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Using a Boltzmann equation approach, we analyze how the spin drag of a trapped interacting fermionic

mixture is influenced by the nonhomogeneity of the system in a classical regime where the temperature is

much larger than the Fermi temperature. We show that for very elongated geometries, the spin damping

rate can be related to the spin conductance of an infinitely long cylinder. We characterize analytically the

spin conductance both in the hydrodynamic and collisionless limits and discuss the influence of the

velocity profile. Our results are in good agreement with recent experiments and provide a quantitative

benchmark for further studies of spin drag in ultracold gases.
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In recent years, ultracold atoms have become a unique
testing ground for quantum many-body physics. Their
study has favored the emergence of novel experimental
and theoretical techniques which have led to an accurate
quantitative understanding of the thermodynamic proper-
ties of strongly correlated dilute gases at equilibrium [1].
An important effort is now devoted to the exploration of the
out-of-equilibrium behavior of these systems, and in par-
ticular, to the determination of their transport properties.
For instance, recent experiments have probed the transport
of an ultracold sample through a mesoscopic channel [2],
and time of flight expansions have been used to measure
the gas viscosity in the strongly correlated regime [3]
where it is predicted to be close to the universal limit
conjectured by string theory [4].

In this Letter, we focus on spin transport properties of a
Fermi gas which have now received considerable attention
in the cold atom community [5–11] after previously being
studied in the context of liquid 3He [12], ferromagnetic
metals [13], and spintronic materials [14]. Recent mea-
surements of the spin-drag (SD) coefficient [15,16] have
shown that the most challenging aspect of these studies is
how to extract the homogeneous gas properties from
measurements performed in harmonic traps. The trapping
potential creates a density inhomogeneity which can sig-
nificantly alter the transport behavior of the gas because the
local mean-free path can vary strongly from point to point
in the trap, leading to a coexistence of regions, from
hydrodynamic near the cloud center to collisionless at
the edge [17]. For the same reason, the velocity during
the relaxation to equilibrium is not constant as a function of
radius and it is essential that it be accurately known in
order to find the correct values of transport coefficients.
Previous theoretical attempts to cope with these problems
have included making unverified assumptions about the
velocity profile of the gas [18–20] or treating the problem

in the hydrodynamic approximation with spatially varying
spin diffusivity [17]. In this last work, no quantitative
conclusion could be obtained due to the importance of
the collisionless regions of the cloud.
Here, we present a systematic study of the spin transport

in an elongated harmonic trap based on the Boltzmann
equation using a combination of analytical and numerical
methods in the dilute limit and for small phase-space
density. In this regime, we are able to analyze the behavior
of the trapped gas, allowing us to deal ab initio with the
spatial density changes without any uncontrolled approx-
imations. In particular, we are able to make definite pre-
dictions for the spin-drag coefficient and the transverse
velocity profile in both the collisionless and hydrodynamic
regimes.
Consider an ensemble of spin-1=2 fermions of mass m

confined in a very elongated harmonic trap with axial
frequency!z and transverse frequency!x ¼ !y � !? �
!z. Each atom has s ¼ � spin with equal numbers of
atoms in each spin state. In the initial thermal equilibrium
state, the two spin species are separated from each other by
an average distance of�z0 along the symmetry axis of the
trap, as in Ref. [15]. Then, we let the system relax towards
equilibrium and, as observed experimentally, the relaxa-
tion of the motion of the centers of mass of the two clouds
occurs at a rate / !2

z=�coll, where �coll is the collision rate
[15]. In the very elongated limit !z � !?, �coll, the
momentum and the spatial transverse degrees of freedom
are therefore always thermalized, and we can assume that
the phase-space density of the spin species s ¼ � is given
by the ansatz

fsðr;p; tÞ ¼ f0ðr;pÞ½1þ s�ðz; tÞ�; (1)

where f0 is the equilibrium phase-space density. As long
as interparticle correlations are weak, the single particle
phase-space density encapsulates all the statistical
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information on the system. In the following, we restrict
ourselves to this regime. Since the experiment [15] was
performed at unitarity, this condition is achieved when the
temperature is much larger than the Fermi temperature TF.
As a consequence, we can also neglect Pauli blocking
during collisions.

Let �nsðz; tÞ ¼
R
d2�d3pfsðr;p; tÞ ¼ �n0ðzÞ½1þ s�ðz; tÞ�

be the 1D density along the axis of the trap, where
� ¼ ðx; yÞ. Integrating Boltzmann’s equation over x and
y, we have

@t �ns þ @z�s ¼ 0; (2)

where �s ¼
R
d2�d3pfsðr;pÞvz (with vz ¼ pz=m the

axial velocity) is the particle flux of spin s in the z direc-
tion. If the trap is very elongated, we can define a length
scale ‘ much smaller than the axial size of the cloud but
much larger than its transverse radius, the interparticle
distance, or the collisional mean-free path, so that for
distances smaller than ‘ along the z axis, the physics can
be viewed as being equivalent to that of an infinitely
elongated trap (!z ¼ 0) with the same central density. In
this setup, the two spin species are pulled apart by a force
Fs ¼ �rV � ðrPsÞ=ns, where V is the spin-independent
trapping potential, Ps is the pressure of the spin species s,
and nsðr; tÞ ¼

R
d3pfsðr;p; tÞ is the associated density. We

consider here a classical ideal gas, for which Ps ¼ nskBT.
Using the ansatz (1), we see that the force field is uniform
and is given byFs ¼ �skBT@z�ez � Fsez, where ez is the
unit vector along z, since @z� can be considered constant to
leading order on the length scale ‘.

In the regime of linear response, the particle flux is
proportional to the drag force and we can write �s ¼
GFs, where G is the ‘‘spin conductance’’ that a priori
depends on the 1D density of the cloud. Inserting this
law in Eq. (2) and substituting �ðz; tÞ ¼ e��t�0ðzÞ, we
see that �0 is a solution of

� �n0ðzÞ�0ðzÞ þ kBT@zfG½ �n0ðzÞ�@z�0ðzÞg ¼ 0: (3)

The exponential coefficient � defines the decay time close to
equilibrium and thus the spin drag. This equation can be
derived more rigorously from a systematic expansion of
Boltzmann’s equation (see the Supplemental Material [21])
and is equivalent to the Smoluchowski equation derived
in Ref. [17] if one takes for the spin diffusion coefficient
D ¼ kBTG= �n. Equation (3) is supplemented by the condi-
tion �sð�1Þ ¼ 0 imposed by particle number conserva-
tion. Since, as we will show below, the spin conductance is a
(nonzero) constant in the dilute limit, this constraint yields
the boundary condition @z�0 ¼ 0 at z ¼ �1.

Before solving this equation to find �, we need to know
the expression of the spin conductanceG. We first consider
the simpler case of a uniform gas of density nþ ¼ n� ¼
n0 ¼ const. Using the method of moments [18], the veloc-
ity is a solution of the equation @tvs þ �ðn0Þvs ¼ Fs=m,
where the spin damping rate � is given by

�ðn0Þ ¼ 1

n0

Z
d3pfðHÞ

0 ðpÞpzC½pz�; (4)

where fðHÞ
0 ðpÞ ¼ n0e

�p2=2mkBT=ð2�mkBTÞ3=2 is the

Gaussian phase-space density of a homogeneous gas and
C½�� is the linearized collisional operator defined by

C½��ðp1Þ ¼
Z

d3p2f
ðHÞ
0 ðp2Þvrel�ðvrelÞð�2 � �1Þ; (5)

where vrel ¼ jp2 � p1j=m, � is the s-wave scattering
cross section, and �i stands for �ðpiÞ [22]. Generally
speaking, � is proportional to the collision rate, with a
numerical prefactor depending on the actual form of the
scattering cross section. In the homogeneous case, the
stationary velocity is simply given by vs ¼ Fs=m�ðn0Þ.
In a trap, the density profile is inhomogeneous, which leads
to a shear of the velocity field and a competition between

viscosity and spin drag. Let Rth ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=m!2

?
q

be the

transverse size of the cloud and � its kinematic viscosity.
Viscosity can be neglected as long as the viscous damping
rate �=R2

th is smaller than �ðn0Þ. Since viscosity scales like
v2
th=�coll, with the thermal velocity vth ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=m

p
, this

condition is fulfilled as long as � / �coll � !?, in
other words, when the cloud is hydrodynamic in the
transverse direction. In this regime, we can therefore
neglect viscous stress and the local velocity vsð�Þ ¼R
d3pfsð�;pÞvz=nsð�Þ is simply given by vsð�Þ ¼

Fs=m�½n0ð�Þ�, where n0ð�Þ ¼ n0ð0Þ expð��2=2R2
thÞ is

the local equilibrium density of the cloud.
This scaling for the velocity field is, however, too

simple. Indeed, we have �s ¼
R
d2�n0ð�Þvsð�Þ /R

d2�n0=�½n0ð�Þ�, and since � / n0, the integral is diver-
gent. This pathology is cured by noting that the hydro-
dynamic assumption is not valid in the wings of the
distribution where the density, and therefore the collision
rate, vanish. The breakdown of the hydrodynamic approxi-

mation occurs when �½n0ð�Þ� & !?, i.e., when � *

�max ¼ Rth

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 lnð�0=!?Þ

p
, with �0 ¼ �½n0ð0Þ� the local

spin damping at the trap center. Considering �max as a
cutoff in the integral for G, we see that
G ’ 2��2

maxn0ð0Þ=m�0 / lnð�0Þ=�0.
In the opposite regime, when the gas is collisionless in

the transverse direction, we expect viscous effects to flatten
the velocity profile. Assuming a perfectly flat velocity
field, then vs / Fs=m�0, and thus G ¼ �s=Fs / �n0=m�0.
To make this scaling argument more quantitative, we

calculate G for different physical situations. First, we
calculate it numerically using the Boltzmann equation
simulation described in Refs. [23,24]. We initialize the
axially homogeneous system at thermal equilibrium and
then switch on the constant pulling force at t ¼ 0. In a few
collision times, the total spin current of the cloud defined
by �sðtÞ ¼ hvzis ¼

R
d3rd3pfsðr;p; tÞvz converges to a

constant asymptotic value from which we extract the spin
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conductance Gð �n0Þ. Figure 1 shows our results for the
spin conductance for a constant cross section � ¼ 4�a2

and a momentum-dependent cross section � ¼ 4�a2=
ð1þ p2

rela
2=4Þ near the unitary limit [25]. When G=n0ð0Þ

is plotted versus �0 ¼ �½n0ð0Þ�, the data points overlap,
showing that the drag coefficient depends only weakly on
the actual momentum dependence of the scattering cross
section. To interpolate between the constant and the unitary
cross section, we also study the Maxwellian cross section
� / 1=p for which we could find a semianalytical expres-
sion of the spin conductance (see the Supplemental
Material [21]).

Using these approaches, we find that in the (transverse)
collisionless limit �0 � !?, the spin-drag coefficient
scales like G ’ kn0ð0ÞR2

th=m�0, where k ’ 16 is a numeri-

cal coefficient, the value of which depends on the momen-
tum dependence of the scattering cross section (see
Table I). For a Maxwellian gas, we find k ¼ 15:87 (see
the Supplemental Material [21]). For more general cases, a
variational lower bound based on the exact Maxwellian
solution yields an estimate very close to the numerical
result obtained from the molecular dynamics simulation.

In the opposite (hydrodynamic) limit �0 ! 1, we recover
the expected behavior G ’ 2�n0ð0ÞR2

th lnð�0=!?Þ=m�0.

We also calculate the transverse velocity profile vsð�Þ
and confirm that it obeys the expected behavior; see
Fig. 2. For �0=!? � 1, we recover the viscousless
prediction vs / 1=�½n0ð�Þ�, while for �0 & !?, we obtain
a flatter velocity profile as a result of the transverse
shearing. We see that in both regimes, the velocity profile
is not flat, and this explains the discrepancy between
experiment and previous theoretical models based on
uniform velocities.
Let us now return to the case of a three-dimensional trap

and to the determination of the spin damping rate �.
According to Eq. (3), � appears as an eigenvalue of the

operator Ŝ ¼ kBT �n�1
0 @z½GðzÞ@z�. This operator is

Hermitian on the Hilbert space of functions having a finite
limit and zero derivative at z ¼ �1, and since at long
times the decay is dominated by the slowest mode, we
focus on its smallest eigenvalue. We first consider the
collisionless limit. In this regime, G / n0=�0 is position
independent and can be considered as a constant. Using the
shooting method [26], we then obtain
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FIG. 1 (color online). Spin conductance G versus !?=�0. The
dashed blue line represents the collisionless limit G ’
15:87n0=�0 for a Maxwellian gas. The dotted red line represents
the hydrodynamic prediction G ’ ð2�n0=�0Þ ln�0. The solid
line represents the semianalytical prediction for the
Maxwellian gas (see the Supplemental Material [21]).
Molecular dynamics simulation for a constant cross section
(blue dots) and a momentum-dependent cross section (open

red diamonds) with ktha ¼ 2, where kth ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mkBT=@

2
p

is the
thermal wave vector.

TABLE I. Values of k for a scattering cross section �ðpÞ / pn

for a constant cross section (n ¼ 0), a Maxwellian gas
(n ¼ �1), and a unitary gas (n ¼ �2). For the Maxwellian
gas, the lower bound is actually the exact result.

n 0 �1 �2

Variational lower bound 14.5 15.87 17

Molecular dynamics 15.4 . . . 18.9
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FIG. 2 (color online). Transverse velocity field vsð�Þ in units
of m�0=F in the infinitely elongated trap. Top: Hydrodynamic
regime �0=!? ’ 100. Bottom: Collisionless regime �0=!? ’ 2.
The blue dots are simulation results for the constant scattering
cross section, and the solid red line is the prediction vsð�Þ ¼
Fs=m�½n0ð�Þ� for the hydrodynamic regime. On the lower
graph, the empty red diamonds are simulation results for the
momentum-dependent cross section at ktha ¼ 2, and the dashed
red line represents the velocity field of a Maxwellian gas in the
collisionless limit (see the Supplemental Material [21]).
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� ’ 1:342
k!2

z

2��0

; (6)

where the value of k is given in Table I. For arbitrary values
of �0=!?, we solve Eq. (3) using for G a Padé interpola-
tion of the simulation results presented in Fig. 1 (see the
Supplemental Material [21]). Following Ref. [15], we take
�SD ¼ !2

z=�, and in Fig. 3(a), we plot �SD=!? versus
�0=!?. We compare our model to the experimental results
of Ref. [15] and to a direct molecular dynamics simulation
of the Boltzmann equation [23]. In this simulation, the
atoms are prepared in a harmonic trap of axial frequency
!? ¼ 8!z. We displace their centers of mass by a distance
�z0, where z0 is much smaller than the axial size of the
cloud, and we fit the relative displacement versus time to
an exponential from which we extract �SD. The results of
these simulations are displayed in Fig. 3(a), where they are
compared to the solutions of Eq. (3). We observe that the
two approaches coincide both for the constant and
momentum-dependent cross sections [27].

As observed in Fig. 3(b), theory and experiment agree
remarkably as long as T=TF * 2. Beyond that limit, we
enter the quantum degenerate regime where the Boltzmann
equation is no longer valid, and, as expected, we observe
that experiment and theory deviate from each other. In
the high-temperature, collisionless limit, we find for the
‘‘unitary’’ value k ¼ 18:9, �SD ’ �0=4:03. This result
differs from the high-temperature value �SD ’ �0=5:7
found in Ref. [15]. We interpret this discrepancy by noting
that the theoretical asymptotic behavior Eq. (6) is valid
for �0=!? & 5, while the experimental value was obtained
by linear fitting the points with �0=!? & 15, i.e., in a
regime where the gas was likely less collisionless. Fitting
our data on the same scale using a linear law would indeed
give �SD ’ �0=5:0. We also note that our scaling �SD ¼
!?fð�0=!?Þ contradicts the scaling @�SD ¼ EFgðT=TFÞ,
where EF ¼ kBTF, used in Ref. [15] to analyze the experi-
mental data. The two scalings agree only in the collision-
less limit where f is linear, hence outside of the region
explored by experiments.
In summary, we have studied the classical dynamics of

spin transport in a trap using the Boltzmann equation
approach. By taking into account ab initio the trap inho-
mogeneity, we are able to reproduce the experimental
results without uncontrolled approximations and obtain
several robust results which allow for a more rigorous
extraction of transport coefficients from measurements in
trapped cold gases. We highlight the competition between
viscosity and spin drag in the shape of the velocity profile
which is a crucial ingredient in the understanding of trans-
port properties in a trap.We also demonstrate the breakdown
of the universal scaling used to interpret the data of Ref. [15]
in the experimentally relevant range of parameters. In the
future, we anticipate extending this approach to lower tem-
peratures where many-body interactions and Pauli blocking
play a significant role. In this regime, strong correlation
effects are taken into account by a renormalization of the
Landau parameters of the system [20].
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