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We show how a quantum Ising spin chain in a time-dependent transverse magnetic field can be
simulated and experimentally probed in the framework of circuit QED with current technology. The
proposed setup provides a new platform for observing the nonequilibrium dynamics of interacting many-
body systems. We calculate its spectrum to offer a guideline for its initial experimental characterization.
We demonstrate that quench dynamics and the propagation of localized excitations can be observed with
the proposed setup and discuss further possible applications and modifications of this circuit QED

quantum simulator.
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The promising idea of tackling complex quantum many-
body problems by quantum simulations [1,2] has become
even more compelling recently, due to the widespread
current interest in nonequilibrium dynamics. Indeed,
experiments with cold atoms in optical lattices [3—-6] and
ions [7-10] have already made impressive progress in this
regard. At the same time, the capabilities of scalable,
flexible solid-state platforms are developing rapidly. In
particular, circuit quantum electrodynamics (cQED) archi-
tectures of superconducting artificial atoms and microwave
resonators [11-19] are now moving toward multiatom,
multiresonator setups with drastically enhanced coherence
times, making them increasingly attractive candidates for
quantum simulations [20]. Here, we propose and analyze a
cQED design that simulates a quantum transverse-field
Ising chain with current technology. Our setup can be
used to study quench dynamics, the propagation of local-
ized excitations, and other nonequilibrium features in a
field theory exhibiting a quantum phase transition (QPT)
[21] and based on a design that could easily be extended to
break the integrability of the system.

The present Letter takes a different path than the pro-
posals for simulating Bose-Hubbard-type many-body phys-
ics in cavity arrays, which might be also realizable in cQED
[20,22-26]. It is based on a possibly simpler concept—
direct coupling of artificial atoms—that naturally offers
access to quantum magnetism. The transverse-field Ising
chain (TFIC) is a paradigmatic quantum many-body sys-
tem. It is exactly solvable [27,28] and thus serves as a
standard theoretical example in the context of nonequilib-
rium thermodynamics and quantum criticality [21,29-34].
Our proposal to simulate the TFIC and its nonequilibrium
dynamics might help to mitigate the lack of experimental
systems for testing these results. Moreover, the experimen-
tal confirmation of our predictions for various nonequilib-
rium scenarios in this integrable many-body system would
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serve as an important benchmark and allow one to proceed
to variations of the design that break integrability or intro-
duce other features.

Implementation of the TFIC.—A charge-based artificial
atom (such as the Cooper-pair box or the transmon) [35] in
a superconducting microwave resonator can be understood
as an electric dipole (with dipole operator o) that couples
to the quantized electromagnetic field in the resonator [36].
Consider the system of Fig. 1, at first, without resonator
B. Only the first artificial atom couples to resonator A.
However, all atoms couple directly (not mediated by a
quantized field) to their neighbors via dipole-dipole cou-
pling « oo (for details, see Ref. [37]). Coupling of this
type has already been demonstrated with two Cooper-pair
boxes [38] and two transmons [19]. Since this interaction is
short ranged, we model our system by

H = wolata+1/2) + gla® + a)ol + H,; (1)
where H ; is the Hamiltonian of the TFIC,

o) N . N-1 -
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FIG. 1 (color online). Circuit QED implementation of the Ising
model with a transverse magnetic field. The dipole moments of
the artificial atoms tend to align. Resonator A (B) facilitates
initialization and readout of the first (Nth) artificial atom by
standard circuit QED techniques.
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Here, a' generates a photon with frequency w, and o, Y

a Pauli matrix. That is, we consider the artificial atoms as
two-level systems (qubits). This is justified even for
weakly anharmonic transmons since the experiments pro-
posed below involve only low atomic excitation probabil-
ities or well controllable excitation techniques (7 pulses).
Qubit 1 and the resonator couple with strength g. The qubit
level spacing ) >0 is tunable rapidly (~ I ns) via the
magnetic flux through the qubits’ SQUID loops [11-14]. It
corresponds to the transverse magnetic field in the usual
TFIC. In our geometry, the qubit-qubit coupling strength J
is positive (ferromagnetic; the antiferromagnetic coupling
J < 0 arises by rotating each qubit in Fig. 1 by 90° and is
discussed in Ref. [37]). Estimates based on the typical
dimensions of a cQED system yield J/27 ~ 100 MHz.
Interdigitated capacitors between the qubits might signifi-
cantly increase J. In general, tuning ) will also affect J in
a way that depends on the tuning mechanism and on the
fundamental qubit parameters [37]. Using standard tech-
nology, upon variation of the magnetic flux, J o () for
transmons, whereas, for Cooper-pair boxes, J is indepen-
dent of (). Resonator A facilitates the initialization and
readout of qubit 1 (with standard techniques [11]).
Resonator B would allow one to measure end-to-end cor-
relators. However, for simplicity, we consider a system
with one resonator unless otherwise noted. We mention
that the proposed setup should also be implementable
using the novel, high-coherence 3d cQED devices [39].
Superconducting flux and phase qubits [35] can also be
coupled to implement F, and related Hamiltonians
[15,17]. For different proposals on the implementation of
and mean-field-type experiments with the TFIC in cQED,
see Refs. [40,41], respectively.

In our calculations [37], we frequently use the spin-free-
fermion mapping for FH, from Refs. [27,28]. It yields
H, = ZkAk(nz 1y — 1/2), where nZ generates a fermion

of energy A, = 2J4/1 + &2 — 2&cosk and & = Q/2J is
the normalized transverse field. The allowed values of k
satisfy sinkN = &sink(N + 1). For N — oo, H ; under-
goes the second order QPT at ¢ = 1 from a ferromagnetic
phase (¢ < 1) with long-range order in o, to a disordered,
paramagnetic phase (for details, see Refs. [21,27,28,37]).

Spectrum of the system.—An initial experiment would
likely characterize the setup by measuring the transmission
spectrum S of the resonator as a function of probe fre-
quency w and qubit frequency ). For definiteness, we now
assume that J is fixed and that the transverse field
&= Q/2J is tunable via (), as is the case for Cooper-
pair boxes. A system with standard transmons can be
shown to be confined to the paramagnetic phase (with fixed
&> 1), but its spectrum as a function of w and J « ()
otherwise displays the same features [37]. To calculate S,
we first focus on the spectrum of the bare TFIC, p(w) =
[ dte’“(al(1)ot(0)). It shows at which frequencies a field
coupled to ol can excite the chain. Assuming g/w, < 1,

we then approximate the chain as a linear bath, coupled to
the resonator: We replace it by a set of harmonic oscillators
with the spectrum p(w) of the TFIC. This allows us to
compute S. Our calculations are for zero temperature.
Except near the QPT, where H ; becomes gapless, this is
experimentally well justified.

For finite N, the calculated spectrum g(w) would consist
of discrete peaks. In an experiment, they would be broad-
ened by decay and, for large N, the measured spectrum
would be continuous. This can be modeled by taking
N — o0 in our calculations. In that case,

5(0) = 276()O(1 — )(1 — &) + 2 Real1 — cos’k(w)

w
3)

for w = 0, and p(w < 0) = 0. Here, O(x) is the Heaviside
step function, and cosk(w) = [1 + &2 — ($)?]/2¢. The
delta function for £ < 1 is due to the nonzero mean value
of Re{oL(¢)a}(0)) in this phase. We plot p(w) for several &
in Fig. 2(a). For £ > 1 (¢ < 1), p has a width of 4J (4J¢),
the bandwidth of the A,. This might be helpful to measure
J. At ¢ =1, p becomes gapless and, thus, carries a clear
signature of the QPT. The loss of normalization for
& = 0.5 is compensated by the delta function in (3). This
is required by a sum rule for p and can be understood: In
the ordered phase, the ground state |0) of the TFIC
becomes similar to a o, eigenstate. Thus, driving via o}
is less efficient in causing excitations out of |0), but a static
force on ol will change the energy of |0). We note that, for
all ¢, p(w) has its maximum where the band A, has zero
curvature (and maximum slope). Thus, most 7, excitations
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FIG. 2 (color online). Spectrum of the system. (a) Spectrum
plw) = [dte’*{ol(t)ol(0)) of an isolated transverse-field
Ising chain for N — oo and normalized transverse fields ¢ =
Q0/2J = 4,1.2,1,0.5. (b) Spectrum S of a resonator coupled to a
TFIC (as in Fig. 1), plotted vs ¢ and w (for N — o0). The
parameters used are g = 0.12, J = 0.1, and k = 10™* (in units
of wq). For better visibility of the features, values >3.8 are
plotted in white. The dashed lines represent the excitation
energies of H for N=1. (c) § vs w for & = 3.9, 4.85, 6.1
(blue, red, and green lines, respectively). These lines correspond
to cuts along the arrows in (b).
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of the TFIC have a nearly uniform velocity vy =
max[dA;/dk] (vo=2J¢ for £€<1 and vy, =2J for
& > 1), which will be important below.

We obtain resonator spectrum S(w) in terms of j(w),

40(w)[k + g*p(w)]
[@?/wo = @y — 48> x(0*)P + [k + g?p(0)
“4)

Here, y(w?) denotes the principal value integral y(w?) =
1/@2m) [dQp(Q)Q/(w? — O?) and « is the full linewidth
at half maximum of the Lorentzian spectrum of the
uncoupled (g = 0) resonator. Our calculation uses tools
that are explained, e.g., in Ref. [42]. It actually also applies
when the resonator couples to a different system, with
another spectrum p(w). We plot S as function of @ and ¢
in Fig. 2(b). For comparison, we also plot the resonances of
the Jaynes-Cummings model, as they have been observed
in numerous cQED experiments (dashed lines; case N = 1
in J{). As long as the spectrum p(w) of the chain does not
overlap the resonator frequency w, there is a dispersive
shift analogous to the off-resonant single-qubit case. Here,
the chain causes only a small but broad side maximum and
hardly modifies the dominant Lorentzian [green and blue
lines in Fig. 2(c)]. If the chain comes into resonance, this
changes dramatically, and S(w) takes on large values over a
region of width ~4J. For our choice of parameters, S(w)
develops a slightly asymmetric double-peak structure [red
line in Fig. 2(c)]. This is again reminiscent of the Jaynes-
Cummings doublet, but now the peaks are split by 4J rather
than 2g. We emphasize that the shape of the spectrum
on resonance depends significantly on the ratio g/J. The
larger g/J > 1, the closer the system resembles the single-
qubit case (corresponds to J = 0). If g/J < 1, the double
peak vanishes and one observes a Lorentzian around
with width 2g2/J (for g?/J > k). This is because the
resonator irreversibly decays into the chain, whose inverse
bandwidth o 1/J sets the density of states at = w, and
so determines the decay rate (for plots on both limiting
cases and for finite NV, see Ref. [37]).

Propagation of a localized excitation.—Off resonance,
chain and resonator are essentially decoupled. In this
situation, our setup allows one to study nonequilibrium
dynamics in the TFIC. The resonator can be used to dis-
persively read out the first qubit. For measurements, this
qubit must be detuned (faster than 277/J) from the chain so
that it dominates the dispersive shift of the resonator [11]
and decouples from the chain’s dynamics.

First, we focus on the nonequilibrium dynamics of the
chain after a local excitation has been created. As the
resonator couples only to one qubit, the initialization of
the system is easy. We assume that the chain is far in the
paramagnetic phase (& > 1). Hence, (ol) = —1 in its
ground state. By applying a fast ( ~ 1 ns) 7 pulse, the first
spin of the chain can be flipped without affecting the state
of the other qubits (if J/27 << 1 GHz/27 or if the first

S(w) =

qubit is detuned from the others for initialization). We
model the state of the system immediately after the 7 pulse
by o}|0), where |0) is the ground state of the TFIC. The

time evolution of the qubit excitations (o),
(o)1) = Olote i gle i1 g)0), (5)

is plotted in Fig. 3 for a chain with N = 20 and ¢ = 8
(right panel). The experimentally measurable trace of
(o1)(#) is singled out on the left-hand side. Due to the
qubit-qubit coupling, the excitation propagates through
the chain, is reflected at its end, and leads to a distinct
revival of (ol) at Jt = N. Assuming J/27 = 50 MHz,
we find t; = 64 ns for N = 20, which is safely below
transmon coherence times. Note that the excitation
propagates with velocity vy = 2J. This is because it con-
sists of many excitations in k space, and most of them have
velocity vg.

Quench dynamics.—An appealing application of our
system would be to observe its nonequilibrium dynamics
after a sudden change of the transverse field £ = /2J. By
using fast flux lines, changes of () have been achieved
practically instantaneously on the dynamical time scale of
a cQED system (without changing the wave function)
[12—14]. In our setup, such a change amounts to a (global)
quantum quench of & if J # . This condition can be
fulfilled by using qubits whose Josephson and charging
energies [35] have a ratio E;/E. < 10 [37], that is,
Cooper-pair boxes or transmons slightly out of their opti-
mal parameter ratio [43]. In this regime, the tuning of J
with ) is weak (vanishes for Cooper-pair boxes). Since it
would only lead to a rescaling of time by a factor ~1, we
assume in the following that J is independent of () and
consider quantum quenches of ¢ in our system. Quantum
quenches in the TFIC have been studied theoretically, e.g.,
in Refs. [30-33]. One usually assumes that for # <0 the
system is in the ground state |0), of the Hamiltonian H ;

(o)

time Jt

<O‘;> qubit number j

FIG. 3 (color online). Propagation of a localized excitation.
Right: nonequilibrium time evolution of (o) for all qubits j of a
transverse Ising chain of length N = 20 in a normalized trans-
verse field £ = )/2J = 8 (paramagnetic phase) after the first
spin has been flipped. Values > — 0.5 are plotted in white. Left:
separate plot of (o]} on the same time scale. This quantity can be
measured in the setup of Fig. 1.
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at some initial value £, = Q,/2J. Att = 0, ¢ is changed
to &, = ,/2J, and the time evolution under the action of
1.» 18 investigated.

In the following, we focus on the dynamics of the
experimentally easily accessible observable (o!) after
quenches within the paramagnetic phase. This corresponds
to our estimates for realistic values of J. The main differ-
ence of quenches involving the ferromagnetic phase would
be a modified dynamical time scale due to the different
value of v. Figure 4 shows the magnetization (o)(¢) after
quenching ¢ (center). In region I (see schematic plot,
right), the magnetization first increases and then oscillates
with decreasing amplitude. Here, it is virtually identical
with the overall magnetization of a cyclic TFIC with
N — oo calculated in Ref. [30] and would, for N — oo,
approach a constant value. This is in line with predictions
from conformal field theory [32]. However, at 1 = j/v,
and t = (N — j)/vo (dashed red lines in the schematic
plot), where vy = 2J as before, the magnetization has
dips. They are followed (in regions II and III) by a relaxa-
tion similar as in region I to the same asymptotic value (see
Ref. [37] for a zoomed-in plot). Near the system bounda-
ries, the magnetization reaches and stays at this value for a
considerable time before undergoing a revival. A sharp
oscillation across the entire chain at T = N/v, subse-
quently decays. Revivals reoccur (quasi-)periodically
with period T (region IV), but this behavior is smeared
out for large times (not plotted). These phenomena are
reflected in the measurable observable (! )(¢) (left panel)
and take place on a time scale of ~0.1 us for N = 30 and
J/2m7 = 50 MHz.

Our results can be qualitatively understood in a simpli-
fying quasiparticle (QP) picture that has already been used
to calculate or interpret the (quench) dynamics of different
quantities in the TFIC [31-34]. In the paramagnetic phase,
the QPs correspond to spins pointing in the +z direction.
They are created in pairs by the quench and ballistically
move with velocities *wv, with reflections at the

30f ; ~.quasiperiodic ]
SO 0 Ivj2— a7
<] ——
e | |
10F : -qtui‘r“' T
stationg;
Y% 11 15 301 15 30
(o1) qubit number j qubit number j

FIG. 4 (color online). Behavior after a quench: time evolution
of the magnetization (o) in a TFIC of length N = 30 after a
quench of the normalized transverse field £ = 8 — 1.2 (center)
with a schematic plot (right) and the measurable observable (o)
singled out (left) on the same time scale. Values < — 0.9
(> —0.6) are plotted in black (white).

boundaries. Further, only contiguously generated QPs are
correlated. After an initial transient, any given site will be
visited only by uncorrelated QPs, originating from distant
places. This leads to the relaxation of the magnetization to
a steady-state value in region I that would be characterized
by a certain static density of uncorrelated QPs. However,
once correlated QPs meet again due to reflections at the
boundaries, coherences are recreated and show up in oscil-
lation revivals. This happens, first, at multiples of 7" (black
solid lines in the schematic plot) when all QP trajectories
cross their momentum-inverted counterparts (the solid red
lines show an example) and, second, along the trajectories
of QP pairs generated at the boundaries. Such QPs travel
together as one partner is reflected at ¢ = 0 (dashed red
lines, not plotted in region IV for clarity). The periodicity
of the trajectories should lead to periodic revivals for
t > T. This is indeed observed approximately, although
finally the velocity dispersion of the QPs renders the time
evolution quasiperiodic. Finally, QP trajectories cannot
intersect at j = 1, N. The density of (incoherent) QPs is
thus lower here than for bulk sites, yielding an appreciably
lower quasistationary value.

Discussion and outlook.—The setup and the experiments
we have proposed might help to establish the simulation
of interacting quantum many-body systems as a new para-
digm in circuit QED and to bring parts of the theoretical
discourse in nonequilibrium physics closer to observation.
The phenomena discussed here are based on realizable
system parameters and should occur within the system’s
coherence time. Given the readout capabilities in cQED
(e.g., Ref. [16]), their measurement should be feasible, for
instance, because single-shot readout is not required. Once
an actual implementation sets some boundary conditions,
the choice of system parameters can be further optimized.
We have numerically verified that all presented results are
robust against disorder up to a few percent in () and J [44].
Detuning individual qubits, however, would allow one to
create arbitrary potentials for the excitations, study the
interplay of Anderson localization and many-body physics,
or change the effective chain length. Using a second reso-
nator, the dynamics of the end-to-end correlator (olo?®)
(indicating long-range order) could be measured (see
Ref. [37]). Many other experiments are conceivable with
our setup, such as suddenly coupling two isolated chains
(and other local quenches) or even parameter ramps through
the QPT, with Kibble-Zurek defect creation. We note also
that hitherto unexplored measurement physics could be
studied when the first qubit is not detuned from the chain,
like resolving many-body eigenstates or the quantum Zeno
effect in a many-body system. Once the setup is properly
understood, it will be easy to break the integrability of our
model in a controlled way (e.g., via longer-range cou-
plings). This would push our cQED quantum simulator
into a regime beyond classical computational capabilities,
where further open questions about nonequilibrium
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dynamics can be addressed, such as thermalization and
diffusive transport. Furthermore, going to 2d or 3d introdu-
ces new design options, for instance, frustrated lattices.
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