundary
conditions [50]. We refer to the sectors with this boundary
condition as the odd topological sector (Pv = −1), while the
previous two with open boundaries as the even ones (Pv = 1).
In the even sector, the reduced density matrix only has nonzero
eigenvalues corresponding to eigenvectors with integer total
spin; while in the odd sector, because of the virtual spin-
1
2 spinons on the boundaries, all Schmidt eigenstates have
half-odd-integer total spin, i.e., each level in the entanglement
spectrum has an even-fold degeneracy (a detailed analysis on
entanglement spectra will be present latter in Sec. IV D), which
we have confirmed numerically [50]. This is a manifestation
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FIG. 10. (Color online) Correlation functions of the mixed RAL
state on kagome lattice. (a) The spin-spin correlation functions
CSS(i,j ) always decay exponentially for various α values. (b) At
αc ≈ 0.5975, there is a gapless point with algebraic dimer-dimer
correlation function CDD(i,j ).
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of the fact that the Z2 charge forms a S = 1
2 representation of

the SO(3) symmetry group while the Z2 flux excitation carries
no nontrivial projective representation (i.e., integer spin).

In Fig. 6(b), we present the entanglement entropies of the
two minimally entangled states |Gv = 1〉 in even and odd
sectors. The entanglement entropy S(Ly) as a function of
the circumference Ly can be evaluated using both converged
(left and right) boundary vectors obtained from the exact
contraction [43]. The topological entropy γ is extracted by
fitting S(Ly) to S(Ly) = αLy − γ and we find γ ≈ 0.83 (close
to ln 2) in both sectors, indicating that the kagome RAL state
has a Z2 topological order.

Figure 6(c) shows the variational energies of the RAL
states in all four topological sectors with respect to the spin-1
antiferromagnetic Heisenberg model on the kagome lattice.
When increasing Ly , the variational energies of the wave
functions in four different topological sectors (Gv = ±1,
Pv = ±1) converge rapidly, all getting close to the value
−1.2158 obtained by iPEPS method, suggesting that they are
degenerate in the thermodynamic limit.

B. Characterization of the spin-1 RVB state

So far, we have constrained ourselves to the pure RAL
state [α = 0 in Eq. (4)], and excluded the spin-1 valence

bonds (equivalent to a short AKLT loop with length 2).
However, it is interesting to consider the other limit (α =
1) where only the spin-1 short-range valence bonds are
allowed.

In the case of α = 1, we have a spin-1 short-range RVB
state, which can be represented by a PEPS with bond dimen-
sion D = 4, i.e., the virtual spin is in the representation 0 ⊕ 1.
The vision line can be defined as v = diag(1, − 1, − 1, − 1),
and the odd topological sector is constructed by attaching a
pair of virtual spin-1 on both ends.

In Fig. 9, we present the correlation functions (including
the variational energies of the kagome Heisenberg model from
nearest-neighbor spin-spin correlations) and the entanglement
entropy of the spin-1 RVB state on a kagome lattice. Figure 9(a)
shows that both the spin-spin and dimer-dimer correlation
functions decay exponentially, suggesting that the spin-1
kagome RVB state is fully gapped. In Fig. 9(b), we calculate
the variational energies of the spin-1 kagome Heisenberg
model in four topological sectors. All of them converge to the
iPEPS energy result rapidly when the circumference increases.
Figure 9(c) shows the von Neumann entanglement entropies
as a function of the circumference Ly , from which we extract
the topological entanglement entropy γ ≈ 0.79 (close to ln 2).
This is a clear indication of the underlying Z2 topological
order.

(a) (b)

(c) (d)

FIG. 11. (Color online) Entanglement spectrum versus the total momentum for an infinitely long kagome cylinder with circumference
Ly = 4. (a) α = 0 (RAL), even sector. (b) α = 1 (RVB), even sector. (c) α = 0 (RAL), odd sector. (d) α = 1 (RVB), odd sector. Each point in
the spectrum represents a spin-S multiplet with 2S + 1 individual states. Only the low-lying levels of the spectra are shown.
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C. Interpolating between the RAL and RVB states

In the previous sections, we have shown that both the pure
RAL (α = 0) and the spin-1 RVB (α = 1) states on a kagome
lattice have Z2 topological order. As mentioned in Sec. II B,
the D = 6 PEPS defined by Eq. (4) can describe the states with
mixed loop and dimer configurations on equal footing, and we
can tune the parameter α to interpolate between the pure RAL
and spin-1 RVB states.

The following question arises naturally: Can this path
adiabatically connect the spin-1 RAL and RVB states?
Theoretically, although the two limiting states have identical
intrinsic topological order, they behave very differently under
SO(3) spin symmetry. To be more concrete, the RVB state
has no deconfined half-integer spin excitations. Since the path
under consideration preserves the SO(3) symmetry all the way
from α = 0 to 1, we expect there must be at least one singular
point where the state becomes critical. In Fig. 10, we show that,
although the spin-spin correlators always decay exponentially
[see Fig. 10(a)], the dimer-dimer correlation function decays
algebraically at around αc ≈ 0.5975, as depicted in Fig. 10(b).

For this one-parameter family of PEPS |�α〉, one can
always find a local, positive-semidefinite Hamiltonian H (α)
such that H (α)|�α〉 = 0, i.e., the RAL state |�α〉 is the exact
ground state of this so-called parent Hamiltonian [51]. The
existence of a critical point implies that the path in the space
of parent Hamiltonians should be gapless at αc. However, as
the dimension of virtual Hilbert space for this PEPS is D = 6,
one needs to block a large number of sites so that a local
projector annihilating the PEPS exists, which constitutes the
parent Hamiltonian. Due to its complicated form, we do not
present the analytical form of the parent Hamiltonian H (α)
here.

D. Entanglement spectra

Entanglement spectra (ES) are defined as the eigenvalues
of the operator − ln ρR , where ρR is the reduced density
matrix. The full ES have been suggested to reveal entangle-
ment properties, providing more useful information than the
entanglement entropy [52].

In this section, we provide the entanglement spectra of the
pure RAL, spin-1 RVB, and the mixed RAL states in different
topological sectors. The construction of four topological
sectors for the pure RAL and spin-1 RVB states has been
discussed in Secs. IV A and IV B.

First, we consider the ES of the pure RAL (α = 0) and
spin-1 RVB (α = 1) states, shown in Fig. 11. We have taken
advantage of the SO(3) spin-rotational symmetry and the
translation symmetry in the vertical (circumference) direction
of the cylinder and label each level in the spectrum by its spin
S (a spin-S multiplet represents 2S + 1 states) and momentum
K (in vertical direction). For both states, the ES in the even
sectors are filled with integer-spin multiplets and do not have
any recognizable features regarding the degeneracy. However,
the RAL and RVB states have distinct ES in the odd sectors.
The ES levels of the RAL state all have half-integer spins,
giving rise to even-fold degeneracies in the spectrum. For the
spin-1 RVB state, the ES in the odd sector are still filled with
integer-spin multiplets.
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FIG. 12. (Color online) Entanglement spectra for the mixed RAL
states. A pair of virtual spinons are put on the open ends of the
cylinder. Each level in the spectrum has even-fold degeneracy for
α < 0.6 (RAL region, left-hand side of the red dashed line); while
for α > 0.6 (RVB region on the right side) they do not have this feature
in the level degeneracies. The spectra are evaluated on infinitely long
cylinders with circumference Ly = 4.

One interesting question regarding the entanglement spec-
trum shown in Fig. 11 is whether the “low-energy” part of
the ES is critical and described by a conformal field theory.
However, as the largest system size we can achieve for
computing the ES is Ny = 5, which is still too small for a
finite-size scaling of the gap, we do not have a definite answer
to this question and leave it for a future study.

For the mixed RAL states with 0 < α < 1, it is not entirely
clear how to construct the topological sectors. Due to the phase
transition at αc, we expect that the ES for α < αc in the odd
sector is qualitatively different from those for α > αc. Since
the mixed RAL state for α < αc is adiabatically connected
to the pure RAL state, we expect that the four topological
sectors also evolve adiabatically in this parameter region.
Formally, we can construct a series of wave functions, for
both α < αc and α > αc, with the same boundary conditions
(i.e., put a pair of oppositely polarized spinons on two open
ends of the cylinder [50]). We calculate the ES of these
states and the results are shown in Fig. 12. All levels in the
ES have even-fold degeneracies for α < αc (RAL region),
while they are featureless regarding the degeneracy for α > αc

(RVB region).

FIG. 13. The 18-site cluster used in the variational study of
spin-1 kagome Heisenberg model. Periodic boundary conditions are
assumed in both directions, and the cluster has 2 × 3 unit cells.
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FIG. 14. (Color online) Variational energy of the mixed RAL
states for spin-1 kagome Heisenberg model, computed using iPEPS.
Convergence has been checked against different Dc. Sign convention
1 is illustrated in Fig. 2(c) and convention 2 in Fig. 2(d).

V. VARIATIONAL STUDY OF THE SPIN-1 KAGOME
HEISENBERG MODEL

In this section, we use the RAL states as variational wave
functions for the spin-1 Heisenberg model

H =
∑

〈i,j〉
Si · Sj (7)

on the kagome lattice, whose ground-state properties remain
elusive to the best of our knowledge.

We start with the pure RAL state as a parameter-free
variational wave function for spin-1 kagome Heisenberg
model. We first compare with the exact diagonalization (ED)
result on a 18-site torus with 2 × 3 unit cells (see Fig. 13),
which is the largest size considered in the ED study [53].
We place the PEPS tensors of RAL states on this small torus
geometry, and evaluate the energy expectation value by exact
contraction. The variational energy of the pure RAL state with
the sign convention given in Fig. 2(c) is −1.383 per site, closer
to the ED value −1.4393 than that of the hexagonal singlet
solid variational state (� −1.304 per site) [53,54].

Next, we extend the variational study to the one-parameter
family of PEPS wave functions, i.e., the mixed RAL states,
which interpolate the pure RAL and spin-1 RVB states
(controlled by the parameter α). The results from the iPEPS
calculations in the thermodynamic limit are shown in Fig. 14.
The best variational energy (per site) −1.2696 is achieved at
α ≈ 0.44 with the sign convention given in Fig. 2(d).

VI. CONCLUSION

To conclude, we have systematically investigated a family
of resonating AKLT loop states on square, honeycomb, and
kagome lattices. Using a natural PEPS representation, we
have shown that the RAL states are critical on square and
honeycomb lattices, while on the kagome lattice it is a gapped
Z2 spin liquid. We also discussed the realization of the SO(3)
spin-rotation symmetry and clarified its manifestation through
explicitly constructing the topological sectors and evaluating
the corresponding entanglement spectra on infinitely long
cylinders. We considered a one-parameter family of PEPS
interpolating between the RAL and RVB states which have
distinct symmetry realizations. A critical point has been
identified along this interpolation path. Lastly, we have used
the RAL states to obtain the best-to-date variational energy for
the spin-1 Heisenberg model on a kagome lattice.

Note added. Recently, we noticed a preprint [55] on closely
related topics.
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