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We show how the density-matrix numerical renormalization group method can be used in combination with non-
Abelian symmetries such as SU(N ). The decomposition of the direct product of two irreducible representations
requires the use of a so-called outer multiplicity label. We apply this scheme to the SU(3) symmetrical Anderson
model, for which we analyze the finite size spectrum, determine local fermionic, spin, superconducting, and trion
spectral functions, and also compute the temperature dependence of the conductance. Our calculations reveal a
rich Fermi liquid structure.
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I. INTRODUCTION

Quantum impurity models, describing a quantum system
with a small number of discrete states, the impurity, coupled
to a continuous bath of fermionic or bosonic excitations, arise
in a variety of contexts. A particularly important example is the
Anderson impurity model,1 relevant for describing magnetic
moments in metals, transport through quantum dots, and for
the treatment of correlated lattice models using dynamical
mean-field theory. While the standard version of this model
has SU(2) spin symmetry in the absence of a magnetic field,
generalizations to settings with higher symmetry have also
been studied. The SU(N ) generalization of the Anderson
model emerged first in the context of heavy Fermion systems,2

where large N expansions proved to be an efficient way to
model and describe magnetic atoms with orbital degeneracy.
Studying these models in detail is not only useful in the context
of heavy fermion systems, but it also represents the first step to
understand the behavior of correlated cold atomic gases with
SU(N ) symmetrical interactions.3,4

The SU(N ) Anderson model can also be realized in a
controlled way. In particular, the SU(4) model has been
realized in various mesoscopic structures including carbon
nanotubes,5,6 vertical quantum dots,7 and more recently in
the originally proposed double dot structures.8 Similarly, the
SU(3) Anderson model could also be realized with quantum
dot structures, though the proposed setup is maybe somewhat
more complicated.9

The SU(N ) Anderson model is defined in terms of N

local orbitals embedded in a conduction electron sea. Its
Hamiltonian can be written in terms of the corresponding
creation operators, d†

α (α = 1, . . . ,N) and the number operator
n̂ =∑α d†

αdα as

H = εd n̂ + U

2
n̂(n̂ − 1) + V

∑
α

(d†
αψα(0) + H.c.)

+Hchan[ψ,ψ†]. (1)

Here εd and U denote the position of the local orbital and
the strength of interaction on it, respectively, and the level d†

hybridizes locally with the fermions at its position, destroyed
by ψα(0). The last term of the Hamiltonian describes the kinetic
energy of the conduction electrons. It generates the dynamics
of the field ψα(0), and amounts to a broadening of the “atomic”
level εd .

In the present paper we show on the prototypical example
of the SU(3) symmetrical Anderson model how the numerical
renormalization group10,11 (NRG) of Wilson, one of the most
versatile and reliable tools for treating quantum impurity
models, can be adapted to fully take advantage of non-
Abelian symmetries to reduce computational costs. Within
Wilson’s procedure, one rewrites (1) as the Hamiltonian of
a semi-infinite chain, and diagonalizes it iteratively.10 Using
symmetries in the course of this diagonalization procedure is
crucial: It allows computer memory to be used efficiently,
and enables one to reach the required numerical accuracy
on relatively standard computers with reasonable run times.
Equation (1) obviously possesses an SU(N ) × U(1) symmetry
corresponding to rotations in spin space and overall charge
conservation. Here, we shall focus on the N = 3 case, classify
states and observables while exploiting these symmetries, and
determine the spectral functions of several local observables.

In an earlier work, a general framework has been set up and
implemented to handle an arbitrary number of non-Abelian
symmetries dynamically.12 This formulation allowed us to
build an open-access flexible density-matrix NRG (DM-NRG)
code.13 However, in Ref. 12 we considered only combinations
of certain rather simple symmetries such as charge and
spin SU(2) symmetries, Z2 or U(1) symmetries. In a group
theoretical sense, these are simpler than SU(N > 2) and
some other discrete or Lie groups. For SU(2), irreducible
representations (irreps) are labeled by the size of the spin.
When “adding” two SU(2) spins, say S1 and S2, each possible
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MOCA, ALEX, VON DELFT, AND ZARÁND PHYSICAL REVIEW B 86, 195128 (2012)

total spin S3 that satisfies the angular momentum addition
rule |S1 − S2| � S3 � S1 + S2 can be obtained in precisely
one way. More technically, in the decomposition of the direct
product of two SU(2) irreps labeled by spins S1 and S2 into
a direct sum of irreps, the number of times nS1S2;S3 that any
irrep labeled by spin S3 occurs in the direct sum, the so-called
“outer multiplicity” is either 0 or 1. This is, however, not
true for SU(N > 2): The decomposition of the direct product
�1 ⊗ �2 of two SU(N ) irreps into a direct sum can contain
irreps with outer multiplicity n�1�2;�3 larger than 1, in other
words, there may be n�1�2;�3 inequivalent ways to construct the
irrep �3 from �1 and �2. Correspondingly, the Clebsch-Gordan
coefficients have a more complicated structure in this case, and
the Wigner-Eckart theorem, extensively used in the DM-NRG

calculations, becomes also somewhat more complicated. Here
we show how a general framework can be constructed to deal
with this case,14 and demonstrate it on the specific example of
the SU(3) Anderson model.

We note that another general approach towards exploiting
non-Abelian symmetries such as SU(N ) or Sp(N ) within NRG,
and more generally for tensor network methods, has recently
been published by Weichselbaum.15 It is formulated in the
language of matrix product states, and may be regarded as
complementary to our own, which is phrased within the more
traditional formulation of NRG. We emphasize, though, that
both approaches are fully equivalent, in that precisely the same
NRG assumptions and approximations are made in both; they
differ only in the data structures used for internal bookkeeping
in the numerical codes. Their relation is briefly sketched in
Appendix D.

Our DM-NRG calculations require explicit knowledge of
Clebsch-Gordan coefficients. Whereas these are known in
closed form for SU(2), this is not the case for SU(N > 2).
However, an efficient numerical algorithm for their evaluation
has recently been developed,16 which we use here.

This paper is structured as follows: In Sec. II we outline our
approach for exploiting non-Abelian symmetries in DM-NRG

calculations. In Sec. III we apply it to the SU(3) Anderson
model; in particular, we present results for the conductance
through a quantum dot described by this model, and for
various local spectral functions. Our conclusions in Sec. IV are
followed by four Appendixes that summarize some basic facts
of SU(N ) representation theory, and some recursion formulas
involving Clebsch-Gordan coefficients, respectively.

II. DM-NRG WITH NON-ABELIAN SYMMETRIES

As stated in the introduction, the formalism presented in
Ref. 12 applies only for a special (although relatively large)
class of symmetries. Therefore, let us review here the most
important formulas and the structure of the NRG calculations
for the more general case, where so-called outer multiplicities
are also considered.17

A. Local symmetries on the Wilson chain

Let us start by first discussing the general structure of the
symmetries of the Wilson chain. The first step in Wilson’s
procedure of solving a quantum impurity problem is to
perform a Gram-Schmidt orthogonalization and rewrite the

Hamiltonian in a “tridiagonal” form,11

H = H0 +
∞∑

n=0

(τn,n+1 + Hn+1). (2)

HereH0 contains the local, interacting part of the Hamiltonian,
while the rest of the chain represents the conduction electron
(bath) degrees of freedom, coupled to it. The on-site terms
Hn+1 are many times missing; they typically appear for more
sophisticated electronic densities of states and can also account
for superconducting correlations. In our case, one could take,
for example,

H0 = εd n̂ + U

2
n̂(n̂ − 1) + Ṽ

∑
α

(
d†

αf [0]
α + h.c.

)
, (3)

as H0, with f [0]
α ∼ ψα(0) a properly normalized on-site

fermion, and the hopping terms τn,n+1 would read

τn,n+1 =
∑

α

h[n] (f [n]†
α f [n+1]

α + h.c.
)
. (4)

Here f [n+1]
α annihilates a fermion of SU(3) spin α at site [n],

and the hopping amplitudes h[n] decay exponentially along the
chain, thereby leading to energy scale separation. Equation (2)
is then diagonalized iteratively using the recursive relation,

Hn = Hn−1 + τn−1,n + Hn. (5)

In the following, we shall assume that H (and Hn) are
invariant under the direct product of nS symmetry groups,

G = G1 × G2 × · · · × GnS
. (6)

This means that for any group element gλ ∈ Gλ, with λ =
1, . . . ,nS , there exists a unitary operator Uλ(gλ) on the Fock
space, leaving H invariant. Here we do not need to make
much restriction on the groups: Our considerations hold for
any group which acts on the chain locally at each lattice site n,

U(g) =
nS∏

λ=1

Uλ(gλ) =
nS∏

λ=1

∏
n

Uλ,n(gλ), (7)

and for which the Wigner-Eckart theorem holds.18 Given the
above group structure, we can group all eigenstates and also
operators into multiplets, each of which transforms according
to a certain representation of G,

� ≡ {�1,�2,...,�nS } ↔ �1 ⊗ �2 ⊗ · · · ⊗ �nS . (8)

The “quantum numbers” �λ, which label the various irre-
ducible representations (irreps) occurring in �, can be spin
labels, charges, or can label different irreps of some point
group. States within a multiplet are then labeled by a set of
internal indices, γ = {γ 1,γ 2,...,γ nS }, with the internal labels
running from 1 � γ λ � dim(�λ). A given multiplet i that
transforms according to the representation �i thus consists
of

dim(i) ≡ dim(�i) =
nS∏

λ=1

dim
(
�λ

i

)
(9)

degenerate states.
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States belonging to a product of two representations,
�λ

1 ⊗ �λ
2 , often appear in the calculations. As outlined in the

introduction, similar to spins, these can be decomposed into
irreps. However, one irrep may appear several times in this
decomposition,

�λ
s ⊗ �λ

p → ... ⊕ �λ
q ⊕ ... ⊕ �λ

q︸ ︷︷ ︸
nλ

s,p;q times

⊕ ... . (10)

Accordingly, in the most general case, the resulting states
�λ

s ⊗ �λ
p → �λ

q must be labeled by a so-called “outer mul-
tiplicity” label, αλ = 1,..,nλ

s,p; q . Correspondingly, properly
transforming multiplets may be constructed from the product
of two multiplets as

|�,γ 〉α =
∑
γ1,γ2

(�1,γ1; �2,γ2|�,γ )α |�1,γ1〉 ⊗ |�2,γ2〉, (11)

where α ≡ {αλ} denotes the composite multiplicity label, and
the generalized Clebsch-Gordan coefficients are defined as

(�1,γ1; �2,γ2|�,γ )α ≡
nS∏

λ=1

(
�λ

1 ,γ λ
1 ; �λ

2 ,γ λ
2

∣∣�λ,γ λ
)
αλ

. (12)

The outer multiplicity also appears in the Wigner-Eckart
theorem. The latter states that the matrix elements of an op-
erator multiplet (i.e., a set of operators {A�A,γA

} transforming
under transformations U(g) as a multiplet �A) are determined
almost entirely by representation theory, and can be expressed
in terms of the Clebsch-Gordan coefficients as

〈i,�i,γi |A�A,γA
|j,�j ,γj 〉

=
∑

α

(�A,γA; �j ,γj |�i,γi)
∗
α〈i‖A‖j 〉α. (13)

Here multiplets i and j transform according to the irreps, �i

and �j . Thus, according to the Wigner-Eckart theorem, all
matrix elements are determined by only a few reduced matrix
elements, 〈i‖A‖j 〉α , labeled just by the outer multiplicity
labels, α characterizing how many times the representation
�i appears in the product of �j and �A. For many commonly
used symmetries as SU(2), for example, the outer multiplicity
is just always one and the label α can be dropped. However, it
is needed for, for example, SU(N � 3) or even for cubic point
groups.

B. Wilson’s NRG with symmetries

In course of the NRG procedure, one diagonalizes Eq. (2)
iteratively. The eigenstates of the Hamiltonian Hn of a chain
of length n can be grouped into multiplets, with each multiplet
i transforming according to a certain representation �i =
{�1

i ,..,�
nS

i }. Having computed the approximate eigenstates
(block states) |i,�i,γi,〉[n−1] of Hn−1, one proceeds to construct
eigenstates of Hn. To do that, one first appends to the
chain the multiplets {|μ,�loc

μ ,γ loc
μ 〉}, spanning local Hilbert

space at site n, and then constructs properly transforming
multiplets {|u,�u,γu〉[n]

αu
} by making use of the Clebsch-Gordan

coefficients [Eq. (11)]:∣∣μ,�loc
μ ,γ loc

μ

〉⊗ |i,�i,γi〉[n−1] → |u,�u,γu〉[n]
αu

. (14)

Notice that a new multiplet u now also carries an outer
multiplicity label αu: This specifies the representation

according to which �u has been produced from �i and �μ.
The advantage of using these states is that Hn is diagonal both
in �u and in the internal labels γu. Therefore, it is sufficient to
compute only the corresponding irreducible matrix elements
〈u‖Hn‖v〉[n] in each symmetry sector (block) separately, and
diagonalize Hn sectorwise by a unitary transformation to
obtain the corresponding new eigenstates,

|u,�u,γu〉[n]
αu

→ |ĩ,�ĩ ,γĩ〉[n]. (15)

As explained in Appendix D, this iterative procedure leads to a
matrix product state (MPS) with a peculiar structure, reflecting
the symmetry of the Hamiltonian.

The most difficult part in the procedure above is to
determine the matrix elements 〈u‖Hn‖v〉[n]. These can be
constructed by noticing that each state u and v has been
constructed from the eigenstates of Hn−1 and Hn, i,μ → u,
and j,ν → v, and therefore

〈u‖Hn‖v〉[n] = δu,v

(
En−1

i + εn
μ

)+ 〈u‖τn−1,n‖v〉[n],

with εn
μ being the eigenenergy of Hn. The matrix elements

of τn−1,n can be worked out by assuming that the hopping
part consists of some fermionic or bosonic creation operators
C

[n]
a,�a,γa

, transforming again according to some irreps �a ,

τn−1,n =
∑

a

[
h[n−1]

a

∑
γa

C
[n−1]
a,�a,γa

(
C

[n]
a,�a,γa

)† + h.c.

]
. (16)

Here a labels the different “hopping operators,” and h[n−1]
a

the corresponding hopping amplitudes. Notice the somewhat
unusual way this hopping term is written: Ca,�a,γa

↔ f †

is a “creation operator,” which transforms according to the
representation �a , while (Ca,�a,γa

)† ↔ f is an “annihilation
operator,” transforming according to the conjugate represen-
tation �a

∗. We remark that for charge SU(2) symmetry, for
example, the “creation” operator multiplet Ca,�a,γa

is a Nambu
spinor, and contains both f and f † operators.20 The number
of hopping operators may depend on the symmetry used: For
a chain of spin 1/2 fermions treated in terms of SU(2) × U(1)
symmetry, for example, one has a single hopping operator of
spin 1/2 and charge 1, while if only the charge symmetry
is used then one has two hopping operators of charge 1,
corresponding to the spin-up and spin-down directions. In
our example of the SU(3) Anderson model we have a single
hopping operator, and C

[n]
�a,γa

↔ {f [n]†
α }. Assuming then that

the reduced matrix elements of the creation operators acting
on site n − 1 of the chain, 〈u‖C[n−1]

a ‖v〉[n−1]
α , and those of

the local creation operators at the added site, 〈ν‖C[n]
a ‖μ〉β are

known, one can use the Wigner-Eckart theorem to express
〈u‖τn−1,n‖v〉[n] as

〈u‖τn−1,n‖v〉[n] = δ�u,�v

∑
a,α,β

h[n−1]
a 〈i‖C[n−1]

a ‖j 〉[n−1]
α

×〈ν‖C[n]
a ‖μ〉∗β D (a,α,β; u,v) + h.c.,

(u ← μ,i; v ← ν,j ). (17)

Here the outer multiplicity labels α (β) label inequivalent ways
in which �i (�ν) appear in the product �a ⊗ �j (�a ⊗ �μ).
The coefficients D (a,α,β; u,v) can be expressed in terms of
Clebsch-Gordan coefficients, and are given by Eq. (C3) in
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Appendix C. Similar expressions hold for the matrix elements
of “block operators” (A), acting somewhere on the first n − 1
sites of the chain, and those of “local operators” A[n], acting
only on the last site of the chain.19 For a block operator we
have, for example,

〈u‖A‖v〉[n]
β =

∑
α

〈i‖A‖j 〉[n−1]
α F (α,β; u,v) δμ,ν, (18)

while for the local operators the following equation holds,

〈u‖A[n]‖v〉[n]
β =

∑
α

〈μ‖A[n]‖ν〉α K (α,β; u,v) δi,j , (19)

with the coefficients F (α,β; u,v) and K (α,β; u,v) given in
Appendix C. Here again, the outer multiplicity labels β label
inequivalent ways in which �u appears in �A ⊗ �v , while
α labels similarly inequivalent ways how �i (�μ) can be
constructed from �A and �j (�A and �ν). Similar to D, the
coefficients F and K are again determined only by symmetry,
and can be expressed in terms of Clebsch-Gordan coefficients.
As a last step of the iteration, the reduced matrix elements
〈u‖A[n]‖v〉[n]

β and 〈u‖A‖v〉[n]
β need be transformed to the new

basis, |ĩ,�ĩ ,γĩ〉. This is performed by using precisely the same
unitary block transformations as the ones used to diagonalize
the Hamiltonian Hn [Eq. (15)], without affecting the outer
multiplicity labels β.

Wilson’s diagonalization procedure can be carried out then
based upon the equations above: In a given iteration, one
takes the lowest lying states of iteration [n − 1] and their
matrix elements 〈i‖C[n−1]

a ‖j 〉[n−1]
β , and computes from these

and from the matrix elements 〈μ‖C[n]
a ‖ν〉β the Hamiltonian

〈u‖Hn‖v〉[n]. Then diagonalizing 〈u‖Hn‖v〉[n], one obtains
low-lying eigenstates of Hn and determines their matrix el-
ements 〈ĩ‖C[n]

a ‖j̃ 〉[n]
β . Continuing this procedure for larger and

larger values n, one obtains better and better approximations
for the ground state of H = Hn→∞ and the lowest lying
eigenstates.

C. FDM-NRG approach

So far, we discussed essentially Wilson’s original NRG
approach in case of general symmetries. In practice, however,
one often needs to go beyond Wilson’s RG and use the
so-called DM-NRG method,21 whereby a forward NRG run
is first performed to obtain the density matrix (DM) of
the system, and then a backward NRG run is made to
compute physical observables. Moreover, to satisfy spectral
sum rules, a complete basis set25,26 has to be used, as first
implemented in the context of DM-NRG in Refs. 22 and 23. In
the full density-matrix NRG approach (FDM-NRG) of Ref. 23,
the full density matrix of the entire chain is expressed in
the complete basis, which yields an improved treatment of
finite-temperature properties. Let us now briefly discuss how
symmetries can be implemented in the FDM-NRG approach.
(For a complimentary formulation of the same strategy using
matrix product states, see Ref. 15.)

First, to satisfy the necessary completeness relations, we
consider a chain of N sites and introduce “environment” states
e for each state discarded in iteration [n] (i ∈ D),22,23

|i,�i γi〉[n] → |i,�i γi ; en〉[n]. (20)

Here the states en form an orthonormal basis for the remaining
N − n sites of the chain, and their internal structure is
irrelevant for the remaining discussion.

The states [Eq. (20)] form a complete basis on the Wilson
chain,25,26 and can be used to construct the density operator as
follows,23


 =
N∑

n=0


[n],

(21)


[n] ≡
∑

i∈D,en

∑
γi

e−βEn
i

Z |i,�i,γi ; en〉[n] [n]〈i,�i,γi ; en|.

Here β = 1/kBT and the partition function is expressed as

Z =
N∑

n=0

∑
i∈D

dim(i) e−βEn
i dN−n, (22)

with d the dimension of the Hilbert space at each added site of
the Wilson chain, and dN−n the dimension of the space of the
“environment” states en. We remark that in the last iteration
all states are considered to be discarded, while in the first few
iterations there are typically no discarded states yet.

To compute local observables and spectral functions of
observables at the impurity site, one traces out step by step
the environment states, and introduces the following set of
truncated reduced density matrices,

R[n] ≡ Tr
{en}

{∑
m�n


[m]

}
. (23)

By symmetry, the reduced density matrices are invariant under
the symmetries used, and have therefore a block-diagonal
structure in the representation indices.12 The matrices R[n−1]

can be constructed iteratively from R[n] by tracing out site n

and then adding the contribution of states discarded in iteration
(n − 1) → n. The contribution of the kept states (K) reads

〈i‖R[n−1]‖j 〉[n−1]
i,j∈K =

∑̃
u,v,μ

dim(u)

dim(i)
〈u‖R[n]‖v〉[n]. (24)

Here the tilde indicates that the summation runs over states
u and v having the same symmetry, and constructed from
states i and j by adding the same local state, i ⊗ μ → u and
j ⊗ μ → v. The subscript indicates that i and j are both kept
states. The discarded piece of R[n−1] is then simply

〈i‖R[n−1]‖j 〉[n−1]
i,j∈D = δi,j

dN+1−n

Z e−βEn−1
i . (25)

To gain insight to the dynamical properties of a quantum
impurity, one usually computes the retarded Green’s functions
for some operator multiplets AγA

and BγB
,

Gret
γA,γB

(ω) ≡ − i

h̄

∫ ∞

0
Tr{
 [(AγA

)†(t),BγB
(0)]ξ } eiωtdt,

(26)

with ξ = − (ξ = +) referring to commutators (anticom-
mutators) appearing for bosonic (fermionic) operators. By
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TABLE I. Irreducible tensor operators for the SU(3) symmetry.

Operator (Q,F ) Dim Components

1 → f
†

1

f [n]†
α , d†

α (1, ) 1 × 3 2 → f
†

2

3 → f
†

3

1
2 → d

†
1d

†
2

d†
αd

†
β (2, ) 1 × 3

1
3 → d

†
1d

†
3

2
3 → d

†
2d

†
3

1 1
2 → d

†
1d3

1 2
2 → d

†
2d3

1 1
3 → −d

†
1d2

1 2
3 → 1√

2
(d†

1d1 − d
†
2d2)

d†
αdβ (0, ) 1 × 8

2 2
3 → d

†
2d1

1 3
2 → 1√

6
(−d

†
1d1 − d

†
2d2 + 2d

†
3d3)

1 3
3 → −d

†
3d2

2 3
3 → d

†
3d1

d
†
1d

†
2d

†
3 (3,•) 1 × 1 • → d

†
1d

†
2d

†
3

symmetry, to have a nonvanishing value, A and B must both
transform according to the same representation, �A

∼= �B ,
and γA ≡ γB must also be satisfied, Gret

γA,γB
= δγA,γB

Gret
A†,B

.

Notice that Eq. (26) is defined in terms of (ÂγA
)†, transforming

according to the conjugate representation � ∗
A .24

The expression above can be evaluated in terms of the
truncated density matrices, R[n], and the reduced matrix
elements 〈i‖A‖j 〉[n]

α and 〈i‖B‖j 〉[n]
α of the operators A and

B, to obtain12,26

Gret
A†,B(z) =

N∑
n=0

∑
i∈D,K

∑
(j,k)/∈(K,K)

〈i‖R[n]‖j 〉[n]

×
[∑

α

〈k‖A‖j 〉[n]∗
α 〈k‖B‖i〉[n]

α

z + 1
2

(
En

i + En
j

)− En
k

dim(k)

dim(A)

− ξ
∑

α

〈j‖B‖k〉[n]
α 〈i‖A‖k〉[n]∗

α

z − 1
2

(
En

i + En
j

)+ En
k

dim(i)

dim(A)

]
. (27)

This expression provides an efficient way to compute spectral
functions. Notice that it contains only the reduced matrix
elements and the dimensions of the multiplets involved.

III. STUDY OF THE SU(3) ANDERSON MODEL

To demonstrate how the scheme presented above works, we
apply it to study the repulsive SU(3)-symmetrical Anderson
model, defined already in the introduction. We perform our
calculations for a conduction band with a uniform local density
of states between energies W > ε > −W with the bandwidth
set to W ≡ 1, and use the corresponding hopping amplitudes
h[n] � (1/2)(1 + �−1)�−n/2 in Eq. (4). In this case, the width
of the (noninteracting) level is approximately given by � =
π
cṼ

2 with 
c = 1/2W the local density of states at site 0 of
the Wilson chain.

As mentioned before, the Hamiltonians (1), (3), and (4) have
a U(1) × SU(3) symmetry in the charge and flavor sectors,
respectively. Correspondingly, multiplets of the Hamiltonian
are characterized by a charge and a flavor quantum number.
The charge quantum numbers Qi are simply identical to the
total charge,28

Q ≡
∑

α

{
N∑

n=0

(
f [n]†

α f [n]
α − 3

2

)
+
(

d†
α dα − 3

2

)}
, (28)

conserved by Eqs. (1), (3), and (4).
Labeling the SU(3) representations and the states within

an SU(3) multiplet is somewhat more complicated. The flavor

195128-5
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TABLE II. Energy spectrum for the electron-hole symmetric, mixed valence point. EL stands for the finite size
energy scale, EL = 2π/L = 1.311. Q0 = 0 (3/2) for even (odd) iterations.

E/(2π/L) ENRG/EL Q (charge) SU(3) Dimension

0 0 Q0 • 1

1/2 0.5 Q0 + 1 3

1/2 0.5 Q0 − 1 3

Even iterations 1 1 Q0 + 2 3

1 1 Q0 8

1 1 Q0 • 1

1 1 Q0 − 2 3

E/(2π/L) ENRG/EL Q (charge) SU(3) Dimension

0 0 Q0 • 1

0 0 Q0 − 1 3

0 0 Q0 − 2 3

0 0 Q0 − 3 • 3

1 0.98 Q0 + 1 3

1 0.98 Q0 8

Odd iterations 1 0.98 Q0 • 1

1 0.98 Q0 − 1 3

1 0.98 Q0 − 1 6

1 0.98 Q0 − 1 3

1 0.98 Q0 + 1 6

1 0.98 Q0 + 2 3

quantum numbers Fi can be (and are usually) represented by
Young tableaux, characterized by two non-negative integers
in case of SU(3) (see Appendix A). Young tableaux provide a
nice pictorial way to multiply and decompose representations,
or calculate their dimensions. For our numerical calculations,
however, we had to construct explicitly the basis states of
SU(3) representations and to compute the corresponding
Clebsch-Gordan coefficients.29 This we carried out using
the so-called Gelfand-Tsetlin patterns, briefly discussed in
Appendix A. The states obtained this way are analogs of
the canonical SU(2) basis states, created by the raising and
lowering spin operators S±. Gelfand-Tsetlin patterns are in
one-to-one correspondence with the Young tableaux, but they
allow for a simpler explicit construction of the basis states. For
more details, we refer the reader to Ref. 16.

Similar to the eigenstates and multiplets, we also need to
group operators into SU(3) multiplets and characterize them
by appropriate SU(3) quantum numbers. This classification
of the most important operators is summarized in Table I.
In terms of SU(3), there is only a single hopping operator,

C[n]
γ ↔ f [n]†

α , which transforms according to the defining
SU(3) representation and has charge Q = 1, similar to the
creation operator of the localized level d†

α . From d†
α we can

also construct various local operators of interest. The spin op-
erators, ∼d†

αdβ form, for example, an eight-dimensional charge
Q = 0 operator multiplet in terms of U(1) × SU(3), while the
charge Q = 2 pairing operators ∼d†

αd
†
β transform according to

a three-dimensional SU(3) representation. Finally, the “trion”
operator d

†
1d

†
2d

†
3 has charge Q = 3 and is an SU(3) singlet.

A. Numerical results

In our runs we have kept about 250 multiplets at each
iteration, corresponding to approximately 1500 states on
average, while the Wilson parameter was fixed to � = 2.

In Fig. 1 we present the occupation of the localized
level as a function of the energy εd . The localized level
can accommodate up to three fermions. For large enough
U/�’s, these fermions enter the local level one by one as
εd is decreased, and a Coulomb staircase is clearly visible. In
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FIG. 1. (Color online) The occupation number as a function of εd

and for different broadening parameters �. The temperature is T = 0
and the Coulomb interaction is fixed to U = 0.2 W.

the range −U < εd < 0 there is approximately one electron
on the level. The SU(3) spin of this electron is screened by
the conduction electrons below the Kondo scale TK , and an
SU(3) Kondo state is formed. A similar, holelike SU(3)∗ state
emerges for −2U < εd < −U .

The SU(3) (−U < εd < 0) Kondo temperature can be esti-
mated by first doing perturbation theory in Ṽ and performing
a Schrieffer-Wolff transformation and then carrying out a
renormalization group analysis. This analysis yields a Kondo
temperature of

T
SU(3)
K ≈ D0 e−1/3λ, (29)

with the dimensionless coupling λ expressed as

λ = �

πE+
+ �

πE−
, (30)

in terms of the level width � and the “ionization energies”
E+ = U + εd and E− = −εd , and D0 ≈ min(E+,E−) a high
energy cutoff.

The most intriguing region is, however, the mixed valence
region, εd ≈ −U . For εd = −U the ground state of the isolated

0 20 40
0

0.655

1.31

1.965

2.62

0 20 40
N

0

0.655

1.31

1.965

2.62

E N
 Λ

Ν
/2

E N
 Λ

Ν
/2

N - even

N - odd

 εd = -0.2 W
U = 0.2 W
U / π Δ = 5

FIG. 2. NRG finite size spectrum at half filling and T = 0. Upper
(lower) panel represents the even (odd) part of the spectrum. In
both plots we represent the lowest 50 energy levels. The parameters
are as follows: � = 2, U = 0.2 W , εd = −U , and U/π� = 5. The
convergence was reached after approximately 27 iterations.

impurity (� = 0) would be sixfold degenerate due to electron-
hole symmetry, connecting the two SU(3) triplets, {d†

α|0〉} and
{d†

αd
†
β |0〉}. Valence fluctuations produce a state with all these

states strongly mixed by quantum fluctuations. Figure 2 and
Table II show the flow diagram of the NRG levels, and the
SU(3) classification of the asymptotic finite size spectrum,
respectively. A detailed analysis reveals that this finite size
spectrum can simply be understood as the finite size spectrum
of three chiral fermions with a phase shift δ = π/2 at the Fermi
energy. This phase shift is indeed in full agreement with the
Friedel sum rule, 3δ/π = 〈n〉, and the occupation 〈n〉 = 3/2
assured by electron-hole symmetry.

Similarly, the SU(3) Kondo spectrum, displayed in Table III
can be understood as the finite size spectrum of three chiral

TABLE III. Energy spectrum in the Kondo regime. Q0 = 0 (−3/2) for even (odd) iterations.

E/(2π/L) ENRG/EL Q (charge) SU(3) Dimension

0 0 Q0 • 1

2/3 0.33 Q0 − 1 3

Even iterations 4/3 0.66 Q0 + 1 3

4/3 0.66 Q0 − 2 3

2 1 Q0 8

2 1 Q0 • 1

2 1 Q0 − 3 • 1

E/(2π/L) ENRG/EL Q (charge) SU(3) Dimension

0 0 Q0 • 1

Odd iterations 1/3 0.15 Q0 + 1 3

2/3 0.32 Q0 + 2 3
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FIG. 3. (Color online) (a) The normalized spectral function for
the on-site creation operator d†

α for two different fillings n = 1.5
(half filling, red dashed) and n = 1 (1/3 filling, black solid). In the
singly occupied case, n = 1, the dot is in the Kondo regime, and the
resonance is shifted away from the Fermi energy, ω = 0. The value of
the spectral function at the Fermi energy is determined by the Friedel
sum rule, π�A(0) → 3/4. (b) Evolution of the normalized spectral
function as a function of U/π� in the Kondo regime, for εd/U =
−0.5. The deviation from the Friedel sum rule is less than 1%.

fermions with a phase shift δ ≈ π/3, implied by the Friedel
sum rule and the occupation 〈n〉 ≈ 1.

B. Spectral functions of local operators

The crossover between the two SU(3) Kondo regimes
through the mixed valence regime is maybe best captured by
the local level’s spectral function, shown in Fig. 3. In the SU(3)
and SU(3)∗ Kondo regimes we find a narrow Kondo resonance
of an exponentially small width pinned somewhat asymmetri-
cally to the Fermi energy, ω = 0 (see inset), and two Hubbard
peaks. At the mixed valence point, εd = −U on the other hand,
a relatively broad and symmetrical resonance of width ∼�

appears at the Fermi energy, and the charging peaks are absent.
The behavior of strongly correlated cold atomic and heavy

fermion lattice systems can often be understood in terms of
a self-consistent quantum impurity model (dynamical mean-
field theory). Within this picture, the local response functions
of the quantum impurities may drive superconducting or
magnetic phase transitions, or lead to even more exotic
quantum phases. In this subsection, let us therefore analyze
the spectral properties of the SU(3) Anderson model, and
investigate the local spectral and response functions of its spin,
pairing, and trion operators.

As discussed before, the spin operators d†
αdβ transform

according to an eight-dimensional SU(3) representation. As
shown in Fig. 4, their spectral function displays Fermi liquid
properties (see inset), and behaves very similarly to the spin
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~  ω
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FIG. 4. (Color online) (Upper panel) Spectral function of the
spin operator d†

αdβ on a logarithmic scale for two different fillings,
〈n〉 = 1.5 (half filling, red dashed) and 〈n〉 ≈ 1 (1/3 filling, black
solid) for U = 0.2 W . In the singly occupied case, 〈n〉 ≈ 1, the dot is
in the Kondo regime. The inset indicates the linear decay in AS(ω) in
the small frequency limit. The blue, dashed-dotted line is a guideline
for the eye. (Lower panel) The spectral function of the spin operator
in the Kondo regime, 〈n〉 ≈ 1, and for three different ratios U/π�:
U/π� = 15 (solid black line), U/π� = 10 (dashed red line), and
U/π� = 5 (dashed-dotted green line). The inset indicates the univer-
sal scaling collapse of the spin spectral function in the Kondo regime.

spectral function of a standard SU(2) Anderson model.30 In the
mixed valence regime, for � � U charge fluctuations to the
state n = 0 and n = 3 are frozen out, and at low energies
the only relevant energy scale is �; correspondingly, the
spectral function exhibits a broad resonance at ω ∼ � (ex-
tending up to ω ∼ U ), and decays linearly to zero for small
frequencies, A

n≈3/2
S (ω) ∼ ω/�2. By Hilbert transform, this

amounts in a spin susceptibility, χS ∼ 1/�. In the Kondo
regime, 〈n〉 ≈ 1, on the other hand, two separate scales can
be distinguished. Below ω ∼ min(U,|εd |) charge fluctuations
are frozen and a clear Kondo anomaly can be observed as
a logarithmic increase of the spectral function, as indicated
by the arrow in Fig. 4. The Fermi liquid behavior only
emerges below the Kondo scale, ω < TK � �,U . In this
Kondo regime AKondo

S (ω) ∼ ω/T 2
K , and correspondingly, a

susceptibility χS ∼ 1/TK is found.
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FIG. 5. (Color online) Impurity states for the SU(3) Anderson
model in the Kondo (upper panel) and in the mixed valence regime
(lower panel). The green shaded area emphasizes that quantum
fluctuations mix the n = 1 and n = 0 levels. The arrows indicate
possible direct transitions that are responsible for the peaks observed
in the spectral functions of the superconducting (d†

αd
†
β ) and trion

(d†
1d

†
2d

†
3) operators.

The spin spectral function becomes universal in the
Kondo limit, TK � �,U in the sense that the T = 0
temperature dynamical susceptibility scales as χS(ω) =
(1/TK ) f (ω/TK,〈n〉), with f (ω/TK,〈n〉) a function, which
only slightly depends on the occupation of the level, 〈n〉 ≈
1. This is demonstrated in the lower panel of Fig. 4 for
the imaginary part of the susceptibility, χ ′′

S (ω) = −πAS(ω),
computed for different values of U/π�. Numerically we
define TK as the half width at half maximum of A(ω), the
spectral function of the d operator of the localized level.

The correlations of the pairing operators d†
αd

†
β behave

somewhat similar to those of the spin in the sense that at
small frequencies a linear frequency dependence is found,
corresponding to a Fermi liquid state with a constant pairings
susceptibility (see inset of Fig. 6). To understand the spectrum
at large frequencies, ω ∼ U , we present in Fig. 5 the impurity
states for the decoupled Hamiltonian. In the Kondo regime,
the lowest lying impurity state is the n = 1 SU(3) triplet. The
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~ ω

FIG. 6. (Color online) Spectral function of the superconducting
operator for U = 0.2 D and 〈n〉 = 1.5 (half filling, red dashed) and
〈n〉 ≈ 1 (1/3 filling, black solid).

corresponding excitation spectrum is shown for εd = −U/2
in Fig. 5. In the superconducting spectral function several
peaks appear which can be assigned to transitions between
impurity states. The maximum weight is expected to be on the
particle-side of the spectrum at ω ∼ 2U (n = 1→3 transition).
A peak of smaller amplitude emerges at ω ∼ U/2. This peak
is due to quantum fluctuations, which mix the n = 1 and n = 0
states, and thus allow for a direct transition between the n = 1
and n = 2 states. Similarly, a holelike excitation appears at
ω ∼ −U/2, which, in turn can be explained by quantum
fluctuations mixing the lowest lying n = 1 and the n = 2
states. In the mixed valence regime the n = 1 and n = 2 SU(3)
triplets form the lowest lying impurity states. There transitions
between these states and the n = 0 and n = 2 excited states of
energy �E ≈ U is only possible due to quantum fluctuations.
Correspondingly, two relatively large peaks appear at ω ∼ ±U

in the superconducting spectral function.
As a final example, we display the spectral function of the

SU(3) singlet trion operator, T † = d
†
1d

†
2d

†
3 in Fig. 7. The trion

operator plays an important role in the attractive case,31 how-
ever, in this repulsive model it is a highly suppressed operator.
In the Kondo regimes, it has a nonzero spectral function only
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FIG. 7. (Color online) The spectral function for the trion operator
for two different fillings n = 1.5 (half filling, red dashed) and n = 1
(1/3 filling, black solid). The inset represents the same data on a
logarithmic scale. The trionic spectral function scales as ω2 in the
small energy limit.
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FIG. 8. (Color online) Possible realization of SU(3) Kondo states
using four edge states and three quantum dots. The upper edge state
is splitted and allows transport measurements between the two upper
external leads.9

because the Kondo states have a small (∼�/U ) admixture of
the empty and the triply occupied states, respectively (see also
Fig. 5). This explains why the amplitude of the signal is in this
case smaller in the mixed valence regime. It also explains the
strong electron-hole asymmetry in the Kondo regimes. In the
〈n〉 ≈ 1 regime, shown in Fig. 7, for example, the admixture of
the n = 0 state is relatively large, ∼�/U , while the n = 3 state
has a much smaller weight, ∼(�/U )2. As a consequence, most
of the spectral weight appears on the particlelike side of the
spectral function, ω ≈ 2U (see Fig. 5). At small frequencies
the spectral function decays as ∼ω2. This is in agreement with
Fermi liquid theory, which would predict a 〈T (t)T †(0)〉 ∼ 1/t3

decay of the trionic correlation functions at very long times.

C. Conductance

Let us close this section by discussing the finite temperature
conductance through a mesoscopic system that was proposed
to support the SU(3) Kondo state.9 A sketch of the device is
shown in Fig. 8. It consists of three capacitively interacting
quantum dots, tuned to a state, where the three charging states
of the dots, (n1,n2,n3) = (1,0,0), (0,1,0), and (0,0,1) are
degenerate. The spin degeneracy of the dots is then removed
by a large external magnetic field, and the three dots are tunnel
coupled to leads supporting chiral quantum-Hall edge states.
In the limit, where there is no tunneling between the dots,
this system supports a charge SU(3) Kondo state, where the
localized electron in the dots is screened by the conduction
electrons in the external leads.9 We remark that this degeneracy
point has, in fact, been reached with a somewhat different
three-dot device studied in Ref. 32, but there no conductance
measurement has been performed and the leads were not in
the quantum Hall regime either.

To measure the conductance through the device, one needs
to attach two electrodes to at least one of the dots, as shown in
Fig. 8. In this configuration, the conductance can be directly
related to the spectral functions of the d level, and for a
symmetrical device one finds

G(T ) = π�
e2

h

∫ ∞

−∞
dω A(ω,T )

(
−∂f (ω)

∂ω

)
. (31)
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FIG. 9. (Color online) The conductance as a function of εd and
for different broadening parameters �. The temperature is T = 0 and
the Coulomb interaction is fixed to U = 0.2 W.

Here A(ω) is the spectral function of the dα operator of
the localized level, A(ω) = −�m G

dα d
†
β
(ω)/π , with G

dα d
†
β
(ω)

the Green’s function defined in Eq. (26). The corresponding
T = 0 temperature linear conductance is shown in Fig. 9
as a function of the energy εd . The conductance reaches its
maximal value in the mixed valence regime, εd ∼ −U , and
displays SU(3) Kondo effect related plateaus in the regions
−2U < εd < −U and −U < εd < 0. The T = 0 temperature
conductance values observed can be understood in terms of
the Friedel sum rule, relating the total occupation of the d

level to the phase shift of the conduction electrons, which
yields 3δ/π = 〈n〉 for the SU(3) Anderson model.9 In a
Fermi liquid state—at T = 0 temperature—the conductance
can be computed using the Landauer-Büttiker formula, and
in the geometry of Fig. 8 is simply related to the phase
shift as G(T = 0) = (e2/h) sin2(δ). This explains the value
GSU(3) ≈ (3/4) e2/h observed in the Kondo states; there
the occupancies are 〈n〉 ≈ 1 and 〈n〉 ≈ 2, corresponding to
phase shifts δ = ±π/3, and the previously mentioned value
of the conductance. At the mixed valence point, εd = −U ,
on the other hand, we have 〈n〉 = 3/2, implying a phase shift
δ = π/2 and a maximal conductance GSU(3) = e2/h.

Increasing the temperature, the conductance is quickly
suppressed in the Kondo regimes, and three Coulomb blockade
conductance peaks emerge at the points of charge degeneracy,
as shown in Fig. 10. The central peak corresponds to the
transition n = 1 ↔ 2 while the two side peaks correspond to
charge fluctuations n = 1 ↔ 0 and n = 2 ↔ 3, respectively.
In Fig. 10 we also display the temperature dependence of
the conductance at the mixed valence point and in the SU(3)
Kondo regime. The Kondo temperature of the SU(3) Kondo
state is clearly much smaller than the mixed valence energy
scale even for these moderate interactions.

IV. CONCLUSIONS

In this paper, we showed how to extend the DM-NRG scheme
of Ref. 12 to symmetries with outer multiplicities. As an
application, we performed a detailed DM-NRG study of the
SU(3) symmetrical Anderson model by first incorporating
SU(N ) symmetries16 in the Open Access Budapest DM-NRG

code,13 and then performing the numerical calculations using
the complete U(1) × SU(3) symmetry of the model. A similar
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FIG. 10. (Color online) Finite temperature conductance as a func-
tion of εd . (Inset) The temperature dependence of the conductance on
a logarithmic scale, for two different fillings, n = 1.5 (half filling,
red dashed) and n = 1 (1/3 filling, black solid). In both panels
the Coulomb energy and the broadening to the leads were fixed to
U = 0.2 W and U/π� = 5.

extension has been carried out within the matrix product state
(MPS) approach parallel to this work.15

The properties of the SU(3) Anderson model do not differ
so much from those of the original Anderson model. As also
discussed in Ref. 9, for U > � four distinct charging regions
appear: the featureless empty and fully occupied regions
(〈n〉 ≈ 3 and 〈n〉 ≈ 0), and two Kondo regions of occupancies
〈n〉 ≈ 1 and 〈n〉 ≈ 2, respectively. The two SU(3) Kondo
regions behave similarly: They are characterized by phase
shifts δ ∼ ±π/3, as verified from the finite size spectrum, and
correspondingly, a Kondo resonance shifted away from the
Fermi energy. In these Kondo regimes, the susceptibility has
a universal form, χ (ω) = f (ω/TK,〈n〉)/TK , with a scaling
function f (x,〈n〉) very similar to the one emerging in the
SU(2) Anderson and Kondo models. For completeness, we
also studied the spectral properties of other local operators
such as pairing or the trion operators. Both of them turn out to
have a small amplitude for � � U , and exhibit simple Fermi
liquid properties below the mixed valence and Kondo scales,
respectively. Therefore, away from half filling, a magnetic
instability is expected to prevail on a lattice in the SU(3)
Hubbard model, in general agreement with the results of
Gutzwiller calculations at low temperatures.27

The SU(3) Kondo regions are separated by a mixed valence
state, which again has a Fermi liquid character with a Fermi
liquid scale of the order of the level width, �. Here we find
a phase shift δ = π/2, in agreement with the expectations
based upon the Friedel sum rule, but apart from that, and the
emerging electron-hole symmetry at this point, the properties
of the mixed valence state appear to be very quite similar to
those of the Kondo states.

We also investigated the conductance properties of the
SU(3) arrangement, proposed in Ref. 9. At high temperatures
we observe in the side conductance three charging peaks,
corresponding to the three charging steps. As the temperature is
lowered, the Coulomb blockade valleys are gradually filled up,

and two conductance shoulders emerge in the Kondo regime
with a conductance G ≈ (3/4)(e2/h).

The methods and the computations presented here represent
a first and important step to perform DM-NRG and DMFT cal-
culations for more elaborate SU(N ) or Sp(N ) lattice models.
However, further work is necessary to optimize these DMFT
calculations. While we definitely gain enormous storage space
by using SU(N ) symmetries, the evaluation of the reduced
matrix elements and multiple sums over internal representation
labels are currently not carried out with maximal efficiency.
Since for large N ’s the dimensions of irreducible SU(N )
representations grow very fast, these summations quickly
become the bottleneck for DM-NRG calculations, and further
work is needed to increase the efficiency of the corresponding
subroutines.
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APPENDIX A: SOME DETAILS ON SU(N)
REPRESENTATIONS

In this Appendix we give a brief overview of the represen-
tation theory of SU(N ), following the approach of Ref. 16,
where a more detailed discussion can be found.

While SU(2) has three generators, Ĵz, Ĵ+, and Ĵ−, SU(N )
has N2 − 1 generators. We shall deal explicitly with only
3(N − 1) of them, denoted by Ĵ (l)

z and Ĵ (l)
± , where l =

1, . . . ,N − 1. By definition, they satisfy the commutation
relations,[

Ĵ (l)
z ,Ĵ (l)

±
] = ±Ĵ (l)

± ,
[
Ĵ (l)

+ ,Ĵ (l)
−
] = 2Ĵ (l)

z . (A1)

These have the same form as those of the corresponding N ×
N matrices,

J (l)
z =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

l
↓

l+1
↓

0
. . .

0
l→ 1

2 0
l+1→ 0 − 1

2
0

. . .
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A2a)
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J
(l)
+ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

l
↓

l+1
↓

0
. . .

0
l→ 0 1

l+1→ 0 0
0

. . .
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A2b)

J
(l)
− =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

l
↓

l+1
↓

0
. . .

0
l→ 0 0

l+1→ 1 0
0

. . .
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A2c)

which generate the defining representation of SU(N ). The
N2 − 3N + 2 remaining generators are obtained as commuta-
tors between generators involving different values of l. Below
we will use Ĵ a (and J a) as collective notation for any of
the generators (and corresponding matrices in the defining
representation).

Let |�,γ 〉 denote the basis states of a general SU(N ) irrep,
where � labels the irrep and γ its individual basis states. The
action of any generator on a basis state can be written as

Ĵ a |�,γ 〉 =
∑
γ ′

�a
γ ′,γ |�,γ ′〉 , (A3)

where �a
γ ′,γ ≡ 〈�,γ ′|Ĵ a|�,γ 〉 are the matrix elements of Ĵ a

within the irrep �. For example, the matrix elements of Ĵ (l)
z,±

in the defining representation are given by Eq. (A2).
It is convenient to choose the states |�,γ 〉 to be simultaneous

eigenstates of Ĵ (l)
z for l = 1, . . . ,N − 1, with eigenvalues

λ
�,γ

l , say. The sequence Wz(�,γ ) = (λ�,γ

1 , . . . ,λ
�,γ

N−1) is called
its weight. As for SU(2), all components of the weight take
half-integer values.

A convenient way to visualize all states of the same SU(N )
irrep is then given by weight diagrams (see Fig. 11 for an
example), which are constructed by marking the point with
coordinates Wz(�,γ ) for each state |�,γ 〉 of an irrep �. The
operators Ĵ

(l)
± then map states onto their neighbors in a weight

diagram (λ�,γ

l → λ
�,γ

l ± 1).
Each irrep � has a so-called highest-weight state (unique

up to a phase), denoted by |�,γ = �〉 for convenience. It is
annihilated by all Ĵ (l)

+ ,

Ĵ (l)
+ |�,γ = �〉 = 0 (l = 1, . . . ,N − 1). (A4)

Its weight actually determines the properties of the whole irrep
�, and is thus suitable to provide a labeling scheme for �.

In contrast to SU(2), several states of an irrep � can have
the same weight. The number of states with the same weight

FIG. 11. (Color online) Weight diagram of the SU(3) irrep

(nonorthogonal axes chosen to emphasize the symmetric structure
of the irrep). Each dot represents a weight; we also indicate the
Young tableaux of the corresponding states. The circled dot indicates
a weight with inner multiplicity 2. The blue solid and dashed arrows
represent the action of J

(1)
− and J

(2)
− , respectively.

is called the inner multiplicity of this weight. Consequently,
weights are not suitable as the label γ . Instead, we use one of
two equivalent labeling schemes, Young tableaux or Gelfand-
Tsetlin patterns (GT patterns).

An SU(N ) Young tableau is a single, contiguous cluster of
left-aligned boxes with at most N rows, such that each row is
not longer than the one above. Each box of a tableau carries a
number between 1 and N , inclusive, such that numbers do not
decrease from left to right, and numbers increase strictly from
top to bottom.

A GT pattern M is a triangular matrix of integers Mk,l (1 �
k � l � N ), commonly written as

M =

⎛
⎜⎜⎜⎜⎝

m1,N m2,N . . . mN,N

m1,N−1 . . . mN−1,N−1

. . .
. . .

m1,2 m2,2

m1,1

⎞
⎟⎟⎟⎟⎠, (A5)

which are subject to the so-called betweenness condition,

mk,l � mk,l−1 � mk+1,l (1 � k < l � N ). (A6)

Table IV gives examples of equivalent Young tableaux and GT
patterns.

Young tableaux and GT patterns are composite labels, M =
(�,γ ) in short, in the sense that they can play the role of both
the irrep label � and the state label γ . The shape of a Young
tableau (i.e., without the labeling of boxes) determines an irrep
�; it corresponds to the top row of a GT pattern, whose kth
entry mk,N specifies the number of boxes in the kth row of the
Young tableau. The dimension of an irrep � is equal to the
number of valid GT patterns with a given top row. There exists
a convenient formula for this number:

dim(�) =
∏

1�k<k′�N

(
1 + mk,N − mk′,N

k′ − k

)
. (A7)
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TABLE IV. Examples of GT patterns and corresponding Young
tableaux; the top row of each pattern determines the shape of its
respective tableau. These examples have been constructed in such
a way that each tableau/pattern contains the examples to its left
as a subtableau/subpattern. Note that we usually drop columns of
SU(N ) Young tableaux with length N (e.g., the leftmost column in
the rightmost tableau); this corresponds to subtracting the entry mN,N

from each entry of a GT pattern. The weight of a state can be directly
constructed from a GT pattern: Let σl =∑k=1,... ,l mk,l denote the row
sums, then λM

l = (σl+1 − σl)/2.

(
2
) (

3 2
2

) ⎛
⎝ 3 2 1

3 2
2

⎞
⎠

⎛
⎜⎜⎝

4 3 1 1
3 2 1
3 2
2

⎞
⎟⎟⎠

1 1 1 1 2
2 2

1 1 2
2 2
3

1 1 2 4
2 2 4
3
4

The GT labeling scheme has the advantage that for any of the
generators Ĵ a ∈ {Ĵ (l)

z,±}, the corresponding matrix elements
�a

γ ′,γ [Eq. (A3)] within the irrep � are known explicitly, given
by a complicated formula worked out by Gelfand and Tsetlin.33

A further ingredient to SU(N ) representation theory is the
decomposition of a tensor product �1 ⊗ �2 of two irreps into
a direct sum of irreps [see Eq. (10)]. For SU(N ), this trick
is accomplished by the Littlewood-Richardson rule, which is
beyond the scope of this introduction. It produces equations
such as

⊗

= ⊕ ⊕ 2

⊕ ⊕ ⊕ . (A8)

The number of times a particular irrep occurs on the right-
hand side is called its outer multiplicity; for SU(N ), it is >1
in general. The particular basis transformation affecting this
decomposition is described by Clebsch-Gordan coefficients
[see Eq. (11)]; Ref. 16 presents a numerical algorithm for
computing them for any N , according to the following strategy.

To determine the CG coefficients, we need to construct
explicitly the state of an irrep � from the decomposition of
�1 ⊗ �2. To do that we make an ansatz for it in terms of direct
product states,

|�,γ 〉 =
∑
γ1,γ2

(�1,γ1; �2,γ2|�,γ ) |�1,γ1〉|�2,γ2〉, (A9)

where for the sake of simplicity, we assumed no outer
multiplicity [see Eq. (11)]. First, we find the Clebsch-Gordan
coefficients of the highest-weight state of � from the require-
ment that it is annihilated by all Ĵ (l)

+ . Inserting the ansatz into
Eq. (A4) generates a system of linear equations; its solution
are the highest-weight CG coefficients. Then, we proceed to
the desired state by applying Ĵ (l)

− operators on the expansion
of the highest-weight state, using the matrix elements defined

TABLE V. Organization of the impurity states into multiplets. The
23 = 8 states are organized into four multiplets, each characterized
by a set of quantum numbers (Q,F ). States within a multiplet are
degenerate in energy.

Multiplets States Q F Energy Degeneracy

1 |1〉 = |0〉 −3/2 • 0 1

2

|2〉 = d
†
1 |0〉

|3〉 = d
†
2 |0〉

|4〉 = d
†
3 |0〉

⎫⎪⎪⎬
⎪⎪⎭ −1/2 εd 3

3

|5〉 = d
†
1d

†
2 |0〉

|6〉 = d
†
1d

†
3 |0〉

|7〉 = d
†
2d

†
3 |0〉

⎫⎪⎪⎬
⎪⎪⎭ 1/2 2εd + U 3

4 |8〉 = d
†
1d

†
2d

†
3 |0〉 3/2 • 3εd + 3U 1

in Eq. (A3). This procedure requires the calculation of all CG
coefficients of states inside of � with higher weight than |�,γ 〉.
Thus, one usually determines all CG coefficients of a given �

in one go. Irreps � with outer multiplicity >1 need special
attention, but the principle algorithm remains the same.

Now consider a quantum chain model involving N creation
and annihilation operators per site, f [n]†

α and f [n]
α for site n,

with α = 1, . . . ,N . For a given site n, consider the set of
operators,

Ĵ a,[n] ≡
N∑

α,β=1

f [n]
α

†
(J a)α,βf

[n]
β , (A10)

with the matrices J a taken as the defining representation of
SU(N ) [Eq. (A2)]. The Ĵ a,[n] satisfy the same commutation
relations as the SU(N ) generators Ĵ a and hence generate an
operator representation of SU(N ) on the Fock space of site n.
The action of these operators partitions this Fock space into
a direct sum of irreps. For example, Table V specifies these
irreps explicitly for the case of SU(3).

The Fock space of the full chain is the direct product of the
Fock spaces of each site. Correspondingly, Ĵ a =∑⊕n Ĵ a,[n]

generates an operator representation of SU(N ) on the full chain
of length n, which can be decomposed into a direct sum of
irreps by iterative use of the Littlewood-Richardson rule and
Clebsch-Gordan coefficients.

The Hamiltonian Ĥ for the full chain has SU(N ) symmetry
if it commutes with all generators Ĵ a . When the Hamiltonian
is expressed in the Fock space basis just mentioned, consisting
of a direct sum of SU(N ) irreps, it is block diagonal, with
each block containing matrix elements only between states
transforming according to a given SU(N ) irrep.

Diagonalizing such blocks, or more generally, calculating
matrix elements of operators, is expedited by using the
Wigner-Eckart theorem. To this end, one needs to group
operators in Fock space into operator multiplets (sometimes
called irreducible tensor operators). An operator multiplet
transforming according to the irrep � is a set of operators
Ô�,γ that satisfy the relations,

[Ĵ α,Ô�,γ ] =
∑
γ ′

�α
γ ′,γ Ô�,γ ′ . (A11)
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MOCA, ALEX, VON DELFT, AND ZARÁND PHYSICAL REVIEW B 86, 195128 (2012)

For example, the set of all generators Ĵ α constructed in
Eq. (A10) spans an operator multiplet, acting only on site
n and transforming according to the adjunct representation of
SU(N ), which has dimension N2 − 1. [For SU(3), this is the

irrep listed in Table I].

A convenient way to explicitly construct an operator
multiplet associated with a given site n is to find its highest-
weight operator by guessing or repeated application of raising
operators, and then produce the other operators in the multiplet
by applying lowering operators, using Eq. (A11). Table I gives
some examples of SU(3) operator multiplets constructed in
this manner.

The tensor product of two operator multiplets, each acting
individually on a separate site, can be decomposed into a
direct sum of two-site operator multiplets, again using the
Richardson-Littlewood rule and Clebsch-Gordan coefficients.
However, one often finds that extending a single-site operator
multiplet to two sites by taking its tensor product with the
identity operator [transforming according to the trivial SU(N )
representation] is enough, so a complicated decomposition
can be avoided in most cases. For more than two sites, this
procedure is applied iteratively.

APPENDIX B: MULTIPLETS WITHIN THE ANDERSON
MODEL WITH UQ(1) × SUF(3) SYMMETRY

In this Appendix we illustrate in more detail how the general
concepts presented in Appendix A can be applied to our case,
when UQ(1) × SUF (3) symmetry is used. We first construct
the lowering/raising operators in the Fock space by using
Eq. (A10). Explicitly, for SU(3) we shall need explicitly six
generators,

Ĵ
(1)
+ = d

†
1d2, Ĵ

(2)
+ = d

†
2d3,

Ĵ
(1)
− = d

†
2d1, Ĵ

(2)
− = d

†
3d2,

Ĵ (1)
z = 1

2 (d†
1d1 − d

†
2d2), Ĵ (2)

z = 1
2 (d†

2d2 − d
†
3d3).

The initial impurity states can be constructed and organized
into four SU(3) multiplets relatively easily. They are presented
in Table V. The highest weight states |�,γ = �〉 can be found
by requiring that both Ĵ

(1)
+ and Ĵ

(2)
+ annihilate them. Further

states within the multiplet are then obtained by acting with Ĵ
(1)
−

and Ĵ
(2)
− , and comparing to Eq. (A3). Notice that the Clebsch-

Gordan coefficients do depend on the particular choice of basis,
and therefore, to make use of the Wigner-Eckart theorem, every
multiplet must be constructed to conform with the same choice
of basis as the Clebsch-Gordan coefficients. This choice of
basis is implicitly contained in the matrix elements (�(l)

± )γ γ ′ . In
the open access flexible NRG code13 we used the conventions
of Ref. 16, for which these matrix elements are explicitly given
in Ref. 33.

To use the Wigner-Eckart theorem, we need to organize
operators into operator multiplets. A few examples of these
were presented in Table I. Let us discuss here the specific case
of the spin operator, forming an eight-dimensional multiplet,

which transforms according to the representation. A sim-

ilar procedure applies to the hopping or the superconducting
operators.

We can quickly guess that the highest weight operator is
d
†
1d3 since it commutes with both Ĵ

(1)
+ and Ĵ

(2)
+ [see Eq. (A11)].

This operator thus corresponds to the 1 1
2 state. Now, by

applying the lowering operators (i.e., forming commutators
with them) as indicated in Fig. 11, we can generate all the
other operators that form the multiplet.16 In this procedure
one needs again the explicit form of the corresponding matrix
elements, (�(l)

± )γ γ ′ to fix the proper phase/sign of the basis
states and their normalization.

We remark that particular care must be taken in cases where

a weight has an inner multiplicity, as for the members 1 3
2 and

1 2
3 of the spin operator multiplet. There one needs to take

the correct linear combination of the corresponding operators
to transform according to (�(l)

± )γ γ ′ [see Eq. (A11)].

APPENDIX C: RECURSION FORMULAS

In this section we shall detail how the recursive relations
[Eqs. (16)–(19)] were derived. The general procedure is based
on the Wigner-Eckart theorem and using sum rules satisfied by
the Clebsch-Gordan coefficients. We first derive the recursion
relation for the irreducible matrix element of the hopping
Hamiltonian. The general expression of the hopping matrix
element at iteration n reads

αu
〈u,�u,γu| τn−1,n |v,�v,γv〉[n]

αv
=
∑

a

[
h[n−1]

a

∑
γa

αu 〈u,�u,γu| C[n−1]
a,�a,γa

(
C

[n]
a,�a,γa

)† |v,�v,γv〉[n]
αv

+ H.c.

]
. (C1)

Here the multiplets, |u,�u,γu〉[n]
αi

and |v,�v,γv〉[n]
αv

, were constructed in terms of the block multiplet |i,�i,γi〉[n−1] and local

multiplet |μ,�loc
μ ,γ loc

μ 〉 at iteration n − 1 using Eq. (11). Next we exploit the locality of the C
[n]
a,�a,γa

, that is, that the operator

C
[n]
a,�a,γa

acts only on local states μ, while (C[n−1]
a,�a,γa

)† acts on the block states i. The matrix element of Eq. (C1) then becomes

αu
〈u,�u,γu|τn−1,n|v,�v,γv〉[n]

αv
=
∑

a

⎡
⎣h[n−1]

a sgn(Ca,μ)
∑
γa

∑
γi ,γ loc

μ ,γj γ loc
ν

(
�loc

μ ,γ loc
μ ; �i,γi |�u,γu

)∗
αu

(
�loc

ν ,γ loc
ν ; �j ,γj |�u,γu

)
αv

× 〈i,�i,γi | C[n−1]
a,�a,γa

|j,�j ,γj 〉[n−1]
〈
ν,�loc

ν ,γ loc
ν

∣∣C[n]
a,�a,γa

∣∣μ,�loc
μ ,γ loc

μ

〉+ H.c.

⎤
⎦ . (C2)
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Here the sign function sgn(Ca,μ) = ±1 arises as we commute the local state μ over the operator C[n−1]. If the hopping operator
C is fermionic and the local state contains an odd number of fermions, then the sign is negative; otherwise it is positive. Now
we can use the Wigner-Eckart theorem, Eq. (13), and express the matrix elements of the creation/annihilation operators in terms
of their reduced matrix elements. By doing that, we immediately recover the result (16) with

D (a,α,β; u,v) = sgn(a,μ)
∑
γc

∑
γi ,γ loc

μ

∑
γj ,γ loc

ν

(
�loc

μ ,γ loc
μ ; �i,γi |�u,γu

)∗
αu

(
�loc

ν ,γ loc
ν ; �j ,γj |�u,γu

)
αv

× (�a,γa; �j ,γj |�i,γi)
∗
α

(
�a,γa; �loc

μ ,γ loc
μ |�loc

ν ,γ loc
ν

)
β
. (C3)

A slightly different analysis can be done for block operators. First we notice that we can “invert” the Wigner-Eckart theorem,
Eq. (13), using the completeness of the Clebsch-Gordan coefficients, and express the reduced matrix elements instead as

〈u‖A‖v〉[n]
β =

∑
γA,γv

αu 〈u,�u,γu| A�A,γA
|v,�v,γv〉[n]

αv
(�A,γA; �v,γv|�u,γu)β . (C4)

As a next step, we need to express the matrix element αu
〈u,�u,γu| A�A,γA

|v,�v,γv〉[n]
αv

in Eq. (C4) in terms of the irreducible
matrix elements of the operator at iteration n − 1. Here we follow the same strategy as in the case of the hopping operator: We
expand first the states using Eq. (D2), while keeping in mind that the operator acts only in the block states sector, and then use
the Wigner-Eckart theorem (13) for the operator’s matrix elements. By doing that we find

αu
〈u,�u,γu| A�A,γA

|v,�v,γv〉[n]
αv

=
∑
γi ,γj

∑
γ loc

ν ,γ loc
μ

δμ,νδ�loc
μ ,�loc

ν
δγ loc

μ ,γ loc
ν

(
�loc

μ ,γ loc
μ ; �i,γi |�u,γu

)∗
αu

,

(
�loc

ν ,γ loc
ν ; �j ,γj |�v,γv

)
αv

sgn(A,μ)
∑

α

(�A,γA; �j ,γj |�i,γi)
∗
α 〈i‖A‖j 〉[n−1]

α . (C5)

Plugging Eq. (C5) in Eq. (C4) we recover the result for the block operator stated in Eq. (18) with the coefficient F defined as

F (α,β; u,v) = sgn(A,μ)
∑
γ loc

μ

∑
γi ,γj

∑
γA,γj̃

(
�loc

μ ,γ loc
μ ; �i,γi |�u,γu

)∗
αu

(
�loc

μ ,γ loc
μ ; �j ,γj |�v,γv

)
αv

× (�A,γA; �j ,γj |�i,γi)
∗
α (�A,γA; �v,γv|�u,γu)β . (C6)

A similar analysis can be done in the case of a “local operator,” giving the final expression for the coefficient K entering
Eq. (19):

K (α,β; u,v) =
∑
γi

∑
γ loc

μ ,γ loc
ν

∑
γA,γv

(
�loc

μ ,γ loc
μ ; �i,γi |�u,γu

)∗
αu

(
�loc

ν ,γ loc
ν ; �i,γi |�v,γv

)
αv

× (
�A,γA; �loc

ν ,γ loc
ν |�loc

μ ,γ loc
μ

)∗
α

(�A,γA; �v,γv|�u,γu)β . (C7)

APPENDIX D: CONNECTION TO THE MATRIX PRODUCT STATES APPROACH

It is well known that the states constructed within the NRG framework can be viewed as matrix product states (MPS).34

Moreover, it has been shown recently that non-Abelian symmetries can be incorporated into the construction of MPS.15,35 In
this Appendix we briefly review how this can be done in the context of NRG. We start with the simple observation that the
Hamiltonian of a chain of length N , HN acts on the Hilbert space spanned by a basis constructed from local multiplets:{∣∣μ0,�

loc
μ0

,γ loc
μ0

; μ1,�
loc
μ1

,γ loc
μ1

; . . . ; μN,�loc
μN

,γ loc
μN

〉}
. (D1)

The dimension of this basis set is d0d
N , with d0 the dimension of H0, and d is the dimension of the Hilbert space at sites along

the Wilson chain (see Table V). For the SU(3) Anderson model we have four multiplets on each site, and d0 = d = 8.
Let us now assume that we have constructed somehow some block states i, which span the relevant part of the Hilbert space

of a chain with n − 1 sites. The number of these states, D is, of course, much less than the total number of states within this
block, which would be of the order of ∼dn. We can then use these states to express the appropriate (relevant) states for a chain
of n sites as

|ĩ,�ĩ ,γĩ〉[n]
αĩ

=
∼∑

i,�i ,γi

∑
μ,�

[loc]
μ ,γ

[loc]
μ

(
P

[�loc
μ γ loc

μ ]
�iγi ,�ĩγĩ ;αĩ

)[μ]
iĩ

∣∣μ,�loc
μ ,γ loc

μ

〉⊗ |i,�i,γi〉[n−1]. (D2)

Here P is some projector that generates the relevant block of multiplets {|ĩ〉} from the block multiplets {|i〉} by adding some
local states {|μ〉}. The tilde in the sum indicates that only a number D of multiplets are kept at each iteration. In the presence of
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symmetries, the matrices P can be factorized into products of reduced matrix elements and Clebsch-Gordan coefficients, as(
P

[�loc
μ γ loc

μ ]
�iγi ,�ĩγĩ ;αĩ

)[μ]
iĩ

= (A[�loc
μ ]

�i�ĩ

)[μ]
iĩ

(
C

[�loc
μ ]

�i�ĩ ;αĩ

)[γ loc
μ ]

γiγĩ
, (D3)

with (
C

[�loc
μ ]

�i�ĩ ;αĩ

)[γ loc
μ ]

γiγĩ
= (�i,γi ; �

loc
μ ,γ loc

μ

∣∣�ĩ,γĩ

)
αĩ

. (D4)

Here the key observation is that the reduced matrix elements (A
[�loc

μ ]
�i�ĩ

)[μ]
iĩ

can also be thought of as the matrix elements of some
irreducible operators, labeled by �loc

μ .
Repeating the iteration procedure multiplets describing the full chain of size N can be constructed this way as a matrix product

state (summation of repeated indices is implicitly assumed),

|ψ〉[N] = ∣∣iψ ,�iψ ,γiψ

〉[N] = (A[�loc
μ0

,γ loc
μ0

]

�i0

)[μ0]
i0

(
A

[�loc
μ1

]

�i0 �i1

)[μ1]
i0i1

(
C

[�loc
μ1

]

�i0 �i1 ;αi1

)[γ loc
μ1

]
γi0 γi1

(
A

[�loc
μ2

]

�i1 �i2

)[μ2]
i1i2

(
C

[�loc
μ2

]

�i1 �i2 ;αi2

)[γ loc
μ2

]
γi1 γi2

× · · · × (A[�loc
μN

]

�iN−1 �iψ

)[μN ]
iN−1iψ

(
C

[�loc
μN

]

�iN−1 �iψ
;αiψ

)[γ loc
μN

]
γiN−1 γiψ

∣∣μ0,�
loc
μ0

,γ loc
μ0

; μ1,�
loc
μ1

,γ loc
μ1

; . . . ; μN,�loc
μN

,γ loc
μN

〉
. (D5)

Note that the index structure that arises here implies matrix multiplication not only for the A matrices of reduced matrix
elements, but also for the C matrices of Clebsch-Gordan coefficients. This MPS formulation can be used either to implement
standard Wilsonian truncation (as done in Ref. 15), or, alternatively, to proceed variationally, as done in the density-matrix
renormalization group (DMRG),36 whose use for Wilson chains was explored in Refs. 34 and 37. In the latter case, one views
the A matrices as a set of variational parameters that need to be optimized according to some criteria. To find the optimal
approximation for the ground state, for example, we look for the corresponding MPS which minimizes the total energy,

E = 〈ψ |HN |ψ〉[N]

〈ψ |ψ〉[N]
. (D6)

This variational problem can be converted into a generalized eigenvalue problem and solved using an iterative sweepinglike
procedure (see Ref. 36 for more technical details). Once the MPS state is found, it is possible to construct the eigenspectrum
of the Hamiltonian HN for a fixed N . The flow diagram, such as the one presented in Fig. 2, can be obtained by tracing the
spectrum of the Hamiltonian with increasing N ; if the discretization parameter � is large enough (� � 2), the numerical results
thus obtained are essentially equivalent to those using standard Wilsonian truncation.37 For more details on how the operators
can be treated at the MPS level we direct the reader to the more detailed reviews, Refs. 15 and 36.
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