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The full-density-matrix numerical renormalization group has evolved as a systematic and transparent setting
for the calculation of thermodynamical quantities at arbitrary temperatures within the numerical renormalization
group (NRG) framework. It directly evaluates the relevant Lehmann representations based on the complete basis
sets introduced by Anders and Schiller [Phys. Rev. Lett. 95, 196801 (2005)]. In addition, specific attention is
given to the possible feedback from low-energy physics to high energies by the explicit and careful construction
of the full thermal density matrix, naturally generated over a distribution of energy shells. Specific examples are
given in terms of spectral functions (fdmNRG), time-dependent NRG (tdmNRG), Fermi-golden-rule calculations
(fgrNRG) as well as the calculation of plain thermodynamic expectation values. Furthermore, based on the very
fact that, by its iterative nature, the NRG eigenstates are naturally described in terms of matrix product states, the
language of tensor networks has proven enormously convenient in the description of the underlying algorithmic
procedures. This paper therefore also provides a detailed introduction and discussion of the prototypical NRG
calculations in terms of their corresponding tensor networks.
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I. INTRODUCTION

The numerical renormalization group (NRG)1–3 is the
method of choice for quantum impurity models. These consist
of an interacting local system coupled to noninteracting
typically fermionic baths, which in their combination can
give rise to strongly correlated quantum-many-body effects.
Through its renormalization group (RG) ansatz, its collective
finite size spectra provide a concise snapshot of the physics of
a given model from large to smaller energies on a logarithmic
scale. A rich set of NRG analysis is based on these finite size
spectra, including statistical quantities that can be efficiently
computed within a single shell approach at an essentially
discrete set of temperatures tied to a certain energy shell.3–5

Dynamical quantities such as spectral functions, however,
necessarily require to combine data from all energy scales.
Since all NRG iterations contribute to a single final curve,
traditionally it had not been clear how to achieve this in a
systematic clean way, specifically so for finite temperatures.

The calculation of spectral properties within the NRG
started with Oliveira and Wilkins6,7 in the context of x-ray
absorption spectra. This was extended to spectral functions at
zero temperature by Sakai et al.8 Finite temperature together
with transport properties, finally, was introduced by Costi and
Hewson.4 An occasionally crucial feedback from small to
large energy scales finally was taken care of by the explicit
incorporation of the reduced density matrix for the remainder
of the Wilson chain (DM-NRG) by Hofstetter.9 While these
methods necessarily combined data from all NRG iterations
to cover the full spectral range, they did so through heuristic
patching schemes. Moreover, in the case of finite temperature,
these methods had been formulated in a single-shell setup
that associates a well-chosen characteristic temperature that
corresponds to the energy scale of this shell.

The possible importance of a true multishell framework
for out-of-equilibrium situations had already been pointed
out by Costi.5 As it turns out, this can be implemented in
a transparent systematic way using the complete basis sets,

which where introduced by Anders and Schiller10 for the
feat of real-time evolution within the NRG (TD-NRG). This
milestone development allowed for the first time to use the
quasiexact method of NRG to perform real-time evolution
to exponentially long time scales. It emerged together with
other approaches to real-time evolution of quantum many-body
systems such as the DMRG.11,12 While more traditional single-
shell formulations of the NRG still exist for the calculation
of dynamical quantities using complete basis sets,10,13 the
latter, however, turned out significantly more versatile.14–18 In
particular, a clean multishell formulation can be obtained using
the full-density-matrix (FDM) approach to spectral functions
fdmNRG.14 This essentially generalizes the DM-NRG9 to a
clean black-box algorithm, with the additional benefit that it
allows to treat arbitrary finite temperatures on a completely
generic footing. Importantly, the FDM approach can be easily
adapted to related dynamical calculations, such as the time
dependent NRG (tdmNRG) or Fermi-golden-rule calculations
(fgrNRG). While specifically the fdmNRG and as well as
the fgrNRG have already proven a very fruitful approach in
the past,14–16,19–22 so far, only the fdmNRG was presented in
Ref. 14. The introduction and description of the remainder
of the algorithms, which are fully embedded within the
FDM approach, therefore represents a major purpose of this
paper.

For the FDM approach, the underlying matrix product
state (MPS) structure of the NRG14,23 provides an extremely
convenient framework. It allows for an efficient description of
the necessary iterative contractions of larger tensor networks,
i.e., summation over shared index spaces.24 Moreover, since
this quickly can lead to complex mathematical expressions if
spelled out explicitly in detail, it has proven much more conve-
nient to use a graphical representation for the resulting tensor
networks.24 In this paper, this is dubbed MPS diagrammatics.
It concisely describes the relevant procedures that need to be
performed, in practice, in the actual numerical simulation, and
as such also represents a central part of this paper.
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The paper then is organized as follows: the remainder of
this section gives a brief introduction to the NRG, complete
basis sets, its implication for the FDM approach, and the
corresponding MPS description. This section also discusses
the intrinsic relation of energy scale separation, efficiency of
MPS, and area laws. Section II gives a brief introduction
to MPS diagrammatics, and its implications for the NRG.
Section III provides a detailed description of the FDM
algorithms fdmNRG, tdmNRG, as well as fgrNRG in terms of
their MPS diagrams. This also includes further related aspects,
such as the generic calculation of thermal expectation values,
or the generalization of fdmNRG to higher-order correlation
functions. Section IV provides summary and outlook. A short
appendix, finally, comments on the treatment of fermionic
signs within tensor networks, considering that NRG typically
deals with fermionic systems.

A. Numerical renormalization group and quantum
impurity systems

The generic quantum impurity system (QIS) is described
by the Hamiltonian

ĤQIS = Ĥimp + Ĥcpl({f̂0μ})︸ ︷︷ ︸
≡Ĥ0

+ Ĥbath, (1)

which consists of a small quantum system (the quantum
impurity) that is coupled to a non-interacting macroscopic
reservoir Ĥbath = ∑

kμ εkμĉ
†
kμĉkμ, e.g., a Fermi sea. Here, ĉ

†
kμ

creates a particle in the bath at energy εkμ with flavor μ, such as
spin or channel, and energy index k. Typically, εkμ ≡ εk . The
state of the bath at the location �r = 0 of the impurity is given by
f̂0μ ≡ 1

N
∑

k Vkĉkμ with proper normalization N 2 ≡ ∑
k V 2

k .
The coefficients Vk are determined by the hybridization coef-
ficients of the impurity as specified in the Hamiltonian [e.g.,
see Eq. (4b) below]. The coupling Ĥcpl({f̂0μ}) then can act
arbitrarily within the impurity system, while it interacts with
the baths only through f̂

(†)
0μ , i.e., its degrees of freedom at the

location of the impurity. Overall, the Hilbert space of the typi-
cally interacting local Hamiltonian Ĥ0 in Eq. (1) is considered
small enough so it can be easily treated exactly numerically.

The presence of interaction enforces the treatment of the
full exponentially large Hilbert space. Within the NRG, this
consists of a systematic state-space decimation procedure
based on energy scale separation. (i) The continuum of states
in the bath is coarse grained relative to the Fermi energy
using the discretization parameter � > 1, such that with
W the half-bandwidth of the Fermi sea, this defines a set
of intervals ±W [�−(m−z+1)/2,�−(m−z)/2], each of which is
eventually described by a single fermionic degree of freedom
only. Here m is a positive integer, with the additional constant
z ∈ [0,1[ introducing an arbitrary shift,25,26 to be referred to
as z shift. (ii) For each individual flavor μ then, the coarse
grained bath can be mapped exactly onto a semi-infinite chain,
with the first site described by f̂0μ and exponentially decaying
hopping amplitudes tn along the chain. This one-dimensional
linear setup is called the Wilson chain,1

ĤN ≡ Ĥ0 +
∑

μ

N∑
n=1

(tn−1f̂
†
n−1,μf̂n,μ + H.c.), (2)

where ĤQIS � limN→∞ ĤN . For larger n, it quickly holds15,26

ωn ≡ lim
n�1

tn−1 = �z−1(� − 1)

ln �
W�− n

2 , (3)

where ωn describes the smallest energy scale of a Wilson chain
including all sites up to and including site n (described by f̂nμ)
for arbitrary � and z shift. In practice, all energies at iteration
n are rescaled by the energy scale ωn and shifted relative to
the ground-state energy of that iteration. This is referred to as
rescaled energies.

From the point of view of the impurity, the effects of
the bath are fully captured by the hybridization function
�(ε) ≡ πρ(ε)V 2(ε), which is assumed spin independent.
For simplicity, a flat hybridization function is assumed
throughout, i.e., �(ε) = �ϑ(W − |ε|), with the discretization
following the prescription of Žitko and Pruschke.26 If not
indicated otherwise, all energies are specified in units of the
(half-)bandwidth, which implies W := 1.

1. Single impurity Anderson model

The prototypical quantum impurity model applicable to the
NRG is the single impurity Anderson model (SIAM).27–30 It
consists of a single interacting fermionic level (d level), i.e.,
the impurity,

Ĥimp =
∑

σ

εdσ n̂dσ + Un̂d↑n̂d↓ (4a)

with level-position εdσ and onsite interaction U . This impurity
is coupled through the hybridization

Ĥcpl =
∑

σ

(
d̂†

σ

∑
k

Vkσ ĉkσ

︸ ︷︷ ︸
≡
√

2�
π

f̂0σ

+ H.c.

)
(4b)

to a single spinful noninteracting Fermi sea, with � the total
hybridization strength. Here, d̂†

σ (ĉ†kσ ) creates an electron with
spin σ ∈ {↑,↓} at the d level (in the bath with energy index
k), respectively. Moreover, n̂dσ ≡ d̂†

σ d̂σ , and n̂kσ ≡ ĉ
†
kσ ĉkσ .

At average occupation with a single electron, the model
has three physical parameter regimes that can be accessed
by tuning temperature: the free orbital regime (FO) at large
energies allows all states at the impurity from empty to doubly
occupied, the local moment regime (LM) at intermediate
energies with a single electron at the impurity and the empty
and double occupied state at high energy only accessible
through virtual transitions, and the low-energy strong coupling
(SC) fixed-point or Kondo regime, where the local moment is
fully screened by the electrons in the bath into a quantum-
many-body singlet.

B. Complete basis sets

Within the NRG, a complete many-body basis10 can be
constructed from the state space of the iteratively computed
NRG eigenstates Ĥn|s〉n = En

s |s〉n. With the NRG stopped at
some final length N of the Wilson chain, the NRG eigenstates
with respect to site n < N can be complemented by the
complete state space of the rest of the chain, |e〉n, describing
sites n + 1, . . . ,N . The latter space will be referred to as the
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environment, which due to energy scale separation will only
weakly affect the states |s〉n. The combined states,

|se〉n ≡ |s〉n ⊗ |e〉n, (5)

then span the full Wilson chain. Within the validity of energy
scale separation, one obtains10

ĤN |se〉n � En
s |se〉n, (6a)

i.e., the NRG eigenstates at iteration n < N are, to a good
approximation, also eigenstates of the full Wilson chain.
This holds for a reasonably large discretization parameter
� � 1.7.1,3,31

With focus on the iteratively discarded state space, this
allows to build a complete many-body eigenbasis of the full
Hamiltonian,10

1(d0d
N ) =

∑
se,n

|se〉D D
n n 〈se|, (6b)

where d0d
N describes the full many-body Hilbert space

dimension of the Hamiltonian HN . Here d refers to the state
space dimension of a single Wilson site, while d0 refers to
the state space dimension of the local Hamiltonian Ĥ0, which
in addition to f̂0 also fully incorporates the impurity [cf.
Eq. (1)]. It is further assumed that the local Hamiltonian H0 is
never truncated, i.e., truncation sets in for some n = n0 > 0.
Therefore, by construction, the iterations n′ < n0 do not
contribute to Eq. (6b). At the last iteration n = N , all states
are considered discarded by definition.10 The truncation at
intermediate iterations, finally, can be chosen either with
respect to some threshold number NK of states to keep, while
nevertheless respecting degenerate subspace, or, preferentially,
with respect to an energy threshold EK in rescaled energies [cf.
Eq. (3)]. The latter is a dynamical scheme which allows for a
varying number of states depending on the underlying physics.

The completeness of the state space in Eq. (6b) can be
easily motivated by realizing that at every NRG truncation
step, by construction, the discarded space (eigenstates at
iteration n with largest energies) is orthogonal to the kept
space (eigenstates with lowest eigenenergies). The subsequent
refinement of the kept space at later iterations will not
change the fact, that the discarded states at iteration n remain
orthogonal to the state space generated at later iterations.
This systematic iterative truncation of Hilbert space while
building up a complimentary complete orthogonal state space
is a defining property of the NRG, and as such depicted
schematically in Fig. 1.

C. Identities

This section deals with notation and identities related to
the complete basis sets within the NRG. These are essential
when directly dealing with Lehmann representations for
the computation of thermodynamical quantities. While the
combination of two basis sets discussed next simply follows
Ref. 10, this section also introduces the required notation.
The subsequent Sec. I D then derives the straightforward
generalization to multiple sums over Wilson shells.

FIG. 1. (Color online) Iterative construction of complete basis
set10 within the NRG by collecting the discarded state spaces
|s〉D

n from all iterations n � N (black space at the left of the gray
blocks). For a given iteration n, these are complimented by the
environment |e〉n for the rest of the system n′ > n, i.e., starting from
site n + 1 up to the overall chain length N considered (gray blocks).
In a hand-waving picture, by adding site n + 1 to the system of
sites n′ � n, this site introduces a new lowest energy scale to the
system, with the effect that existing levels become split within a
narrow energy window (indicated by the spread of levels from one
iteration to the next). The impurity, and also the first few sites can be
considered exactly with a manageable total dimension of its Hilbert
space still. Yet as the state space grows exponentially, truncation
quickly sets in. The discarded state spaces then, when collected,
form a complete basis. At the last iteration, where NRG is stopped,
by definition, all states are considered discarded.

Given the complete basis in Eq. (6), it holds10

∑
se

|se〉KK
nn 〈se|

︸ ︷︷ ︸
≡P̂ K

n

=
N∑

n′>n

∑
se

|se〉D D
n′n′ 〈se|

︸ ︷︷ ︸
≡P̂ D

n′

. (7)

Here, the state space projectors P̂ X
n are defined to project into

the kept (X = K) or discarded (X = D) space of Wilson shell
n. This then allows to rewrite Eq. (7) more compactly as

P̂ K
n =

(N)∑
n′>n

P̂ D
n′ , (8)

where the upper limit in the summation, n′ � N , is implied if
not explicitly indicated. With this, two independent sums over
Wilson shells can be reduced into a single sum over shells,10

∑
n1,n2

P̂ D
n1

P̂ D
n2

=
∑

(n1=n2)≡n

P̂ D
n P̂ D

n +
∑

n1>(n2≡n)

P̂ D
n1

P̂ D
n +

∑
(n1≡n)<n2

P̂ D
n P̂ D

n2

=
∑

n

(
P̂ D

n P̂ D
n + P̂ K

n P̂ D
n + P̂ D

n P̂ K
n

)

≡
∑

n

�=KK∑
XX′︸ ︷︷ ︸

≡∑
n

′

P̂ X
n P̂ X′

n . (9)
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For simplified notation, the prime in the last single sum over
Wilson shells (

∑′
n) indicates that also the kept-sectors are

included in the sum over Wilson shells, yet excluding the
all-kept sector XX′ �= KK, since this sector is refined still in
later iterations.10,14

While Eq. (9) holds for the entire Wilson chain, exactly the
same line of arguments can be repeated starting from some
arbitrary but fixed reference shell n, leading to

P̂ K
n P̂ K

n =
N∑

n1,n2>n

P̂ D
n1

P̂ D
n2

=
N∑

ñ>n

′
P̂ X

ñ P̂ X′
ñ , (10)

where Eq. (8) was used in the first equality. Here the product of
the two identical projectors P̂ K

n on the LHS of Eq. (10) needs to
be understood in the later context, where the two projectors are
separated by other operators still [hence the LHS of Eq. (10)
does not trivially reduce to a single projector]. The same also
applies for the generalization in Eq. (12) below.

D. Generalization to multiple sums over shells

Consider the evaluation of some physical correlator that
requires m > 2 insertions of the identity in Eq. (6b) in
order to obtain a simple Lehmann representation. Examples
in that respect are tdmNRG or (higher-order) correlation
functions, as discussed later in the paper. In all cases, the
resulting independent sum over arbitrarily many identities as
in Eq. (6b) can always be rewritten as a single sum over Wilson
shells. The latter is desirable since energy differences, such
as they occur in the Lehmann representation for correlation
functions, should be computed within the same shell, where
both contributing eigenstates are described with comparable
energy resolution.

Claim. Given m full sums as in Eq. (6b), this can be rewritten
in terms of a single sum over a Wilson shell n, such that Eq. (9)
generalizes to

N∑
n1,...,nm

P̂ D1
n1

. . . P̂ Dm

nm
=

N∑
ñ

�=K1...Km∑
X1···Xm︸ ︷︷ ︸

≡∑
ñ

′

P̂
X1
ñ . . . P̂

Xm

ñ , (11)

where again the prime in the last single sum over Wilson
shells (

∑′
n) indicates that all states are to be included within

a given iteration n, while only excluding the all-kept sector
X1, . . . ,Xm �= K, . . . ,K. Note that via Eq. (8), the left-hand
side of Eq. (11) can be rewritten as

P̂
K1
n0−1 . . . P̂

Km

n0−1 =
∑

n1,...,nm

P̂ D
n1

. . . P̂ D
nm

,

where n0 > 0 is the first iteration where truncation sets in.
This way, P̂ K

n0−1 refers to the full Hilbert space still. Proving
Eq. (11) hence is again equivalent to proving for general n that

P̂ K1
n . . . P̂ Km

n =
∑

n1,...,nm>n

P̂ D
n1

. . . P̂ D
nm

=
∑
ñ>n

′
P̂

X1
ñ . . . P̂

Xm

ñ ,

(12)

with the upper limit for each sum over shells, ni � N and
ñ � N , implied, as usual. Therefore the sum in the center

term, for example, denotes an independent sum
∑N

ni>n for all
ni with i = 1, . . . ,m.

Proof. The case of two sums (m = 2) was already shown
in Eq. (10). Hence one may proceed via induction. Assume,
Eq. (12) holds for m − 1. Then for the case m, one has in
complete analogy to Eq. (9),

P̂ K1
n . . . P̂ Km−1

n · P̂ Km

n

=
(∑

n′>n

′
P̂

X1
n′ . . . P̂

Xm−1
n′

)( ∑
nm>n

P̂ Dm

nm

)

=
∑
ñ>n

′
P̂

X1
ñ . . . P̂

Xm−1
ñ

(
P̂

Dm

ñ + P̂
Km

ñ

) + P̂
K1
ñ . . . P̂

Km−1
ñ P̂

Dm

ñ

≡
∑
ñ>n

′
P̂

X1
ñ . . . P̂

Xm

ñ ,

where from the second to the third line, it was used that∑
n′>n

′ ∑
nm>n

=
∑

n<(ñ≡n′=nm)

′ +
∑

n<(ñ≡n′)<nm

′ +
∑

n<(ñ≡nm)<n′

′
,

and the last term in the third line followed from the inductive
hypothesis. This proves Eq. (12).

Alternatively, the m independent sums over {n1, . . . nm} in
Eq. (12) can be rearranged such, that for a specific iteration ñ,
either one of the indices ni may carry ñ as minimal value, while
all other sums range from ni ′ � ñ. This way, by construction,
the index ni stays within the discarded state space, while all
other sums ni ′ are unconstrained up to ni ′ � ni = ñ, thus
represent either discarded at iteration ñ or discarded at any
later iteration that corresponds to the kept space at iteration ñ.
From this, Eq. (12) also immediately follows.

E. Energy scale separation and area laws

By construction, the iterative procedure of the NRG gen-
erates an MPS representation for its energy eigenbasis.23 This
provides a direct link to the density matrix renormalization
group (DMRG),32,33 and consequently also to its related
concepts of quantum information.24 For example, it can be
demonstrated that quite similar to the DMRG, the NRG
truncation with respect to a fixed energy threshold EK is
also quasivariational with respect to the ground state of the
semi-infinite Wilson chain.15,31 Note furthermore that while
DMRG typically targets a single global state, namely the
ground state of the full system, at an intermediate step
nevertheless it also must deal with large effective state spaces
describing disconnected parts of the system. This again is very
much similar to the NRG, which at every iteration needs to
deal with many states.

Now, the success of variational MPS, i.e., DMRG, to
ground-state calculations of quasi-one-dimensional systems
is firmly rooted in the so-called area law for the entanglement
or block entropy SA ≡ tr(−ρ̂A ln ρ̂A) with ρ̂A = trB(ρ̂).34–36 In
particular, the block entropy SA represents the entanglement of
some contiguous region A with the rest B of the entire system
A ∪ B considered. This allows to explain, why MPS, indeed,
is ideally suited to efficiently capture ground-state properties
for quasi-one-dimensional systems.

In constrast to DMRG for real-space lattices, however,
NRG references all energy scales through its iterative
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FIG. 2. (Color online) NRG and area law – analysis for the
symmetric SIAM for the parameters as shown in panels (b) and (c) [cf.
Eq. (4); all energies in units of bandwidth]. (a) The standard energy
flow diagram of the NRG for even iterations where the different colors
indicate different symmetry sectors. (b) The entanglement entropy
Sn of the Wilson chain up to and including site n < N with the
rest of the chain, given the overall ground state (N = 99). Due to
intrinsic even-odd alternations, even and odd iterations n are plotted
separately. (c) The actual number of multiplets kept from one iteration
to the next, using a dynamical truncation criteria with respect to a
predefined fixed energy threshold EK as specified. The calculation
used SU(2)spin ⊗ SU(2)charge symmetry, hence the actual number of
kept states is by about an order of magnitude larger [e.g., as indicated
with the maximum number of multiplets kept, NK in (c): the value in
brackets gives the corresponding number of states].

diagonalization scheme. It zooms in towards the low-energy
scales (“ground-state properties”) of the full semi-infinite
Wilson chain. Therefore given a Wilson chain of sufficient
length N , without restricting the case, one may consider the
fully mixed density matrix built from the ground-state space
|0〉N of the last iteration, for simplicity. This then allows to
analyze the entanglement entropy Sn of the states |s〉n, i.e.,
the block of sites n′ < n, with respect to its environment |e〉n.
The interesting consequence in terms of area law is that one
expects the (close to) lowest entanglement entropy Sn for the
stable low-energy fixed point, while one expects Sn to increase
for higher energies, i.e., with decreasing Wilson shell index n.

This is nicely confirmed in a sample calculation for
the SIAM, as demonstrated in Fig. 2. Figure 2(a) shows
the standard NRG energy flow diagram (collected finite size
spectra, here for even iterations), which clearly outlines the
physical regimes of free orbital (FO, n � 25), local moment

(LM, 25 � n � 60), and strong coupling (SC, n � 60) regime.
Here, in order to have a sufficiently wide FO regime, a very
small onsite interaction U was chosen relative to the bandwidth
of the Fermi sea. Panel (b) shows the entanglement entropy Sn

between system (n′ � n) and environment (n′ > n). Up to the
very beginning or the very end of the actual chain (the latter
is not shown), this shows a smooth monotonously decaying
behavior versus energy scale. In particular, consistent with the
area law for lowest-energy states, the entanglement is smallest
once the stable low-energy fixed point is reached. Having
chosen a dynamical (quasivariational)15 truncation scheme
with respect to a threshold energy EK in rescaled energies
[cf. Eq. (3)], the qualitative behavior of the entanglement
entropy is also reflected in the number of states that one has
to keep for some fixed overall accuracy, as shown in Fig. 2(c).
Clearly, up to the very few first shells prior to truncation, the
largest number of states must be kept at early iterations. While
this is a hand-waving argument, this nevertheless confirms the
empirical fact, that the first few Wilson shells with truncation
are usually the most important, i.e., most expensive ones.
Therefore, for good overall accuracy, all the way down to
the low-energy sector, one must allow for a sufficiently large
number of states to be kept at early iterations.

The entanglement entropy as introduced above together
with the area law thus is consistent with the energy scale
separation along the Wilson chain in [cf. Fig. 2(b)]. However,
note that the specific value of the entanglement entropy is not a
physical quantity, in that it depends on the discretization. While
the entanglement entropy clearly converges to a specific value
when including a sufficient number of states, it nevertheless
sensitively depends on �. The smaller �, the larger the
entanglement entropy Sn is going to be, since after all,
the Wilson chain represents a gapless system. The overall
qualitative behavior, however, is expected to remain the
same, i.e., independent of �. Similar arguments hold for
entanglement spectra and their corresponding entanglement
flow diagram, which provide significantly more detailed infor-
mation still about the reduced density matrices constructed by
the bipartition into system and environment.15

F. Full density matrix

Given the complete NRG energy eigenbasis |se〉D
n , the full

density matrix (FDM) at arbitrary temperature T ≡ 1/β is
simply given by14

ρ̂FDM(T ) =
∑
sen

e−βEn
s

Z
|se〉D D

n n 〈se|, (13)

with Z(T ) ≡ ∑
ne,s∈D e−βEn

s . By construction of a thermal
density matrix, all energies En

s from all shells n appear on
an equal footing relative to a single global energy reference.
Hence any prior iterative rescaling or shifting of the energies
En

s , which is a common procedure within the NRG [cf. Eq. (3)],
clearly must be undone. From a numerical point of view,
typically the ground state energy at the last iteration n = N for
a given NRG run is taken as energy reference. In particular,
this ensures numerical stability in that all Boltzmann weights
are smaller or equal 1.
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Note that the energies En
s are considered independent of

the environmental index e. As a consequence, this leads to
exponentially large degeneracies in energy for the states |se〉n.
The latter must be properly taken care of within FDM, as it
contains information from all shells. By already tracing out
the environment for each shell, this leads to14

ρ̂FDM(T ) =
∑

n

dN−nZn

Z︸ ︷︷ ︸
≡wn

∑
s

e−βEn
s

Zn

|s〉D D
n n 〈s|

︸ ︷︷ ︸
≡ρD

n (T )

, (14)

with d the state-space dimension of a single Wilson site, and
the proper normalization by the site-resolved partition function
Zn(T ) ≡ ∑

s∈Dn
e−βEn

s of the density matrices ρD
n (T ) built

from the discarded space of a specific shell n only. Therefore
tr[ρD

n (T )] = 1, and also Z(T ) = ∑
n Zn(T ). Equation (14)

then defines the weights wn, which themselves represent a
normalized distribution, i.e.,

∑
n wn = 1. Importantly, Eq. (14)

demonstrates that the FDM is intrinsically specified through
a range of energy shells n, whose weights wn are fully
determined.

1. Weight distribution wn

The qualitative behavior of the weights wn can be under-
stood straightforwardly. With the typical energy scale of shell
n given by

ωn = a�−n/2, (15)

with a some constant of order 1. [cf. Eq. (3)], this allows to
estimate the weights wn as follows,

ln(wn) � ln(dN−ne−βωn/Z) = (N − n) ln(d) − βωn + const.

For a given temperature T , the shell n with maximum weight
is determined by

d

dn
ln(wn) � − ln(d) + aβ ln(�)

2
�−n/2 != 0,

with the solution

a�−n∗/2 � 2 ln(d)

β ln(�)
∼ T , (16)

since the second term is 1/β times some constant of order
1. This shows that the weight distribution wn is strongly
peaked around the energy scale of given temperature T . With
T ≡ a�−nT /2 and therefore nT � n∗, the distribution decays
superexponentially fast towards larger energy scales n � nT

(dominated by e−βωn with exponentially increasing ωn with
decreasing n). Towards smaller energy scales n � nT , on the
other hand, the distribution wn decays in a plain exponential
fashion (dominated by d−n, since with βωn � 1, e−βωn → 1).
In contrast, for the single-shell approximation of the original
formulation of DM-NRG9 or derived approaches,3,10,13 one
uses the distribution wn → δn,nT

.
An actual NRG simulation based on the SIAM is shown in

Fig. 3. It clearly supports all of the above qualitative analysis.
It follows for a typical discretization parameter � and local
dimension d, that nT is slightly smaller than n∗, i.e., towards
larger energies to the left of the maximum in wn, typically at
the left onset of the distribution wn, as is seen in the main
panel in Fig. 3 (nT is indicated by the vertical dashed line).

FIG. 3. (Color online) Typical FDM weight distribution calcu-
lated for the SIAM [cf. Eq. (4)] for the parameters as shown and
temperature T = 10−6 (all energies in units of bandwidth). The
maximum number of states NK kept at every iteration was taken
constant. The distribution is strongly peaked around the energy shell
n∗ � nT , where nT (indicated by vertical dashed line) corresponds
to the energy scale of temperature as defined in the text. The inset
plots the weights wn on a logarithmic scale, which demonstrates
the generic plain exponential decay for small energies n > nT , and
superexponentially fast decay towards large energies (n < nT ).

Within the shell n∗ of maximum contribution to the FDM,
therefore the actual temperature is somewhat larger relative to
the energy scale of that iteration [note that this relates to the
factor β̄,2,3 introduced by Krishna-murthy et al.2 on heuristic
grounds for the optimal discrete temperature representative for
a single energy shell].

An important practical consequence of the exponential
decay of the weights wn for n � nT is that by taking a long
enough Wilson chain to start with, fdmNRG automatically
truncates the length of the Wilson chain at several iterations
past nT . Therefore the actual length of the Wilson chain
N included in a calculation should be such that the full
distribution wn is sampled, which implies that wn has dropped
again at least down to wN � 10−3.

The weights wn are fully determined within an NRG
calculation, and clearly depend on the specific physical as
well as numerical parameters. Most obviously, this includes
the state space dimension d of a given Wilson site, and
the discretization parameter �. However, the weights wn

also sensitively depend on the specific number of states kept
from one iteration to the next. For example, the weights are
clearly zero for iterations where no truncation takes place,
which is typically the case for the very first NRG iterations
that include the impurity. However, the weights also adjust
automatically to the specific truncation scheme adopted, such
as the quasivariational truncation based on an energy threshold
EK. In the case of fixed NK = 512 as in Fig. 3, note that
if d = 4 times the number of states had been kept, i.e.,
NK = 512 → 2048, this essentially would have shifted the
entire weight distribution in Fig. 3 by one iteration to the
right to lower energy scales, resulting in an improved spectral
resolution for frequencies ω � T .14 For the latter purpose,
however, it is sufficient to use an increased NK at late iterations
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only, where around the energy scale of temperature the weights
wn contribute mostly.

Furthermore, given a constant number NK of kept states in
Fig. 3, the weights wn show a remarkably smooth behavior,
irrespective of even or odd iteration n. This is somewhat
surprising at first glance, considering that NRG typically does
show pronounced even-odd behavior. For example, for the
SIAM (see also Fig. 2), at even iterations an overall non-
degenerate singlet can be formed to represent the ground state.
Having no unpaired spin in the system, this typically lowers
the energy more strongly as compared to odd iterations which
do have an unpaired spin. Therefore, while even iterations
show a stronger energy reduction in its low-energy states, its
ground-state space consists of a single state. In contrast, for
odd iterations the energy reduction by adding the new site is
weaker, yet the ground state space is degenerate, assuming
no magnetic field (Kramers degeneracy). In terms of the
corresponding weight distribution for the full density matrix
then, both effects balance each other, such that distribution
of the FDM weights wn results in a smooth function of the
iteration n, as seen in Fig. 3.

In summary, above analysis shows that the density matrix
generated by FDM is dominated by several shells around the
energy scale of temperature. The physical information encoded
in these shells can critically affect physical observables at
much larger energies. This construction therefore shall not
be shortcut in terms of the density matrix in the kept space at
much earlier iterations, i.e., by using Ĥ |s〉K

n � En
s |s〉K

n with the
Boltzmann weights thus determined by the energies of the kept
states. This can fail for exactly the reasons already discussed in
detail with the DM-NRG construction by Hofstetter:9 the low-
energy physics can have important feedback to larger energy
scales. To be specific, the physics at the low-energy scales on
the order of temperature can play a decisive role on the decay
channels of high-energy excitations. As a result, for example,
the low-energy physics can lead to a significant redistribution
of spectral weight in the local density of states at large energies.

2. FDM representation

The full thermal density matrix ρ̂FDM
T in Eq. (14) represents

a regular operator with an intrinsic internal sum over Wilson
shells. When evaluating thermodynamical expressions then,
as seen through the discussions in Sec. I C and I D, its matrix
elements must be calculated both with respect to discarded as
well as kept states. While the former are trivial, the latter
require some more attention. All of this, however, can be
written compactly in terms of the projections in Eq. (7).

The reduced density matrix ρ̂FDM
T is a scalar operator, from

which it follows,

P̂ X
n ρ̂FDM

T P̂ X′
n ≡ δXX′R̂X

n . (17)

This defines the projections R̂X
n of ρ̂FDM

T onto the space X ∈
{K,D} at iteration n, which are not necessarily normalized
hence the altered notation. Like any scalar operator, thus also
the projections R̂X

n carry a single label X only. The projection
into the discarded space,

R̂D
n ≡ P̂ D

n ρ̂FDM
T P̂ D

n = wnρ̂
D
n (T ), (18)

by construction, is a fully diagonal operator as defined in
Eq. (14). In kept space, however, the originally diagonal FDM
acquires nondiagonal matrix elements in the NRG energy
eigenbasis, thus leading to the block-diagonal scalar operator,

R̂K
n ≡ P K

n ρ̂FDM
T P K

n =
∑
n′>n

wn′ P̂ K
n ρ̂D

n′ (T )P̂ K
n︸ ︷︷ ︸

≡ρ̂FDM
n,n′ (T )

, (19)

with the properly normalized reduced density matrices,

ρ̂FDM
n,n′ (T ) ≡ tr

{σn+1,...,σn′ }
[
ρ̂D

n′ (T )
]
. (20)

These are defined for n′ > n and, with respect to the basis
of iteration n, are fully described within its kept space. Note
that in the definition of the ρ̂D

n′ (T ) in Eq. (14) the environment
consisting of all sites ñ > n′ had already been traced out,
hence in Eq. (20) only the sites ñ = n + 1, . . . ,n′ remain to
be considered. By definition, the reduced density matrices
ρFDM

n,n′ (T ) are built from the effective basis |s〉D
n′ at iteration

n′, where subsequently the local state spaces σñ of sites
ñ = n′,n′ − 1, . . . ,n + 1 are traced out in an iterative fashion.

The projected FDM operators R̂n, like other operators,
are understood as operators in the basis |s〉n, i.e., R̂X

n ≡∑
s∈X(RX

n )ss ′ |s〉n n〈s ′| (note the hat on the operator), while the
bare matrix elements (RX

n )ss ′ ≡ n〈s|R̂X
n |s ′〉n are represented by

RX
n (by convention, written without hats). Overall then, the

operator R̂n can be written in terms of two contributions, (i) the
contribution from iteration n′ = n itself (encoded in discarded
space) and (ii) the contributions of all later iterations n′ > n

(encoded in kept space at iteration n),

R̂n = wnρ̂
D
n (T )

︸ ︷︷ ︸
=R̂D

n

+
∑
n′>n

wn′ ρ̂FDM
n,n′ (T )

︸ ︷︷ ︸
=R̂K

n

(21a)

≡
∑
n′�n

wn′ ρ̂FDM
n,n′ (T ). (21b)

In the last equation, for simplicity, the definition of ρ̂n,n′

for n′ > n in Eq. (20) has been extended to include the case
n′ = n, where ρ̂n,n ≡ ρ̂D

n (T ).

II. MPS DIAGRAMMATICS

Given the complete basis sets which, to a good approxima-
tion, are also eigenstates of the full Hamiltonian, this allows to
evaluate correlation functions in a text-book-like fashion based
on their Lehmann representation. Despite the exponential
growth of the many-body Hilbert space with system size,
repeated sums over the entire Hilbert space nevertheless
can be evaluated efficiently, in practice, due to the one-
dimensional structure of the underlying MPS. [The situation
is completely analogous to the product, say, of N matrices
A(n), n ∈ {1, . . . ,N}, of dimension D, (A(1)A(2) . . . A(N))ij ≡∑D

k1=1

∑D
k2=1 · · · ∑D

kN=1 A
(1)
i,k1

A
(2)
k1,k2

. . . A
(N)
kN−1,j

. There the sum
over intermediate index spaces k1, . . . ,kN−1, in principle,
also grows exponentially with the number of matrices. By
performing the matrix product sequentially, however, this is
no problem whatsoever.]
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A. Basics and conventions

The NRG is based on an iterative scheme: given an
(effective) many-body eigenbasis |s〉n−1 up to and including
site n − 1 on the Wilson chain, a new site with a d-dimensional
state space |σ 〉n is added. Exact diagonalization of the
combined system leads to the new eigenstates

|sn〉 =
∑

sn−1,σn

A[σn]
sn−1,sn

|σ 〉n|s〉n−1. (22)

Here, the coefficient space A[σn]
sn−1,sn

of the underlying uni-
tary transformation is already written in standard MPS
notation.24,33 It will be referred to as A-tensor An which, by
construction, is of rank 3. Equation (22) is depicted graphically
in Fig. 4(a): two input spaces (sn−1 and σn to the left and at the
bottom, respectively), and one output space sn, as indicated
by the arrows. Since by convention in this paper, NRG always
proceeds from left to right, A-tensors always have the same
directed structure. Therefore, for simplicity, all arrows will be
skipped later in the paper. Furthermore, the block An, which
depicts the coefficients of the A-tensor at given iteration,
will be shrunk to a ternary node, resulting in the simplified
elementary building block for MPS diagrams as depicted in
panel Fig. 4(b). Finally, note that the start of the Wilson chain
does not represent any specific specialization. The effective
state space from the previous iteration is simply the vacuum
state, as denoted by the (terminating) thick dot at the left of
Fig. 4(c). The vacuum state represents a perfectly well-defined
and normalized state, such that all subsequent contractions in
the remainder of the panels in Fig. 4 apply identically without
any specific further modification.

Figure 4(d) depicts the elementary contraction that repre-
sents the orthonormality condition,

δsn,s ′
n

= n〈s|s ′〉n =
∑

sn−1,σn

A
[σn]
sn−1,s ′

n
A[σn]∗

sn−1,sn
, (23)

again, with Fig. 4(e) a cleaned-up version, but otherwise
exactly the same as Fig. 4(d). By graphical convention,
contractions, i.e., summation over shared index or state spaces,
are depicted by lines connecting two tensors. Note that in order
to preserve the directedness of lines in Fig. 4(d), it is important
with respect to bra-states, that all arrows on the A∗-tensor
belonging to bra-states are fully reversed. For the remainder
of the paper, however, this is of no further importance.

The contraction in Figs. 4(d) and 4(e) therefore results in an
identity matrix, given that all input spaces of the A-tensor are
contracted. For a mixed contraction, such as one input and one
output state space, on the other hand, as indicated in Fig. 4(f),
this results in a reduced density matrix. There the sum over the
state space sn is typically weighted by some normalized, e.g.,
thermal, weight distribution ρs , as indicated by the short dash
across the line representing sn together with the corresponding
weights ρs .

Figures 4(g)–4(i) describe matrix representations of an
operator B in the combined effective basis sn for a local
operator acting within σn [see Figs. 4(g) and 4(h)], or for
an operator that acted at some earlier site, such that it
already exists in the matrix representation of the basis sn−1.
For the latter case, the contraction in Fig. 4(h) typically
occurred at some earlier iteration, with subsequent iterative

(a)  

An 

(b)  

(d)  An 

An 

(e)  

* 

(g)  An 

An 

(h)  

* 

B
 

(f) 

(i) 

B
 

(c) 

B
 

FIG. 4. Basic MPS diagrammatics. (a) Iteration step in terms of
A-tensor. The coefficient space (A-tensor) for given iteration n is
denoted by An, and incoming and outgoing state spaces are indicated
by arrows. (b) Cleaned up simplified version of diagram in panel (a).
Panel (c) indicates the first A-tensor in an MPS, in case it has the
vacuum state to its left, which is denoted by a (terminating) thick dot.
Here, trivially |σ 〉d ≡ |s〉d [with |s〉0 for n = 0 generated in the very
next iteration with a Wilson chain in mind]. Panel (d) demonstrates
the orthonormality condition of an A-tensor,

∑
σn

(A[σn])†A[σn] = 1
[cf. Eq. (23)]. Panel (e) again is fully equivalent to (d). Panel (f)
depicts a reduced density matrix. Panel (g) represents the evaluation
of matrix elements of a local operator B̂ at site n in the effective
state space sn. Panel (h) again is a cleaned up simplified version of
(g). Panel (i) is similar to (g) and (h), except that the operator B̂ was
assumed to act at earlier sites on the Wilson chain, such that here B

already describes the matrix elements in the effective basis sn−1, and
hence contracts from the left.

propagation of the matrix elements as in Fig. 4(i) for each
later iteration. Contractions of a set of tensors are always
performed sequentially, combining two tensors at a time.24

In the case of Figs. 4(g)–4(i), the operator B, represented in
the state space of σ ′

n [s ′
n−1] in Figs. 4(g) and 4(h) [Fig. 4(i)],

(a) (b) (c) 

An 

An 
* 

B
 

B
 

B
 

B
 

FIG. 5. Basic MPS diagrammatics in the presence of non-Abelian
symmetries. (a) Representation of an irreducible operator B̂ that acts
within the local basis σn in the effective basis sn. Being an irreducible
operator, a third open index emerges, both for the representation of
the local operator B (right incoming index to Bσn,σ ′

n,μ ≡ 〈σn|B̂μ|σ ′
n〉)

as well as for the overall contracted effective representation with
the open indizes Bsn,s′

n,μ, where μ identifies the spinor component
in the irreducible operator B̂. (b) Simplified version of (a), but exactly
the same otherwise. (c) Contraction into a scalar representation of an
operator B in the effective representation sn−1, which acts at some
site n′ < n with operator B†, which acts at site n. With B̂ · B̂† ≡∑

μ B̂μ · B̂†
μ a scalar operator, the result is a scalar operator of rank

two in the indices (sn,s
′
n).

245124-8



TENSOR NETWORKS AND THE NUMERICAL . . . PHYSICAL REVIEW B 86, 245124 (2012)

respectively, is contracted first, as indicated by the dashed box
in Fig. 4(g). This is followed by the simultaneous contraction
of the pair of indices (sn−1,σn). This way, the cost of the
contraction in panels (g)–(i) scales like O(D3),24 where D

represents the matrix dimension for the state spaces sn−1 and
sn (here considered to be the same, for simplicity).

For the NRG it is crucially important to use Abelian and
non-Abelian symmetries for numerical efficiency.1,17–19,37,38

Figure 5 therefore presents elementary tensor contractions in
the presence of non-Abelian symmetries.37 There the basis
transformations in terms of the A-tensors An respect the un-
derlying fusion rules for non-Abelian symmetries. Moreover,
elementary operators B̂ typically become irreducible operator
sets {B̂μ} which are described in terms of a spinor with operator
components labeled by the index μ [see Fig. 5(a)]. Using
Wigner-Eckart theorem, the arrows, for example, with the
operator B̂ in Fig. 5(a) imply the underlying Clebsch-Gordan
coefficient (σn|μ,σ ′

n).37 In case of a scalar operator B̂, the
spinor reduces to a single operator, hence μ reduces to a
singleton dimension which can be stripped. In that case,
the third index to the center right of Figs. 5(a) and 5(b)
can be removed, resulting in the equivalent diagrams in
Figs. 4(g) and 4(h). Figure 5(c), finally, shows the contraction
of two irreducible operator sets into a scalar operator B̂ · B̂† ≡∑

μ B̂μ · B̂†
μ, again represented in the combined effective basis

sn. Here the operator B̂ is considered to have acted once at
some earlier site, whereas its daggered version acts on the
current local site n. Note that again the daggered (conjugated)
version has all its arrows reversed where, in addition, in the
MPS diagram the dagger indicates, that the operator B† as
compared to B has already been also flipped upside down.

The only essential difference when using non-Abelian
symmetries with MPS diagrammatics is the emergence of extra
indices (lines) with respect to irreducible operators (index μ

above). The underlying A-tensors, of course, need to respect
the fusion rules of the symmetries employed, but on the level
of an MPS diagram, this is implied. A detailed introduction to
non-Abelian symmetries and its application to the NRG has
been presented in Ref. 37. Therefore for the rest of this paper,
for simplicity, no further reference to non-Abelian symmetries
will be made, with all tensor networks based on the elementary
contractions already presented in Fig. 4.

III. FDM APPLICATIONS

A. Spectral functions

Consider the retarded Green’s function

GR
BC(t) ≡ −iϑ(t)〈B̂(t)Ĉ†〉T︸ ︷︷ ︸

≡GBC (t)

, (24)

which may be considered the first term in the fermionic
Green’s function GR(t) = −iϑ(t)〈{B̂(t),Ĉ†}〉T . Here, ϑ(t) is
the Heaviside step function, and B̂(t) ≡ eiĤ t B̂e−iĤ t , where,
as usual, the Hamiltonian Ĥ of the system is considered
time-independent. In Eq. (24), an operator Ĉ† acts at time t = 0
on a system in thermal equilibrium at temperature T , described
by the thermal density matrix ρ̂(T ) = e−βĤ /Z(T ) with 〈∗〉T ≡
tr[ρ̂(T ) ∗ ]. The system then evolves to some time t > 0, where
a possibly different operator B̂ is applied. The overlap with the

original time evolved wave function then defines the retarded
correlation function of the two events. Fourier transformed
into frequency space, GR

BC(ω) ≡ ∫
dt eiωtGR

BC(t), its spectral
function is given by

ABC(ω) =
∫

dt

2π
eiωtGBC(t)

=
∫

dt

2π
eiωt tr[ρ̂(T )eiĤ t B̂e−iĤ t Ĉ†], (25)

which for real operators B̂ and Ĉ is equivalent to ABC(ω) =
− 1

π
ImGR

BC(ω). When evaluated in the full many-body eigen-
basis, in principle, this requires the insertion of two identities,
(i) to evaluate the trace and (ii) in between the operators B̂

and Ĉ† to deal with the exponentiated Hamiltonian. For sim-
plified, with the eigenbasis sets 1 = ∑

a |a〉〈a| = ∑
b |b〉〈b|,

the spectral function becomes

ABC(ω) =
∑
ab

∫
dt

2π
ei(ω−Eab)t ρa〈a|B̂|b〉〈b|Ĉ†|a〉

≡
∑
ab

ρaBabC
∗
ab · δ(ω − Eab), (26)

with Eab ≡ Eb − Ea and ρa ≡ 1
Z
e−βEa . By convention, as

usual, operators carry hats, while matrix representations in
a given basis have no hats (B̂ versus Bab). Equation (26) is
referred to as the Lehmann representation of the correlation
function in Eq. (24). In the case of equal operators, B̂ = Ĉ, the
spectral function is a strictly positive function, i.e., a spectral
density. In either case, the integrated spectral function results
in the plain thermodynamic expectation values,14

∫
dωABC(ω) =

∑
ab

ρa BabC
∗
ab = 〈B̂Ĉ†〉T . (27)

Now, using the complete NRG eigenbasis, |a〉 → |se〉n and
|b〉 → |s ′e′〉n′ , one may have been tempted of directly reducing
the double sum in Eq. (26) to a single sum over Wilson
shells using Eq. (9). This implies that the thermal weight
would be constructed as ρa(T ) ∼ e−βEa → e−βEn,X

s from both,
the discarded (X = K) as well as the kept (X = K) space at
iteration n. This, however, ignores a possible feedback from
small to large energy scales which has been shown to be crucial
in the NRG context.9

The solution is to take the FDM as it stands in Eq. (13).
This, however, introduces yet another independent sum c over
Wilson shells, in addition to a and b in Eq. (26) above,

ABC(ω) =
∑
abc

ρcaBabC
∗
ac · δ(ω − Eab). (28)

The triple-sum over {a,b,c} can be treated as in Eq. (11).
With {a,b,c} → {s,s ′,sρ}n ∈ {XX′Xρ �= KKK}, nevertheless,
X = Xρ are locked to each other since ρ itself represents a
scalar operator, and by construction does not mix kept with
discarded states. Therefore only the contributions XX′ �= KK
as known from a double sum remain. With

tr
[
ρ̂FDM

T B̂(t) · Ĉ†]
=

∑
n

∑
XX′Xρ

tr
[
P̂

Xρ

n · ρ̂FDM
T · P̂ X

n︸ ︷︷ ︸
=δXXρ R̂X

n

B̂(t)P̂ X′
n · Ĉ†],
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collecting spectral data in a single sweep having (s,s  {KK} 

iteration n 

C
 

B
 

FIG. 6. (Color online) MPS diagram for calculating spectral
functions using fdmNRG based on the Lehmann representation in
Eq. (29). In general, spectral functions are preceded by an NRG
forward sweep, which generates the NRG eigenbasis decomposition
(horizontal lines; cf. Fig. 4). Correlation functions then require the
evaluation of the matrix elements tr[Ĉρ

T
· (s)B̂(s′)], as indicated at

the left of the figure. The energies of the indices (states) s and
s ′ are “probed” such that their difference determines the energy
ω = En

ss′ ≡ En
s′ − En

s of an individual contribution to the spectral
function, as indicated by the ×δ(ω − Ess′ ) next to the indices s and
s ′ in the upper right of the figure. The sum

∑
n′>n in the discarded

state space of ρ̂FDM(T ), indicated to the lower right, results in the
object Rn [cf. Eq. (21b)]. The individual contributions ρFDM

n,n′ (T ) are
generated by the Boltzmann weights in the discarded space at iteration
n′, as indicated to the right. The contribution at n′ = n, i.e., RD

n , can
simply be determined when needed. On the other hand, the cumulative
contributions n′ > n are obtained in a simple prior backward sweep,
starting from the last Wilson shell N included, as indicated by the
small arrow pointing to the left. Having n′ > n, this calculation always
maps to the kept space, thus resulting in RK

n . Finally, the spectral data
is collected in a single forward sweep, as indicated at the bottom of
the figure.

it follows for spectral functions (fdmNRG),14

ABC(ω) =
∑
n,ss ′

′
[C†

n Rn]s ′s(Bn)ss ′ δ
(
ω − En

ss ′
)
, (29)

where the prime with the sum again indicates that only the
combinations of states ss ′ ∈ XX′ �= KK are to be considered
at iteration n. To be specific, given the scalar nature of the
projections R̂n, the first term implies the matrix product
(C†

nRn)X′X ≡ (C†
n)X′XRX

n .
The MPS diagram of the underlying tensor structure is

shown in Fig. 6. Every leg of the “ladders” in Fig. 6
corresponds to an NRG eigenstate (MPS) |s〉n for some
intermediate iteration n. The blocks for the MPS coefficient
spaces (A-tensors) are no longer drawn, for simplicity [cf.
Fig. 4]. The outer sum over the states s ′ in Eq. (29) corresponds
to the overall trace. Hence the upper- and lower-most legs in
Fig. 6 at iteration n carry the same state label s ′, as they are
connected by a line (contraction). Furthermore, the inserted
identity in the index s initially also would have been identified
with two legs [similar to what is seen in Fig. 7 later]. At
iteration n, however, the state space s directly hits the FDM,
leading to the overlap matrix X

n 〈s|s̃〉X̃
n = δss̃δXX̃ [hence this

eliminates the second block from the top in Fig. 7]. As a
result, only the single index s from the second complete sum
remains in Fig. 6. The same argument applies for the index s ′′.

The two legs in the center of Fig. 6, finally, stem from
the insertion of the FDM which can extend to all iterations
n′ � n. Note that the case n′ < n does not appear, since there
the discarded state space used for the construction of the FDM
is orthogonal to the state space s at iteration n. The trace over
the environment at iteration n leads to the reduced (partial)
density matrices Rn. Here, the environmental states |e〉n′ for the
density matrices ρD

n′ (T ) for n′ � n had already all been traced
out, as pointed out with Eq. (14). The FDM thus reduces at
iteration n to the scalar operator R(X)

n as introduced in Eq. (21).
In summary, by insisting on using the FDM in Eq. (13)

this only leads to the minor complication that RK
n needs to be

constructed and included in the calculation. The construction
of RK

n , on the other hand, can be done in a simple prior
backward sweep, which allows to generate RK

n iteratively and
thus efficiently. All of the RK

n need to be stored for the later
calculation of the correlation function. Residing in kept space,
however, the computational overhead is negligible. The actual
spectral data, finally, is collected in a single forward sweep, as
indicated in Fig. 6.

1. Exactly conserved sum rules

By construction, FDM allows to exactly obey sum-rules
for spectral functions as a direct consequence of Eq. (27) and
fundamental quantum-mechanical commutator relations. For
example, after completing the Green’s function in Eq. (24) to a
proper many-body correlation function for fermions, Gd (t) ≡
−iϑ(t)〈{d̂(t),d̂†}〉T , with d̂† creating an electron in level d

at the impurity and {·,·} the anticommutator, the integrated
spectral function results in14∫

dωA(ω) = 〈{d̂,d̂†}〉T = 1, (30)

due to the fundamental fermionic anticommutator relation,
{d̂,d̂†} = 1. In practice, Eq. (30) is obeyed exactly within
numerical double precision noise (10−16), which underlines the
fact that the full exponentially large quantum many-body state
space can be dealt with in practice, indeed. Note, however, that
Eq. (30) holds by construction, and therefore it is not measure
for convergence of an NRG calculation. The latter must be
checked independently.15

2. Implications for complex Hamiltonians

The Hamiltonians analyzed by NRG are usually time-
reversal invariant, and therefore can be computed using non-
complex numbers. In case the Hamiltonian is not time-reversal
invariant, i.e., the calculation becomes intrinsically complex,
the A-tensors on the lower leg of the ladders for the operators
B̂ and Ĉ† in Fig. 6 must be complex conjugated (see also
Fig. 4). Consequently, this implies for the FDM projections
Rn, that in Fig. 6 its constituting A-tensors in the upper leg
need to be complex conjugated.

B. Thermal expectation values

Arbitrary thermodynamic expectation values can be calcu-
lated within the fdmNRG framework, in principle, through
Eq. (27). Given the spectral data on the left-hand side of
Eq. (27), for example, this can be integrated to obtain the
thermodynamic expectation value on the right-hand side of
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Eq. (27). In practice, this corresponds to a simple sum of
the nonbroadened discrete spectral data as obtained from
fdmNRG. Using the plain discrete data has the advantage
that it does not depend on any further details of broadening
procedures which typically would introduce somewhat larger
error bars otherwise.

For dynamical properties within the NRG, however, usually
only local operators are of interest. That is, for example, the
operators B̂ or Ĉ in Eq. (27) act within the local Hamiltonian
Ĥ0 [Wilson shell n = 0; cf. Eq. (1)], or within the very first
Wilson sites n < n0, where n0 stands for the first Wilson shell
where truncation sets in. For this early part of the Wilson
chain, the weights wn are identically zero. Consequently,
the reduced thermal density matrix is fully described for
iteration n < n0 for arbitrary temperatures T by RK

n (T ) in kept
space. For a given temperature, the aforementioned simple
backward sweep to calculate RK

n then already provides all
necessary information for the simple evaluation of the thermal
expectation value of any local operator Ĉ [e.g., Ĉ := B̂Ĉ† in
Eq. (27)],

〈Ĉ〉T = tr
[
R(K)

n (T )C(KK)
n

]
, (n < n0) (31)

with C(KK)
n the matrix elements of the operator Ĉ in the kept

space of iteration n. With no truncation yet at iteration n, the
kept space is the only space available, i.e., represents the full
state space up to iteration n [hence the brackets around the
K’s]. For strictly local operators acting within the state space
of H0, one has 〈Ĉ〉T = tr[R0(T )C0]. The clear advantage of
Eq. (31) is that once R(K)

n (T ) has been obtained for given
temperature, any local expectation value can be computed in
a simple manner without the need to explicitly calculate the
matrix elements of the operator Ĉ throughout the entire Wilson
chain.

In Eq. (31), it was assumed that the operator Ĉ acts on
sites n � n0 only. This can be relaxed significantly, however,
assuming that temperature is typically much smaller than the
bandwidth of the system. In that case, the weight distribution
wn already also has absolutely negligible contribution at earlier
iterations n′ � nT which clearly stretches beyond n0 (see
Fig. 3 and discussion). Hence Eq. (31) can be relaxed to all
iterations n for which

∑
n′<n wn′ � 1.

In the case that the operator Ĉ is not a local operator at all,
but nevertheless acts locally on some specific Wilson site n,
then using Eqs. (14) and (21) it follows for the general case,

〈Ĉ〉T = tr
[
RK

n (T )CKK
n

] + tr
[
RD

n (T )CD D
n

] + c
∑
n′<n

wn′ , (32)

which corresponds to the partitioning of Eq. (14) given by∑
n′ = ∑

n′>n +∑
n′=n +∑

n′<n, respectively. The last term
in Eq. (32) derives from the discarded state spaces for Wilson
shells n′ < n at (much) larger energy scales. Therefore the
fully mixed thermal average applies, such that the resulting
constant c ≡ 1

d
tr σn

(Ĉ) is the plain average of the operator Ĉ

in the local basis |σn〉 that it acts upon. To be specific, this
derives from the trace over the environmental states |e〉n in
Eq. (14). Equation (31) finally follows from Eq. (32), in that
for n < n0, by construction, due to the absence of truncation
the second and third term in Eq. (32) are identically zero.

C. Time-dependent NRG

Starting from the thermal equilibrium of some initial (I)
Hamiltonian Ĥ I, at time t = 0 a quench at the location
of the quantum impurity occurs, with the effect that for
t > 0 the time-evolution is governed by a different final (F)
Hamiltonian Ĥ F. While initially introduced within the single-
shell framework for finite temperature,10 the same analysis
can also be straightforwardly generalized to the multishell
approach of fdmNRG. Thus the description here will focus on
the FDM approach.

Given a quantum quench, the typical time-dependent
expectation value of interest is

C(t) ≡ 〈Ĉ(t)〉T ≡ tr[ρI(T ) · eiH Ft Ĉe−iH Ft ], (33)

with Ĉ some observable. While the physically relevant time
domain concerns the dynamics after the quench, i.e., t > 0,
one is nevertheless free to extend the definition of Eq. (33)
also to negative times. The advantage of doing so is, that the
Fourier transform into frequency space of the C(t) in Eq. (33)
defined for arbitrary times becomes purely real, as will be
shown shortly. With this the actual time-dependent calculation
can be performed in frequency space first in a simple and for
the NRG natural way,

C(ω) =
∫

dt

2π
eiωt tr[ρ̂I(T ) · eiĤ Ft Ĉe−iĤ Ft ]. (34)

A Fourier transform back into the time domain at the end of
the calculation, finally, provides the desired time-dependent
expectation value C(t) = ∫

C(ω)e−iωt dω for t � 0. In order
to obtain smooth data closer to the thermodynamic limit, a
weak log-Gaussian broadening in frequency space quickly
eliminates artificial oscillations in the time domain, which
derive from the logarithmic discretization. Note that for the
sole purpose of damping these artificial oscillations, typically
a significantly smaller log-Gaussian broadening parameter
α � 0.1 suffices as compared to what is typically used to
obtain fully smoothened correlation functions in the frequency
domain (e.g., α � 0.5 for � = 2, see EPAPS of Ref. 14).

1. Lehmann representation

For the Lehmann representation of Eq. (34), in principle,
three complete basis sets are required: one completed basis
set i derived from an NRG run in Ĥ I to construct ρI(T ), and
two complete basis sets f and f ′ from an NRG run in Ĥ F to
be inserted right before and after the Ĉ operator, respectively,
to describe the dynamical behavior. Clearly, two NRG runs in
Ĥ I and Ĥ F are required to describe the quantum quench.6,7,39

With this, the spectral data in Eq. (34) becomes

C(ω) =
∑
i,f,f ′

〈f ′|i〉︸ ︷︷ ︸
≡S∗

if ′

ρI
c(T ) 〈i|f 〉︸ ︷︷ ︸

≡Sif

Cff ′ δ
(
ω − EF

ff ′
)
, (35)

which generates the overlap matrix S. Now using the com-
plete NRG eigenbasis sets together with the FDM, again
similar to the fdmNRG in Eq. (29), this introduces another
sum over Wilson shells. Therefore the fourier-transformed
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collecting spectral data in a single sweep having (s,s i)  {KKK} 

iteration n 

C
 

FIG. 7. (Color online) MPS diagram for the calculation of
quantum quenches using tdmNRG [cf. Eq. (36)]. The calculation is
performed in frequency space as depicted, which at the very end of the
calculation is Fourier transformed back into the time domain to obtain
the desired time-dependent expectation value Ĉ(t) [cf. Eq. (34)].
The calculation requires a complete eigenbasis for initial (black
horizontal lines) and final Hamiltonian [orange (gray) horizontal
lines], respectively, which are computed in two preceding NRG runs.
Their respective shell-dependent overlap matrices Sn (two light gray
boxes at lower left) are calculated in parallel to the calculation of the
matrix elements C (dark gray box at the top). The projections RI

n of
the FDM (box at the lower right) are evaluated with respect to the
initial Hamiltonian, but have exactly the same structure otherwise as
already discussed with Fig. 6 [see also Eq. (21)]. The spectral data,
finally, is collected in a full forward sweep, as indicated by the arrow
at the bottom. To be specific, the summation is over all Wilson shells
n and for a given iteration n, over all states (s,s ′,si) /∈ {KKK} with
si ∈ {s1,s2}.

time-dependent NRG (tdmNRG) becomes

C(ω) =
∑
n,ss ′

′[
S†

n RI,X̃
n Sn

]
s ′s(Cn)ss ′ δ

(
ω − En

ss ′
)
, (36)

where (s,s ′) ∈ {X,X′}. In addition, X̃ ∈ {K,D} describes the
sector of the reduced density matrix RI

n from the initial system.
To be specific, the notation for the first term in Eq. (36) implies
the matrix product,[

S†
n RI,X̃

n Sn

]X′X ≡ (
SX̃X′

n

)† · RI,X̃
n · SX̃X

n . (37)

For example, the left daggered overlap matrix Sn selects
the overlap of the sectors {X̃,X′} between initial and final
eigenbasis, respectively. The prime in Eq. (36) indicates that
the sum includes all combinations of sectors XX′X̃ �= KKK,
i.e., a total of seven contributions. The latter derives from
the reduction of the independent threefold sum over Wilson
shells [cf. Eq. (35)] into a single sum over Wilson shells n

as discussed with Eq. (11). It is emphasized here, that the
reduction of multiple sums in Wilson shells as in Eqs. (9) and
(11) is not constrained to having the complete basis sets being
identical to each other. It is easy to see that it equally applies
to the current context of different basis sets from initial and
final Hamiltonian.

The MPS diagram corresponding to Eq. (36) is shown
in Fig. 7. It is similar to Fig. 6, yet with several essential
differences: the block describing the matrix elements of the

original operator B̂ has now become the block containing Ĉ.
The original operator Ĉ† is absent, i.e., has become the identity.
Yet since its “matrix elements” are calculated with respect
to two different basis sets (initial and final Hamiltonian), an
overlap matrix remains (lowest block in Fig. 7). In the context
of the correlation functions in Fig. 6, the bra-ket states for the
inserted complete basis set in the index s could be reduced to
the single bra-index s, such that it affected a single horizontal
line only. Here, however, two different complete basis sets
hit upon each other, which inserts another overlap matrix
(second block from the top in Fig. 7, which corresponds to the
Hermitian conjugate of the lowest block). The reduced density
matrices RI,X

n , finally, are built from the initial Hamiltonian,
yet are completely identical in structure otherwise to the ones
already introduced in Eq. (21).

The basis of the initial Hamiltonian enters through the two
legs (horizontal black lines) in Fig. 7, which connect to the
density matrix Rn. All other legs refer to the NRG basis
generated by the final Hamiltonian [horizontal orange (gray)
lines]. Finally, note that the plain contraction S†RS of the
lower three tensors with respect to the indices s1 and s2 can
simply be evaluated through efficient matrix multiplication as
in Eq. (37), while nevertheless respecting the selection rules
on the state space sectors {X,X′,X̃} �= {K,K,K}.

D. Fermi-golden-rule calculations

The NRG is designed for quantum impurity models. As
such, it is also perfectly suited to deal with local quantum
events such as absorption or emission of a generalized local
impurity in contact with noninteracting reservoirs.6,7,16,20,21,39

If the rate of absorption is weak, such that the system has
sufficient time to equilibrate on average, then the resulting
absorption spectra are described by Fermi’s golden rule (fgr),40

A(ω) = 2π
∑
i,f

ρI
i (T ) · |〈f |Ĉ†|i〉|2 · δ(ω − Eif ), (38)

where i and f describe complete basis sets for initial and
final system, respectively. The system starts in the thermal
equilibrium of the initial system. The operator Ĉ† describes
the absorption event at the impurity system, i.e., corresponds to
the term in the Hamiltonian that couples to the light field. The
transition amplitudes between initial and final Hamiltonian
are fully described by the matrix elements Cif ≡ 〈i|Ĉ|f 〉.
Given that the energy difference Eif ≡ EF

f − EI
i in Eq. (38)

needs to be calculated between states of initial and final
system, absorption or emission spectra usually show threshold
behavior in the frequency ω. The threshold frequency is given
by the difference in the ground state energies of initial and
final Hamiltonian, ωthr ≡ 
Eg ≡ EF

g − EI
g , which eventually

is blurred by temperature.
The difference between absorption and emission spectra

is the reversed role of initial and final system, while also
having Ĉ† → Ĉ. That is, from the perspective of the absorption
process, the emission process starts in the thermal equilibrium
of the final Hamiltonian, with subsequent transition matrix
elements to the initial system. This also implies that emis-
sion spectra have their contributions at negative frequencies,
i.e., frequencies smaller than the threshold frequency ωthr

indicating the emission of a photon. Other than that, the
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calculation of an emission spectrum is completely analogous
to the calculation of an absorption spectrum. With this in
mind, the following discussion will be therefore constrained
to absorption spectra only.

While an absorption spectrum is already defined in fre-
quency domain, it nevertheless can be translated into the time
domain through Fourier transform,

A(t) ≡
∫

dω

2π
e−iωtA(ω)

=
∑
i,f

ρI
i (T ) · eiEi t 〈i|Ĉ|f 〉e−iEf t · 〈f |Ĉ†|i〉

= 〈
eiĤ It Ĉe−iĤ Ft︸ ︷︷ ︸

≡Ĉ(t)

· Ĉ†〉I
T

. (39)

Thus absorption spectra can also be interpreted similar to
correlation functions and quantum quenches: at time t = 0,
an absorption event occurs (application of the operator Ĉ†,
which for example rises an electron from a low lying level
into some higher level that participates in the dynamics). This
alters the Hamiltonian, such that the subsequent time evolution
is governed by the final Hamiltonian. At some time t > 0 then,
the absorption event relaxes back to the original configuration
(application of Ĉ). Therefore A(t) essentially describes the
overlap amplitude of the resulting state with the original state
with no absorption within the thermal equilibrium of the initial
system. While the “mixed” time evolution of Ĉ(t) in Eq. (39)
may appear somewhat artificial at first glance, it can be easily
rewritten in terms of a single time-independent Hamiltonian:
by explicitly including a further static degree (e.g., a low
lying hole from which the electron was lifted through the
absorption event, or the photon itself), this switches Ĥ I to Ĥ F,
i.e., between two dynamically disconnected sectors in Hilbert
space of the same Hamiltonian (compare discussion of type-1
and type-2 quenches in Ref. 22).

Within the FDM formalism, the Fermi-golden-rule calcu-
lations as defined in Eq. (38) becomes (fgrNRG),20,21

A(ω) =
∑
n,ss ′

′[
C†

n RI
n

]
s ′s(Cn)ss ′ δ

(
ω − En

ss ′
)
, (40)

where (s,s ′)∈{XI,XF} /∈ {KK}. Therefore (Cn)ss ′ ≡ I
n〈s|Ĉ|s ′〉F

n

represents mixed matrix elements between states from initial
and final Hamiltonian, respectively, which nevertheless can
also be easily calculated using the basic contractions discussed
with Fig. 4.

The MPS diagram to be evaluated for Eq. (40) is shown in
Fig. 8. Its structure is completely analogous to the calculation
of generic correlation functions in Fig. 6, except that similar
to the quantum quench earlier, here again the basis sets from
two different Hamiltonians come into play.6,7,39 In contrast to
the quantum quench situation in Fig. 7, however, no explicit
overlap matrices are required. Instead, all matrix elements of
the local operator Ĉ† themselves are mixed matrix elements
between initial and final system. The reduced density matrices
RI

n are constructed with respect to the initial Hamiltonian, but
again exactly correspond to the ones already introduced in
Eq. (21) otherwise.

iteration n 

collecting spectral data in single sweep having (s,s  {KK} 

 

s 

C
 

C
 

FIG. 8. (Color online) MPS diagram for the calculation of
absorption spectra using Fermi’s golden rule (fgrNRG) mediated by
the operator Ĉ† [cf. Eq. (40)]. The two center legs (horizontal black
lines) refer to the state space of the initial Hamiltonian, while the
outer legs [horizontal orange (gray) lines] refer to the state space of
the final Hamiltonian. Therefore the matrix elements of Ĉ† are mixed
matrix elements between eigenstates of initial and final Hamiltonian.

1. Technical remarks

Absorption or emission spectra in the presence of Ander-
son orthogonality or strongly correlated low-energy physics
typically exhibit sharply peaked features close to the threshold
frequency with clear physical interpretation. While, in prin-
ciple, a single Hamiltonian with dynamically disconnected
Hilbert space sectors may have been used, this is ill-suited
for an NRG simulation. Using a single NRG run, this can only
resolve the low energy of the full Hamiltonian, i.e., of the initial
system as it is assumed to lie lower in energy. Consequently,
the sharp features at the threshold frequency will have to be
smoothened by an energy window comparable to ωthr = 
Eg

in order to suppress discretization artifacts. This problem is
fully circumvented only by using two separate NRG runs, one
for the initial and one for the final Hamiltonian.6,7,39 With
the NRG spectra typically collected in logarithmically spaced
bins, having two NRG runs then, it is important that the data
is collected in terms of the frequencies ν ≡ ω − ωthr taken
relative to the threshold frequency ωthr as defined earlier.

E. Higher-order correlation functions

Consider the spectral function of a three-point correlation
function, which in the time domain is given by

ABCD(t1,t2) ≡ 〈D̂(t2)Ĉ(t1)B̂〉T
≡ tr[ρ̂(T ) · eiĤ t2D̂eiĤ (t1−t2)Ĉe−iĤ t1B̂]. (41)

Given a time-invariant Hamiltonian, the correlator of three
operators B̂, Ĉ, and D̂ acting at three different times results in
the dependence on effectively two times t1 and t2, since t0 as in
B̂(t0) can simply be chosen arbitrary, i.e., t0 = 0 for simplicity.

Using the NRG eigenbasis sets together with the FDM, the
Lehman representation of Eq. (41) requires four independent
sums over complete eigenbasis sets, one from the FDM (Xρ),
and three by inserting an identity with every exponentiated
Hamiltonian (X1,X2,X3 from left to right), respectively.
Again, with the reduced density matrix ρ being a scalar
operator, one has Xρ = X1. Using Eq. (11) then, in frequency
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collecting data in a single sweep having (XR=X1,X2,X3)  {KKK}
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FIG. 9. (Color online) MPS diagram for the evaluation of a three-
point correlation functions as in Eq. (42), which thus generalizes
fdmNRG (see also Fig. 6).

space Eq. (41) becomes

ABCD(ω1,ω2) =
∑

n

∑
s1s2s3

′
[BnRn]s3,s1 (Dn)s1s2 (Cn)s2s3

× δ
(
ω2 − En

s1,s2

)
δ
(
ω1 − En

s2,s3

)
, (42)

with (s1,s2,s3) ∈ {X1,X2,X3} �= {KKK}, as indicated by the
prime next to the sum, having

[
BnRn

]X3,X1 ≡ BX3,X1
n RX1

n . The
MPS diagram corresponding to the spectral representation in
Eq. (42) is shown in Fig. 9.

The more challenging part with Eq. (42) is the dependence
on two frequencies. While the corresponding full collection
of data into bins (ω1,ω2) can become expensive, however,
certain fixed frequency points together with different kernels
corresponding to a different analytic structure of the higher-
order correlation function [which then replace the δ-functions
in Eq. (42)], appear feasible with reasonable effort. Moreover,
within the NRG context, by construction, one has comparable
energy resolution for ω1 and ω2 at a given energy shell.
Hence it remains to be seen in what respect vastly different
energy scales of ω1 as compared to ω2, if required, are
affected by the ansatz of energy scale separation within
the NRG.

IV. SUMMARY AND CONCLUSIONS

The framework of tensor network has been applied to
the NRG. This makes full use of the complete basis sets
as introduced by Anders and Schiller,10 which within the
approximation of energy scale separation, also represent many-
body eigenstates of the full Hamiltonian. Together with the full
density matrix (FDM) approach, complete basis sets allow for
simple transparent algorithms, as demonstrated for correlation
function (fdmNRG), time-dependent quenches (tdmNRG) as
well as Fermi-golden-rule (fgrNRG) calculations. The under-
lying principle is based on the plain Lehmann representation
of the relevant dynamical expressions, which within the NRG,
can be evaluated in a text-book-like clean and transparent
fashion.

The framework of complete basis sets clearly allows for
straightforward further generalizations. For example, one can
envisage multiple consecutive time-steps that thus general-
izes tdmNRG with the possibility to implement periodic
switching.41 While initially, the system starts in thermal
equilibrium of a given Hamiltonian, after each quench the
description of the system must be projected onto the complete
basis set of the following Hamiltonian in terms of the reduced
density matrix. For all these calculations, however, one must
keep in mind that Wilson chains are not thermal reservoirs.42

Within the tdmNRG, for example, this can manifest itself
as finite size effect, in that already for a single quench in
the absence of an external magnetic field, an initial excess
spin at the impurity cannot be fully dissipated into the
bath even in the limit of time t → ∞, leading to (small)
residual magnetization at the impurity. In cases where these
discretization effects become a strong limiting factor, hybrid
NRG approaches have been devised with the idea to extend the
bath to a more refined or uniform spectrum. However, since
this typically compromises energy scale separation along the
full Wilson chain, other methods such as the DMRG need to
be incorporated.23,43
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APPENDIX: FERMIONIC SIGNS

The NRG is typically applied to fermionic systems (for
extensions to bosonic systems see, for example, Refs. 3, 44,
and 45). Through its iterative prescription, the resulting MPS
has a specific natural fermionic order in Fock space,

|s〉n =
∑

σd ,σ0,...,σn

(A[σd ]A[σ0] · . . . · A[σn])s |σn〉 . . . |σ0〉|σd〉︸ ︷︷ ︸
≡|σn,...,σ0,σd 〉

, (A1)

where |σd〉 stands for the local state space of the impurity.
Site n′ > n is added after site n, hence the state space |σn′ 〉
naturally appears to the left |σn〉 with second quantization in
mind. The environmental states |e〉n with respect to iteration n

which refers to the sites n′ > n is irrelevant for the following
discussion, and hence will be skipped.

Let ĉ† be a fermionic operator that acts on the impurity.
Here, ĉ† is assumed an arbitrary operator that nevertheless
creates or destroys an odd number of fermionic particles such
that fermionic signs apply. A very frequent task then is to
represent this operator in the effective many-body basis at
iteration n, i.e., to calculate the matrix elements (C†

n)ss ′ ≡
n〈s|ĉ†|s ′〉n [cf. Fig. 4]. This involves the basic matrix element
with respect to local state spaces,

〈σn, . . . ,σ0,σd |ĉ†|σ ′
n, . . . ,σ

′
0,σ

′
d〉

=
{ ∏

i=n,...,0

[
δσi ,σ

′
i
(−1)

nσ ′
i

]
︸ ︷︷ ︸

≡(ẑi )σi ,σ
′
i

}
· 〈σd |ĉ†|σ ′

d〉, (A2)
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with ẑ ≡ (−1)n̂ = exp(iπn̂), akin to the Pauli z-matrix. That
is, by pulling the operator ĉ†, acting on the impurity, to the
right past the second quantization operators that create the
states σni

, fermionic signs apply, resulting in a Jordan-Wigner
string

Ẑ ≡
⊗

i=0,...,n

ẑi , (A3)

to be called z-string in short. Note that through the Jordan-
Wigner transformation, which maps fermions onto spins and
vice versa, exactly the same string operator as in Eq. (A3)
emerges. For a one-dimensional system with nearest-neighbor
hopping, the Jordan-Wigner transformation to spins allows
to eliminate on the operator level of the Hamiltonian further
complications with fermionic signs. This is fully equivalent, of
course, to the explicit treatment of the Jordan-Wigner string in
a numerical setting that keeps a fermionic basis. The operators
ẑi in Eq. (A2) take care of the book keeping of fermionic
signs, by inserting −1 (+1) for all states σi at site i with odd
(even) number of particles nσi

. The operators ẑi are diagonal
and hence commute with each other. In the case of additional
explicit spin-degrees of freedom, such as the localized spin in
the Kondo model, its z-operator is proportional to the identity
matrix and hence can be safely ignored.

In the following, three alternative viewpoints are discussed
for dealing with fermionic signs in the MPS setup of the
NRG. To be specific, the following discussion assumes ĉ† =
d̂† which creates a particle at the impurity’s d level. As
such, it generates a Jordan Wigner string for all sites added
subsequently to the MPS, i.e., sites i = 0, . . . ,n [cf. Eq. (A3)].

1. Viewpoint 1: Rerouting of z-string in tensor network

Figure 10 depicts an MPS diagram for the typical evaluation
of matrix elements with relevant fermionic signs. The A-
tensors that derive from a preceeding iterative state space
generation of the NRG are depicted by the ternary nodes (cf.
Fig. 4). By keeping track of the total number n of particles for
all indices then, for some specific index a the fermionic sign
is given by (−1)na .

The z-string that is required for the evaluation of the
matrix elements of d†, stretches across all local state spaces σi

with 0 � i � n. This is depicted by the light green (gray)
line in Fig. 10 (note that this is not the extra index that
takes care of non-Abelian symmetries as in Fig. 5, even
though graphically its role is not that dissimilar). Here, the
interpretation is such, that a crossing of the z-string with a
state space inserts fermionic signs for this state space.46–48

Consider then, for example, the upper right A-tensor, An, in
Fig. 10. For simplicity, its three legs are labeled l ≡ sn−1 (state
space from previous iteration), σ(n) (new local state space),
and r ≡ sn (combined state space) for left, local, and right,
respectively. By tracking the total particle number for all
states, given the left-to-right orthonormalization (see arrows in
Fig. 4), by construction it must hold nl + nσ = nr . The index
σ is crossed by the z-string, hence fermionic signs apply at the
location of the crossing,

zσ ≡ (−1)nσ = (−1)nr (−1)−nl︸ ︷︷ ︸
=(−1)+nl

≡ zlzr . (A4)

(a) 

(b) 

FIG. 10. (Color online) MPS diagrams and fermionic signs.
Consider the matrix elements of a local operator d̂† which creates
a particle at the impurity, i.e., the first local state space of the MPS
in the effective MPS space |s〉n. A z-string (Jordan-Wigner string)
Ẑ = ⊗

i ẑi arises [green (gray) horizontal line in the middle]. The
endpoints (open circles) indicate the range of the z-string, i.e., starting
from and including site 0 to site n. For every crossing of the z-string
with a black line, which represent state spaces, fermionic signs apply.
(a) shows that a z-string can be rerouted (light dashed lines, pushed
in the direction of the red arrow). The resulting configuration in (b)
shows that by rerouting the z-string significantly fewer crossings with
black lines can be achieved. In particular, the z-strings, which applied
to all sites to the right of d̂† (a), can be significantly reduced to local
fermionic signs at the impurity and another fermionic sign with the
state space sn.

Therefore, instead of applying fermionic signs with index σ , it
is equally correct to apply fermionic signs with the indices l and
r . This allows to reroute the z-string46–48 as indicated in Fig. 10
(dashed line to the upper right with the shift in the z-string
indicated by short red arrow). Note that for this rerouting
to work, the actual left-to-right orthonormalization is not
strictly required, and could be relaxed, in general, to the more
general condition nl ± nr ± nσ = even. In particular, this
includes nl ± nr ± nσ = 0, which suggests that any direction
of orthonormalization is acceptable, together with a generic
current site that combines all (effective) state spaces to an
even number of particles, i.e., nl + nr + nσ = ntot = even (for
ntot = odd, a global minus sign would apply in the case of
rerouting).

The basic rerouting step as indicated above can be repeated,
such that the z-string can be pulled to the top outside the
MPS diagram in Fig. 10(a), with the final configuration shown
in Fig. 10(b). The state to the very left (black dot) is the
vacuum states with no particles, hence the z-string can be
fully pulled outside at the left. As a result, instead of the
original n crossings with the state space σn, only two crossings
of the z-string with state spaces (black lines) remain: one
crossing with the local state space at the impurity itself,
leading to

d̂† → d̂†ẑd ≡ (ẑd̂)†, (A5)

which fully acts within the state space of the impurity, and
another crossing with the state space |s ′〉n at iteration n.
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R 

FIG. 11. (Color online) Fermionic signs in correlation functions.
Two MPS diagrams as in Fig. 11 for the matrix elements of d̂

and d̂† are combined, as required, for example, for the calculation
of correlation functions. The resulting product of matrix elements
n〈s ′|d̂|s ′′〉n · R

[n]
s′′,s · n〈s|d̂†|s ′〉n leads to cancellation of the fermionic

signs in the index s ′ in the rerouted z-strings (light green lines), as
indicated by the two splashes to the right. Hence the right end-point
of the z-string can be fully retracted to the very left of the diagram, as
indicated by the dashed red arrows. The partial contribution R to the
FDM is a scalar operator, such that assuming charge conservation,
the particle number of the states s and s ′′ also must be same. Hence
the z-string in Fig. 11 could have been equally well also rerouted
downwards, instead. The respective fermionic signs with states s and
s ′′ still would have canceled, while the order of application of the
z-operator with the impurity would have changed.

In typical applications which include thermal expectation
values or correlation functions, however, an operator d̂† never
comes by itself, as its expectation value with respect to
any state with well-defined particle number would be zero.
Therefore creation and annihilation operators always appear in
pairs. For the local spectral function, for example, d̂† is paired
with its daggered version d̂ . In their overall combination,
the fermionic signs with respect to the index s ′ appear twice
and hence annihilate each other. This situation is sketched in
Fig. 11. The matrix element discussed previously with Fig. 10
is shown in the upper half of the figure. Given the case of
spectral functions (cf. Fig. 6), its counterpart is shown at the
bottom. The reduced density matrix R is a scalar operator,
such that the particle number of the states s and s ′′ must
match. Similarly, the outer two states are connected through the
overall trace (solid line to the very right), hence refer to exactly
the same state. Consequently, the same fermionic sign factor
applies twice with the rerouted z-strings, which thus cancels,
i.e., [(−1)ns ]2 = 1 (indicated by the two splashes with s ′ at the
right). Consequently, the right end-point of the z-strings can
be retracted along the rerouted z-string all to the way to the
left of the impurity (indicated by the red dashed arrow).

Therefore given the A-tensors for the basis transformations
from a prior NRG run that only generates the basis, above
line of argument allows to ignore fermionic signs for most
of the subsequent calculation of thermodynamic quantities
or spectral properties. Specifically, in given example which
applies to fdmNRG, tdmNRG, as well as fgrNRG, it is
sufficient to calculate the spectral functions for the operator
d̂ → ẑd d̂ [cf. Eq. (A5)] and fully ignore fermionic signs for

the rest of the chain. This is in contrast to the original setup
where the full z-string needs to be included.

2. Viewpoint 2: Operator representation

An alternative way to demonstrate the effect of rerouting
of the z-string can be given by looking at the equivalent
(numerical) tensor-product representation of operators in the
full many-body Hilbert space without making reference to
MPS notation. Given the fermionic order of sites as in Eq. (A1),
a fermionic operator ĉk that destroys a particle at site k, has
the tensor-product form

Ĉk ≡ 1̂d ⊗ 1̂0 ⊗ . . . 1̂k−1 ⊗ ĉk ⊗ ẑk+1 ⊗ . . . ⊗ ẑn, (A6)

where 1̂i is the identity matrix at site i, ĉk the desired operator
acting within the state space of site k, and ẑi ≡ (−1)n̂i as in
Eq. (A2). Now, applying a z-operator to the states s ′ at the last
site n is equivalent to applying a z-operator to each individual
site,

ẐĈk ≡
( n⊗

i=d

ẑi

)
ĉk

= ẑd ⊗ ẑ0 ⊗ . . . ẑk−1 ⊗ [ẑĉ]k ⊗ 1̂k+1 . . . 1̂n, (A7)

since (ẑi)2 = 1̂i . In the application to thermodynamic quan-
tities such as correlations functions, the operator Ĉk would
again appear together with its daggered version Ĉ

†
k , hence

insertion of Ẑ2 has no effect, yet can be split in equal parts, i.e.,
Ĉ

†
kĈk = (ẐĈk)†(ẐĈk). Therefore, ẐĈk can be equally well

used instead of Ĉk . As a result, similar to Fig. 11, the z-strings
have again been fully flipped from the sites to the right of
site k to the left of site k, with the additional transformation
ĉk → [ẑĉ]k . Note that, essentially, this equivalent to fully
reverting the fermionic order.

3. Viewpoint 3: Auxiliary fermionic level

In the case of absorption spectra, the absorption of a photon
creates an electron-hole pair, ĥ†d̂†, where the hole ĥ† can be
simply treated as a spectator in the dynamics. Nevertheless,
by explicitly including the hole in the correlation function,
i.e., by using the operator d̂† → ĥ†d̂†, this operator itself now
already forms a pair of fermions that preserves particle number
(assuming that ĥ† creates a hole). Therefore, by construction,
ĥ†d̂† simply commutes with all Wilson sites except for the
impurity upon which it acts.

The same argument can be repeated for a standard spectral
function, by introducing an auxiliary fermionic level ĥ that
does not participate in the dynamics, i.e., does not appear in
the Hamiltonian. In general, prepending the states in Eq. (A1)
by the states |σh〉 of the “hole”, i.e.,

|σn, . . . ,σ0,σd〉 → |σn, . . . ,σ0,σd〉|σh〉, (A8)

immediately results in the same consistent picture as already
encountered with Fig. 11 or Eq. (A7).
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