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Abstract

The numerical renormalization group (NRG) and the density matrix renormalization group (DMRG)
are yet two very successful numerical methods, for computing the properties in one-dimensional
correlated quantum systems. Nevertheless, both methods have drawbacks and weaknesses. NRG is
based on a logarithmic discretization of the non-interacting bath degrees of freedom, which results in
the energy-scale separation, allowing iterative diagonalization. However a Bardeen–Cooper–Schrieffer
(BCS) s-wave superconducting bath breaks the energy-scale separation [1], which amounts in reduced
resolution of the spectral function at gap edge and below. Sharp features in this frequency range can
often not be resolved accurately. This downside of NRG is not restricted to an Anderson impurity
in an s-wave superconductor, but applies to impurity models with a gapped hybridization and sharp
features at the gap edge. One of the other options to compute the spectral function is to obtain the
ground state of the system using DMRG and perform a real-time evolution by the time-evolving block
decimation (TEBD) [2, 3, 4] or other real-time evolution methods like the time-dependent variational
principle [5, 6]. However, a sharp resolution over the full range of energy scales, using a linear grid,
requires exponentially many time steps and very long chains, which is from an numerical point of view
is hardly feasible. To resolve these complications we present a hybrid NRG-DMRG approach for the
calculation of the spectral function of an Anderson impurity embedded in a BCS superconducting bath
at T = 0. Based on the technique developed by Refs. [7, 8] a low energy Hamiltonian is generated
by NRG. Using DMRG the ground state in a low energy subspace is found and the spectral function
calculated via TEBD. To obtain the full spectrum function, the low-energy spectral part obtained by
DMRG is patched together with the high-energy NRG spectral part.
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1. Introduction

Roughly 60 years after the introduction of the first quantum impurity model by J.Kondo [9], they
are still in the focus of scientific interest. During this time, these type of models have lead to the
novel concepts and frameworks in the field of condensed matter, just because of their enormously
rich and complex behavior, which is usually unfeasible within a weak coupling methodology. One of
the most prominent examples is the development of renormalization group ideas with contribution
from P. W. Anderson, by his poor man’s-scaling approach [10] or by K. Wilson’s numerically exact
solution of the Kondo model by NRG [9]. Although, quantum impurity models can describe a rich
variety of physical situations their structure is relatively simple. Many different variations exist,
but their main structure can be characterized by a small number of (strongly) interacting quantum
degrees of freedom coupled to a bath of non-interacting fermions or bosons. They also have prepared
the ground for our current understanding of what is known as strongly correlated quantum systems,
which includes for example Mott insulators or high-Tc superconductivity. This connection has been
first revealed in the early 1990s. Based on works by D. Vollhardt and W. Metzner [11], G. Kotliar, A.
Georges and others [12, 13] founded what it today known as dynamical mean-field theory (DMFT). In
this context, the strongly interacting many-body system is mapped onto a quantum impurity model,
imposing an additional self-consistency condition on the non-interacting bath. Here the importance
of quantum impurity models beyond their specific physical setting becomes obvious. To obtain such a
self-consistent solution, the quantum impurity problem has to be solved with high accuracy. Several so-
called impurity solvers have been developed to access the local spectral function of the impurity model.
For example the continuous-time quantum Monte Carlo method [14, 15], exact diagonalization [16] or
the here further considered NRG and DMRG based algorithms. Yet, there are types of systems, where
the basic concept of NRG fails at some point, limiting the resolution by violating one of the supporting
pillars. One of these systems is an Anderson impurity embedded in a s-wave superconductor, which
we study in this thesis. The goal of this thesis is twofold, on the one hand an Anderson impurity
coupled to a BCS superconducting bath is a interesting problem in its own right. Furthermore, the
model introduced in the next section shows near-gap peaks and strong subgap resonances, which
currently cannot be resolved accurately enough. We try to make a balance act of on the one hand
conveying the physics of the Anderson impurity embedded in a BCS superconductor in detail and on
the other hand developing a new numerical approach to capture both, the Kondo effect and arising
near-gap resonances and sharp subgap states, which requires sharp resolution at the gap edge and
below. This thesis is therefore structured into a model part, where we define our quantities of interest,
reveal the relation to a quantum dot system, access the hybridization function, which is of interest
for the numerical implementation, and discuss some of the features of the non-interacting model to
get familiar to characteristics. In the second part we describe in detail our numerical approach to the
interacting problem. Here we also present results for selected cases and benchmark our method against
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analytical and numerical results. In the last chapter of this thesis we study the spectral properties of
the interacting model using our in chapter two developed hybrid NRG-DMRG approch in two cases.
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2. Model

We study an Anderson impurity [17] described by

Ĥimp = εd(n̂d↑ + n̂d↓) + Un̂d↑n̂d↓, (2.1)

which is coupled to a bath of non-interacting spinful fermions in an s-wave Bardeen–Cooper–Schrieffer
superconducting state [18] modeled by the two terms

Ĥbath + Ĥ∆ =
∑
k,σ

(εk − µ)ĉ†kσ ĉkσ −
∑

k
∆∗ĉ−k↓ĉk↑ + ∆ĉ†k↑ĉ

†
−k↓. (2.2)

For simplicity, we assume a time-reversal invariant and particle-hole symmetric dispersion relation
εk,σ − µ = ε−k,−σ − µ = µ − ε−k,σ. The coupling of the bath to the impurity is described by the
Hamiltonian

Ĥhyb = 1√
V

∑
k,σ

tĉ†dσ ĉkσ + t∗ĉ†kσ ĉdσ, (2.3)

where t denotes a complex valued hopping amplitude. The full Hamiltonian of interest is therefore
given by

Ĥ = Ĥimp + Ĥhyb + Ĥbath + Ĥ∆ (2.4)

As in previous publications [19, 20], we assume that the bath has a bandwidth ranging from [−D,D]
and the order parameter ∆ is nonzero in the same energy range. If not stated otherwise, D sets our
energy scale and energies are taken with respect to the chemical potential µ. From an experimentalist’s
point of view the absolute value of the gap parameter ∆ can be inferred by experiments [21, 22]. Since
we set T = 0 throughout this study, we therefore consider ∆ as a constant external complex parameter.

2.1. Spectral functions - the quantities of interest

To eliminate the redundant phases in the complex coupling matrix elements t and the gap parameter
∆ we use a canonical transformations to map the Hamiltonian (2.4) to a real valued one.

We represent the coupling matrix element as t = |t| exp(iφt), the gap parameter as ∆ = |∆| exp(iφ∆)
and perform the following canonical transformations

ĉdσ → ĉdσ exp
(
i(φt + φ∆

2 )
)
, ĉkσ → ĉkσ exp

(
i
φ∆
2

)
. (2.5)

This renders the pair potential ∆ and the hopping matrix t elements real, positive quantities.
Up to constant shifts we can represent the Hamiltonian in terms of Nambu spinors, which are
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2.2. Relation to an Anderson model with two identical superconducting leads

defined as

Ψ̂d =
(
ĉd↑

ĉ†d↓

)
, Ψ̂k =

(
ĉk↑

ĉ†−k↓

)
. (2.6)

The Hamiltonian in terms of the Nambu spinors reads:

Ĥ = (εd + U

2 )Ψ̂†dσ̂zΨ̂d + U

2 (Ψ̂†dσ̂zΨ̂d)2 + t√
V

∑
k

(Ψ̂†dσ̂zΨ̂k + Ψ̂†kσ̂zΨ̂d) +
∑

k
Ψ̂†k(ξkσ̂z −∆σ̂x)Ψ̂k. (2.7)

It describes an (interacting) impurity embedded in a non-interacting bath of a Bardeen–Cooper–
Schrieffer s-wave superconductor. As we will shortly see, it is closely related to a model which can be
interpreted as a quantum dot with two superconducting leads. But not only the relation to such a
mesoscopic system makes the model interesting. It could also serve as an effective impurity model in
the context of DMFT [12, 11, 23], which by construction includes superconductivity.

In either perspective one is usually interested in the dynamical response functions of the system.
In our case the functions of interest are the following retarded impurity correlators, which in the real
time representation are given as

ĜRαβ(t) = −iΘ(t)
〈[

Ψ̂d,α(t), Ψ̂†d,β
]
+

〉
= −iΘ(t)

〈[ĉd↑(t), ĉ†d↑]+〉 〈[
ĉd↑(t), ĉd↓

]
+

〉〈[
ĉ†d↓(t), ĉ

†
d↑
]
+

〉 〈[
ĉ†d↓(t), ĉd↓

]
+

〉
αβ

, (2.8)

where α, β are indices for the Nambu spinor components. These expressions can be Fourier-transformed
to frequency space,

ĜRαβ(ω) =
∫ ∞
−∞

dtĜRαβ(t) exp(iωt). (2.9)

By the Kramers–Kronig relations this complex function can be uniquely represented by a (matrix-
valued) spectral function

Âαβ(ω) = − 1
2πi

[
ĜRαβ(ω)− ĜRβα(ω)∗

]
. (2.10)

The spectral function is not only useful for the efficient representation of the retarded Green’s function
by causality, but for example the (1,1)-component and the (2,2)-component are also directly related to
the inelastic scattering cross section [24], a quantity that can be inferred by photoemission spectroscopy
[25, chapter 14].

Before we elaborate the calculation of the spectral function of the model in the non-interacting
and interacting case in more detail, let us now discuss the relation of the considered impurity model
to the mesoscopic system of a quantum dot coupled to a superconducting lead [1, 26, 27].

2.2. Relation to an Anderson model with two identical superconducting
leads

Progress in nanotechnology and fabrication over the last years made it possible to realize single
electron transitors coupled to leads and study their properties in an experimental setup. Theory
[28] predicted the existence of the Kondo effect in such quantum dot devices and finally Goldhaber-
Gordon [29] confirmed the effect experimentally in 1998. At the same time interest also arose in
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2. Model

the effect of superconducting electrodes on the dot properties and single-electron transistors coupled
to superconducting leads were experimentally studied [30, 31, 32]. The Anderson model with two
identical superconducting leads can be viewed as an minimal interacting model for this situation.
‘Identical’ in this context means that the magnitude of the order parameters in the two leads is equal
∆ = |∆α| , as well as the normal conducting density of states ρα(ε) = ρ(ε) in the two leads. The
complex hopping matrix elements tα,k = t are set equal and constant for convenience. This also
includes the case where the coupling of the two leads is different [33]. What remains are two phase
degrees of freedom. The quantum dot is described by

Ĥdot = εd(n̂d↑ + n̂d↓) + Un̂d↑n̂d↓, (2.11)

which is the same term as in the case of an interacting impurity in a superconducting bath defined
above. In contrast to that, we have two superconducting leads, modeled by bath terms of the form

Ĥ2L
leads + Ĥ2L

∆ =
∑

α∈{1,2}

[∑
k,σ

(εα,k − µα)ĉ†αkσ ĉαkσ

]
−
[∑

k
∆αĉ

†
αk↑ĉ

†
α−k↓ + ∆∗αĉα−k↓ĉαk↑

]
. (2.12)

The hopping of the electrons from either lead to the dot and vice versa is described by

Ĥ2L
hopp =

∑
α∈{1,2}

[∑
k,σ

tĉ†σ ĉαkσ + t∗ĉ†αkσ ĉσ

]
. (2.13)

Therefore, the full Hamiltonian is given by

Ĥ2L = Ĥdot + Ĥ2L
hopp + Ĥ2L

leads + Ĥ2L
∆ . (2.14)

In order to obtain a real valued Hamitonian we parametrize the order parameter as ∆α = |∆|eiφα and
employ the canonical transformations

ĉαkσ → ei
φα
2 ĉαkσ, and ĉdσ → ei

φ1+φ2
4 ĉdσ, (2.15)

which does not affect the terms Ĥdot and Ĥlead. The pairing term and the hopping term change
according to

Ĥ2L
∆ →

∑
α∈{1,2}

[
∆
∑

k
ĉ†αk↑ĉ

†
α−k↓ + ĉα−k↓ĉαk↑

]
. (2.16)

Ĥ2L
hopp → Ĥ2L

hopp =
∑
k,σ

tei
φ
4 ĉ†dσ ĉ1kσ + te−i

φ
4 ĉ†dσ ĉ2kσ + h.c., (2.17)

where we defined φ = φ1 − φ2. Once more doing a unitary transformation,

ĉ1kσ → e−i
φ
4 ĉ1kσ, and ĉ2kσ → ei

φ
4 ĉ2kσ, (2.18)
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2.3. Matsubara representation and the hybridization function

renders the hopping part real and changes the pairing term to

Ĥ2L
∆ = −

∑
α∈{1,2}

[∑
k

∆ei
(−1)α+1φ

2 ĉ†αk↑ĉ
†
α−k↓ + ∆ei

(−1)αφ
2 ĉα−k↓ĉαk↑

]
, (2.19)

which shows that only the phase difference φ enters the transformed Hamiltonian. Following [1] we
perform a rotation of the lead operators

(
ĉekσ

ĉokσ

)
= 1√

2

 e−i
φ
4 ei

φ
4

−ie−i
φ
4 iei

φ
4

(ĉ1kσ

ĉ2kσ

)
, (2.20)

where the operators ĉekσ, ĉokσ act on the even and odd channel and are therefore called even and odd
operators. After doing so, the hopping part of the Hamiltonian reads

Ĥ2L
hopp = 1√

V

∑
k,σ

√
2tĉ†dσ

[
cos
(
φ

4

)
ĉekσ − sin

(
φ

4

)
ĉokσ

]
+ h.c. . (2.21)

Rewriting the complex hopping amplitudes in the form t = |t|eiφt , and using again a transformation
ĉdσ → eiφt ĉdσ, we obtain the real valued expression

Ĥ2L
hopp =

√
2|t|√
V

∑
k,σ

ĉ†dσ
[
cos
(
φ

4

)
ĉekσ − sin

(
φ

4

)
ĉokσ

]
+ h.c. . (2.22)

Again, Ĥleads remains unaffected by this transformation, while the pairing term in the Hamiltonian
after the mapping is transformed into

Ĥ2L
∆ =

∑
k

∆
[
ĉ†ek↑ĉ

†
e−k↓ − ĉ

†
ok↑ĉ

†
o−k↓ + h.c.

]
(2.23)

We conclude that for a phase difference φ a multiple of 4π the odd channel decouples completely from
the dot. In this case the Hamiltonian simplifies to the one of an Anderson impurity embedded in a
s-wave superconducting non-interacting bath. In this thesis we consider the case φ = 0.

2.3. Matsubara representation and the hybridization function

We start the discussion by accessing the hybridization function of the problem, which will be used
later in the numerical implementation. This will be done by employing the Matsubara formalism
and an analytic continuation to obtain the real frequency correlation and spectral functions (for
introductory textbooks see [24, 34]). Then we turn to the non-interacting model and consider the
effect of the hybridization on the local density of states. In the so-called large gap limit the Matsubara
representation gives rise to an effective Hamiltonian, whose eigenstates and spectrum will be considered
afterwards. At the end of this section we consider a mean-field treatment of the impurity interaction.
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2. Model

Matsubara representation

By subsequently introducing resolution of identities in terms of fermionic coherent states |Ψkσ〉 and
|Ψdσ〉 for the bath and the impurity degrees of freedom, we can write the partition function of the
problem in the form

Z =
∫
D
[
ψ,ψ

]
exp

(
−S[ψ,ψ]

)
(2.24)

with the action

S =
∫ β

0
dτ

[∑
σ

Ψdσ∂τΨdσ +
∑
k,σ

Ψkσ∂τΨkσ +H[Ψdσ,Ψdσ,Ψkσ,Ψkσ]
]
, (2.25)

where Ψdσ,Ψdσ,Ψkσ and Ψkσ are Grassmann valued functions of imaginary time τ . The Nambu
spinors of the Grassmann variables are defined by

Ψd =
(

Ψd↑

Ψd↓

)
, Ψd =

(
Ψd↑

Ψd↓

)
, Ψk =

(
Ψk↑

Ψ−k↓

)
, Ψk =

(
Ψk↑

Ψ−k↓

)
. (2.26)

After doing a partial integration of the imaginary time derivative in the spin down sector, we can
represent the action as

S =
∫ β

0
dτΨd

[
∂τ σ̂0 + (εd + U

2 )σ̂z
]
Ψd + U

2
[
Ψdσ̂zΨd

]2
+ t√

V

∑
k

Ψdσ̂zΨk + Ψkσ̂zΨd +
∑

k
Ψk
[
∂τ σ̂0 + ξkσ̂z −∆σ̂x

]
Ψk, (2.27)

where σ̂0, σ̂x, σ̂z denote the usual Pauli - matrices acting on Nambu space. We now make use of the
antiperiodicity of the Grassmann-Nambu spinors by representing the action in Fourier space, where
we choose the convention

Ψd(τ) = 1√
β

∑
ωn

Ψd(ωn) exp(−iωnτ), Ψd(τ) = 1√
β

∑
ωn

Ψd(ωn) exp(iωnτ), (2.28)

Ψk(τ) = 1√
β

∑
ωn

Ψk(ωn) exp(−iωnτ), Ψk(τ) = 1√
β

∑
ωn

Ψk(ωn) exp(iωnτ). (2.29)

Here, ωn = (2n + 1)π/β with n ∈ Z denote the fermionic Matsubara frequencies and β = 1/T the
inverse temperature.
Using this representation for the action we find

S =
∑
ωn

Ψd(iωn)
[
− iωnσ̂0 + (εd + U

2 )σ̂z
]
Ψd(iωn)

+ t√
V

∑
k,ωn

Ψd(ωn)σ̂zΨk(ωn) + Ψk(ωn)σ̂zΨd(ωn)

+
∑
k,ωn

Ψk(ωn)
[
− iωnσ̂0 + ξkσ̂z −∆σ̂x

]
Ψk(ωn)

+ U

2β
∑

ωn,νn,qn

[
Ψd(ωn + qn)σ̂zΨd(ωn)

][
Ψd(νn − qn)σ̂zΨd(νn)

]
. (2.30)
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2.3. Matsubara representation and the hybridization function

Note that the transformation into Fourier spaces is a unitary mapping, which leaves the measure of the
functional integral invariant. For later convenience we define the bare Matsubara impurity propagator
Ĝ0

imp by [
Ĝ0

imp

]−1
(ωn) = iωnσ̂0 −

(
εd + U

2
)
σ̂z, (2.31)

and the bare bath propagator Ĝ0
b by

[
Ĝ0

b

]−1
(ωn,k) = iωnσ̂0 − ξkσ̂z + ∆σ̂x . (2.32)

Since we are interested in the properties of the impurity, we integrate out the bath degrees of freedom.
To this end we decouple the bath and the impurity degrees of freedom by shifting the bath spinors
according to

Ψk(ωn)→ Ψk(ωn) + t√
V

Ψd(ωn)σ̂zĜ0
b(ωn,k), (2.33)

Ψk(ωn)→ Ψk(ωn) + t√
V
Ĝ0

b(ωn,k)σ̂zΨd(ωn). (2.34)

Afterwards we perform an integration over the bath degrees of freedom. The arising constant will be
absorbed in the impurity measure. Finally we get an effective action for the impurity given by

Seff =
∑
ωn

Ψd(ωn)
[
− iωnσ̂0 +

(
εd + U

2
)
σ̂z + t2

V

∑
k
σ̂zĜ

0
b(ωn,k)σ̂z

]
Ψd(ωn)

+
∑
ωn,νn
qn

U

2
[
Ψd(ωn + qn)σ̂zΨd(ωn)

][
Ψd(νn − qn)σ̂zΨd(νn)

]
. (2.35)

Bath self-energy contribution and hybridization function

From this we can readily read off the self-energy contribution from the bath to the impurity Matsubara
Green’s function as

Σ̂b(ωn) = t2

V

∑
k
σ̂zĜ

0
b(ωn,k)σ̂z. (2.36)

Following [35] we define the hybridization function D̂(ω), which by causality completely captures the
effect of the bath degrees of freedom on the impurity, by

D̂(ω) = − 1
2πi

[
Σ̂b(ω + i0+)− Σ̂†b(ω + i0+)

]
. (2.37)

This function will be discretized in the subsequent numerical treatment of the model. To compute
D̂(ω) we will first evaluate Σ̂b(ωn) and then perform the analytic continuation to the real frequency
axis. Recall that the bath Green’s function is defined by Eq. (2.32), by inversion this yields

Ĝ0
b(ωn,k) = 1

−ω2
n − ξ2

k −∆2
k

[
iωnσ̂0 + ξkσ̂z −∆σ̂x

]
. (2.38)
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2. Model

Now we perform the momentum sum in the continuum limit approximating the normal-state density
of states ρ0 as constant over the bandwidth from −D to D to get

Σ̂b(ωn) = t2

V

∑
k
σ̂zĜ

0
b(ωn,k)σ̂z = t2

∫ ddk
(2π)d σ̂zĜ

0
b(ωn,k)σ̂z ≈ ρ0t

2
∫ D

−D
dε
iωnσ̂0 + εσ̂z + ∆σ̂x
−ω2

n − ε2 −∆2

=ρ0t
2
∫ D

−D
dε

iωnσ̂0 + ∆σ̂x
−ω2

n − ε2 −∆2 = −2Γ
π

iωnσ̂0 + ∆σ̂x√
ω2
n + ∆2 atan

(
D√

ω2
n + ∆2

)
. (2.39)

Here, we defined the hybridization strength Γ = t2πρ0.
Note that the pole structure of the self-energy is solely determined by the function

ζ(ωn) = 2Γ√
ω2
n + ∆2 atan

(
D√

ω2
n + ∆2

)
. (2.40)

This is of importance, as we now perform an analytic continuation to the real frequency axis by
continuing the Matsubara frequencies iωn → ω + i0+. This will come up again in the solution of the
non-interacting model. Therefore the continuation is worth studying in more detail. We have three
different regions of analyticity, which we have to investigate individually: |ωn| < ∆,
∆ < |ωn| < D2 + ∆2 and |ωn| > D2 + ∆2.

Case a): |ω| < ∆

We consider here the relevant parts of the hybridization function and their corresponding analytical
continuations. For the individual parts one finds:

ω2
n

iωn → ω + i0+
−−−−−−−−−→ −ω2 − isgn(ω)0+,√

ω2
n + ∆2 iωn → ω + i0+

−−−−−−−−−→
√

∆2 − ω2 − isgn(ω)0+ =
√

∆2 − ω2,

ζ(ωn) iωn → ω + i0+
−−−−−−−−−→ ζ1(ω) = 2Γ

π
√

∆2 − ω2
atan

(
D√

∆2 − ω2

)
. (2.41)

Here we already neglected infinitesimals in the denominators, by realizing that
√

∆2 − ω2 has no zero
crossings in the considered region, and therefore ζ1 no poles in the considered frequency range. This
means that the self-energy contribution of the bath is purely real in these parameters. This is expected
to be the case as the formation of Cooper pairs gaps out fermionic degrees of freedom in the bath in
a range ∆ around the Fermi level µ, i.e. there are no fermionic degrees of freedom to couple to in the
bath. However as we will see later there is a mechanism which leads to subgap density of states at
specific energies in the impurity spectrum.

Case b): ∆ < |ω| <
√

∆2 +D2

This frequency range is more complicated, due to the branchcuts of the square root- and of the atan-
function. Analogously to the first case we continue the individual parts as

ω2
n

iωn → ω + i0+
−−−−−−−−−→ −ω2 − isgn(ω)0+, (2.42)
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2.3. Matsubara representation and the hybridization function

√
ω2
n + ∆2 iωn → ω + i0+

−−−−−−−−−→
√
−(ω2 −∆2)− isgn(ω)0+ = −isgn(ω)

√
ω2 −∆2, (2.43)

ζ(ωn) iωn → ω + i0+
−−−−−−−−−→ ζ2(ω) = isgn(ω) 2Γ

π
√
ω2 −∆2

atan
(
isgn(ω)D√
ω2 −∆2

)
. (2.44)

We can rewrite the atan-function, by factoring out the imaginary unit and using
atan(ix) = atanh(x). Furthermore we make use of the relation atanh(x) = 1

2 ln(1 + x) − 1
2 ln(1− x).

Since the complex logarithm satisfies ln(−x) = ln(x) + iπ, the factoring out of sgn(ω), requires a case
distinction. After doing so we find the expression

ζ2(ω) =− sgn(ω)2Γ
π
√
ω2 −∆2

tanh−1
( sgn(ω)D√

ω2 −∆2

)
=− Γ

π
√
ω2 −∆2

ln
(
D +

√
ω2 −∆2

D −
√
ω2 −∆2

)
+ i

Γsgn(ω)√
ω2 −∆2

. (2.45)

We see that in this frequency range the imaginary part of the self-energy is finite. For
√
D2 + ∆2 > |ω| > ∆

the impurity can exchange electrons with the bath, which means that electrons can hop onto the
impurity states and back into the bath. This hopping leads to a finite lifetime of the impurity degrees
of freedom and therefore to a finite imaginary part of the self-energy. Above or below the bandwidth
this simple hopping process is not possible, as the consideration of the next case shows.

Case c): (
√

∆2 +D2 < |ω|)

Here we can do the same steps as within b) up to the point where we rewrite the inverse hyperbolic
tangent. In this case the inverse hyperbolic tangent becomes purely real valued. This means we can
factor out the sign of the frequency to obtain

ζ3(ω) = − 2Γ
π
√
ω2 −∆2

atanh
(

D√
ω2 −∆2

)
, (2.46)

which is purely real again. This is a consequence of the fact that there are no states for hybridization
with the bath available above or below the energy ±

√
∆2 +D2.

By combining all the three cases, the hybridization function of the problem can be written

D̂(ω) =− 1
2πi

[
Σ̂b(ω + i0+)− Σ̂†b(ω + i0+)

]
=θ(D2 + ∆2 − ω2)θ(ω2 −∆2)Γ(|ω|σ̂0 + sgn(ω)∆σ̂x)

π
√
ω2 −∆2

, (2.47)

which is consistent with [35]. We see that the appearence of the gap leads to a new effective bandwidth
Deff =

√
D2 + ∆2.

For ω � ∆ the hybridization function D̂ shows a nearly constant diagonal coupling σ̂0 of the
bath and the impurity, indicating a constant finite lifetime of the impurity electrons. We furthermore
observe a diverging behaviour close to the gap edge, |ω| ≈ ∆, indicating a strong coupling between
the bath and the impurity. Related to this we can also see a diverging structure in the off-diagonal
components σ̂x of the self-energy Σ̂b. This behavior can be understood by remembering that the
elementary excitation of a BCS mean-field superconductor are Bogoliubov quasi-particles present in

13



2. Model

Figure 2.1.: σ̂0 and σ̂xcomponents of the hybridization function D̂(ω) for ∆ = 0.01. Observe that for
energy scales far above or below the pair potential ∆ the hybridization function is close to a box type
of hybridization function. Closer to the energy scale of the gap, we observe a gapped hybridization
ranging from −∆ to ∆ and diverging behavior in the diagonal and off-diagonal components, reflecting
the superconducting bath.

the bath (compare Fig. (2.1)).
Let us summarize what we obtained by the discussion of the self-energy contribution of the bath

and the hybridization function. Due to the fact that the bath is superconducting, a condensate of
Cooper pairs forms in an energy range ∆ around the Fermi–energy, leaving no states available for the
hybridization of the impurity with the bath. Therefore, the self-energy contribution from the bath
below the gap is purely real. In contrast to that, above the gap, the impurity has a continuum of states
to couple to, which is reflected by a finite imaginary part of the self-energy. As we consider further
higher or equivalently lower energies we run out of bandwidth, which again leads to impossibility of
hybridization, but a renormalization of the impurity degrees of freedom.

2.4. The non-interacting model and beyond

Now, after we have discussed the hybridization of the bath with the impurity, let us elaborate on the
effect of this hybridization on the local density of states, by solving the non-interacting model U = 0.
The diagonal components in the D →∞ limit have been discussed in the literature in Refs.[1, 19] by
involving the equations of motion technique. To also get direct access to the off diagonal correlation
functions we employ the effective action, similar to what has been done in [36]. Again we start from
the effective action Eq. (2.35), where we can readily read off the Matsubara impurity Green’s function
as

Ĝimp(ωn) =
[
iωnσ̂0 − εdσ̂z − Σ̂b(ωn)

]−1 = − iωn[1 + ζ(ωn)]σ̂0 + εdσ̂z −∆ζ(ωn)σ̂x)
ω2
n(1 + ζ(ωn))2 + ε2d + ∆2ζ(ωn)2 . (2.48)
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2.4. The non-interacting model and beyond

Here, we identified the function ζ(ωn) = 2Γ
π
√
ω2
n+∆2 atan

(
D√

ω2
n+∆2

)
from our previous discussion.

In full analogy we perform an analytic continuation iωn → ω+ i0+ to access the retarded impurity
Green’s function as done before to obtain the retarded self-energy. We can use some of the results from
above, since the only branch cuts can come from the non-analyticity of the function ζ. We consider
the cases:

Case 1: |ω| < ∆

By analyticity of the functions under consideration we find for the retarded Green’s function

ĜRimp(ω) = − ω[1 + ζ1(ω)]σ̂0 + εdσ̂z −∆ζ1(ω)σ̂x)
ε2d + ∆2ζ1(ω)2 − ω2(1 + ζ1(ω))2 − isgn(ω)0+ . (2.49)

As before, we observe that the function ζ1 is purely real in this limit, however the continuation of
ω2
n

iωn→ω+i0+
−−−−−−−−→ −ω2−isgn(ω)0+ will produce an infinitesimal offset in the denominator of the retarded

impurity Green’s function, which we treat by making use of the Sokhotski–Plemelj theorem. After
inserting this into the definition of the spectral function Â = − 1

2πi

[
ĜRimp(ω)− [ĜRimp]†(ω)

]
we obtain:

Â =
[
|ω|
[
1 + ζ1(ω)

]
σ̂0 + sgn(ω)εdσ̂z − sgn(ω)∆ζ1(ω)σ̂x

]
δ
(
ε2d + ∆2ζ1(ω)2 − ω2(1 + ζ1(ω))2

)
, (2.50)

with ζ1(ω) given by Eq. (2.41).
We see that the system hosts a discrete spectral weight inside the gap if the argument of the δ -

function has roots in the frequency range under consideration. This spectral weight corresponds to the
first excited states of the Hamiltonian, which are usually called Yu-Shiba-Rusinov states [37, 38, 39].
As the argument of the delta-function is symmetric, we observe that the Yu-Shiba-Rusinov excitations
lie symmetrically with respect to µ, and in the case εd = 0 they contribute the same spectral weight.
The position ω± and the spectral weight Âαβ(ω±) of the subgap states can be computed numerically,
by employing Eq. (2.50). A comparison of their position ω+/∆ and their spectral weight Â

ĉ↑ĉ
†
↑

for different parameters is displayed in Fig. (2.2). For this set of parameters we find two subgap
excitations.

For fixed Γ, |εd| > ∆ has the tendency to shift the subgap states closer to the edge of the continuum
and decreases also the spectral weight of the subgap excitations (for positive and negative εd) .

As mentioned in [40] in the context of finite temperature and interaction and in [41], in the regime
∆ � Γ, the Yu-Shiba-Rusinov bound state energy tends towards the gap edge. The bound states
transfer more and more spectral weight to the continuum. We observe the same type of behavior for
the considered parameters.

Furthermore the presence of the superconducting bath leads to off-diagonal pair correlations on
the impurity and therefore induces symmetry breaking at the dot. This effect is called proximity
effect [19]. The proximity effect is the appearance of superconducting-like properties, for example
anomalous expectation values, of a non-superconducting material in contact with a superconducting
one [42]. Since the superconducting bath depletes fermionic degrees of freedom in an energy range
of ∆ around the Fermi level, single-particle states below the gap are forbidden [42], while many-
body processes are allowed. One of the many-particle processes contributing to the proximity effect
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2. Model

Figure 2.2.: Position ω+ (by symmetry ω− can be extracted as well) and spectral weight Â
ĉ↑ĉ
†
↑
(ω+)

of the subgap excitation vs. Γ for several values of εd. We observe that the spectral weight of the
subgap states have a maximum at Γ = εd and have the largest distance from the band edge at ∆.
With increasing hybridization strength Γ, the weight of the subgap states decrease for all considered
parameters and tend towards the gap edge. During this evolution they transfer spectral weight to the
continuum.

and the formation of the Yu-Shiba-Rusinov states is the Andreev reflection [43, 44]. The Andreev
reflection is the momentum, spin and energy conserving reflection of an electron at the boundary of
a normal metal to a superconductor into a hole in the normal conducting region and a Cooper pair
in the superconducting medium [45] as illustrated in Fig. (2.3 a)). A coherent superposition of these
Andreev reflections can lead to a non- propagating solution, a bound state [46]. The Yu-Shiba-Rusinov
states can be interpreted as these bound states. This situation is visualized in Fig.( 2.3 b)). Connected
to this, the proximity effect leads to an effective pairing amplitude at the impurity, i.e. we obtain
an inhomogeneity of the pair potential ∆(r) in real space around the impurity [47]. In the case of
U = εd = 0, Ref. [41] found an exact formula for the representation of these first excited states in
terms of their creation operators

αγ†↑ = t
∑

k

[
ukĉk↑ + vkĉ

†
k↓

]
+ ĉd↑ + ĉ†d↓, (2.51)

αγ†↓ = t
∑

k

[
vkĉk↑ − ukĉ

†
k↓

]
+ ĉd↑ − ĉ†d↓. (2.52)

Here ω+ is the bound state energy, α2 = 2
[
1 + ∆√

∆2−ω2
+

Γ
∆−ω+

]
ensures the canonical commutation

relations of the γ-operators, and uk = (εk−µ)+∆+ω+
(εk−µ)2+∆2−ω2

+
, vk = (εk−µ)+∆−ω+

(εk−µ)2+∆2−ω2
+

determine the weight of
the bath in this many particle state.

It is instructive to see what happens at small t, where we can neglect the bath contribution and
can write down the ground state, as it is annihilated by the γ’s, as |GS〉 = (1 − ĉ†↑ĉ

†
↓) |0〉. Even for

small hybridization, the ground state has a BCS like structure. As we will see later, this behavior will
change, if we include a strong enough repulsive interaction U .

Let us for a moment conclude the discussion of the subgap spectral density and consider the
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2.4. The non-interacting model and beyond

Figure 2.3.:
a): Andreev reflection at a normal - superconductor interface (schematic). An electron in the normal
conducting medium (n) with spin σ is retroreflected to a hole with spin −σ in the n-region and a
Cooper pair in the superconductor s. This process is reversable and dissipationless [45].
b): Formation of Yu-Shiba-Rusinov bound states as a concatenation of multiple Andreev reflections
(schematic), between an impurity i and a surrounding superconductor s. The superposition of Andreev
reflections leads to a static solution, a bound state [45].

continuum part of the spectral function.

Case 2: ∆ < |ω| <
√
D2 + ∆2

As in the calculation of the hybridization function D̂, the function ζ has two branch cuts in this region
from the square root function along the negative real axis and the complex logarithm in the same
region.

Using the analytic continuation of ζ already derived above we can write down an expression for
the retarded Green’s function from Eq. (2.48) using the analytic continuation from Eq. (2.45), we
find the expression

ĜRimp(ω) = −ω[1 + ζ2(ω)]σ̂0 + εdσ̂z −∆ζ2(ω)σ̂x)
ε2d + ∆2ζ2(ω)2 − ω2(1 + ζ2(ω))2 , (2.53)

with ζ2(ω) given by Eq. (2.45). Here we already neglected infinitesimal offsets, since the function ζ2

has a finite imaginary part.
As in the case of |ω| < ∆ we observe off-diagonal correlations, a consequence of the proximity

effect. To compare with formulas in previous publications [1, 19] we take a closer look at the limit
D →∞:

ζ2(ω) D →∞−−−−−→ i
Γsgn(ω)√
ω2 −∆2

. (2.54)

After simplifying this expression and considering the individual components we find for the (1,1)-
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component of the spectral function

Â
ĉ↑ĉ
†
↑
(ω) = 1

π

Γ[(ω + εd)2 + Γ2]ρ∆
(ω2 − ε2d − Γ2)2 + (2Γωρ∆)2 , (2.55)

where we introduced ρ∆ = |ω|√
ω2−∆2 , in accordance with [1, 19]. Thus, this limit reproduces the known

formulas.
Let us discuss some apparent features of the spectral function Â

ĉ↑ĉ
†
↑
. We can see in Fig. (2.4) that

for ∆ � εd,Γ an atomic resonance at ω ≈ εd broadens more and more due to the hybridization Γ.
This corresponds to the atomic level in the decoupled case, Γ = 0, which hybridizes with the bath and
gets broadened by fluctuations. Furthermore, we recognize a spectral gap in the continuum part of the
spectral density ranging from −∆ to ∆, as a consequence of superconductivity in the bath elaborated
earlier in the discussion. We also observe very narrow resonances at the gap edge.

Figure 2.4.: Continuum contribution of the spectral function Â
ĉ↑ĉ
†
↑
for ∆ < |ω| <

√
D2 + ∆2 for

negative and positive frequencies. Observe the atomic resonance at ≈ εd and the sharp near-gap peak,
displaying a Bogoliubov quasi-particle peak inherited from the bath. An increase of the hybridization
strength Γ leads to a stronger broadening of the atomic level. With an increased spectral weight of
the Yu-Shiba-Rusinov subgap states for positive frequencies (as εd > ∆) we observe also a increased
spectral density in the continuum part close to ∆ compared to the situation for negative frequencies.

By reducing the onsite energy εd below the gap the situation changes, if the hybridization strength
is small enough. The Yu-Shiba-Rusinov excitations move away from the gap edge and carry more
spectral weight as depicted in Fig. (2.2). Furthermore with this behavior the sharp resonance at the
edge of the gap is transformed into an intermediate broader peak close to the gap edge, for this compare
Fig. (2.5), which then narrows again by further reducing the hybridization strength Γ. Nevertheless,
after this transition the shoulder at intermediate energies is gone. A change can also be see in the
off-diagonal components of the spectral functions, which are visualized in Fig. (2.6). For an increasing
∆, the off-diagonal spectral function Âĉ↑ĉ↓ not only shows a broadening of the peak close to the gap
edge, but also eventually undergoes a phase shift of π of the local order parameter ∆eff ∝ 〈ĉ↓ĉ↑〉 at
the impurity site for Γ ≤ ∆.
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2.4. The non-interacting model and beyond

Figure 2.5.: Continuum contribution of the spectral function Â
ĉ↑ĉ
†
↑
for ∆ < ω <

√
D2 + ∆2. We

observe a transformation of the narrow quasi-particle peak at the gap edge connected to a shoulder
(up to ω ≈ Γ) at higher frequencies into a broader peak without the shoulder as one decreases the
hybridization. By further reducing Γ the peak narrows again, however the bump at intermediate
energies does not show up again.This behavior is related to a phase change of π in the local order
parameter.

Let us summarize the behaviour of the continuum part of the spectral function
∆ < ω <

√
D2 + ∆2. The local spectral functions show a gap in a frequency range from −∆ to ∆, as

in the bath a condensate of Cooper pairs is present.
If the atomic level at εd lies outside of the gap we observe an atomic resonance with width ≈ Γ,

otherwise the spectral function Â
ĉ↑ĉ
†
↑
is slightly asymmetric (not in the Figures). But it shows for

positive and negative frequencies qualitatively similar behavior to the εd = 0 case illustrated in Fig.
(2.5).

Furthermore, Yu-Shiba-Rusinov subgap states close to the gap edge are intimately connected with
the appearance of narrow near-gap resonances. For low enough hybridization the local order parameter
∆eff undergoes a phase shift of π.

Case 3:
√
D2 + ∆2 < |ω|

The last case under consideration is the case at energies above the scale set by the bandwidth D. In
analogy to what was done in Case 1 we can write the Green’s function, since the continuation of ζ is
purely real, as

ĜRimp(ω) = − ω[1 + ζ3(ω)]σ̂0 + εdσ̂z −∆ζ3(ω)σ̂x)
ε2d + ∆2ζ3(ω)2 − ω2(1 + ζ3(ω))2 − isgn(ω)0+ . (2.56)
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Figure 2.6.: Continuum contribution of the spectral function Âĉ↑ĉ↓ for −
√
D2 + ∆2 < ω < −∆.

Comparison between the off-diagonal components for vanishing a) and finite[b) on-site energy εd
a): Model without gate voltage εd. The reduction of the hybridization leads to a phase change of π of
the local order parameter ∆eff ∝ 〈ĉ↓ĉ↑〉, which is the integral of the depicted curve. We observe the
broadening of a narrow near-gap peak followed by a sign change.
b): The phase jump is prohibited by a finite gate voltage εd in the considered parameterregime. The
narrow resonance remains until small hybridization strength. Observe also the change of sign at −εd

We find that the denominator has no roots up to the regime |εd| &
√
D2 + ∆2, i.e. no bound states

appear. Above this scale the renormalized atomic level is shifted out of the band and will then give a
δ-type contribution to the spectral function. We are interested in the limit D > εd and therefore do
not consider this case any further.

Now we consider the opposite perspective of the non-interacting model, which fully includes the
hybridization of the bath to the dot, but lacks of impurity interaction and consider some kind of
atomic limit, where we include the interaction in full strength, but take the limit of a very large gap
∆.

The infinite gap limit and the singlet-doublet transition

This approach has been studied by previous authors [19, 48, 49, 50] within different variations of the
model. Within this approach one constructs an effective Hamiltonian in the so-called large-gap limit
accounting for some of the features of the continuum model [51]. Especially the ground state level
crossing (quantum phase transition) from a singlet ground state to a spin 1

2 doublet is contained in
this approximation.

The basic idea is to consider the bath self-energy contribution Σ̂b given by Eq. (2.39) in the limit
D →∞ and ∆→∞. When taking the limits it is important to take the bandwidth limit first, since
otherwise superconducting correlations are gone and we are left with an isolated impurity without any
reference to the superconducting bath. Taking this order renders the self-energy to be a constant, i.e.

Σ̂b(ωn) D →∞,∆→∞−−−−−−−−−−→ −Γσ̂x = Σ̂eff
b . (2.57)

Because the self-energy contribution from the bath is static, we are able to switch back to the
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2.4. The non-interacting model and beyond

Hamiltonian description of the impurity problem. The Hamiltonian of this reduced problem is only
four-dimensional, and can be diagonalized exactly. From the effective action we can read off the
effective Hamiltonian

Ĥeff =
∑
σ

εdn̂σ + Un̂↑n̂↓ − Γ
[
ĉ†↑ĉ
†
↓ + ĉ↓ĉ↑

]
. (2.58)

Note that this effective Hamiltonian accounts for the proximity effect, as we have pairing with
amplitude Γ present. As we took ∆ → ∞ all states of this effective Hamiltonian are now subgap
states. We can readily diagonalize the Hamiltonian, by representing Ĥeff w.r.t. the basisstates
|0〉 , |↑〉 , |↓〉 , |↑↓〉 = ĉ†↑ĉ

†
↓ |0〉:

Ĥeff = εd |↑〉 〈↑|+ εd |↓〉 〈↓| − Γ |↑↓〉 〈0| − Γ |0〉 〈↑↓|+ (2εd + U) |↑↓〉 〈↑↓| (2.59)

We see that the single occupied states |↑〉 and |↓〉 are already eigenstates of the Hamiltonian with
energies εd . We rotate the empty and doubly occupied state to diagonalize the Hamiltonian:

|E+〉 = E− |0〉+ Γ |↑↓〉√
E2
− + Γ2

|E−〉 = E+ |0〉+ Γ |↑↓〉√
E2

+ + Γ2
(2.60)

where the energies are

E± = εd + U

2 ±
√

(U2 + εd)2 + Γ2. (2.61)

For a repulsive interaction U , |E+〉 always lies above |↑〉 and |↓〉. Furthermore |E−〉 is the ground
state of the system, if εd > E−. This means that the ground state of the system is a singlet state if
ε2d +Uεd + Γ2 > 0 and in the degenerate spin-1

2 state otherwise. We will later see that the appearance
of this quantum phase transition remains true in the system with finite ∆ and D. A plot of the phase
diagram in this limit can be found in Fig. (2.7).

Let us consider the two cases εd = 0 and εd = −U/2, which we also study later in the numerical
simulation. The infinite gap limit suggests that in the former case no level crossing between the singlet
ground state and the doublet ground state occurs. By contrast, for the latter case one can expect a
quantum phase transition.
This concludes our discussion of the infinite gap limit.

Hartree Fock approximation in the impurity interaction

In the previous subsections we have considered two extreme cases of the problem, either without any
interaction or in the rather unphysical large-gap limit.

By considering a Hartree Fock approximation we are able to include the hybridization to full extent
and the interaction perturbatively. This problem has been addressed previously in different contexts
of this model or the Anderson model with superconducting leads [52, 26, 53, 54]. This is done by
approximating the self-energy from the interaction by

Σ̂U (iωn) = U

(
〈n̂↓〉 − 〈ĉ↑ĉ↓〉
− 〈ĉ↑ĉ↓〉 − 〈n̂↑〉

)
, (2.62)
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Figure 2.7.: Phase diagram of the infinite gap model D →∞, ∆→∞, which renders the self energy
correction from the bath to be constant. The boundary between the singlet phase and the doublet
phase is characterized by a level crossing of a non-degenerate singlet state and two degenerate spin
1/2 doublet states.

where we introduced the three mean fields, 〈n̂↑〉, 〈n̂↓〉 and 〈ĉ↑ĉ↓〉, which have to be determined self-
consistently. Again, we can write the impurity Green’s function in the Matsubara formalism as

ĜHF
imp(ωn) =

[
iωnσ̂0 − εdσ̂z − Σ̂b(ωn)− Σ̂U

]−1

=− 1
X (iωn)

(
iωn(1 + ζ(ωn)) + εd + U 〈n̂↑〉 −ζ(ωn)∆− U 〈ĉ↑ĉ↓〉
−ζ(ωn)∆− U 〈ĉ↑ĉ↓〉 iωn(1 + ζ(ωn))− εd − U 〈n̂↓〉

)
. (2.63)

Here we have defined the shorthand X (iωn) for the determinant

X (iωn) =ω2
n(1 + ζ(ωn))2 − U(〈n̂↑〉 − 〈n̂↓〉)(1 + ζ(ωn))iωn + ε2d

+εdU(〈n̂↑〉+ 〈n̂↓〉) + U2 〈n̂↑〉 〈n̂↓〉+ (ζ(ωn)∆ + U 〈ĉ↑ĉ↓〉)2. (2.64)

We now proceed in the same manner as before. We first analytically continue the components to
the corresponding frequency range using Eq. (2.41) and Eq. (2.45), to obtain the retarded Green’s
function ĜHF

imp(ω + i0+). Then we compute a self-consistent solution numerically using the following
scheme with the initial values of 〈n̂↑〉 , 〈n̂↓〉 and 〈ĉ↑ĉ↓〉 determined by the non-interacting case:

1) Calculate the spectral function Â(ω) for the given parameters ∆, Γ, U and εd, i.e. determine the
spectral weight of the bound states and the continuum part analogously to the non-interacting
case.
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2.5. The Kondo effect

2) Compute new estimates for 〈n̂↑〉 , 〈n̂↓〉 and 〈ĉ↑ĉ↓〉 using:

〈n̂↑〉
T=0=

∫ 0

−∞
dωÂ

ĉ↑ĉ
†
↑
(ω) = Â

ĉ↑ĉ
†
↑
(ω−) +

∫ −∆

−∞
dωÂ

ĉ↑ĉ
†
↑
(ω) (2.65)

〈n̂↓〉 = 1−
〈
ĉ↓ĉ
†
↓

〉
T=0= 1−

∫ 0

−∞
Â
ĉ†↓ĉ↓

(ω) = 1− Â
ĉ†↓ĉ↓

(ω−)−
∫ −∆

−∞
dωÂ

ĉ†↓ĉ↓
(ω) (2.66)

〈ĉ↑ĉ↓〉 = −
〈
ĉ†↑ĉ
†
↓

〉
T=0= −

∫ 0

−∞
dωÂ

ĉ†↓ĉ
†
↑
(ω) = −Â

ĉ†↓ĉ
†
↑
(ω−)−

∫ −∆

−∞
dωÂ

ĉ†↓ĉ
†
↑
(ω) (2.67)

3) Start again with step 1) until the mean fields are converged.

From this we obtain a numerical solution for the spectral function using the self-consistently determined
mean fields. Though this approach has several shortcomings. Since we only consider the interaction of
the individual degrees of freedom with the mean fields, correlations between the individual components
are not contained. This includes, for example the Kondo effect [52]. Nevertheless, the Hartree Fock
results will serve us as a benchmark for small interactions.

2.5. The Kondo effect

So far we have considered the continuum model only from the perspective, where we have no interaction
or the interaction included on a mean-field level, where correlations are absent. However, it is well
known that interacting (magnetic) impurities in a metallic host can lead to correlation driven behavior,
different from the non-interacting case and clearly not contained within the mean-field treatment. To
explain this, let us for a moment consider the case ∆ = 0. The bath is now featureless and normal
conducting in a range from [−D,D]. This is the Anderson model as introduced in Ref. [17]. Let us
restrict to the symmetric case εd = −U/2, in the limit |εd| > Γ, which fixes the filling of the impurity
and suppresses charge fluctuations as the spread of the atomic level is small compared to the level
spacing [55]. In the spectral functions this leads to resonances at ±εd of width Γ and constitutes the
high energy behavior of the model. One might think that this is the whole story, but actually the
interaction can lead to the formation of a new type of ground state, the Kondo singlet, which differs
from the resonance scattering limit U = 0. This can be understood by considering a Schrieffer-Wolf
transformation [56] of the Anderson Hamiltonian, which projects out the empty and double occupied
components, and leads to an effective low-energy Hamiltonian, the Kondo model. The Hamiltonian is
given by

ĤK =
∑
k,σ

(εk − µ)ĉ†kσ ĉkσ − JSbath · Simp, (2.68)

with Ŝimp, Ŝbath the vector-valued spin operators for bath and the impurity and the antiferromagnetic
exchange coupling given by

Jρ = −2Γ
π

( 1
εd
− 1
εd + U

)
, (2.69)

where ρ = 1
2D is the density of states of the bath. The ground state of the Kondo model in the strong

coupling limit Jρ → ∞ is a singlet formed between the impurity and one electron from the bath. In
this situation the Kondo singlet decouples completely from the remaining now free bath electrons. By
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2. Model

a perturbative renormalization group analysis [10, 55] it can be shown, that the coupling constant
Jρ flows to strong coupling as one more and more integrates out high energy modes. This means, as
we approach smaller energy scales the effective coupling becomes large. This also means that there
exist a crossover scale, the Kondo temperature TK, at which the renormalized impurity degrees of
freedom form a singlet with the renormalized bath, with a binding energy characterized by TK, which
proportionality is given by

TK ∝ exp
(

1
Jρ

)
. (2.70)

For energy scales below the Kondo temperature the conduction electrons manage to quench the
magnetic moment by forming a Kondo singlet ground state. For scales above the magnetic moment
remains free.

Let us now come back to the actual problem, where we have a superconducting bath. Although the
bath structure is completely different, with spin sectors connected by the pair potential, it has been
shown by NRG calculations of Kondo- and Anderson impurities embedded in superconducting baths,
that the Kondo effect exists in these type of systems [20, 57, 41, 1, 19]. This raises the interesting
theoretical question on the competition between Kondo screening of a local moment and the BCS
pairing and its effect on the spectral properties of the model. However this requires on the one hand
a non-perturbative treatment of the problem to resolve the Kondo effect and on the other hand sharp
resolution at the gap edge to resolve BCS features, which may arise.

In the following section we will develop a non-perturbative approach, which is able to resolve the
the Kondo effect on the one hand, but also sharp features for energies on the scale of ∆ and below.
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3. Method

To treat the system numerically, we employ a hybrid NRG-DMRG approach previously used to
compute time-dependent properties or in the non-equilibrium context of quantum impurity problems
[7, 8, 58]. The motivation is to overcome the limited spectral resolution of features at the gap edge or
below for gapped hybridization functions, by only using the numerical renormalization group (NRG)
[9, 59]. The success of NRG is based on the energy-scale separation. In the context of superconducting
baths, the pair potential ∆ sets a scale and breaks the energy-scale separation [1]. The scale set by
the mean-field parameter is different from the scale set by temperature, as the gap parameter is a
model inherent scale, which affects the eigenstates, whereas temperature is a thermodynamic scale
only affecting the density matrix of the system. As a consequence the NRG routine is only able to
resolve spectral features larger or on the order of ∆ reliably. However, it is desirable to have also
sharper spectral resolution, especially in the setting of DMFT [11, 12, 13], where bad resolution in
one of the iteration steps may spoil the self-consistency scheme.

We therefore suggest an extension of the existing hybrid NRG-DMRG scheme, for the computation
of spectral properties at T = 0. Before elaborating on the method in detail, let us briefly discuss the
symmetries of the model, as these have importance for the numerical implementation of the problem.

3.1. Symmetries of the Hamiltonian

Symmetries usually makes the physicists’ life easier. Continuous symmetries in classical mechanics lead
to conservation laws, which make the equations of motion simpler and underlying physical processes
easier to interpret. However, this is not only true for classical systems.

According to E. Wigner, quantum mechanical symmetries of a given system are realized in Hilbert
space by a set of either unitary or anti-unitary operators, which constitute a representation of a
group in Hilbert space. The generators of symmetries, which commute with the Hamilitonian, can
be simultaneously diagonalized and therefore provide a label for the eigenstates of the Hamiltonian.
This means the Hamiltonian can be brought into block-diagonal form, each block labeled by the
corresponding quantum numbers. This is not only important from an analytical point of view, but
also enables us to reduce the numerical cost for the diagonalization, as the involved blocks, by their
smaller size, can be brought more efficiently into diagonal form. For this thesis we use the QSpace
tensor library [60], developed by A. Weichselbaum. This provides an efficient framework for matrix
product state (MPS) computations, allowing the implementation of discrete, abelian and non-Abelian
symmetries.

This motivates us to take a closer look at the symmetries of the problem under consideration. Let
us first start with symmetries realized by a discrete symmetry group, which will allow us to connect
different components of the spectral function Â.
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3. Method

Time-reversal symmetry

Time reversal symmetry is one of the most simple symmetries one can imagine. It amounts to reversing
the arrow of time on a microscopic basis. It allows us to reduce the numerical cost for the calculation
of the spectral function by a factor two. The time-reversal operator T̂ , which represents the time
reversal operation in Hilbert space, is anti-unitary. It can be represented in a single-particle Hilbert
space spanned by the states |x, σ〉, where x denotes the position and σ the spin-z component of a spin
1
2 particle, by an anti-unitary operator T acting on the basis states as [61] :

T̂ |x, σ〉 = σ |x,−σ〉 (3.1)

From this we concludes the action of the time-reversal operator T̂ on the creation and annihilation
operators is given by

T̂ ĉ†iσT̂
† = σĉ†i−σ. (3.2)

By Fourier transforming to momentum space we obtains the expression

T̂ ĉ†kσT̂
† = σĉ†−k−σ. (3.3)

The Hamiltonian given by Eq. (2.4) commutes with T̂ . For an explicit calculation see Appendix
(A.2). The time-reversal symmetry connects the diagonal components of the spectral functions in the
following way:

Â
ĉ†↓ĉ↓

(ω) = Â
ĉ↑ĉ
†
↑
(−ω) (3.4)

This can be shown by employing the Lehmann representation of the spectral function:

Â
ĉ†↓ĉ↓

(ω) = 1
Z

∑
x,y

〈x| ĉ†↓ |y〉 〈y| ĉ↓ |x〉
[
e−βEx − ξe−βEy

]
δ(ω − Ey + Ex)

= 1
Z

∑
x,y

〈T̂ x| ĉ†↑ |T̂ y〉
∗ 〈T̂ y| ĉ↑ |T̂ x〉

∗ [
e−βEx − ξe−βEy

]
δ(ω − Ey + Ex), (3.5)

where the complex conjugation in Eq. (3.5) comes from the antiunitary property of the T̂ operator.
Since the energy of the time-reversed state |x′〉 = |T̂ x〉 coincides with the state |x〉, allows to relabel
the summation and to write

(3.5) = 1
Z

∑
x′,y′

〈x′| ĉ†↑ |y
′〉∗ 〈y′| ĉ↑ |x′〉

∗ [
e−βEx′ − ξe−βEy′

]
δ(ω − Ey′ + Ex′)

= 1
Z

∑
x′,y′

〈y′| ĉ↑ |x′〉 〈x′| ĉ†↑ |y
′〉
[
e−βEx′ − ξe−βEy′

]
δ(ω − Ey′ + Ex′)

= 1
Z

∑
x′,y′

〈y′| ĉ↑ |x′〉 〈x′| ĉ†↑ |y
′〉
[
e−βEx′ − ξe−βEy′

]
δ(−ω − Ex′ + Ey′)

=Â
ĉ↑ĉ
†
↑
(−ω). (3.6)

Similarly one can show, that
Âĉ↑ĉ↓(ω) = −Â

ĉ†↓ĉ
†
↑
(−ω) (3.7)
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3.1. Symmetries of the Hamiltonian

holds. For an explicit derivation see Appendix (A.2). These relations allow one to compute all impurity
spectral functions under consideration from the components Âĉ↑ĉ↓ and Âĉ↑ĉ†↑ .

Furthermore, time-reversal symmetry gives an explanation for the degeneracy of the spin 1/2 Yu-
Shiba-Rusinov subgap states, as by Kramers’ theorem, a half-integer spin eigenstate of a time-reversal
symmetric system is at least twice degenerate.

We have seen that the time reversal symmetry of the problem offers the opportunity to relate
different components of the spectral function. This reduces the numerical effort to obtain all the
components of interest.

Let us now discuss another discrete symmetry of the problem connecting the particle and hole
degrees of freedom.

Particle-hole symmetry

The corresponding symmetry operation is the charge conjugation Ĉ, which is defined by:

ĈĉσĈ† = −ĉ†−σ , ĈĉkσĈ† = ĉ†−k,−σ. (3.8)

As before, one has to show that the Hamiltonian commutes with Ĉ. This is the case for εd = −U
2 .

For a detailed computation see Appendix (A.2). From this symmetry follows that the filling of the
impurity in the particle-hole symmetric case is fixed to one:

〈n̂↑〉 =
〈
Ĉn̂↑Ĉ†

〉
= 〈1− n̂↓〉 = 1− 〈n̂↓〉 , (3.9)

⇒ 〈n̂↑〉+ 〈n̂↓〉 = 1. (3.10)

In the case of a spin symmetric ground state or a thermal superposition with spin symmetry this
simplifies to 〈n̂↑〉 = 〈n̂↓〉 = 1

2 . Beyond that, one can show in a similar fashion as before that the
diagonal components are related, through

Â
ĉ↑ĉ
†
↑
(ω) = Â

ĉ†↓ĉ↓
(ω) = Â

ĉ↑ĉ
†
↑
(−ω), (3.11)

where the last equal sign is due to the time-reversal symmetry. This means that the diagonal spectral
functions coincide in this case and are symmetric. By the same reasoning the off-diagonal components
are also identical.

Apart from these discrete symmetries of the Hamiltonian, which enabled us to relate different
spectral function and expectation values, we now take a closer look to continuous abelian and non-
Abelian symmetries of the Hamiltonian.

SU(2)-Spin symmetry

Although the Hamiltonian looks promising to exhibit a rotational symmetry in spin space by a
representation of the group SU(2), it is not the case. The operator S2 = S2

x + S2
y + S2

z = S2
z +

1
2(S+S− + S−S+) does not commute with the Hamiltonian for finite ∆. From an algebraic point of
view the operators S+ and S− introduce spin flip terms leading to a triplet pairing structure in the
commutator, which is not present in the original Hamiltonian. The actual calculation can be found
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3. Method

in the Appendix (A.2). This also means that rewriting the pairing part of the Hamiltonian in terms
of the SU(2) spin spinors (in the notation of Ref. [60]) used in the numerical implementation is not
possible. However one finds that the Ŝz operator is conserved.

Ŝz-symmetry

The Hamiltonian under consideration exhibits a Ŝz-symmetry, since the generator

Ŝz = Ŝz,imp + Ŝz,bath = 1
2(n̂↑ − n̂↓) + 1

2
∑

k
(n̂k↑ − n̂k↓) (3.12)

commutes with the Hamiltonian. However, it has been shown [20] and used in previous publications
[57, 41, 19, 1], that a rotation of the operators leads to a numerically more convenient representation
of the Hamiltonian, where one has particle number conservation and at the particle-hole symmetric
point also particle-flavor conservation.

Bogoliubov and particle-hole transformation

To bring the Hamiltonian into this numerically more favorable representation Ref. [20] used a
Bogoliubov-Valatin transformation in combination with a particle-hole transformation, in a Hamiltonian
description. However, we will employ the effective action to arrive at this result. As a first step we
rotate the Grassmann spinors according to

Φd(ωn) =
(

Φd+(ωn)
Φd−(ωn)

)
= ÛΨd(ωn) = 1√

2

(
1 1
−1 1

)(
Ψd↑(ωn)
Ψd↓(ωn)

)
,

Φd(ωn) =
(

Φd+(ωn)
Φd−(ωn)

)
= Ψd(ωn)Û−1 =

(
Ψd↑(ωn)
Ψd↓(ωn)

)
1√
2

(
1 −1
1 1

)
, (3.13)

which is the functional integral version of the transformations named above. This diagonalizes the
self-energy coming from the bath, Σ̂b(ωn). The existence of a frequency independent rotation, which
diagonalizes the self energy is special in the presented case. However more general cases can be tackled
in analogy to the presented using the scheme from [35]. This allows us to rewrite the effective action
as

Seff =
∑
ωn

Φd(ωn)
[
− iωnσ̂0 +

(
εd + U

2
)
σ̂x + Σ̂b(ωn)

]
Φd(ωn) + Sint[Φd,Φd]. (3.14)

Following [35], we reintroduce the bath,

Seff =
∑
ωn

Φd(ωn)
[
− iωnσ̂0 +

(
εd + U

2
)
σ̂x
]
Φd(ωn) +

∑
ωn

∫
dxΦx(ωn)(−iωnσ̂0 + ν̂(x))Φx(ωn)

+
∑
ωn

∫
dxΦd(ωn)t̂(x)Φx(ωn) + Φx(ωn)t̂(x)Φd(ωn) + Sint[Φd,Φd], (3.15)

with the bath spinors,

Φx(ωn) =
(

Φx+(ωn)
Φx−(ωn)

)
, Φx(ωn) =

(
Φx+(ωn)
Φx−(ωn)

)
(3.16)
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and the diagonal matrices t̂(x), ν̂(x). The condition that the reintroduced bath should reproduce the
same Σ̂b puts the following constraint on the eigenvalues t± and ν± of t̂ respectively ν̂:

t2±(x) = D±(ν±(x))dν±(x)
dx

, (3.17)

here D± denotes the eigenvalues of the hybridization function D̂. By integrating out the bath and
using Eq. (3.17) we arrive at the same self-energy. The constraint is solved by

t2±(x)dy =
∫ ν±(x+dy)

ν±(x)
D±(x)dx. (3.18)

This resembles the usual one band case as known e.g. from the single-impurity Anderson model. This
representation is suited to switch back to a operator description of the problem. The corresponding
Hamiltonian is given by

Ĥ =− (εd + U

2 )(d̂†+d̂− + d̂†−d̂+) + U

2 (n̂+ + n̂−)− Un̂+n̂− + εd1

+
∑
σ=±

∫
dxνσ(x)ĉ†xσ ĉxσ,+

∑
σ=±

∫
dxtσ(x)ĉ†σ ĉxσ + h.c. , (3.19)

where d̂+ = (ĉ†↑ + ĉ↓)/
√

2 and d̂− = (ĉ↓ − ĉ†↑)/
√

2 as well as n̂+ = d̂†+d̂+ and n̂− = d̂†−d̂−. This
means the Hamiltonian conserves the number of particles, which corresponds in the Nambu spinor
representation to the conservation of spin. In addition at the particle-hole symmetric point εd = −U/2
also the particle flavor is a conserved quantity.

Let us conclude the elaboration of the symmetries by making the following remarks: We have seen
that the discrete symmetries relate different components of the spectral function of interest and give
exact expectation values for the filling of the impurity in the particle-hole symmetric case. These results
will be used in the hybrid NRG-DMRG method developed in the following section. Furthermore, the
model does not have a SU(2) spin symmetry, but after changing the basis it can be brought to a form,
where U(1) particle conservation and in the particle-hole symmetric case also a U(1) particle-flavor
conservation is present. In the actual numerical implementation we will use these symmetries.

3.2. Discretization

After representing the hybridization function D̂(ω) in the rotated basis D̂(ω) = ÛD̂(ω)Û−1, one can
read off its eigenvalues,

D±(ω) = θ(D2 + ∆2 − ω2)θ(ω2 −∆2) Γ
π
√
ω2 −∆2

(|ω| ±∆sgn(ω)), (3.20)

We now discretize the system. This is done by defining the so-called guiding function ν±(x), which
sets discrete boundaries in Eq. (3.18). Instead of using a purely logarithmic discretization, usually
used for NRG, one employs a lin-log discretization [8]. The reason for this is the structure of the
eigenvalues of the hybridization function (see Fig. (3.1)). To capture the diverging structure around
the energy scale ±∆, a purely logarithmic grid seems inappropriate. Another approach, previously
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Figure 3.1.: Hybridization function D±(ω) rescaled by Γ for ∆ = 0.01. Similar to the non-rotated
case the diagonal components of the hybridization function show a nearly constant hybridization close
to the band edge. Closer to the gap the hybridization on either side of the gap diverges or vanishes,
depending on the considered eigenvalue.

pursued by Ref. [1], is to consider a shifted logarithmic discretization, where one uses the fact that for
frequencies |ω| < ∆ the hybridization vanishes. However in the context of DMFT or by considering a
d – wave superconducting bath, where a different gap structure develops, such an approach cannot be
generalized straightforwardly. Following [8], we define the “guiding function” governing the placement
of grid points as:

ν(x) =


dl

ln(Λ) sinh
(
ln(Λ)(x− D∗

dl
)
)

+D∗ x > D∗

dlx |x| ≤ D∗

dl
ln(Λ) sinh

(
ln(Λ)(x+ D∗

dl
)
)
−D∗ x < −D∗

, (3.21)

where Λ is the discretization parameter for the logarithmic sector, D∗ is the cutoff parameter specifying
the energy range of pure linear discretization with level spacing dl. For the numerical implementation
we use the parameters Λ = 1.8, D∗/∆ = 1.15 and dl = (D∗−∆)/20. Those are chosen such that in the
frequency range |ω| � ∆, where the hybridization function shows nearly scale independent behavior
the bath is logarithmically discretized. Close to the energy scale of the pair potential this goes over
into a linear scaling, with a frequency spacing approximately given by resolution 10−2∆. We will use
the same guiding function for both particle flavors. Apart from the fixed discretization grid defined in
Eq. (3.21), a modified adaptive frequency discretization, as done for a purely logarithmic scheme [62],
is also a conceivable option for the considered lin-log discretization of the problem. The frequency
axis is partitioned into a set of intervals Ix = [ν(x), ν(x + 1)], where x ∈ {...,−n + δz, ..., n + δz, ...},
n ∈ N0 and δz ∈ [0, 1) denotes the so-called z-shift [8].

This means we approximate the integration over the variable x in Eq. (3.19) by a summation over
discrete points given by real numbers with integer distance. This results in a discretization error,
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elaborated on more later in the discussion.
By doing this approximation we get some artificial freedom in the definition of the on-site energies,

as the intervals are not infinitesimal anymore. From each interval Ix and for each particle flavor one
chooses a representative energy εx,± in accordance to [8], which is a modification of Campo’s choice
[63] for the lin-log discretization. We choose the representative energies for both particle flavors to be
equal for the corresponding intervals. The onsite terms are given by

εx,± =


ν(x+1)−ν(x)
log
(
ν(x+1)
ν(x)

) |ν(x)|, |ν(x+ 1)| > D∗

1
2(ν(x) + ν(x+ 1)) else

. (3.22)

By employing a discrete version of Eq. (3.18) we approximate the coupling tx,± of each particle
flavor coming from an frequency interval Ix to the impurity as:

tx,± =
√∫

Ix
dωD±(ω). (3.23)

After this discretization procedure the Hamilitonian is given by,

Ĥdisc = Ĥimp +
∑
x,σ

tx,σ(ĉ†x,σd̂σ + d̂†σ ĉx,σ) + εx,σ ĉ
†
x,σ ĉx,σ, (3.24)

where σ ∈ {+,−}.

Mapping to a Wilson chain

One now applies the Lanzcos algorithm [64] for each particle flavor, to map the Hamiltonian given
by Eq. (3.24), which represents the so-called star geometry, to a Hamiltonian in the Wilson chain
representation (see Fig. (3.2) for visualization), which is the impurity Hamiltonian Ĥimp attached to
a tight-binding chain with onsite terms. After this mapping the Hamiltonian reads

Figure 3.2.: The Lanczos algorithm maps a hermitian matrix in the “star form” to a tridiagonal matrix
by recursively constructing a unitary transformation. The tridiagonal form is also called Wilson chain.
The yellow box corresponds to the impurity site, the green boxes to the hopping matrix elements tx,σ
and the orange boxes to the representative energies εx,σ of a specific particle flavor. The result of this
mapping is the same impurity coupled to a tight-binding chain described by hopping matrix elements
fi,σ, represented by the blue boxes, and onsite energies given by gi,σ, indicated by the red boxes.
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Ĥdisc = Ĥimp + Ĥon + Ĥhop = Ĥimp +
∑
i≥0,σ

gi,σ ĉ
†
i,σ ĉi,σ + fi,σ(ĉ†i,σ ĉi−1,σ + ĉ†i−1,σ ĉi,σ), (3.25)

where ĉ−1,σ = d̂σ. This Hamiltonian will be subsequently treated numerically by NRG in combination
with the DMRG.

Transition criteria

As a last step of discretization we define criteria for the transition from the NRG procedure to the
DMRG treatment of the problem. We use NRG to compute the spectrum for site indices i, such that
for both particle flavors σ the following conditions are fulfilled

fi+1,σ
fi,σ

>
1.2√

Λ
and |fi,σ| > Λ|gi,σ|. (3.26)

The last Wilson chain site for which these conditions are satisfied is denoted by N∗. The criteria
are intended to ensure energy-scale separation in the NRG part of the Wilson chain, which makes
it possible to iteratively diagonalize the Hamiltonian. The matrix elements for the NRG part of the
Wilson chain are given by

{fi,σ}i≤N∗ , {gi,σ}i≤N∗ . (3.27)

Connected with every iteration i there is a typical energy scale

εSi =

1 i = −1

κΛ−i/2 0 ≤ i ≤ N∗
, (3.28)

where κ is chosen such that minσ[fNRGN∗,σ ] = εSN∗ . The scale function εS is used to rescale the Hamiltonian
after each NRG iteration, since it is numerically desirable to have hopping and onsite elements of order
one. For the same reason, we rescale the hopping and onsite matrix elements in the DMRG part of
the Wilson chain by εSN∗ . These are then given by

{
fi,σ/ε

S
N∗
}
i>N∗

,
{
gi,σ/ε

S
N∗
}
i>N∗

. (3.29)

A typical example for the matrix elements along the NRG part and DMRG part for ∆ = 0.005 can
be seen in Fig. (3.3). We observe the intended scaling behavior of the hopping matrix elements in the
NRG part of the chain.

3.3. Matrix product states

Both numerical methods used in this thesis, NRG and DMRG, can be efficiently implemented and
understood by using the framework of matrix product states. These are a class of finitely correlated
quantum states originally introduced for analytical purposes, for example ground state studies of the
isotropic Heisenberg chain [65, 66]. Over the last two decades it was realized that NRG and DMRG
are closely connected to MPS [67] and that these can benefit from a reformulation in terms of MPS.

In this section we present a brief introduction to matrix product states, summarizing the key
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3.3. Matrix product states

Figure 3.3.: a): Hopping and onsite matrix elements for both particle flavours for the NRG chain.
Observe the scaling of the hopping elements along the Wilson chain. The onsite energy matrix
elements show even-odd oscillations along the Wilson chain, analogous to the analytic discretization
[20]. However, in the analytic discretization the onsite energies are exactly set by the pair potential
∆, where in our numerical discretization the matrix elements differ slightly from this value.
b): Rescaled hopping and onsite matrix (absolute value) elements fi,σ respectively |gi,σ| for both
particle flavors for the DMRG chain

concepts and why they are of importance in the numerical treatment of the model by considering
our discrete Hamiltonian. We follow here Refs. [68, 69]. In the following, if not stated otherwise,
summation over repeated indices is implied.

Basic notations and definitions

In the Wilson chain representation the model is a finite tight-binding chain with interactions at the
impurity. Connected to each site i there is a local Hilbert space Hi, which is spanned by the states
|e〉i ∈ {|0〉i , |+〉i , |−〉i , |+−〉i}, therefore the Hilbert space of the discretized problem is given by
H = HN ⊗ ...⊗H−1. Consequently the set of the product states E = {|σ0, ..., σN 〉 |σi ∈ {0,+,−,+−}}
forms an orthonormal basis for H. Here we adopted the following notation for the basis states and fix
their ordering as

|σN 〉 ⊗ ...⊗ |σ0〉 = |σ0, ..., σN 〉 . (3.30)

Since E forms a basis, any state |Ψ〉 can be uniquely written as

|Ψ〉 = Kσ0,...,σN |σ0, .., σN 〉 . (3.31)

with the coefficients Kσ0,...,σN ∈ C for any combination of σ0, ..., σN .
Instead of representing the state |Ψ〉 in terms of each individual factor space Hi we can equally

well consider a larger partition of the product space consisting of two factors. Let us call them the
left and right Hilbert space with respect to a bond (σl, σl+1). This means with two neighboring local
indices (σl, σl+1) we connect the left Hilbert space HlL spanned by the states |γ〉L ∈ {|σ0, ..., σl〉 |σi ∈
{0,+,−,+−}} and the right HlR spanned by |ζ〉R ∈ {|σl+1, ..., σN 〉 |σi ∈ {0,+,−,+−}}. Here we
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3. Method

introduced the labeling γ for the left Hilbert space and ζ for the right factor space. These run over all
possible basis states in the left and right factor spaces, say n in the left part and m in the right part.

Hence, we can equally well represent the state |Ψ〉 as

|Ψ〉 = Cγζ |ζ〉R ⊗ |γ〉L = Cγζ |γ〉L |ζ〉R (3.32)

The state |Ψ〉 can be represented by a complex n×m matrix with rank r.

The Schmidt decomposition and matrix product states

Figure 3.4.: Graphical representation of a Schmidt decomposition.

This formulation of the state |Ψ〉 in terms of a complex matrix Ĉ is useful, as we are now able to
perform a Schmidt decomposition (SVD), which means factorization of the matrix Ĉ into

Ĉ = Û ŜV̂ † = Û

(
ŝ 0̂
0̂ 0̂

)
V̂ †, (3.33)

with a n×n unitary matrix Û , V̂ † a m×m unitary matrix and ŝ a r×r diagonal semi-positive definite
matrix.

With this in hand we can readily construct the matrix product state representation of the state
|Ψ〉. As we will see shortly, this representation is not unique, as one can absorb the singular values and
the unitaries to either side of the chain. This amounts to a gauge freedom in the MPS representation
and a classification of the resulting MPS in terms of their normalization condition as left-canonical,
right-canonical and mixed-canonical. The construction for all three cases is analogous, therefore we
restrict to the left-canonical case. Starting again from the expression |Ψ〉 = Kσ0,...,σN |σ0, ..., σN 〉, we
perform a Schmidt decomposition in the bond (σ0, σ1). This amounts in a representation of the form

|Ψ〉 = A0
σ0
αK

α,σ1,...,σN
1 |σ0, ..., σN 〉 , (3.34)

where A0
σ0
α = Uσ0

α and Kα,σ1,...,σN
1 = Sαβ(V †) σ1,...,σN

β . Iterating this procedure for all the bonds
and splitting off the Û to the left and the other two matrices to the right bonds finally gives

|Ψ〉 = A0
σ0
αA1

ασ1
β...AN

ωσN |σ0, ..., σN 〉 , (3.35)

where the individual matrices obey ∑σi(A
σi
i )†Aσii = 1. This is known as the left- canonical matrix

product state representation of |Ψ〉. Nothing is special about the left end of the chain, so to obtain
right canonical form we start the singular value decomposition from the rightmost bond and absorbing
Û and Ŝ to the left. The normalization condition in this case reads ∑σi B

σi
i (Bσi

i )† = 1 [68]. We get
the bond canonical form w.r.t bond (σl, σl+1), by right normalizing a left normalized representation
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3.3. Matrix product states

up to the considered bond and absorbing U to the left and V † to the right. This shows that we
can write any state |Ψ〉 in the Hilbert space H in terms of its matrix product state representation.
However, apart from analytic approaches, for a numerical treatment this representation of a quantum
state is only of practical importance, if the dimension of the considered matrices is small enough to
be numerically processed efficiently.

Figure 3.5.: Graphical representation of left-canonical MPS. The boxes indicate the local tensor A,
whereas connected arrows show a contraction. The left- and rightmost arrows denote dummy indices

Entanglement entropy and area laws

To answer the question why the involved matrices for the representation of ground states are usually
small in size for a certain class of a Hamiltonians, let us reconsider the Schmidt decomposition of a
bond (σl, σl+1). By defining the rotated basis states |ν〉L = |γ〉L Uγν and |µ〉R = |ζ〉R

(
V †
) ζ

µ
we can

absorb the unitary matrices into the basis states arriving at the representation

|Ψ〉 = Sνµ |ν〉L |µ〉R = sα |α〉L |α〉R , (3.36)

where sα denotes the singular values, the diagonal entries of ŝ. In terms of these basis states the
density matrix of the state |Ψ〉 reads:

ρ̂ = |Ψ〉 〈Ψ| = |sα|2 |α〉L |α〉R 〈α|R 〈α|L . (3.37)

By tracing out the left or the right subsystem respectively, we find that the weights of the states
|α〉L/R in reduced density matrix ρ̂lL/R = trHl

R/L
(|Ψ〉 〈Ψ|) is solely determined by the square of the

absolute value of the singular values, which by the normalization condition add up to one. Now we
consider the quantity

SLR = − trHlL(ρ̂lL log2(ρ̂lL)), (3.38)

which is called the von Neumann entanglement entropy and is a measure for the entanglement between
the subsystems HlL and HlR [70]. Apart from the von Neumann entropy other measures for the
entanglement content of two subsystems have been considered and studied, e.g. the entanglement
spectrum [71] or the Rényi entropy [72]. Correlations between the left and the right part of the system
renders the entanglement entropy finite [73]. If this is the case the subsystems are entangled. This
already enables us to reveal the connection between the entanglement entropy SLR and the singular
values sα, as one finds after tracing out the left or right environment respectively the relation

SLR = −
∑
α

|sα|2 log2
(
|sα|2

)
. (3.39)
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This is intriguing, since the singular values sα determine the entanglement content between the two
subsystems. Reading the connection of the entanglement entropy and the singular values of the bond
in reverse suggests that, if one deals with a state with globally small entanglement entropy, this means
the entanglement entropy of any bond describing the state is small, already relatively small matrices
are sufficient to describe the state under consideration approximately. Luckily there are so-called area
laws restricting the entanglement content of ground states and its scaling with system size [74]. This
means for certain types of systems we can likely represent the ground state approximately in terms
of an MPS with numerically processable bond dimension Db. As the size of the involved matrices is
determined by the number of non-zero singular values, we either truncate the state by setting a cutoff
to the considered kept singular values or set them fixed by a number Db. However, the situation
is different, if one tries to represent an arbitrary state in the exponentially large Hilbert space as
an MPS with a bond dimension Db. There these area laws do not apply and in general one also
needs exponentially many parameters to specify the state, i.e. the MPS description, which uses only
algebraically many parameters, may fail there.

We have seen that the entanglement structure of ground states allows one to represent the ground
state efficiently as an MPS. We have not yet described, how to actually find a MPS representation of
the eigenstates given a Hamiltonian. For this we will employ NRG and DMRG. On the first glimpse
the two methods seem unrelated, but in fact there are close similarities between both methods [75, 67].

Let us make a final remark: Exploiting physical symmetries in the construction of an MPS
description is highly desirable [76], as it reduces the numerical effort and makes the interpretation
of the numerical results easier. This has been done not only for the DMRG algorithm for abelian and
non-Abelian symmetries [77], but has been successfully applied to NRG [60], which we discuss now.

3.4. NRG - Integrating out high energy modes

The Numerical Renomalization Group [9, 59], developed by K. Wilson in 1975, has proven to be
a reliable tool to compute the spectral properties of various quantum impurity problems or as a
impurity solver in the context of DMFT [12]. Its success is footed on the iterative diagonalization of
the discretized version of the impurity problem, based on the energy-scale separation of two consecutive
NRG iterations. This naturally leads to a representation in terms of matrix product states, not only
of the ground states, but of all the obtained approximate eigenstates.

Before we start discussing the basic idea of NRG, let us state our route tackling the computation
of the spectral function. From the previous discretization procedure of the problem we have obtained
a discretized Hamiltonian, which shows the scaling of the matrix elements necessary for NRG only for
a part of the Wilson chain. This prohibits the use of NRG for all the chain sites. Nevertheless, we
can use the routine to compute an approximate eigenspectrum of the Hamiltonian, with a resolution
given by the energy scale at the iteration, where the scaling property becomes invalid. This will give
us a good enough resolution at higher and intermediate energy scales, but is expected fail to describe,
e.g. the quasi-particle peak at the gap edge in the non-interacting model accurately enough. For a
more detailed introduction to the NRG method we refer to the review articles in Ref. [78, 79].
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3.4. NRG - Integrating out high energy modes

Basic Idea of NRG

We have seen that the discretized Hamiltonian takes the form:

Ĥdisc = Ĥimp +
∑
i≥0,σ

Ĥon,i + Ĥhop,i = Ĥimp +
∑
i≥0,σ

gi,σ ĉ
†
i,σ ĉi,σ + fi,σ(ĉ†i,σ ĉi−1,σ + ĉ†i−1,σ ĉi,σ) (3.40)

with ĉ−1,σ = d̂σ.

In Wilson chain representation the interacting Hamiltonian seems as hard to solve as as in the star
geometry. However, progress can be made by realizing the recursive structure of the Hamiltonian.
For this purpose one defines a (finite) sequence of Hamiltonians {Ĥi}i=−1,...,N∗ , which more and more
approximate our discretized Hamiltonian,

Ĥi+1 = Ĥi + δĤi+1 = Ĥi + Ĥon,i+1 + Ĥhop,i+1, (3.41)

with Ĥ−1 = Ĥimp. Here we already restricted the sequence to N∗, as we know that energy-scale
separation will be compromised for iterations N > N∗ and NRG therefore not further applicable.
Observe that the Hamiltonian Ĥi only acts on the last i + 1 factors of the composite Hilbert space
H = HN ⊗ ... ⊗H−1 of the full Hamiltonian Ĥdisc = ĤN . Therefore the eigenstates |s, e〉i are of the
form

|s, e〉i = |s〉i |e〉i = U sσ0,...,σi |σ0, ...σi〉 |σi+1, σN 〉 (3.42)

with Û some unitary transformation, s a label for the eigenstates of the Hamiltonian acting on the
smaller Hilbert spaceHi⊗...⊗H−1 and e = (σi+1, ..., σN ) a shorthand for the state under consideration
in the remaining factors HN ⊗ ...⊗Hi+1. Mind that the states can be written in matrix product state
form. The states |e〉i do not contribute to the energy, but they provide a degeneracy of dN−i−1

loc to a
state |s〉i. The key observation is now that, because of the energy-scale separation, δĤi+1 acts only as
a perturbation to the states |s, e〉i generated at the former iteration, as the hopping matrix elements
decay exponentially and the onsite energies are well below the considered energy scale. This means
we can compute its action on the states by diagonalizing

Hi+1(s′, e′, s′, e) = i〈s
′, e′|Ĥi+1 |s, e〉i = Eis + 〈σ′i+1| i〈s

′|δĤi+1 |s〉i |σi+1〉 (3.43)

numerically. This perturbation lifts part of the degeneracy and splits the levels |s, e〉i. By this
procedure we obtain finer resolved approximate eigenstates |s, e〉i+1. Iterating this procedure leads
to finer and finer resolved eigenstates. At every iteration the Hamiltonian is rescaled by the scale
of the current interaction ESi and its spectrum is shifted, such that the ground state of the current
iteration has energy zero. However, this is not mandatory, but useful for the numerics. Nevertheless,
due to the exponential growth of the Hilbert spaces along the procedure a complete diagonalization
of Hi+1(s′, e′, s′, e) is quickly non amenable and a truncation of the states under consideration is
inevitable. This is done by partitioning at each iteration i the obtained eigenstates {|s, e〉i} =
{|s, e〉Di } ∪ {|s, e〉

K
i } into so-called discarded and kept states and only refining the lowest nKi energy

eigenstates, to keep the dimension of the considered matrices manageable. The discarded states are
not further refined in the procedure and will be considered as degenerate, as the splitting of the level
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3. Method

Figure 3.6.: Splitting of the levels along the iterative diagonalization for dloc = 2 and nKi = 4. Red
indicates the ground state at this iteration, blue the kept states and green the discarded states.

relative to their energy is small. The principle is visualized in Fig. (3.6).
If one is able to use NRG for a complete Wilson chain and one discards all the states at the last

iteration, then it has been shown by Anders and Schiller [80] that the set of the discarded states
{|s, e〉Di }i∈1,...,N forms a complete basis of the Hilbert space H.

However, since energy-scale separation is compromised from iteration N∗+1 on, we have to use the
eigenstates of ĤN∗, which limits the spectral resolution. Nevertheless, ĤN∗ is a good approximation
to the full Hamiltonian Ĥdisc, when it comes to high and intermediate energy spectral properties
|ω| & D∗, as the coarse resolution of the low energy states does not play a dominant role. For our
implementation we use the parameter nKi = 4000 throughout this study.

The RG perspective of NRG

So far we have considered NRG as a procedure of iterative diagonalization. Let us now work out the
renormalization group perspective of the method a bit further. Here we follow [9, 59].

The iterative diagonalization in combination with the rescaling procedure can equally well be
interpreted as a renormalization group procedure, where high energy modes (discarded states) are
‘integrated out’ with a cutoff set by the highest energy in the kept sector and the Hamiltonian rescaled.
During this procedure we probe all the energy scales of the model accessible by NRG, each providing
us with an approximate effective low energy Hamiltonian at the considered scale. The evolution of
the rescaled eigenenergies of the Hamiltonian under the iterative diagonalization shows the change of
the energy levels as one takes into account smaller and smaller scales and can therefore be regarded
as an RG flow. Following Wilson, we define the rescaled Hamiltonian at iteration i:

H̃i = 1
εSi

[
Ĥi − E0

i

]
, (3.44)
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3.5. Construction of the renormalized impurity

where E0
i denotes the ground state energy of the Hamiltonian Ĥi. Furthermore we introduce the

difference of the ground states as δE0
i = E0

i − E0
i−1. Then the recursion relation may be written as

H̃i+1 = R
[
H̃i
]

= εSi
εSi+1

H̃i + 1
εSi+1

δĤi+1 −
εSi
εSi+1

δE0
i , (3.45)

where R denotes the renormalization group mapping. A fixed point in an RG flow indicates scale
invariance and signals that the physics of the problem at this considered scale may be described by a
simpler effective Hamiltonian. It turns out that R does not have any fixed points, but R2 does [59].
We expect this to change, if one chooses a smaller pair potential ∆. Nevertheless, we can extract some
information from the flow diagram. In the non-interacting case Fig. (3.7, 1 a/b) we observe that for
energy scales ω � ∆ that the eigenenergies for the different quantum numbers remain degenerate. At
scales closer to the pair potential ∆ the levels begin to split and ∆ becomes relevant. At even smaller
scales one observes the formation of a gap in the spectrum with the Yu-Shiba-Rusinov states remaining
there. The in Fig. (3.7, 2 a/b) displayed interacting case has a richer structure. We observe that for
high and intermediate scales the ground state switches between the even and odd iterations (doublet
↔ singlet) until at scales close to the gap these even odd oscillations disappear and the ground state
for both iterations become a singlet. As we will see later, the system is close to the quantum phase
transition. Furthermore at intermediate scales the levels lie either very close to each other or are
separated in energy. This corresponds to the formation of side peaks in the spectral function. Apart
from that the spectrum of the interacting case follows similar behavior as in the non-interacting case
(formation of gap, no clean fixed point).

3.5. Construction of the renormalized impurity

From the foregoing NRG procedure we have obtained a set of approximate eigenstates of the Hamiltonian
Ĥdisc, which should resolve well the high energy spectrum, but lacks of accuracy in the low energy
sector of the spectrum. To resolve the low energy spectrum more accurately we construct an effective
Hamiltonian and compute its spectral function. This construction has previously been used to compute
time-dependent properties [7] or in the non-equilibrium context of quantum impurity problems [8, 58].
This is done by coupling the lowest energy eigenstates obtained by the incomplete NRG procedure
to the remaining Wilson chain sites, which have not been included before. This amounts in a second
Wilson chain with a ‘fat’ impurity at one end of the chain.
The Hamiltonian

ĤRI =
∑
s,e

′
EN

∗
s |s, e〉

K
N∗

K
N∗〈s, e|, (3.46)

describes the renormalized impurity (RI) and consists of the lowest nRI approximate NRG eigenstates,
which is indicated by the restricted sum. The local Hilbert space connected to the RI is denoted by
HRI. The second step of the construction is to define a projector P̂RI to the states within the RI by

P̂RI =
∑
s,e

′
|s, e〉DN∗

D
N∗〈s, e|. (3.47)
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Figure 3.7.: Energy-Flow diagrams for even (denoted by a) and odd iterations (denoted by b) for the
parameters
1 a/b: U = εd = 0, Γ/D = 0.1, ∆/D = 0.001
2 a/b: U/D = 0.4, εd = −U/2, Γ/D = 0.05, ∆/D = 0.005.
The displayed quantum numbers are with respect to the rotated basis. The first component
corresponds to the spin quantum number in the Nambu basis. For the second component such a
correspondence does not exist.
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3.6. DMRG - Ground state search

Figure 3.8.: Visualization of the RI approximation. The RI approximation amounts in replacing the
NRG sector of the Wilson chain by its lowest energy eigenstates and coupling them to the DMRG part
of the Wilson chain. The Wilson chain is represented by the boxes with the levels of the local Hilbert
space visualized by the lines in the boxes. The arrows between the Wilson chain sites represent the
hopping.

One now projects the creation and annihilation operators at iteration N∗ to the RI states to generate
the hopping between the RI and the remaining Wilson chain sites. This is formally done by

ĉ†RIσ = P̂RIĉ
†
N∗σP̂RI, ĉRIσ = P̂RIĉN∗σP̂RI. (3.48)

In analogous way can observables of interest can be projected to this subspace. Therefore the
considered effective low-energy Hamiltonian is given by

ĤF = ĤRI + ĤC = ĤRI +
∑
j≤0

∑
σ

gj ĉ
†
j,σ ĉj,σ + fj(ĉ†j,σ ĉj−1,σ + ĉ†j−1,σ ĉj,σ), (3.49)

with ĉ†j=−1,σ = ĉ†RI,σ, ĉj=−1,σ = ĉRI,σ and gj = gi−N∗−1, fj = fi−N∗−1. This means, instead of
considering the problem on the full Hilbert space H, we restrict ourselves to a subspace HD =
HRI ⊗N−N

∗−1
j=0 Hj .

3.6. DMRG - Ground state search

The NRG procedure has provided us with an approximate ground state of the discretized Hamiltonian,
which is contained in the RI. To compute the spectral function a representation of the ground state is
necessary. The ground state |0〉F in the subspace, spanned by the RI and the rest of the Wilson chain,
will serve as an approximation to the true ground state |0〉 of the system. For this purpose DMRG is
employed to find an MPS representation of the lowest eigenstate of ĤF .

The basic idea of a ground state DMRG calculation goes back to S. White, who invented the
method in 1992 in the context of the Heisenberg chain [81, 82]. At that time the DMRG was viewed
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as a method that sets up a renormalization group flow in the space of reduced density matrices [69, 68].
By contributions of Ostlund, Rommer and Dukelsky [83, 84, 85] and later others, the close connection
to MPS was revealed and later used to reformulate the DMRG method using MPS. This allows one
to view DMRG as a variational method, which optimizes an energy functional in the space of MPS
with maximal bond dimension Db. To introduce the method we follow Ref. [68].

The aforementioned functional is given by

|0〉F ≈ argmin{|ΦDb 〉}
(
〈ΦDb | ĤF |ΦDb〉 − µ 〈ΦDb | |ΦDb〉

)
= |0〉Db , (3.50)

where µ is a Lagrange parameter fixing the normalization of |ΦDb〉 and giving an estimate for the
energy of the state. In this sense one variationally optimizes the matrices of an MPS representation
of a state |ΦDb〉 to be as close to the ground state as possible. The state obtained by this procedure
is denoted by |0〉Db . The first step of the DMRG procedure is to provide an initial guess of a MPS
of the ground state or with a random MPS state [75]. If one makes use of the symmetries of the
problem, one has to make sure that the initial state lies in the correct symmetry sector, i.e. in the
symmetry sector of the ground state. In our case this is done by using NRG. Although energy-scale
separation is broken along the DMRG part of the Wilson chain it provides an MPS with the right
symmetry labels. After this step, provided a representation of the Hamiltonian in terms of an MPO,
one starts optimizing. This is done in an iterative fashion by optimizing the local matrices of one or
two sites at each step. For this purpose consider a block of two sites (σi, σi+1) and fix the matrices of
the MPS not associated with this block. Since the left and right part of the MPS are fixed, they can
be traced out leaving us with an effective environment for the left (Hleft,i) and the right part (Hright,i)
of the considered block νi = (σi, σi+1). The optimization problem of the full chain is reduced to an
optimization of the two considered sites in an effective environment. This means we have to find the
optimal µ and

(Mloc,i)χνiρ = (Mi)χσiξ(Mi+1)ξσi+1ρ, (3.51)

with local tensors Mi and Mi+1 in mixed-canonical form with respect to site i, in

(Hleft,i)αχol(Mloc,i)χνiρ(Hloc,i)olν
′
ior

νi
(Hright,i)βρor(Mloc,i)αν′iβ − µ(Mloc,i)ανiβ(Mloc,i)ανiβ, (3.52)

By differentiating with respect to (Mloc,i)ανiβ one finds that the problem can be brought into the form
of an eigenvalue equation

(Heff,i)(ανiβ)
(χν′iρ)(Mloc,i)(χν′iρ) = µ(Mloc,i)(ανiβ), (3.53)

where
(Heff,i)(ανiβ)

(χν′iρ) = (Hleft,i)αχol(Hloc,i)olνiorν′i(Hright,i)βρor (3.54)

is the effective Hamiltonian with respect to the combined site (σi, σi + 1). Since we are interested
in the state with the lowest energy, we search for the lowest eigenvalue µ. Due to the size of the
effective Hamiltonian an exact diagonalization is usually not possible. However, there exist algorithms
to efficiently find the lowest eigenvalues and their corresponding eigenvectors. In this thesis we use the
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3.6. DMRG - Ground state search

Lanczos–Arnoldi algorithm [86]. After one has found the optimized Mloc,i a Schmidt decomposition
is performed to obtain two optimized tensors (Mi)χνiρ and (Mi+1)ξσi+1ρ. Here we keep all singular
values up to the threshold 10−12. The singular value decomposition ensures that the new MPS is bond
canonical with respect to the next block, at which one wants to perform the optimization. This is either
the block (σi−1, σi) or the block (σi+1, σi+2) and are therefore called left and right sweep respectively.
This procedure is iterated by sweeping left and right until the energy estimate converges. Here we
take the procedure to be converged, if the absolute value of the energy difference of the last and the
penultimate step of a sweep is smaller then 10−12, i.e. |µ(i)− µ(i+ 1)| < 10−12. We usually observe
convergence within two sweeps. We perform two ground state optimization procedures, with different
numbers of states within the renormalized impurity. The first one finds an approximate ground state
by considering all states of the last NRG iteration. In the second run we take between 700− 4000 of
the lowest energy eigenstates to define the renormalized impurity. The former optimization is used to
generate the reduced density matrix ρ̂RI at the renormalized impurity site by

ρ̂RI = trHC(|0〉Db Db〈0|). (3.55)

This density matrix is fed back into the FDM-NRG [79] routine to compute the high energy spectrum,
which we consider in more detail in the next subsection. There are two reasons for this procedure. On
the one hand, if the model has degenerate ground states the DMRG routine will converge to one of
them. The NRG routine will treat the degenerate ground states on equal footing, by constructing the
thermal density matrix. To ensure that the two routines display the spectral properties of the same
ground state we use the reduced density matrix obtained by the DMRG calculation as an input of the
FDM-NRG routine. On the other hand to obtain the low energy spectrum we use TEBD [2, 3, 4].
As we will see later it is numerically not desirable to have a large renormalized impurity. Therefore
we use the second optimization step to find an approximate ground state as a starting point for the
following tDMRG calculation.

The integrity of the obtained approximate ground state |0〉Db can be checked by calculating static
impurity properties and comparing those to exactly known static expectation values in the non-
interacting case U = 0. This can be done by projecting down the impurity operators of interest to
the RI. Here we consider the impurity operators n̂↑, n̂↓ and ĉ†↑ĉ

†
↓. The analytical results are obtained

by numerically integrating the corresponding spectral functions including the spectral weight of the
bound states, by using Eq. (A.9):

〈n̂↑〉
T=0=

∫ 0

−∞
dωÂ

ĉ↑ĉ
†
↑
(ω) = Â

ĉ↑ĉ
†
↑
(ω−) +

∫ −∆

−∞
dωÂ

ĉ↑ĉ
†
↑
(ω), (3.56)

〈n̂↓〉 = 1−
〈
ĉ↓ĉ
†
↓

〉
T=0= 1−

∫ 0

−∞
Â
ĉ†↓ĉ↓

(ω) = Â
ĉ†↓ĉ↓

(ω−) +
∫ −∆

−∞
dωÂ

ĉ†↓ĉ↓
(ω), (3.57)

〈
ĉ†↑ĉ
†
↓

〉
T=0=

∫ 0

−∞
dωÂ

ĉ†↓ĉ
†
↑
(ω) = Â

ĉ†↓ĉ
†
↑
(ω−) +

∫ −∆

−∞
dωÂ

ĉ†↓ĉ
†
↑
(ω). (3.58)

The comparison is summarized in Table (3.1). We find good agreement for all three considered
observables.
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Γ = 0.05 Γ = 0.05 Γ = 0.1 Γ = 0.5 Γ = 0.02
U = 0 εd = 0 εd = −0.05 εd = −0.1 εd = 0 εd = 0.02

∆ = 0.005 ∆ = 0.001 ∆ = 0.001 ∆ = 0.001 ∆ = 0.0001
〈n̂↑〉num = 0.500000 0.758237 0.764679 0.500000 0.246797
〈n̂↑〉ana = 0.500000 0.757612 0.764361 0.500000 0.246886
〈ĉ†↑ĉ

†
↓〉num = 0.071231 0.013303 0.007708 0.003798 0.004420

〈ĉ†↑ĉ
†
↓〉ana = 0.070799 0.013301 0.007706 0.003894 0.004419

Table 3.1.: Comparison between static impurity expectation values for different system parameters
(all non-interacting). The subscript (·)num indicates the calculation via MPS. The subscript (·)ana
means the calculation of the expectation value via numerical integration of the corresponding spectral
function. The expectation values for n̂↓ are the same as for n̂↑ up to the numerical precision and not
shown.

3.7. NRG approach to high energy spectral properties

As mentioned above, we use ĤN∗ as an approximation to Ĥ, when it comes to spectral properties
|ω| & D∗. To compute the high-energy spectrum the full density matrix approach (FDM) is been used
[79]. The idea is to construct the density matrix ρ̂FDM(T ) from the approximate eigenstates obtained
by the NRG procedure and compute the spectral function using the Lehmann representation. The
set of approximate eigenstates

{
|s, e〉Di

}
i∈1,...,N∗ forms a complete basis for Hilbert space H′ of the

Hamiltonian ĤN∗, if one discards all the states at the last iteration [80]. From this set of approximate
eigenstates the thermal density matrix is constructed by

ρ̂FDM(T ) =
∑
n,s,e

e−βE
n
s

Z
|s, e〉Dn

D
n〈s, e| =

∑
n

wn
∑
s

e−βE
n
s

Zn
=
∑
n

wnρ
D
n (T ), (3.59)

with Z = ∑
i,s,e e

−βEis the grand canonical partition sum, Zn = ∑
s∈Dn e

−βEis the partition sum in
the discarded space of shell n and wn the weight distribution of the ρDn ’s due to the environmental
degeneracy [79, 87].

At this point one feeds back the result from the DMRG calculation by replacing ρDN∗ with ρRI. For
numerical reasons we set T = 10−6 in the NRG part of the chain. After we have accessed the density
matrix of the system, we use it in the Lehmann representation, which is given by

ÂNRG
ÂB̂

(ω) =
∑

n1,s1,e1
n2,s2,e2

D
n1
〈s1, e1|Â |s2, e2〉Dn2

D
n2
〈s2, e2|[B̂, ρ̂FDM]± |s1, e1〉Dn1

δ(ω − En1
s1 + En2

s2 ). (3.60)

to compute the spectral function of two bosonic or fermionic operators Â and B̂. As the environmental
states only provide a degeneracy, this formula can be further tailored for the actual numerical treatment.
For a more detailed discussion we refer to [79].

Broadening NRG results

Since we consider a discretized system the spectral function will be a sum over separated delta
functions. To recover the continuum limit one performs a so-called frequency binning and a broadening
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3.8. TEBD - real-time evolution

procedure. This essentially means binning all the spectral weights in a frequency interval and replacing
the delta functions in this interval by a suitably chosen normalized broadening function g(ω, σiB)
positioned at the center of the frequency bin. Taking the superposition of different bins allows one to
approximately recover the continuum limit of the system. The parameter σiB is chosen to represent
the width of the considered frequency interval [87]. To improve the spectral resolution beyond the
limitations of the discretization an adaptive broadening scheme could be employed [88]. This procedure
was not included in this thesis. Another possibility to increase the spectral resolution in the NRG part
of the calculation would be to perform z-averaging, i.e. averaging discrete spectral data for different z
- shifts [63, 89, 90]. In this study we choose a so-called symmetric log-gaussian kernel to broaden the
spectral data in the NRG part of the chain and nz = 1, i.e. no z-averaging.

Comparison at high energies

A comparison between the NRG result and the exact result obtained from Eq. (2.53) for two
components of the spectral function can be found in Fig. (3.9). We find that the spectral function is
well represented by the NRG result for frequencies |ω| � D∗. Close to the cutoff scale D∗, the NRG
result begins to differ from the analytical result, going over to a broad peak at the gap edge, which
is a consequence of the broadening procedure. As expected, we observe that the quasi-particle peak
at the gap edge is not reproduced well enough. To resolve the peak close to the gap edge and subgap
features, which may arise, we now use the effective Hamiltonian. Let us elaborate on this in the next
section.

3.8. TEBD - real-time evolution

After the high energy spectrum has been obtained, we compute the spectral function Â
ĉ↑ĉ
†
↑
, or

analogously the other spectral functions of interest, by use of the effective Hamiltonian ĤD. This is
done by performing real-time evolution using the time evolution operator ÛD(t) = e−iĤDt to calculate
the retarded Green’s functions. The correlation functions to be computed for the retarded Green’s
function ĜR

ĉ↑ĉ
†
↑
(t) are given by

Ĝ>(t) = Db
〈0|eiĤDtĉRI↑e−iĤDtĉ†RI↑ |0〉Db , (3.61)

Ĝ<(t) = Db
〈0|eiĤDtĉ†RI↑e

−iĤDtĉRI↑ |0〉Db (3.62)

and are related to the retarded Green’s function by the identity

ĜR
ĉ↑ĉ
†
↑
(t) = −iΘ(t)

〈
[ĉ↑(t), ĉ†↑]+

〉
= −iΘ(t)(Ĝ>(t) + Ĝ<(t)∗). (3.63)

To compute these quantities we apply an adaptation of the tDMRG [2, 3, 4], more specifically TEBD.
The idea is to split the Hamiltonian ĤF into even and odd parts

ĤF = Ĥeven
F + Ĥodd

F =
∑
j,even

Ĥj
F +

∑
j,odd

Ĥj
F , (3.64)
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Figure 3.9.: Comparison between the continuum part of the components of the analytic spectral
function Aana obtained from Eq. (2.53) and the components of the spectral function ANRG by using
NRG. For all considered cases we find good agreement for high and intermediate frequencies. The
coarse resolution at lower frequencies leads to a too broad peak at the gap edge, leaking into the gap
by the broadening.
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with

Ĥj
F =

ĤRI if j = −1∑
σ gj ĉ

†
j,σ ĉj,σ + fj(ĉ†j,σ ĉj−1,σ + ĉ†j−1,σ ĉj,σ) if j ≥ 0

. (3.65)

The terms within the even and odd decomposition mutually commute with each other, as the considered
operators act on sites, which are at least next-nearest neighbors. However, the even and odd sites do
not necessarily commute with each other. To deal with this, we employ second order Suzuki-Trotter
decomposition [91? ] and approximate the time evolution operator as

ÛF (t) = ÛF (∆t)Nt =
[
e−iĤF∆t

]Nt
≈
[
ÛTEBD
F (∆t)

]Nt
=
[
e−iĤ

even
F

∆t
2 e−iĤ

odd
F ∆te−iĤ

even
F

∆t
2
]Nt

, (3.66)

where we introduced ∆t = t
Nt

[92]. Here Nt is the number of introduced Trotter steps in the time
interval [0, t], at which we compute the correlation functions. To generate the time series ÛTEBD

F (∆t)
is successively applied to the state ĉ†RI↑ |0〉Db and at every time step the overlap with ĉ†RI↑ |0〉Db e

−iE0t

is computed. Here E0 is the approximate ground state energy.

The computational time scales with the size of the RI, as in every trotter step the RI has to be
applied to the MPS. Therefore a RI with fewer states speeds up the time evolution. Furthermore, as
we will see below fewer states within the RI restrict the bond dimension during the time evolution and
allows us to compute longer time scales. However, this reduces the overlap of the spectral function
computed with NRG and DMRG, and may affects the approximate ground state.

Through time evolution the entanglement entropy usually increases exponentially with the time
steps taken, this is related to the fact that by this repeated application of the time evolution operator
one may leave the corner of Hilbert space characterized by a low entanglement structure. This means
during the time evolution we may lose the representability of the state as an MPS with numerically
accessible bond dimension Db. At some point the bond dimension Db may not enough to describe the
time evolved state accurately enough, we “hit the wall”. We deal with this problem in the following
way:
At every trotter step a singular value decomposition is performed, to truncate and recover the MPS
structure. Here we keep all singular values bigger than some threshold (between 10−4 and 10−5). This
means the bond dimension of a bond with index j serves as a proxy for the entanglement entropy of
this specific bond. During the time evolution more and more singular values become greater than the
threshold as the time evolved state may become more and more entangled and the bond dimension
increases. This is done until a bond reaches a certain bond dimension (usually 700-1500) or some
desired resolution r in the spectrum. The resolution of the spectrum is determined by the size of the
Trotter steps ∆t and the number Nt of Trotter steps taken. Since the high energy spectrum has been
already determined by the foregoing NRG routine we can start with a larger step size. Here the caveat
is that a too large step size accumulates a so-called Trotter error elaborated on more in the following
error analysis. We determine the step size ∆t by the highest (rescaled) energy Emax

RI within the RI as:

∆t ∝ 1
Emax
RI

, (3.67)

with a proportionality constant of order O(1). Similarly we determine the number of Trotter steps by
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the desired resolution r by

Nt ∝
εSN∗

r
, (3.68)

with an proportionality constant of order O(1). In practice we use r ≈ 10−2∆.

We find that in our model the increase of entanglement entropy during the time evolution only
becomes problematic, as we approach the quantum critical point (QCP). This is related to the fact
that for critical systems of fermions the area laws are violated, which leads to a logarithmic divergence
entanglement entropy in the continuum limit [74]. As a consequence the ground state is already
stronger entangled and limits therefore the time evolution. Apart from this we find that the bond
dimensions saturate (see Fig. (3.10)) on the time scales considered to compute the spectral function.
This might be related to the fact that we studied here a gapped system and/or is generic to a larger
class of models. Further investigations are needed to clarify this question. As mentioned before, we
find that taking less states within the RI, decreases the maximally reached bond dimension. From
this procedure we obtain a time series of the retarded Green’s function.
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Figure 3.10.: Bond dimension at bond (j, j + 1) as a proxy for the entanglement entropy vs. time
steps for the model parameters ∆ = 0.005 , Γ = 0.05 , U = − εd

2 = 0.2. The size of the RI is chosen
to be nRI = 700. One observes that close to the renormalized impurity (bonds j = −1 − 5) the
bond dimension rises up to high values indicating large entanglement in the proximity of the RI. By
considering higher bonds (j up to bond 29) a smooth crossover to smaller bond dimension can be
observed. For even higher bonds the bond dimension remains small, indicating that the contribution
of the Wilson chain from bond 30 on has product state character. The same calculation was also done
by with nRI = 4000. However, we could not reach the same number of time steps. The calculation
stopped, as we had reached the maximal bond dimension of 1000, within ≈ 400 timesteps.
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3.9. Broadening and patching scheme

3.9. Broadening and patching scheme

To access the low energy spectral function one has to perform a Fourier transform of the real-time
retarded Green’s function. Again a broadening scheme has to be applied to recover the continuum
limit. Since the RI also contains states within the logarithmic sector we broaden the spectral data
with a frequency dependent gaussian filter. The broadening width γ at a frequency ω is determined by
the guiding function ν(x). The rationale behind this is the following: A level at frequency ω contained
in an interval Idx = [ν(x(ω)); ν(x(ω) + dx)] is coarse grained due to the discretization, which limits
the reliable resolution at this frequency to the width of the interval. This means the discretization set
a lower bound for the resolution of the spectrum. After going over to a finite interval width dx→ ∆x
we approximate the width of the interval by

γ(ω) = dν

dx
(x(ω))∆x. (3.69)

Calculating the derivative leads to the following broadening width

γ(ω) = ∆x



√
(ω −D∗)2 log(Λ)2 + d2

l ω > D∗

dl |ω| ≤ D∗√
(ω +D∗)2 log(Λ)2 + d2

l ω < −D∗
, (3.70)

where ∆x remains as a free parameter. Usually we take a slightly higher dl, determined by the reached
resolution of the spectrum with the time evolution.

From this one infers the Green’s function ĜR
ĉ↑ĉ
†
↑
(ω) for frequencies |ω| < Emax

RI by

ĜR
ĉ↑ĉ
†
↑
(ω) =

∫ ∞
0

ĜR
ĉ↑ĉ
†
↑
(t)eiωt−γ(ω)2t2 , (3.71)

and the corresponding spectral function Â
ĉ↑ĉ
†
↑
(ω). The other correlation function of interest can be

computed analogously. Since we calculated the spectrum ÂNRG
ĉ↑ĉ
†
↑
in the frequency ranges |ω| ' D∗ with

NRG and ÂDMRG
ĉ↑ĉ
†
↑

for |ω| < Emax
RI via the real-time evolution method one has merge the two to obtain

the spectrum over the full range of energies. For this we employ a patching scheme, since due to
‘high’ energy states present in the RI, the two methods should give the same result in an intermediate
regime D∗ < |ω| < Emax

RI . This is done as follows: We identify the region of overlap between the two
methods in the energy window ω ∈ [D∗, Emax

RI ] respectively for negative frequencies, by defining the
lowest boundary ωp,− of overlap and the largest boundary of overlap ωp,+ by the smallest and the
greatest value of ω, such that ∣∣∣∣∣∣∣

ÂNRG
ĉ↑ĉ
†
↑

(ω)− ÂDMRG
ĉ↑ĉ
†
↑

(ω)

ÂNRG
ĉ↑ĉ
†
↑

(ω) + ÂDMRG
ĉ↑ĉ
†
↑

(ω)

∣∣∣∣∣∣∣ < ε (3.72)

is satisfied for all frequencies in between of ωp,− and ωp,+. The parameter ε is in our case is chosen to
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be ε = 0.05. In this frequency range we interpolate between the two spectral functions by

Âhyb
ĉ↑ĉ
†
↑
(ω) =



ÂDMRG
ĉ↑ĉ
†
↑

(ω) if ω ≤ ωp,−

(1− p(ω))ÂDMRG
ĉ↑ĉ
†
↑

(ω) + p(ω)ÂNRG
ĉ↑ĉ
†
↑

(ω) if ωp,− < ω < ωp,+

ÂNRG
ĉ↑ĉ
†
↑

(ω) if ωp,+ ≤ ω

, (3.73)

where p(ω) is a normalized cumulative distribution function on [ωp,−, ωp,+] with p(ωp,−) = 0. Here we
have chosen the beta distribution, defined by

β(y, a, b) = 1
N

∫ y

0
xa−1(1− x)b−1dx, (3.74)

where N =
∫ 1

0 x
a−1(1 − x)b−1dx, y = ω−ωp,−

ωp,+−ωp,− , with the parameters a = b = 3, to ensure a smooth
interpolation. The same procedure is applied to negative frequencies. Both methods usually overlap
in the considered frequency range as depicted in Fig. (3.11).

Merging both methods give some room for improvement. One conceivable approach would be to
use a two step broadening scheme, which brings both the NRG and the DMRG data to the same width
and then broaden both within a common scheme to the actual width. This would make the patching
scheme obsolete. However, due to the presence of high energy states within the RI one may overcount
the spectral weight in the overlap region of NRG and DMRG. Another option is to compute only the
matrix elements from the discarded-discarded and kept-discarded sector via NRG and use TEBD for
remaining low-energy sector. It turns out that this method produces numerical artifacts around the
energy scale of the highest level in the kept sector.
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3.9. Broadening and patching scheme

Figure 3.11.: Results of the patching scheme between the NRG part of the calculation and the TEBD
routine for different components (denoted by a/b) of the spectral function Â and different parameters
(denoted by 1/2).
ÂDMRG
ĉ↑ĉ
†
↑

indicates the result obtained by TEBD and the broadening scheme, ÂNRG
ĉ↑ĉ
†
↑

the one from

the NRG routine and Âhyb
ĉ↑ĉ
†
↑
the interpolated result. In all considered cases we observe good overlap

between the two methods. The very sharp feature at the gap edge in 2 a), b) are the Yu-Shiba-Rusinov
subgap states, which lie very close to the gap. The local maximum/minimum corresponds to the sharp
resonance at the gap edge. Since they are very close in frequency space, they are partially merged by
the broadening scheme.
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3.10. Benchmarking and error analysis

Although the described method offers a non-perturbative approach to spectral properties of the
considered model, there are still a number of possible sources of errors, which may spoil the numerical
result. Let us now discuss some of the expected main sources of error.

Discretization error: Since we consider a discretized version of the actual continuum model, one has
to expect deviations with respect to the continuum model, resulting from the discretization. Those
can in principle be estimated/controlled by refining the grid and comparing the results. We find
discretization errors, as for higher pair potential ∆/D ≥ 0.05 the gap in the numerical result is slightly
increased compared to the continuum model. This is visible as shifted local maximum/minimum close
to the Yu-Shiba-Rusinov peak depicted in Fig. (3.12, 2/3). To reduce this error one could decrease
the logarithmic discretization parameter Λ. From a practical point of view, this is limited to Λ ' 1.7,
as otherwise one has to keep impractically many states in the NRG iterations [88, 93]. As in the
calculation, we have chosen Λ = 1.8 a further reduction is hardly possible.

Trotter error: Using such a TEBD scheme to compute the correlation function usually suffers from
two sources of error, which limits the maximally reachable time and the accuracy. The so-called
trotter error comes from the noncommutativity of even and odd chain sites in the trotterization of the
time evolution operator, which can in principle be controlled by taking a smaller ∆t, as this error by
employing a second order Suzuki-Trotter decomposition scales as O(Nt∆t3). This error forbids us to
go to arbitrary small energy scales with the TEBD scheme with acceptable numerical resources. The
Trotter error could be eliminated by using the time-dependent variational principle (TDVP) [5, 6] as
the method of time evolution. However this method has other drawbacks [92].

Truncation error: Furthermore, TEBD suffers from a truncation error, already mentioned earlier in
the discussion, which is a result of the fact that we approximate the states during the time evolution
by truncating the bond dimension to a numerically accessible value, by discarding the singular values
smaller then a given threshold.

Benchmarking in the against analytical results

Despite these sources of error we find good agreement in the non-interacting case between the analytical
result (by employing Eq. (2.53)) and the numerics. The comparison is summarized in Fig. (3.12) for
three different sets of physical parameters. By construction the spectral functions obtained by NRG
fulfill the spectral sum rule on the basis of the discrete spectrum up to double precision and after
broadening to about 10−4 [87]. For the spectral part calculated within the tDMRG routine this is not
the case. We find that the spectral sum rule in the case, where no Yu-Shiba-Rusinov state is visible
(due to broadening) is better satisfied (Fig. (3.12, 1 a)) up to 10−4 and in the off-diagonal components
(Fig. (3.12), 1 b)) up to 10−9. As soon as a narrow subgap peak becomes visible the spectral sum
rule is violated up to a deviation of 2 · 10−2 in the diagonal components (Fig. (3.12, 2/3 a)) and up
to 10−8 in the off-diagonal components (Fig. (3.12 , 2/3 b)).
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Figure 3.12.: Comparison between the continuum part of the components of the analytic spectral
function Aana and the spectral function Ahyb after interpolation. We find for all considered cases good
agreement between the analytical result and the hybrid NRG-DMRG method. Let us be more specific
and discuss the deviations.
1 a)/b): The peak height at the edge of the continuum part is not correctly represented. However,
this is due to the broadening of the spectral data. This also explains the slightly leaking into the gap.
In this case the Yu-Shiba-Rusinov subgap states lie very close to the band edge and are broadened
into the continuum and therefore not distinguishable from it.
2/3 a)/b): The other case considered here, where the hybridization strength is reduced and the pair
potential enhanced. This has the effect that the supgap states move away from the gap edge and are
now visible as very narrow peaks close to the gap edge. We find that due to the discretization the gap
is slightly increased, which explains the shift in frequency space. The spectral weight of the bound
states is overestimated.
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Benchmarking against numerical results

Figure 3.13.: Comparison for the of the spectral function Â
ĉ↑ĉ
†
↑
. The panels a) and c) denote the result

obtained by the hybrid method, b) and d) the result from Ref. [19]. Mind the different scale on the
y-axis, as our results show slightly higher values at the band edge. For better visibility we removed
the spectral density from the subgap states in a).

We furthermore benchmark our results in the interacting case by comparing our results with the
results obtained solely by NRG from Ref. [19]. We generally find good agreement between our results,
which one can find in Fig. (3.13, a)/c)) and the one from Ref. [19], which are displayed in the panels
b)/d). Nevertheless, there are slight deviations. First of all, our result displays a higher spectral
density at the gap edge for the cases U/(πΓ) = 1 and U/πΓ = 2, which may be related to the fact
that the hybrid method offers higher resolution there. Furthermore the structure in our results shows
more details, for example we observe a qualitative difference between for U/πΓ = 2 and U/πΓ = 3,
where in the first case the ground state is a singlet and the ladder is a spin 1/2 doublet. Apart from
that, we find that in the spectral weight at the Hubbard side peaks in the doublet phase (U/πΓ)
spreads further and the peaks are reduced in height compared to Ref. [19]. As the spectral weight
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is overestimated by our method, we cannot compare the weight of the bound states with the NRG
calculation, nevertheless the position of the bound states is in agreement with Ref. [19]. Furthermore
the behavior that in the singlet phase the spectral weight of the subgap states increases and after
passing the QCP it drops down is captures within the method.

Summary

Let us summarize, what we have seen in this chaper. We have developed a novel hybrid NRG-
DMRG approch to spectral properties of an interacting Anderson impurity embedded in a BCS
superconductor. NRG was used to integrate out the high-energy degrees of freedom and to generate a
effective low-energy Hamiltonian. By DMRG we found the ground state of the system in a low-energy
subspace. We used FDM-NRG for the Hamilitonian ĤN∗ , which is an approximation to Ĥ, to compute
the high-energy spectrum. The low-energy spectral properties were obtained by projecting down the
impurity operators and performing real-time evolution using TEBD to access the retarded Green’s
function. After that we performed a Fourier transform to get the spectral function of interest. Since
the RI also contains high energy states NRG and the tDMRG result coincide at intermediate energy
scales, which allows to recover the spectrum over the full range by interpolating between the results.
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Let us now come back to the interacting model, which we will treat by using our hybrid NRG-DMRG
approach. We will focus on two regimes. The asymmetric model εd 6= −U/2 in the so-called valence-
fluctuation regime characterized by |εd| � Γ [41], and the symmetric model εd = −U/2, whose spectral
properties we study through the quantum phase transition. Let us start with the valence-fluctuation
regime.

4.1. Valence-fluctuation regime

We first consider the situation of relatively small gap of ∆ = 10−3 and a comparable large hopping
amplitude of Γ = 10−1 at vanishing impurity onsite energy εd. This means we are deep in the
valence fluctuation regime, characterized by a suppression of the Kondo effect [41]. Although the
interesting competition between the Kondo screening and BCS pair formation is nearly absent, the
considered parameters are of interest. The reason for this is twofold. First, we expect, that a mean-
field treatment give reasonable results to be compared with our numerical approach. Furthermore, the
large-gap limit indicates that no quantum phase transition is present for the chosen parameters. We
want to investigate, if this is the case and how the spectral properties change. Beyond that, impurities
in the valence-fluctuation regime are likely to exist in real systems [41]. Since we expect that the
Kondo effect is suppressed, the relevant physical scales are given by ∆ and the half bandwidth D. We
have done all the calculations in this section with the following numerical parameters:

Λ dl D∗ nKi nRI
1.8 7.5 · 10−6 1.15 · 10−3 4000 4000

Table 4.1.: Non-physical numerical parameters used for the calculation of the spectral functions in this
section.

Ground state properties

Let us start the discussion of the valence fluctuation regime with the properties of the ground state. As
already mentioned the ground state of the non-interacting model is a singlet for small hybridization,
characterized by a BCS structure. This means a superposition of the empty and doubly occupied
state at the impurity site. For a larger hybridization, as considered here, the ground state is no longer
be such a simple superposition, it also acquires single occupied components. Fig. (4.1) shows several
static ground state expectation values. As the interaction is turned on, we find that the weight of the
doubly occupied impurity components in the ground state configuration first rapidly decreases and
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4.1. Valence-fluctuation regime

then flattens for higher interaction strength. This can by seen by considering the expectation value of
n̂↑n̂↓, which is the projector to the doubly occupied sector. With 〈n̂↑n̂↓〉 also the impurity occupancy
is reduced in the same fashion, indicating that the single occupied components are not much affected
by the reduction of the former. The system turns its BCS type ground state into a state, where double
occupation is suppressed. This can be also recognized by considering the anomalous expectation value〈
ĉ†↑ĉ
†
↓

〉
, which quantifies the proximity effect at the impurity. We find that superconductivity at the

impurity site becomes reduced, due to the interaction.

Figure 4.1.: Impurity occupation of the ground state for both spin species, expectation value of the
projector to the doubly occupied sector and the anomalous expectation value vs. the interaction
strength. We observe a decrease in the impurity occupation with increasing interaction strength.

General features of the diagonal components

Let us proceed by discussing the spectral properties of the model in the valence fluctuation regime by
first considering A

ĉ↑ĉ
†
↑
. In Fig. (4.2, a)) we observe a similar structure as in the non-interacting case,

consisting of narrow peaks in the vicinity of the gap edge at ±∆ and broad shoulders on either side
of the frequency axis. By considering a linear scale, as depicted in Fig. (4.2, c)), we find that the two
shoulders correspond to a resonance of width ≈ Γ, which is broken by the spectral gap ranging from
−∆ to ∆. For smaller interaction strength U/D = 0.05 and U/D = 0.2 we find for negative frequencies
a barely visible dip at intermediate scales ω/D ≈ −10−2 in the spectral function. When increasing the
interaction, spectral weight is shifted from negative frequencies to positive frequencies, forming the
peak structure. This peak is reduced in height and slightly shifted towards higher energies by further
increasing the interaction. This has also the effect that the height of the near-gap peak is reduced and
a stronger asymmetric behavior with higher spectral density at the side of the resonance is observed.
This is similar to the non-interacting model, where a charge peak corresponding to the atomic level
position on either side of the frequency axis affects the quasiparticle resonance. Additionally, the
near-gap resonance close to the gap edge becomes narrower (Fig. (4.2, b)). We expect that for large
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values of U the quasiparticle resonance is largely reduced and the peaks in the vicinity of the gap
edge are Yu-Shiba-Rusinov states. We see no evidence of a separated charge and Kondo peak. The
subgap states lie very close to the gap or are even pushed out of the subgap region, this cannot be
resolved accurately enough by the method. Therefore, by the finite resolution of the TEBD method
and broadening, they may become indistinguishable from the near-gap resonances. This behavior of
the Yu-Shiba-Rusinov excitations in the parameter range Γ � ∆ is in accordance to Ref. [41]. Also
our mean-field calculations suggest for all considered cases that the supgap states lie very close to the
gap.

Figure 4.2.: Diagonal component of the spectral function A
ĉ↑ĉ
†
↑
for ∆ = 10−3 and Γ = 10−1 at no

onsite energy εd = 0 for several interaction strengths U plotted on log scale a), with zoom onto the
gap on linear scale b) and on enlarged, linear scale c).
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Renormalized impurity level

Let us work out the origin of the side peak a bit further. This peak corresponds to an impurity level
renormalized by the superconducting bath and broadened by the hybridization. The position of the
level is different to the usual Hubbard side peaks in the case ∆ = 0 at εd + U .

To underpin this claim we consider some kind of atomic limit. We discretize the bath only very
coarsely, by choosing only one energy representative for each particle flavor on both sides of the
frequency axis. This amounts in a 64 dimensional Hamiltonian, whose spectral function we compute
by doing real-time evolution followed by a Fourier transform. As one can see in Fig. (4.3), we find
that the level position obtained by this procedure matches closely the one from our hybrid method.

Figure 4.3.: Comparison between the high energy level position ωatom obtained by considering the
atomic limit and the result from our hybrid method.

Features of the off-diagonal components

After we have investigated the diagonal components and its features let us now discuss the off-diagonal
components of the spectral function. Again, we observe similar behavior to the non-interacting case,
with peaks close to the band edge and a featureless quickly decaying tail for higher energies as depicted
in Fig. (4.4). The peak structure is more suppressed by increasing the interaction and becomes
narrower, as in the case of the diagonal components. The structure remains also for high values
of the interaction similar to the non-interacting case. Although the off-diagonal spectral functions
look symmetric, they are not. There are slight inequivalences at the energy scale of the atomic level
position, not visible at the depicted scale.

Suppression of Kondo correlations

In the beginning of this section it was stated that correlations due to the Kondo effect are suppressed.
The formation of a Kondo singlet requires a magnetic moment at the impurity, i.e. moderate weight in
the single occupied components. The static expectation values suggest that, although the ground state
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4. The interacting model and numerical results

Figure 4.4.: Off-diagonal components Âĉ↑ĉ↓ for negative (a)) and positive (b)) frequencies plotted on
log-scale.

has single occupied components at the impurity, their weight in the reduced density matrix remains
more or less constant. This suggests that the Kondo effect is less dominant for this set of parameters
and the physics is primarily described by the suppression of the doubly occupied component and the
proximity effect.

These qualitative arguments can be underpinned by comparing the mean-field results and the
results from the hybrid method. We find good agreement up to a moderate value of U/D ≤ 0.2 for
the diagonal and off-diagonal components, as depicted in Fig. (4.5) and the same type of behavior of
the mean-field solution up to U/D = 0.4. However, for larger values of the interaction strength the
mean-field solution shows a qualitatively different behavior, where the quasiparticle peak is completely
suppressed and a charge peak at U/2 becomes visible. To our impression the formation of a Kondo

Figure 4.5.: Comparison between the mean-field result and the hybrid result

singlet is present only to a very limited degree and the failure of mean-field theory may be traced
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4.1. Valence-fluctuation regime

back to the presence of charge fluctuations, made possible by depleting the impurity occupation of
the ground state.

Up to high values of the interaction strength no quantum phase transition occurs. This is in
accordance to the result obtained by the large-gap limit and the phase diagram for finite U by Ref.
[19] using NRG.

The effect of hybridization

Before we come to the symmetric model let us briefly study the effect of the hybridization on the
spectral function. Here we fix the interaction strength to U/D = 0.2 and consider the gap constant ∆
and the onsite energy εd as before. By increasing the hybridization of the impurity with the bath, we
find a reduction of the quasiparticle peak and also a suppression of the proximity effect. As expected,
a larger hybridization leads to a stronger broadening of the atomic level produced by the interaction.
Interestingly, it also reveals that the level position depends on Γ as depicted in the inset of Fig. (4.6).
A large hybridization makes it possible to have band edge scattering at energies ω ≈ D, which is not
well resolved by the coarse resolution of NRG at very high frequencies.

Figure 4.6.: Diagonal spectral function at fixed interaction strength U and pair potential ∆ for various
hybridization constants Γ.
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4.2. Kondo regime and the quantum critical point

Let us now consider the situation, where we fix the impurity occupation to one by adjusting the
impurity onsite energy εd = −U

2 . This means we consider particle-hole symmetry. We choose for the
hybridization with the bath a smaller value of Γ = 0.05 and increase the pair potential to ∆ = 0.005.
Here the physics is different to the previously discussed case, as turning on the interaction does not
lead to a depletion of the impurity, since the filling is fixed. The Kondo effect plays a significant role in
this case. Therefore the relevant scales are the pair potential ∆ and the Kondo temperature TK, which
is determined by the quotient U/Γ. We have done all the calculations with the following numerical
parameters:

Λ dl D∗ nKi nRI
1.8 3.75 · 10−5 5.7 · 10−3 4000 700

Table 4.2.: Non-physical numerical parameters used for the calculation of the spectral functions in this
section.

Ground state properties

Let us again start the discussion by considering the ground state properties for various values of
the interaction strength. Due to the adjustment of the impurity onsite energy to the particle-hole
symmetric point, the occupancy is fixed to one. We observe that by increasing the interaction strength
the double occupancy of the impurity becomes less favorable. Since the impurity filling is fixed the
corresponding weight in the ground state is transferred to the single occupied components. This

Figure 4.7.: Impurity occupation of the ground state for both spin species, expectation value of the
projector to the doubly occupied sector and the anomalous expectation value vs. the interaction
strength.
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4.2. Kondo regime and the quantum critical point

suggests that the ground state of the system is transformed continuously from a more BCS like at
small U state to a more Kondo type of ground state at intermediate U , which at larger U undergoes a
level crossing to a magnetic spin 1/2 doublet. This situation is depicted in Fig. (4.7). The anomalous
expectation value decreases continuously up to the quantum critical point, where the level crossing
from a singlet ground state to the spin 1/2 doublet takes place. There the anomalous expectation value
changes discontinuously to a negative value, i.e. the local order parameter acquires a phase shift of π
at the point of the quantum phase transition. In the same fashion also 〈n̂↑n̂↓〉 changes discontinuously.
The thermal expectation values in the doublet phase have been obtained by symmetrization of the
expectation values for one of the two ground states, by making use of the time-reversal symmetry of
the problem.

After we have discussed the ground state properties of in the different regimes of the system let us
now come to the corresponding excitation spectra by considering the diagonal spectral function.

General features of the diagonal components

The structure of the diagonal components is quite different from the case that we have seen before.
The spectral function Â

ĉ↑ĉ
†
↑
is depicted in Fig. (4.8). By turning on the interaction, the near-gap

peaks decrease in height and change their shape from strongly peaked, similar to the non-interacting
case, to a broader peak, with a maximum farther away. We interpret this as the transition from
a more BCS like ground state, which shows the quasiparticle peak, to a more Kondo like ground
state, which shows for increasing interaction the Hubbard side peaks at ±U/2 and an increase in the
spectral density closer to the gap edge by an onset of the Abrikosov-Suhl resonance. However, due to
the gapped hybridization the resonance cannot fully develop and drops down to zero at the gap edge.
As one increases the interaction the Kondo temperature decreases (in the considered symmetric case).
Therefore the developing Kondo resonance narrows. We also observe that the resonance decreases
in height. This means that the energy gain from forming a Kondo singlet with the bath decreases
and the subgap states move towards the Fermi energy. The ground state becomes less stable. At the
point where the Yu-Shiba-Rusinov states cross the Fermi level the quantum phase transition takes
place. The bound states and the ground state exchange their position and the new ground state is
now a degenerate spin 1/2 doublet state. After the transition has taken place, by further increasing
the interaction the former ground state moves back to the gap edge, carrying less spectral weight than
the doublet states. This transition marks the boundary from a screened singlet ground state to an
unscreened local moment. By increasing the interaction the local moment becomes more localized at
the impurity. A change can be also seen in the structure of the continuum part, where the onset of
the Kondo resonance is not present anymore and the spectral function extends with a smaller value
closer to the gap edge. This can be seen on a log scale depicted in Fig. (4.8 a)). We find that already
for U/Γ = 1 mean-field theory predicts a magnetic symmetry breaking, which we clearly not observe
using the hybrid method. However, it is well known that mean-field theory predicts a phase transition
at a smaller critical interaction, as it is observed for example in NRG calculations, see Ref. [41] for
further information. This shows that fluctuations are important in stabilizing the singlet phase up to
the quantum critical point.
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4. The interacting model and numerical results

Figure 4.8.: Spectral function Â
ĉ↑ĉ
†
↑
(ω) on log-scale a) for negative frequencies, on linear scale for

positive frequencies b), with zoom into the gap edge c) and general continuum part on linear scale in
d). Note that by symmetry positive and negative frequencies have to coincide, nevertheless plotted on
the log-scale the change in the behavior of the spectral function before and after the quantum phase
transition near the gap can be observed. On the linear scale b) the widespread impurity level for
U/Γ = 20 is more clearly visible.
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4.2. Kondo regime and the quantum critical point

The quantum critical point

Figure 4.9.: Position ω+ of the maximum of the positive subgap peak for the spectral function Â
ĉ↑ĉ
†
↑

vs. the interaction strength. We see that for rising interaction strength the subgap peaks tend towards
the ground state and exchange the position at the quantum critical point. ps and pd denote the fitted
parabolas (see main text).

In Fig.(4.9) we visualize the movement of the Yu-Shiba-Rusinov states as the ground state becomes
more and more unstable due to the interaction at the impurity. To get an estimate for the quantum
critical point we fit two parabolas separately to the branch in the singlet phase and the branch in the
doublet phase. This is motivated by the structure of mean-field Eq. (2.64) and the behavior of ω+.
From this we estimate the quantum critical point as Uc/Γ ≈ 9.2.

Features of the off-diagonal components

Let us now come to the off-diagonal component Âĉ↑ĉ↓ , which is visualized in Fig. (4.10). Here the
the transition from a BCS like behavior to the Kondo like behavior causes a reduction of the peak
structure close to the gap for small values of the interaction. By increasing the interaction the structure
changes, the peak reduces further and the tail of the spectral function changes sign. Closer to criticality
(U/Γ = 8) the peak has transformed into a broad hollow and its sign has flipped completely in the
continuum part of the spectral function. Only the spectral peak of the bound state has still the same
sign as before. The weight of the bound state exceeds the corresponding continuum part in this case
and

〈
ĉ†↑ĉ
†
↓

〉
is still positive. After crossing the quantum critical point (U/Γ = 15) also the bound

state has flipped its sign and the continuum contribution is to a large extend gone. This means the
remaining anomalous behavior stems to a large extend from the bound states.
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Figure 4.10.: Continuum part and bound states of the spectral function Âĉ↑ĉ↓ for various interaction
strengths.

Conclusion

Let us conclude this chapter by briefly reviewing the main results.
In the valence-fluctuation regime the doubly occupied component of the ground state is suppressed

by increasing the interaction at the impurity site. This leads to a suppression of the proximity effect
quantified by the anomalous expectation value

〈
ĉ†↑ĉ
†
↓

〉
. The single occupied components seem to remain

largely unaffected by the depletion of the impurity. During this process spectral weight is shifted from
negative to positive frequencies forming a resonance at higher energies, which can be understood as
a by the superconducting bath renormalized atomic level. The level position also depends on the
hybridization strength. Close to the gap edge form sharp resonances, which at are a combination of
the close lying Yu-Shiba-Rusinov subgap states and the near-gap resonances displaying Bogoliubov
quasiparticles for small interaction and for increasing interaction to a large extend the former. No
phase transition is observed up to high values of the interaction.

In the particle-hole symmetric case the doubly occupied component of the ground state is also
reduced, but due to the fixed filling the weight is transferred to the single occupied components. We
observe that superconductivity at the impurity site becomes suppressed and the ground state gets
more the character of a Kondo singlet. This can also be observed in the spectral function, where we
see a transition from BCS typical near-gap peaks to the formation of U/2 side peaks and the onset of
Kondo resonance at lower energies. For large enough interaction the ground state becomes unstable
and a level crossing of the singlet ground state and the subgap states occurs. In the doublet ground
state the diagonal spectral function shows generally a broader behavior with U/2 side peaks.
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5. Summary and outlook

In this thesis we studied the spectral properties of an Anderson impurity embedded in a s-wave
superconductor. First we took a look at the analytically solvable (extreme) cases and figured out
some of the characteristic features of the model, for example the Yu-Shiba-Rusinov subgap states, the
near-gap resonances or the origin of the quantum phase transition in the infinite gap limit.

After this we turned towards more general cases, for which we further extended the hybrid NRG-
DMRG method, to capture sharp features in or close to the gap and the Kondo effect. This was
done by using NRG to zoom into the low-energy sector of the model, by “integrating out” high-
energy modes and constructing an effective low-energy Hamiltonian. Using DMRG we were able to
find an accurate approximation of the ground state in this low-energy subspace, which was tested
by computing static ground state expectation values and comparing the results with the analytical
approach. Subsequently, this ground state approximation was used to compute different components
of the spectral function by performing real-time evolution within the framework of TEBD. A for this
purpose developed broadening scheme allowed us to recover the continuum limit from the discretized
model.

We tested our numerical approach in the non-interacting case against previously derived analytical
results and found that the hybrid NRG-DMRG method is capable to resolve the spectral features
accurately. By comparing with NRG results from Ref.[19] in the interacting case we found good
agreement. Furthermore, due to high resolution of the hybrid method at the gap edge, we were able
to show a qualitative change in the spectral properties before and after the quantum phase transition.

This has set the stage for the investigation of the valence-fluctuation regime, where we found
the formation of resonance at higher energies, as a consequence of a by the superconducting bath
renormalized impurity level. Apart from this feature we found similar behavior to the non-interacting
model. At last we investigated the spectral features of the model in the particle-hole symmetric case,
where we found in accordance to previous publications [19, 41] a quantum phase transition and signs
of a Kondo resonance.

These results for the hybrid NRG-DMRG method are promising for further projects and
investigations. On the technical side a short term goal would be to extend the method to other
dynamical quantities, for example to the computation of dynamical spin- and charge susceptibilities
or to test the performance of the method for a pseudo-gap system. In the long run the use of the
Anderson impurity embedded in an superconductor as an effective impurity model in the context of
DMFT with the hybrid NRG-DMRG method used as an impurity solver could be beneficial to the
investigation of strongly-correlated systems.
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A. Appendix

A.1. Basic properties of the spectral function

In this section we provide a brief summary of the main properties of spectral functions used in the
main text. This is mainly standard material presented in textbooks see for example [24, 34]. To
investigate the properties of a spectral function ÂÂ,B̂ we consider the Lehmann representation [94] of
the retarded Green’s function. We rewrite the retarded Green’s function by evaluating the trace in
the eigenbasis of Ĥ.

ĜR
ÂB̂

(t) = −iΘ(t)
〈

[Â(t), B̂]
〉

= − iΘ(t)
Z

tr
(
e−βĤ [Â(t), B̂]

)
= − iΘ(t)

Z

∑
x

〈x| [Â(t), B̂]ξ |x〉 e−βEx ,

(A.1)
where the sum over x denotes a summation over a complete set of eigenstates |x〉 with energy Ex of
the Ĥ, with ξ = 1 for bosons and ξ = −1 for fermions. Z denotes the grand canonical partition sum.
After inserting a resolution of identity 1 = ∑

y |y〉 〈y| of eigenstates |y〉 of the Hamiltonian one finds
for the Green’s function the expression

ĜR
ÂB̂

(t) = − iΘ(t)
Z

∑
x,y

〈x| Â |y〉 〈y| B̂ |x〉 e−i(Ey−Ex)t
[
e−βEx − ξe−βEy

]
. (A.2)

Fouriertransforming yields the intermediate result

ĜR
ÂB̂

(ω) =
∫ ∞
−∞

dtĜR
ÂB̂

(t)eiωt = 1
Z

∑
x,y

〈x| Â |y〉 〈y| B̂ |x〉
[
e−βEx − ξe−βEy

]
ω − (Ey − Ex) + i0+ . (A.3)

By using our definition of the spectral function, Eq. (2.10), which is reads

ÂÂB̂(ω) := − 1
2πi

[
ĜR
ÂB̂

(ω)− ĜR
B̂†Â†

(ω)∗
]
, (A.4)

and applying the Sokhotski–Plemelj theorem (see e.g. [95]) to Eq. (A.3) one can write down the
Lehmann-representation of the spectral function as

ÂÂB̂(ω) = 1
Z

∑
x,y

〈x| Â |y〉 〈y| B̂ |x〉
[
e−βEx − ξe−βEy

]
δ(ω − Ey + Ex). (A.5)

By integrating the spectral function over the whole frequency range we find that∫ ∞
−∞

dωÂÂB̂(ω) = 1
Z

∑
x,y

e−βEx
[
〈x| Â |y〉 〈y| B̂ |x〉 − ξ 〈x| B̂ |y〉 〈y| Â |x〉

]
=
〈

[Â, B̂]ξ
〉
. (A.6)
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In the special case, where one considers a pair of operators Â and B̂ with [Â, B̂]ξ = 1 one obtains that
the spectral density normalizes to one, i.e.∫ ∞

−∞
dωÂÂB̂(ω) = 1. (A.7)

For (anti-) commuting operators [Â, B̂]ξ = 0̂ holds, that the spectral density integrates to 0, this
means ∫ ∞

−∞
dωÂÂB̂(ω) = 0. (A.8)

Apart from that, integrating the spectral function ÂÂB̂(ω) weighted by a Fermi- or correspondingly
a Bose-Einstein distribution function, gives access to the expectation value

∫ ∞
−∞

dω
ÂÂB̂(ω)
eβω − ξ

= 1
Z

∑
x,y

〈x| Â |y〉 〈y| B̂ |x〉 e
−βEx − ξe−βEy
eβ(Ey−Ex) − ξ

= 1
Z

∑
x,y

e−βEy 〈x| Â |y〉 〈y| B̂ |x〉 =
〈
B̂Â

〉
. (A.9)

A.2. Derivation of the symmetry relations

In this section we provide explicit calculations for the in the main text mentioned symmetry properties
of the Hamiltonian and the resulting relations between different components of the spectral function.
Review that the considered Hamiltonian reads

Ĥ = Ĥdot + Ĥhyb + Ĥbath + Ĥ∆, (A.10)

where the terms are defined as before by

Ĥdot =εd(n̂d↑ + n̂d↓) + Un̂d↑n̂d↓, Ĥhyb = |t|√
V

∑
k,σ

ĉ†dσ ĉkσ + ĉ†kσ ĉdσ, (A.11)

Ĥbath =
∑
k,σ

(εk − µ)ĉ†kσ ĉkσ, Ĥ∆ = −|∆|
∑

k
ĉ−k↓ĉk↑ + ĉ†k↑ĉ

†
−k↓. (A.12)

Time-reversal symmetry

We want to show that Ĥ = T̂ †ĤT̂ . We therefore consider the action of T̂ on the individual parts of
the Hamiltonian. Note, that the spin-specific density is mapped onto each other, by

T̂ †n̂σT̂ = T̂ †ĉ†σT̂ T̂ †ĉσT̂ = σ2n̂−σ, (A.13)

where σ denotes the considered spin component. This readily shows that the Ĥdot is invariant under
the action of T̂ . Furthermore we compute

T̂ †ĉ†σ ĉkσT̂ = σ2ĉ†−σ ĉ−k−σ, (A.14)
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where we have used T̂ †ĉ†kσT̂ = σĉ†−k−σ. After relabeling the summation indices (k, σ)→ (−k,−σ) we
find that also Ĥhyb is invariant. Let us now consider the bath Hamiltonian. The individual terms in
transforms according to

T̂ †ĉ†kσ ĉkσT̂ = σ2ĉ†−k−σ ĉ−k−σ. (A.15)

Again, by relabeling the summation index and assuming that ε−k,−σ − µ = εk,σ − µ, we observe that
Ĥbath is invariant under this transformation. At last we consider the pairing term, which transform
according to

T̂ †ĉ−k↓ĉk↑T̂ = −ĉk↑ĉ−k↓ = ĉ−k↓ĉk↑, (A.16)

and is therefore invariant under the time reversal operator. Summarizing all cases, this means that
the Hamiltonian Ĥ commutes with the time reversal operator.

Furthermore we show the relation of the off-diagonal components, by employing the Lehmann
representation. From this as a starting point we find the expressions

Âĉ↑ĉ↓(ω) = 1
Z

∑
x,y

〈x| ĉ↑ |y〉 〈y| ĉ↓ |x〉
[
e−βEx − ξe−βEy

]
δ(ω − Ey + Ex) (A.17)

=− 1
Z

∑
x,y

〈T̂ x| ĉ↓ |T̂ y〉
∗ 〈T̂ y| ĉ↑ |T̂ x〉

∗ [
e−βEx − ξe−βEy

]
δ(ω − Ey + Ex). (A.18)

The state |x〉 and its time reversed state |x′〉 = |T̂ x〉 have the same energy Ex = Ex′ as the
Hamiltonian commutes with the time reversal operator. We relabel therefore the summation by
x′ and y′. Continuing the derivation leads to

Âĉ↑ĉ↓(ω) =− 1
Z

∑
x,y

〈T̂ x| ĉ↓ |T̂ y〉
∗ 〈T̂ y| ĉ↑ |T̂ x〉

∗ [
e−βEx − ξe−βEy

]
δ(ω − Ey + Ex) (A.19)

=− 1
Z

∑
x′,y′

〈x′| ĉ↓ |y′〉
∗ 〈y′| ĉ↑ |x′〉

∗ [
e−βEx′ − ξe−βEy′

]
δ(ω − Ey′ + Ex′) (A.20)

=− 1
Z

∑
x′,y′

〈y′| ĉ†↓ |x
′〉 〈x′| ĉ†↑ |y

′〉
[
e−βEx′ − ξe−βEy′

]
δ(ω − Ey′ + Ex′) (A.21)

=− 1
Z

∑
x′,y′

〈y′| ĉ†↓ |x
′〉 〈x′| ĉ†↑ |y

′〉
[
e−βEx′ − ξe−βEy′

]
δ(−ω − Ex′ + Ey′) (A.22)

=− Â
ĉ†↓ĉ
†
↑
(−ω), (A.23)

which shows the desired property.

Particle-hole symmetry

Note that the Hamilitonian is only particle-hole symmetric in the case εd = −U
2 . This allows to rewrite

the dot Hamiltonian Ĥdot as

Ĥdot = εd
2 1 + U

2 (n̂↑ −
1
21)(n̂↓ −

1
21). (A.24)
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by the transformation ĈĉσĈ† = −ĉ†−σ and ĈĉkσĈ† = ĉ†−k,−σ, the occupation operator n̂σ is mapped
to 1− n̂−σ, i.e. we can observe that the dot Hamiltonian is invariant under this transformation. For
Ĥhyb we consider:

Ĉĉ†kσ ĉσĈ
† + Ĉĉ†σ ĉkσĈ† = ĉ†−k,−σ ĉ−σ + ĉ†−σ ĉ−k−σ (A.25)

relabeling the summation indices (k, σ) → (−k,−σ) gives the desired result. By looking at the
transformation behavior of the pairing terms we see:

Ĉĉ−k↓ĉk↑Ĉ† + Ĉĉ†k↑ĉ
†
−k↓Ĉ

† = ĉ†k↑ĉ
†
−k↓ + ĉ−k↓ĉk↑ (A.26)

i.e. the pairing is invariant under this transformation. Let us now consider the bath Hamiltonian, by
the symmetry transformation it is mapped to

ĈĤbathĈ† =
∑
k,σ

(εk,σ − µ)Ĉĉ†k,σĈ
†Ĉĉk,σĈ† =

∑
k,σ

(εk,σ − µ) +
∑
k,σ

(µ− εk,σ)ĉ†−k,σ ĉ−k,−σ. (A.27)

we now make use of the assumption that the bath dispersion relation is particle hole symmetric:
µ − ε−k,−σ = εk,σ − µ. Which leads to the invariance of the lead Hamiltonian if we relabel the
summation indices accordingly and use that we consider a symmetric bath around the Fermi energy.
This shows that the Hamiltonian is invariant under a particle hole transformation.

SU(2) Spin - symmetry

Here we show that the Hamiltonian under consideration does not excibit a SU(2) - spin symmetry, by
computing the commutator with pairing term. We consider the Hamiltonian:

Ĥ∆ = −∆
∑

k
(ĉ†k↑ĉ

†
−k↓ + ĉ−k↓ĉk↑) (A.28)

We want to check if the pairing term has SU(2)-Spinsymmetry. For this we are calculating the
commutators,

[Sz, Ĥ∆], [S+, Ĥ∆] , [S−, Ĥ∆]. (A.29)

The third one can be derived from the second one, and the first commutator vanishes. So it is enough
to calculate the second one. We start by plugging in the definition of the commutator,

[S+, Ĥ∆] = −∆
∑
k,q

[ĉ†k↑ĉk↓; ĉ†q↑ĉ
†
−q↓ + ĉq↓ĉ−q↑] (A.30)

= −∆
∑
k,q

[ĉ†k↑ĉk↓; ĉ†q↑ĉ
†
−q↓] + [ĉ†k↑ĉk↓; ĉq↓ĉ−q↑]. (A.31)

Now consider the first term, which we simplify by,

[ĉ†k↑ĉk↓; ĉ†q↑ĉ
†
−q↓] = ĉ†k↑ĉk↓ĉ

†
q↑ĉ
†
−q↓ − ĉ

†
q↑ĉ
†
−q↓ĉ

†
k↑ĉk↓ (A.32)

= ĉ†q↑ĉ
†
k↑(δk,−q − ĉ†−q↓ĉk↓)− ĉ†q↑ĉ

†
−q↓ĉ

†
k↑ĉk↓ (A.33)

= δk,−qĉ
†
q↑ĉ
†
k↑, (A.34)
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and the second term

[ĉ†k↑ĉk↓; ĉ−q↓ĉq↑] = ĉ†k↑ĉk↓ĉ−q↓ĉq↑ − ĉ−q↓ĉq↑ĉ
†
k↑ĉk↓ (A.35)

= −ĉ−q↓ĉ
†
k↑ĉq↑ĉk↓ − ĉ−q↓ĉq↑ĉ

†
k↑ĉk↓ (A.36)

= −ĉ−q↓(δk,q − ĉq↑ĉ
†
k↑)ĉk↓ − ĉ−q↓ĉq↑ĉ

†
k↑ĉk↓ (A.37)

= −δk,qĉ−q↓ĉk↓. (A.38)

From this we conclude the full commutator as

[S+, Ĥ∆] = −∆
∑

k
ĉ†k↑ĉ

†
−k↑ − ĉ−k↓ĉk↓. (A.39)

The Casimiroperator of the SU(2) Spinsymmetry is given by

S2 = S2
z + S2

x + S2
y = S2

z + 1
4(S+ + S−)2 − 1

4(S+ − S−)2 = S2
z + 1

2(S+S− + S−S+). (A.40)

As mentioned before [Sz; Ĥ∆] = 0. What remains is,

[S2; Ĥ∆] = 1
2([S+S−; Ĥ∆] + [S−S+; Ĥ∆]) = 1

2([S+; Ĥ∆]S− + S+[S−; Ĥ∆] + [S−; Ĥ∆]S+ + S−[S+; Ĥ∆])

(A.41)

Using furthermore the following relation,

[S+; Ĥ∆]† = (S+Ĥ∆)† − (Ĥ∆S+)† = Ĥ∆S− − S−Ĥ∆ = −[S−; Ĥ∆], (A.42)

one concludes that
[S−, Ĥ∆] = −∆

∑
k
ĉ†k↓ĉ

†
−k↓ − ĉ−k↑ĉk↑. (A.43)

This allows on the write down the full commutator as

− [S2; Ĥ∆]
∆ =

∑
q,k

ĉ†k↑ĉ
†
−k↑ĉ

†
q↓ĉq↑ − ĉ−k↓ĉk↓ĉ

†
q↓ĉq↑ (A.44)

+
∑
q,k

ĉ†q↑ĉq↓ĉ
†
k↓ĉ
†
−k↓ − ĉ

†
q↑ĉq↓ĉ−k↑ĉk↑ (A.45)

+
∑
q,k

ĉ†k↓ĉ
†
−k↓ĉ

†
q↑ĉq↓ − ĉ−k↑ĉk↑ĉ

†
q↑ĉq↓ (A.46)

+
∑
q,k

ĉ†q↓ĉq↑ĉ
†
k↑ĉ
†
−k↑ − ĉ

†
q↓ĉq↑ĉ−k↓ĉk↓. (A.47)
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A. Appendix

One can write this more compactly, by recognizing that the first and the fourth and the second and
the third line are the same. This leads to

− [S2; Ĥ∆]
∆ = 2

∑
q,k

ĉ†k↑ĉ
†
−k↑ĉ

†
q↓ĉq↑ − ĉ−k↓ĉk↓ĉ

†
q↓ĉq↑ (A.48)

+ 2
∑
q,k

ĉ†q↑ĉq↓ĉ
†
k↓ĉ
†
−k↓ − ĉ

†
q↑ĉq↓ĉ−k↑ĉk↑. (A.49)

We conclude that [S2, Ĥ∆] 6= 0, since we have different number and species of creation an annhilation
operators present. The remaining term displays some triplet pairing structure not present in the
original Hamiltonian.
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