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We study the anisotropic spin-1/2 antiferromagnetic triangular Heisenberg lattice in two dimensions, seen as a
set of chains with couplings J (J’) along (in-between) chains, respectively. Our focus is on the incommensurate
correlation that emerges in this system in a wide parameter range due to the intrinsic frustration of the spins. We
study this system with traditional density matrix renormalization group using cylindrical boundary conditions to
least constrain possible incommensurate order. Despite that the limit of essentially decoupled chains J'/J < 0.5
is not very accessible numerically, it appears that the spin-spin correlations remain incommensurate for any finite
0<J < Ji, where J./J > 1. The incommensurate wave vector ¢, however, approaches the commensurate
value corresponding to the antiferromagnetic correlation of a single chain very rapidly with decreasing J'/J,
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roughly as g, ~ 7 — ¢ (J'/J)"e
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I. INTRODUCTION

The anisotropic triangular spin-1/2 Heisenberg lattice
has been suggested as an effective description for several
organic and anorganic compounds such as Cs,CuCly"? or
k — (ET),Cu,(CN)3.3 These bulk systems typically consist
of layered structures with weak interlayer coupling, next-
nearest neighbor, and spin-orbit interactions. The experimental
observation of spin-liquid-like behavior in these systems in
certain parameter ranges therefore sparked renewed interest
in the anisotropic triangular model system.® The simplest
effective model is depicted schematically in Fig. 1. Itis viewed
as a set of chains with intrachain coupling J, which is coupled
in planar triangular fashion by the interchain coupling J'. In the
absence of an external magnetic field, all energies can be writ-
ten in units of J := 1, which thus yields the single dimension-
less coupling parameter J' = J'/J, as used throughout this
paper unless indicated otherwise. Extensive theoretical studies
have been performed on this model system,”~'* but the full
phase diagram has remained elusive, in particular, for smaller
J'. Approximate numerical studies'' found that the magnetic
order vanishes near J' < 0.85, with a possibly continuous
transition to an essentially one-dimensional collinear phase
for J/ < 0.6 (Ref. 11) [J” < 0.3 (Ref. 14)]. The presence of
collinear versus incommensurate order at weak chain coupling
J' thus remains controversial,>'>!* and as such represents a
major motivation for this paper.

Here, we present an extensive set of density matrix
renormalization group'> (DMRG) calculations for ladders
and cylinders for this system with widths ranging from
2 to 10 lattice spacings. Recently, the use of DMRG for
frustrated two-dimensional (2D) systems has proven to be
very powerful: the results are highly precise and unbiased
for the narrower systems, and maintain acceptable accuracy
to widths of about 10 or 12 chains. Careful consideration
of finite-size effects has allowed strong conclusions about
the 2D ground state both in an antiferromagnetically ordered
system (the isotropic triangular Heisenberg model'®) and for a
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PACS number(s): 75.10.Jm, 71.10.Pm, 75.40.Mg, 75.50.Ee

spin liquid (the kagome Heisenberg model'”). For a review
of the techniques important for such 2D DMRG studies,
see Ref. 18. Of course, each system is different, and for
the anisotropic triangular Heisenberg model we study here,
the incommensurate correlations and the associated finite-size
effects must be dealt with carefully.

For that purpose, we chose as our primary type of cluster
a cylindrical geometry, with the cylinder’s axis along the J
direction (cf. Fig. 1). Despite our limitation to relatively small
circumferences, given the strong frustration of the chains and
their decoupling for J' < 1, a width of several chains appears
to give a good description of the physics of the underlying
two-dimensional lattice for smaller J'. We include a careful
reexamination of the zigzag chain, i.e., width-2 cylinder, which
is then extended to wider systems. We do find an alternation in
the properties depending on whether the width is of the form
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FIG. 1. (Color online) The anisotropic triangular Heisenberg
lattice viewed as a set of parallel chains with intrachain coupling
J :=1 and interchain coupling J’ with lattice spacing a := 1.
For the numerical simulation using DMRG, cylindrical boundary
conditions with periodic wrapping in the transverse vertical direction
are assumed unless indicated otherwise. The quasi-one-dimensional
sweeping path through the triangular system used within DMRG
is indicated at the left side starting with site (1,1). This path is
generalized to systems of different width.
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4n or 4n + 2, with n an integer, but this effect vanishes quickly
with increasing n. In particular, for smaller couplings J', we
find that our cylinders behave rather similarly to the zigzag
chain. Overall, we see incommensurate behavior over a wide
parameter range for all systems analyzed, with no indication
of a collinear phase for smaller J'.2

This paper is thus organized as follows. Section I defines
the model, and reviews its classical phase diagram. Section II
describes the methods used to obtain incommensurate data,
paying particular attention to boundary conditions. Section III
presents the results, starting with a reexamination of the zigzag
chain. This puts the stage for the analysis of increasingly wider
systems, followed by summary and conclusions.

A. Anisotropic triangular Heisenberg lattice

The anisotropic triangular Heisenberg lattice is described
by the Hamiltonian

A=>%"1,5-8§; (1
(i,J)
with the sum over all nearest-neighbor pairs on the triangular
lattice, with J;; > 0 corresponding to frustrated antiferro-
magnetic (AF) nearest-neighbor interactions. Dzyaloshinskii-
Moriya interactions, which we do not include, are expected
to help stabilize the incommensurate phase analyzed in this
paper.3141920 The strength of these interactions may be, for
example, on the order of a few percent of J for Cs,CuCly.'
The Hamiltonian in Eq. (1) is depicted schematically in Fig. 1
in terms of a width-4 system. Here, an L x n system refers to n
chains of length L each. All energies are expressed in units of
J, leading to the single dimensionless parameter J' = J'/J,
with explicit reference to J for emphasis only unless specified
otherwise.
For practical reasons, the Hamiltonian in Eq. (1) is
augmented by the additional term

Hyn =Y BM™S:., 2)
l

which describes pinning of a few sites i at an open boundary.
These pinning fields (i) facilitate the numerical convergence
and (ii) provide a particularly convenient way, for example,
to calculate and display complex correlations in a DMRG
calculation. Regardless of whether one sees incommensurate
correlations through correlation functions or through pinning,
itis crucial that the boundary conditions alter these correlations
as little as possible. In contrast, using periodic boundary
conditions also along the incommensurate chain direction
would be particularly troublesome, forcing commensurate
locking and inducing sudden jumps in the incommensurate
wave vector. Therefore, we completely avoid fully periodic
boundary conditions.

B. Classical phase diagram

The classical phase diagram of the anisotropic Heisenberg
lattice at zero temperature shows incommensurate order over
the wide parameter range J' € [0,2] due to the system’s
inherent frustration. Within this parameter range, the classical
ground state is given by a spiral wave with the incommensurate
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FIG. 2. (Color online) Classical phase diagram of the anisotropic
triangular Heisenberg lattice at 7 = 0 demonstrating continuous
incommensurate order for the entire interval J’ € [0,2], having
J = 1. Specific snapshots are shown for AF correlation for J' — 0
(panel a), triangular 120° order at the isotropic point J' = 1 (panel
b), and square AF ordering for J' > 2 (panel c). Panel (d) shows
the classical ground-state energy per site for the spiral wave in
J" €10,2] [red (dark gray) line]. The three straight tangential lines
around the point J' € {0,1,2} assume the frozen spin configurations
at these points, respectively. For J’ > 2, finally, the ground-state
configuration is given by the commensurate square AF order.

wave vector ¢; pointing along the J direction, g = ¢¢'é,.*"*>

The classical spiral wave is defined as a set of spins rotated
in some arbitrary but fixed two-dimensional plane by an angle
g - 7, with 7; the position of spin i within the triangular lattice.
Then, for arbitrary amplitude g = qj’, the energy per site of
the spiral wave in the J direction is given by

cl /
E{(J') = cos(q) +2J’ cos (%),

having assumed spins of unit length, i.e., |S| = 1, and lattice

cl ,
spacing a = 1. This energy is minimized by cos(%’) = —17
for |J'| < 2, resulting in the classical ground-state energy per
site Eg’ for the incommensurate spiral wave with vector vector

q4 given by

q5'(J") = 2[m —cos™! (-2)], (3)
ES{(J)=—1-1(J"? )

for J' € [0,2]. Here, 2 was added in qjl, so it lies within the
first Brillouin zone, while assuming the branch cos™ ' (x) €
[0,7]. The pitch angle 6 of the spiral wave,* defined as the
angle between two spins at neighboring chains as one moves
half a lattice spacing along the chains, is given by 6(J') =
cos_l(—%) =7 —q5/2 €[90°,180°], with ¢ € [0,7] for
J' €10,2].

The smooth classical incommensurate phase can be seen as
the continuous transition connecting the three commensurate
points J' € {0,1,2}, as depicted in Fig. 2.

(i) For small interchain coupling J’ < 1, the chains are
essentially decoupled leading to antiferromagnetic spin cor-
relation along the chains (1D-AF), as indicated in Fig. 2(a).
Hence, the incommensurate wave vector qjl approaches the
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end of the Brillouin zone of a single chain, i.e., qjl — 7 [cf.
Eq. (3)]. Note that, with close to AF correlation within a single
chain, the interaction between chains is strongly frustrated and
hence suppressed. In particular, coinciding with our definition
of a spiral wave, the spins of a neighboring chain are displaced
by half a lattice constant and hence rotated by qgl /2=m/2,
i.e., 90°. The resulting (S - S) interaction across the chains
is thus close to zero, further emphasizing that neighboring
chains essentially decouple. Therefore, in the frozen 1D-AF
configuration, E = (S;S;+1) = —1 = const in units of J, as
indicated by a straight line in Fig. 2(d) around J’ = 0.

(i1) At the isotropic point J' = 1, the system exhibits 120°
order, as depicted in Fig. 2(b). The wave vector of the spiral
wave is given by qj’ = 2m /3, i.e., aperiod of three sites within
a chain. If the order were frozen in the 120° structure, the
energy per site would be E = —%(l +2J’), as indicated by a
straight line in Fig. 2(d) around J' = 1.

(iii) For large interchain coupling J’ >> 1, the lattice reduces
to a square lattice along the J’ couplings with weak spin
coupling along one diagonal of the squares (diamonds) of
strength J, as indicated in Fig. 2(c). This leads to a square AF
order and, consequently, ferromagnetic (FM) order of the spins
along a single chain, i.e., qjl — 0. Within the frozen square AF
order, the ground-state energy per site becomes E = 1 — 2.J/,
again indicated by a straight line in Fig. 2(d). This square AF
order is the true classical ground-state configuration for J' > 2
and agrees with Eq. (4) for J' = 2.

From a quantum mechanical point of view, this classical
picture will be altered by quantum fluctuations. Typically,
one would assume that quantum fluctuations will reduce
incommensurate order. In particular, while the phase boundary
toward the square AF order also exists in the quantum
mechanical context, one expects that the incommensurate
phase terminates at a smaller value of J’, as compared to the
classical phase boundary of J' = 2. For J' < 1, however, the
question of whether or not quantum fluctuations fully suppress
the spiral wave into a collinear configuration for small enough
yet finite J’' has remained controversial. From our results
below, we do see clearly suppressed incommensurate order,
in that the quantum mechanical g; approaches the boundary
7 of the Brillouin zone significantly faster as compared to the
classical case. However, the incommensurate correlations do
persist for finite J', suggesting that g; = 7 is reached only for
J' =0.

II. METHODS

We use the density matrix renormalization group'> on
a finite two-dimensional lattice with mainly cylindrical
boundary conditions. We use traditional DMRG in that
a two-dimensional strip of certain width is mapped onto
a single effectively one-dimensional chain, as indicated in
Fig. 1. The resulting ground state is therefore described by
a matrix-product state (MPS).?*? This approach provides a
numerically well-controlled setting, which, however, becomes
numerically expensive for smaller J’, and therefore prohibits
a fully converged analysis for J' < 0.5 for widths n > 2.
Nevertheless, we are able to make a well-controlled and largely
unbiased analysis of the incommensurate correlations down to
J' 2 0.5.
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A. Cylindrical boundary conditions to study
incommensurate correlations

Incommensurate behavior is affected by boundary condi-
tions imposed on the finite system size under consideration,?®
which hence must be dealt with carefully. For this, we
performed extensive initial test calculations on the anisotropic
triangular lattice with a large variety of boundary conditions.
For example, to allow any type of incommensurate correlations
to appear and not be frustrated, we studied systems with fully
open boundary conditionsup to 11 x 13, with weak pinning of
a single site in the center of the system. All such calculations
strongly indicated incommensurate spiral correlations in the
direction along the chains, varying with J'. They also always
gave a commensurate period of two chain spacings (v/3a)
for transverse correlations, i.e., ferromagnetic correlations in
next-nearest-neighbor chains.'*

Thus, in order to study the incommensurate correlations in a
least constrained way, we use cylindrical boundary conditions
(cyl-BC) with an even circumference, i.e., composed of an
even number of chains (note that this is also compatible with
the square AF order of the system for large J’). Furthermore,
the very left boundary of the open chains was pinned by
a small external (staggered) magnetic field, while the right
boundary was softened by damping the Heisenberg couplings
smoothly toward zero (smooth boundary condition).”’ The
resulting combined set of boundary conditions will be referred
to as cylindrical pinned with smoothing boundary condition
(cps-BC). The pinning fields at the left boundary induce
an (exponentially) decaying magnetization in the bulk of
the system. The resulting incommensurate correlations are
analyzed away from the open boundaries in the central area of
the system.

3 - - . -
—=e— 12x6 system (per-BC) — L=12
% 64x6 system (cps—-BC)
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FIG. 3. (Color online) Comparison of the incommensurate wave
vector §; = m — g, obtained from DMRG between a small 12 x 6
system with fully periodic BC (per-BC) (solid line with round
symbols) and a larger 64 x 6 system using cps-BC [data (black
asterisks) with a fit of the type a(J/)’e™"/’ ' (gray line) taken from
Fig. 8 below]. The incommensurate data for the fully periodic system
was extracted from the residual (S. ) ~ 10~ data derived from the
calculated DMRG ground state for S} = 0, consistent with explicit
(So - S;) correlation data. In the fully periodic system, no pinning or
smoothing was applied to guarantee full translational invariance. Due
to the presence of long-range interactions, in the per-BC case, up to
m = 5000 states had to be kept.
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FIG. 4. (Color online) Analysis of the incommensurate correla-
tions for 64 x 4 system at J' = 0.6 using cps-BC. Panel (a) shows
the magnetization (S, ,) at the open left boundary (black arrows on
top of each site), as triggered by the staggered pinning fields B}(’f‘;
at the leftmost sites (gray arrows) with |B| = 0.5. The triangular
lattice with sites and bonds is indicated in the background, with
the bonds due the periodic BC in the vertical direction indicated by
dashed lines. Panel (b) shows (S - S) correlations between nearest-
neighbor sites around the center of the system. These correlations
are well converged, uniform, and antiferromagnetic (indicated by
the same red color), with intrachain correlations (S - §), ~ —0.394
and significantly weaker interchain correlations (S - S), >~ —0.061.
Panel (c) analyzes the full (S, ,) response of the system, as partly
already indicated in panel (a), as a function of horizontal position for
all chains. It shows the bare (S; ) data (light colors), together with
the exponentially decaying oscillating envelopes (strong colors), from
which the exponential decay & and the incommensurate period A is
determined from a phase analysis, as described in Eq. (5) and the
following discussion. The inset shows the reduced purely oscillating
part of (S, ). The right axis set of the inset and its corresponding
data (matching colors) indicate the weights applied to the couplings
for smoothing the open right boundary.
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FIG. 5. (Color online) Analysis of the incommensurate correla-
tion for the same system as in Fig. 4, except for smaller J' = 0.5
and the pinning field, which is applied to a single site at the left
boundary only [indicated by the light gray arrow in panel (a);
B = 0.5]. Panel (b) shows the intrachain correlations at the center
of the system, having (S - S); >~ —0.419 with strongly weakened
interchain correlations (S - S);» >~ —0.038 due to frustration. Note
that (S -S); is already close to the lower bound for the mean
of (S-8); > % — In(2) = —0.4431, derived from the ground-state
energy E(/J of a single Heisenberg chain (Ref. 28).
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1. Finite-size artifacts for small systems

Incommensurate correlations for J’ < 0.5 exhibit (expo-
nentially) long wavelengths A = 27 /(wr — ¢q;). These corre-
lations are strongly affected by small system sizes and the
boundary conditions applied, and as such may potentially
be misinterpreted. An example is given in Fig. 3. For fully
periodic boundary conditions (per-BC), the relatively small
12 x 6 system clearly shows finite-size effects of the type
= —q; 2T”n,withn =0,1,2, ... aninteger. The small
and noisy deviations from pure integer n may already be
considered an indicator that the system tries to break away
from the periodicity enforced by given system length L = 12.
In contrast, the incommensurate data for the larger 64 x 6
system, using cps-BC clearly interpolates the per-BC data in
a smooth fashion. A fit of the form §,(J') = a(J')%e ?/"
is included in Fig. 3 in solid gray (see also Fig. 8 later).
For the fully periodic system, even for relatively large systems,
the transition between uniform collinear behavior (n = 0)
and the first “transition” to n =1 will always occur at
relatively large J’ 2 0.5, which may thus be misinterpreted as
a transition into a collinear phase. Note that this “transition”
changes the parity or reflection symmetry of the ground state,
which has been used as an argument in favor of a (possibly
continuous) phase transition in the literature.”!!

In contrast, for all of our data using cps-BC for as small as
J’ ~0.3...0.5for the width-4 system (not presented), we still
see incommensurate behavior,® in that the magnetization data
shows a clear onset of oscillatory behavior consistent with our
fit to ¢;. It has significantly larger error bars, however, since
(i) many more states would actually have to be kept for full
convergence given that the entanglement block entropy grows
strongly for smaller J’, and (ii) the corresponding wavelength
A =2m/(wr — q;) can no longer be determined reliably as it
clearly exceeds accessible system sizes.

B. Determination of the incommensurate wave vector

The incommensurate wave vector is determined by the
analysis of the system’s response to the pinning fields at
the left boundary using cps-BC. The procedure is illustrated
for a 64 x 4 system for J' = 0.6 in Fig. 4, and with altered
pinning for J' = 0.5 in Fig. 5. Note that despite J' ~ 0.6
was suggested as the phase boundary toward collinear order,'’
both systems, Fig. 4 as well as Fig. 5, clearly show pronounced
incommensurate oscillations still, while having J’ < 0.6.

Using cps-BC, in Fig. 4 (a) the leftmost site of each chain
is pinned through a staggered external magnetic field | Bpiy| =
0.5, which thus respects the underlying AF correlations of
the Heisenberg model for smaller J'. However, the exact
details of the applied pinning usually did not matter (see
Fig. 5 later). After a relatively short transient region, the
magnetization of each chain followed a clear exponential decay
with superimposed oscillations, as seen in Fig. 4(c). The period
of these oscillations usually neither is a simple multiple of the
underlying lattice spacing a nor does a multiple of the period fit
into the specific finite system size under investigation, i.e., the
period is incommensurate. The smoothing®’ of the right open
boundary roughly affected the right 20% of the system [see
data associated with right axis in inset to Fig. 4(c)]. Within the
smoothing region at the right boundary, both couplings, J as
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well as J', were damped uniformly as a function of horizontal
chain position x by weights that smoothly turned into an
exponential decay o« e=**, i.e., decreasing the couplings by
a factor of A = 2 within one horizontal lattice spacing a. This
setting has been used for smooth boundary throughout. The
purpose of this smooth boundary in the cps-BC setup was
tailored to blur the finite size in the direction of the chains, and
hence to least constrain incommensurate correlations.

The incommensurate correlations for smaller J’ then are
dominated by AF correlations, as the wave vector g, rapidly
approaches the boundary of the Brillouin zone of a single
chain, g; — m. This is seen in the zigzag structure of the
bare (S, ) data for J/ = 0.6 in Fig. 4(c) (light colors in the
background), while the envelope for every other site (lines
in strong color) are plain decaying oscillating =+ sin(. . .) and
£ cos(...) curves for even and odd chains, respectively. Note
that the data for all even or odd chains in Fig. 4(c) coincides,
and hence lies indistinguishable on top of each other.

The spiral correlations are analyzed then as follows. With a
two-chain periodicity normal to the chains, the system can be
regarded as an interleaved set of even chains (chains 2,4, .. .)
and odd chains (chains 1,3, ...). Consequently, the position x
of the sites in chain direction in the odd chains (x = %, %, e
in units of lattice spacings a) is shifted by half a lattice constant
with respect to the even chains (x = 1,2, ...). With (S ;) the
measured spin projections in the z-direction of the spin at site
position x, the exponentially decaying envelope (S, o)e /¢
allows us to determine the correlation length & by fitting.
With §; = m — g5 < 1 quickly becoming small for J" < 1,
the pure oscillatory part of the spiral correlations along the
chains can be extracted. Up to an irrelevant overall phase, it is
given by

(Se.0)((Se0)e™/5) ~ cos [(r — G,) x]
= cos (wx)cos (§;x) + sin (;rx) sin (G, x)

(=D cos(gsx) forx = 1,2, ... (even chains), 5

N {(—l)i' sin(gyx) forx =1,3,... (odd chains), ®)
with ¥ = x — % in the last line. This zigzag due to the signs
together with the oscillatory envelope of sine and cosine
waves is clearly seen in the main panel of Fig. 4(c). Here,
the global phase is fixed through the pinning at the left
boundary, thus facilitating the overall numerical convergence
within the DMRG calculation. By applying staggered signs
and correcting for the overall exponential decay, pure cosine
(even chains) and sine waves (odd chains) can be extracted, as
shown in the inset to Fig. 4(c). Here, the sign factor for odd
chains needs to be understood as (—1)*, as introduced with
Eq. (5). The incommensurate wavelength A =27 /(7 — q;)
of the slowly oscillating envelope can then be determined,
for example, from the zero transitions of these oscillations,
assuming that several periods fit into the system.

Alternatively, a phase analysis of the the cosine-sine
relationship in Eq. (5) can be employed to determine ¢;.
For this, note that away from the open boundaries, the slow
oscillations of the envelope in Fig. 4(c) or its inset are well
described by c(x) = r(x) cos(¢(x)) and s(x) = r(x) sin(¢(x)),
with @(x) = g, x, up to an irrelevant overall phase, and a
common decaying envelope function r(x). Here, even and odd
chains are only distinguished by their respective discrete sets
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of values for x. Nevertheless, for example, by interpolating the
sine data for odd chains halfway in-between two neighboring
sites, values (c(x),s(x)) for a matching position x are obtained.
With tan(¢(x)) = s(x)/c(x), the wave vector g; can thus be
determined from the slope of the calculated phase ¢(x). The
amplitude r(x) drops out, hence its precise value and functional
dependence are unimportant. This phase analysis, indeed,
represented a reliable alternative procedure to determine g
for smaller J’. In particular, it also showed the quality of the
underlying sine and cosine data, which for the systems in
Figs. 4 or 5 demonstrated an excellent linear dependence of
@(x) over the fitting range x indicated by the vertical dashed
lines in the inset to Figs. 4(c) and 5(c). The specific resulting
values for the exponential decay & and the wave vector g; are
specified with the panel.

The analysis in Fig. 4 has been repeated for exactly the
same system, yet for smaller J' = 0.5 and with the pinning
reduced to a single site (ssp) at the left boundary, as indicated
in Fig. 5(a). If the same J’ = 0.6 as in Fig. 4 had been taken,
the altered pinning of Fig. 5 solely resulted in a modified
transient behavior right next to the pinning fields at the left
boundary, which also leads to a different irrelevant phase of
the oscillatory part in (S; ). The resulting correlation length
& as well as the incommensurate wave vector A, however,
are exactly the same as already indicated in Fig. 4(c), with
relative differences on the order of 1%. This insensitivity of
the incommensurate behavior to the exact details of the pinning
at the left boundary is seen also for a wider range of J', as will
be demonstrated in Fig. 7.

The analysis in Fig. 5 then is based on a system with
the smaller interchain coupling J' = 0.5 instead. The pinning
occurs on a single site at the lowest chain, considered chain
#1, and hence an odd chain. Similar to Fig. 4, in the main
panel Fig. 5(c), a transient behavior at the left boundary
is clearly visible. Not surprisingly, the data within the odd
chains differs for x/a < 15, given that one of them is pinned.
Overall, however, data for even or odd chains quickly coincides
away from the left boundary, consistent with what has already
been seen in Fig. 4. Also, the data for even chains coincides
from the very beginning. This is attributed to the very weak
(S - §)p correlation in-between the chains [see Fig. 5(b)] due
to the system’s inherent frustration despite the sizable J'
of 0.5.

III. RESULTS

A. Review of width-2 system (zigzag chain)

The triangular system consisting of two chains is also
referred to as zigzag or J;-J, chain, with nearest-neighbor in-
teraction J; = J' and next-nearest-neighbor interaction J, =
J. While it has been widely studied in the literature,?”? we
carefully reexamine the zigzag chain in the entire parameter
range from small to large J’, with the main focus on
incommensurate behavior?® for J’ < 1. This analysis for the
width-2 system then sets the stage for the wider systems further
below, which will proceed in a completely analogous fashion.

The results for the 128 x 2 system are summarized in Fig. 6
using cps-BC. Since for the zigzag chain the periodic boundary
in the width of the system is equivalent to taking J' — 2J’
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FIG. 6. (Color online) Analysis of 128 x 2 system (zigzag chain)
around the system center using cps-BC over a wide range of J'. In
panels (a)—(c), the horizontal axis shows J' for J' < 1, smoothly
switching to the inverse 1/J’ for J' > 1 [cf. Eq. (6)]. Panel (a)
shows the nearest-neighbor spin correlations of individual bonds
along the chains [(S - S);] and in-between the chains [(S - S),].
Here, up to dimerization, this leads to many lines lying on top of
each other, with minor deviations seen for the smallest J' only.
((S-S)y) and ((S - S),) correspond to the averaged (S -S), and
(S - §), data, and are shown in strong colors (dashed with bullets
and asterisks, respectively). Panel (b) indicates the numerical cost
of the calculations in terms of the effective dimension D* = e° (see
text). D* is calculated w.r.t. to bonds of the linearized system (cf. path
shown in Fig. 1). Given intrinsic even-odd alternations, for simplicity,
only the maximum and minimum D* from block decompositions
w.r.t. the system center is shown. Panel (c) shows the incommensurate
wave vector g, (solid blue with bullets for 128 x 2 system, black
pluses for larger 250 x 2 system), where the thick solid line for
smaller J’ replicates the exponential fit from panel (d). For reference,
also the classical incommensurate wave vector ¢¢' as well as the spin
gap Ag/J is shown, with the latter calculated for plain cylindrical
BC (see text). Panel (d) analyzes the incommensurate data g, for
small J’ relative to the zone boundary vs. plain inverse J' on a
semilogarithmic plot. A smooth exponential fit [solid red (dark gray)],
and for comparison, a plain polynomial fit [solid green (light gray)]
are shown. Data for a larger 250 x 2 system as well as data from
White *96 (Ref. 23) is included. The horizontal dashed lines indicate
2/L,i.e., the smallest §;/m = 1 — q; /7 reachable for given system
size (color match with data in panel). The inset shows the relative
deviation of both fits from the data. Thin (thick) lines are for the
smaller (larger) system, while red (dark gray) [green (light gray)]
lines refer to the exponential (simple polynomial) fit, respectively.

and using open BC, the boundaries are considered open in this
case, while nevertheless applying pinning and smoothing as
usual. The data shown in Fig. 6 covers a wide range of J’
from large J' >> 1 down to smaller J' 2 0.5. For this purpose,
Figs. 6(a)-6(c) plot the data vs. J’ in units of J for J' < 1,
while for J' > 1, the data is plotted vs. J in units of J' in
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reverse order. To be specific, while J and J' are indicated on
the horizontal axis in Figs. 6(a)-6(c) for readability, what is
actually plotted on the horizontal axis is

I
fE{zj_i

T

forJ'/J <1 — ¢ €[0,1], ©)
forJ'/J 21— ¢ €[1,2].
Overall then, ¢ € [0,2] covers the entire range J' € [0,00],
with ¢ = 1 being the isotropic triangular lattice. Note that
the derivative of ¢(J’) is smooth across J' = 1, which is
also reflected in the smoothness of all data across J' = 1 in
Figs. 6(a)-6(c).

Figure 6(a) analyzes the nearest-neighbor correlations
(§-8); and (S - §), at the center of the system along and
in-between the chains, respectively. The overall averages
((S-S),)and ((S - S),) are shown in strong solid colors with
symbols. The data for individual bonds (S - S), and (S - S)
with respect to ng = 8 sites from both chains is shown in light
colors (solid lines). Much of the data of individual bonds lies
indistinguishable on top of each other, which demonstrates the
uniformity of the system (larger deviations will be seen later
for wider systems for small J’ due to numerical issues e.g., see
Fig. 8). In Fig. 6, tiny deviations in the individual bond data
are seen only for the very smallest J’ = 0.4 analyzed. Despite
numerical issues as discussed with Fig. 6(b) below, this is also
attributed to finite-size effects, in that the incommensurate
wavelength A =27 /(m — ¢q;) reaches and rapidly extends
beyond given system size for small J'.

While the (S - S); data widely agrees with its average, the
(S - 8)y data shows a symmetry-broken state. The interchain
bonds combine two different diagonal directions, and as such
shows dimerization over a wide range,”® seen as the opening
of a dimerization bubble in the (S - S); data. This bubble
closes, i.e., approaches its average (asterisks) for J* — 0 and
for large J’at 1/J’ ~ 0.241167.% The dimerization results
from spontaneous symmetry breaking along the direction of
the chains with alternating weak and strong interchain bonds
(interestingly, a similar symmetry breaking is encountered
again later in an increasingly weaker form for the wider
width-6 and width-10 systems). The width-2 system analyzed
here becomes completely dimerized at the Majumdar-Ghosh
point*® J’ = 2, as seen in Fig. 6(a) at J/J' = 0.5. There, both
the (S - S), data [blue (dark gray) line with bullets] as well
as the upper branch in the (S - S), data [solid light green
(gray) lines], pass through zero, while the lower branch in the
(S - S) ;s datareaches its strongest negative value of —0.75 due
to pairwise singlet formation.

The numerical cost of a DMRG calculation is directly
reflected in the effective dimension D* = ¢%, which is plotted
in Fig. 6(b). Here, S is the block entropy around the center
of the system, i.e., the von Neumann entropy after tracing
out approximately half of the system. Up to a prefactor, the
effective dimension D* directly indicates the dimension D
of the underlying matrix product state that is required for
some fixed prespecified accuracy. As such, D* indicates the
numerical cost, which in the case of DMRG scales as O(D?).
For reference, Fig. 6(b) also indicates the actual number of
states (m < 2055, largest for small J') as well as the maximum
discarded weight €,. D* typically shows even-odd behavior
and also variations depending on the explicit block partitioning
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of the system. Hence, the maximum and minimum D* across
the system center is shown. As seen in Fig. 6(b), D* saturates
for large J’, and exhibits a minimum at the Majumdar-Ghosh
point J' = 2. There, D* alternates between the minimum of 1
(at the boundary in-between two singlets) and the maximum
of 2 (cutting across one singlet). Starting from the Majumdar-
Ghosh point, when decreasing J', D* increases exponentially,
with a further strong boost for J’ < 0.6 [note that Fig. 6(b)
is a semilogarithmic plot]. The strong increase in numerical
cost for small J’ is clearly due to the effective decoupling
of the chains in this parameter regime. This leads to largely
independent Hilbert spaces that need to be combined in a
tensor product. Nevertheless, the presence of the frustrating
neighboring chains does affect the detailed nature of the
effective low-energy Hilbert spaces, hence, the sweeping path
across the chains as depicted in Fig. 1 is important and can
not simply be replaced, for example, by a sweep preferentially
along entire chains first.

The results for the incommensurate wave vector g; are
shown in Fig. 6(c) [blue (dark gray) bullets], together with data
from alarger 250 x 2 system (black pluses) and an exponential
fit for small J’, replicated from Fig. 6(d) [thick red (black)
line]. The incommensurate wave vector ¢; vanishes at the
Majumdar-Ghosh point, being zero for J’ > 2. This phase
boundary incidentally agrees with the classical incommensu-
rability qjl for the infinite system. On the other hand, while
for small J' the classical q?’ approaches the boundary of the
Brillouin zone in a linear fashion [also plotted in Fig. 6(c) for
comparison], the quantum mechanical incommensurability is
strongly reduced, in that g, approaches the zone boundary of
 much faster, and at first sight, even appears to vanish already
for J' >~ 0.5. But, as we will argue in the following, it does
not.

The spin gap Ay of the zigzag chain [also calculated and
shown in Fig. 6(c), for reference; see later discussion] is
described for small J' by Ag~ cje~/’"?3 with constants
c¢1 and ¢, of order one. For large J’, on the other hand, the
dimerization [Fig. 6(a)] as well as the spin gap [Fig. 6(c)]
are expected to vanish for 1/J’ = 0.241 167.%° Motivated by
this inverse exponential behavior of the spin gap for small
J’, Fig. 6(d) shows the ¢; data of Fig. 6(c) vs. plain inverse
J'. Moreover, in order to zoom into the boundary of the
Brillouin zone, the incommensurate data ¢ is plotted in terms
of §; = m — g on a semilogarithmic scale in the y direction.
Clearly, the incommensurate §; decays fast for large x values
(i.e., small J'values), close to exponentially, indeed, but by no
means does §; show any tendency to vanish for finite J’. On
the contrary, the data shows a slight upward curvature.

We fitted the data for g, in the interval indicated by the two
vertical lines in Fig. 6(d) in two ways: (i) an exponential fit of
the type

(7)) =7 —a(3) 2alHe,

and (ii) for comparison, also a plain polynomial fit. The
exponential fit indicated an exponent ¢3 =~ 2, so c3 was fixed
to this value for the zigzag chain. The remaining fit parameters
are shown in the legend of Fig. 6(d). For comparison, the plain
power-law fit results in (J)*!6, in agreement with the O(J'?)
estimate by Ref. 14 in the case where spiral order is selected by
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fluctuations at O(J'?). It is hard to discern in Fig. 6(d) which
of the two fits is closer to the data, so the relative difference
of the actual data to the fitted values is shown in an inset to
Fig. 6(d). The slight positive curvature of the power-law fit
in this figure appears somewhat too strong, which is clearly
magnified still in the inset. In comparison, the exponential
fit lies significantly closer to the actual data, which due to the
large number of states kept in the calculation is well converged.

From this, we conclude that the exponential fit of the type
cl(J’)2e’52/J/, which is nonanalytic in J’, fits best for the
incommensurate wave vector of the zigzag chain. Moreover,
from the systematic behavior seen in the incommensurability
down to J' 2 0.5, we take this as a strong indication that
7w — gy remains finite for any finite J' < 0.5. From further
calculations for J' ~ 0.3...0.5 (not shown), we do see that
the oscillatory bending of the S, data as in Fig. 4 continues.
The system, however, can no longer be taken large enough to
accommodate even a single full period of an incommensurable
wave, which would allow a reliable determination of ¢,.
Clearly, given the exponentially rapid decay of w — gy as
in e=©/”"| the required system sizes to actually analyze
incommensurable order for small J’ becomes exponentially
large. With the fit parameters in Fig. 6(d), for example, the
required system length estimated by A = 27/, for J' = 0.3
is around A =~ 1300 sites, while for J' = 0.2 it would have
already grown to A ~ 11 500 sites!

B. Width-4 to width-10 systems

The same analysis as for the width-2 system in Fig. 6 is
performed for systems of width-4 (Fig. 7), width-6 (Fig. 8),
width-8 (Fig. 10), and width-10 (Fig. 11). All systems analyzed
exhibit smoothly changing incommensurate behavior for finite
J' < J¢, having J! 2 1.25. The width-4 system in Fig. 7
includes reference data [black pluses in Figs. 7(c) and 7(d)],
with the pinning altered from an AF-pinning at the left
boundary (cf. Fig. 4) to pinning of a single site (cf. Fig. 5). The
data is clearly consistent with each other, which emphasizes
the insensitivity to the exact details of the pinning at the open
boundary and supports a clear two-chain periodicity normal to
the chain direction in the center of the system.

For comparison, also the spin gap Ag was calculated
for the systems up to width-8 with rudimentary finite-size
scaling only.?! The spin gap Ag was obtained by calculating
the ground-state energy Eg for increasing total spin S of a
system with plain cylindrical boundary conditions, i.e., in the
absence of pinning fields or smoothing of the boundary. In
avoiding fully periodic boundary conditions for numerical but
also physical reasons (i.e., accounting for incommensurate
behavior), the open boundary at the end of the cylinder
can carry spinful edge excitations.’! Since these edge states
quickly decouple with increasing system length, they can and
do lie within the spin gap for the width-4, -6, and -8,...systems.
Thus, the total spin S was increased until a true bulk excitation
was observed in the data, i.e., the measured (S, ) data was
no longer exponentially confined to the boundary. The energy
of this state relative to the global ground state was used to
estimate the spin gap Ag.’!
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FIG. 7. (Color online) Analysis of 64 x 4 system using cps-BC
(analysis is similar to Fig. 6; for a detailed description of panels and
insets see caption there). The system shows no dimerization, with
the incommensurate phase boundary at J. ~ 1.78. Small finite-size
and numerical limitations are seen for J' < 0.5 in (a) and (b). The
exponential fit in panel (d) as in Eq. (7) gives ¢; >~ 1 to a good
approximation, hence, c; has been fixed to 1. The reference data
(black crosses) shown in panels (c) and (d) derives from exactly the
same physical system, with the only difference of having a single site
pinned only (cf. Fig. 5).

1. Intermediate chain coupling

The major striking effect seen in the wider systems
is the symmetry-broken alternation of the nearest-neighbor
exchange correlation (to be referred to as dimerization) for
intermediate J', as seen in Figs. 6—11. The dimerization bubble
in the (S-S); data, which is strongly visible for width-2
[Fig. 6(a)], disappears for width-4 [Fig. 7(a)] and width-8
[Fig. 10(a)], while it clearly reappears in ever weaker form
for width-6 [Fig. 8(a)] and width-10 [Fig. 11(a)]. While the
strength of the dimerization, where present, clearly weakens
for smaller J', it nevertheless appears to persist for finite
J' <1

A typical symmetry-broken state for the width-6 system is
shown in Fig. 9, with a similar pattern arising for the width-10
system. Here, J' was chosen such that the bond strength
(S - §) yalong the chains just crosses zero [cf. Fig. 8(a)]. Note
that a dimerization pattern as in Fig. 9 has been recently
also observed on an isotropic four-leg triangular ladder with
additional ring exchanges.>® Overall, the dimerization seen
here suggests a qualitative difference of the systems of width
4n + 2 (symmetry-broken systems), with n an integer, to
systems of width 4n (uniform systems), while nevertheless, a
two-chain periodicity perpendicular to the chains is maintained
in either case. Equivalently, this translates into an even-odd
effect in the number of laterally coupled zigzag chains. As the
dimerization clearly weakens with increasing system width,
however, in the thermodynamic limit, the dimerization is
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FIG. 8. (Color online) Analysis of 64 x 6 system using cps-BC
(analysis is similar to Fig. 6; for a detailed description of panels,
and insets see caption there). The system again shows spontaneous
symmetry breaking, with the associated dimerization pattern at
J’ = 1.16 shown in Fig. 9. Strong finite-size and convergence issues
are seen for J' < 0.6 in (a) and (b). The phase boundary for
incommensurate behavior (panel c) is given by J' < J¢ ~ 1.27.
Similar to the width-2 system, the exponential fit as in Eq. (7) in
(d) results in ¢3 >~ 2, thus, ¢3 has been fixed to this value.

expected to vanish completely, resulting in a consistent picture,
independent of the actual system width.

The reoccurrence of the dimerization in the width (4n + 2)
systems in Figs. 8 and 11 is also reflected in several other
quantities, similar to what has already been seen in the width-2
system in Fig. 6. Specifically, in the parameter range where
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FIG. 9. (Color online) Spontaneously symmetry-broken ground
state of the 64 x 6 system [Fig. 8 at J' = 1.16, having m = 4096
states kept, with the chain coupling J’ chosen such that the
intrachain bond strength (S -S), just crosses zero in Fig. 8(a)].
The figure shows the extremely uniform (S-S); and (S-S),
across the central region of the system, having (S-S), €
{—0.3453, — 0.2039} and (S - S), = 0.0038, with deviations below
given accuracy. This underlines the in-sensitivity to the open
boundaries having cps-BC. With (S - S), (horizontal bonds) still
slightly positive, it is indicated in blue (black) vs. red (gray) for
negative values. The weaker interchain bond is shown in lighter color
for increased contrast.
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FIG. 10. (Color online) Analysis of 64 x 8 system using cps-BC
(analysis is similar to Fig. 6; for a detailed description of panels
and insets, see caption there). The system is uniform without any
spontaneous symmetry breaking, with incommensurate behavior for
J' < J¢ >~ 1.56. Finite-size and convergence issues are seen for J' <
0.6 in panel (a), with significant numerical truncation starting with
J' < 0.8, as indicated by the artificial suppression (kink) of D* in
panel (b). The exponential fit in panel (d) uses ¢; = 2 [cf. Eq. (7)],
although the fitting range no longer supports a clear preference for
either ¢c; = 1 or 2.
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FIG. 11. (Color online) Analysis of (S - S) correlations for width-
10 system using cps-BC with a similar analysis as in panels (a) and
(d) of 6 (for a more detailed description, see caption there). The
system again shows spontaneous symmetry breaking in terms of
a dimerization bubble for larger J'. The regime J' < 0.8 suffers
strong numerical limitations [panel (a)]. Panel (b) analyzes the
incommensurate behavior with tentative fits to the regime J' < 1
using ¢3 = 2 [cf. Eq. (7) and other symmetry-broken systems]. The
incommensurate phase terminates at J' < J{ =~ 1.27. The horizontal
dashed line again indicates 2/L, i.e., the smallest §;/m =1 —¢q,;/7
reachable for given system size. There, however, the block entropy has
already grown to such an extent that this limit is no longer reachable
reliably numerically.

the dimerization is strongest [e.g., where the lower branch in
the (S - S); bubble reaches a minimum in panels (a)], (i) also
a minimum is seen in the effective dimension D* in panels
(b), while (ii) at the same time the incommensurate behavior
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terminates in panels (c) [panel (b) of Fig. 11]. For the width-2
system (Fig. 6), this exactly corresponds to the Majumdar-
Ghosh point J’ = 2, while for the width-6 system (Fig. 8) as
well as for the width-10 system (Fig. 11) this occurs at J. =~
1.27. Interestingly, in all symmetry-broken cases, the strongest
dimerization always occurs around the zero-transition of the
bond strength (S - S), along the chains [compare panels (a)].

In contrast, the non-symmetry-broken width-4n systems
show an effectively flat D* for J' > 1, as seen for width-4
in Fig. 7(b) and width-8 in Fig. 10(b). At closer inspection,
nevertheless a shallow minimum in D* is discernible, which
within the accuracy of our data again also coincides with
the point where the incommensurate behavior terminates. In
contrast to the symmetry-broken systems, this typically occurs
at a somewhat larger J' still, i.e., at J. =~ 1.78 for the width-4
system [Fig. 7(c)] and J: ~ 1.56 for the width-8 system
[Fig. 10(c)]. The larger J{ is also reflected in a qualitatively
different shape of the curve of the incommensurate wave vector
q; as compared to the symmetry-broken systems.

For the phase boundary where the incommensurate be-
havior vanishes, a numerical analysis suggests that g;(J’) ~
|J" = J.)V? for J' — (J!)~. This is particularly so for the
width-2 system, while for larger widths the incommensu-
rate data is not as reliable to make a definitive statement.
The reason being that, at the point where the incommensurate
behavior vanishes, typically also the correlation length &
becomes shortest, e.g., even vanishing for the width-2 system.
Consequently, only a very short spatial range is accessible
to determine g; from the S, data, which for all systems is
much shorter than the actual chain length analyzed. While the
extraction still works relatively well for width-2 and width-4
systems, the g, data becomes more noisy for the width-6
system, as seen, for example, in Fig. 8(c) around J! >~ 1.27.

Similarly, also the spin gap Ag/J’ reflects the qualitatively
different behavior of the non-symmetry-broken width-4n
systems [Figs. 7(c) and 10(c)], in that it saturates for large J’ at
a finite value. This value, however, appears to diminish rapidly
with increasing width. For the symmetry-broken systems of
width-2 and width-6, on the other hand, the spin gap vanishes
for large J'. Both sets of systems lead us to conclude that the
spin gap vanishes in the thermodynamic limit.

2. Small chain couplings

The small J’ regime is increasingly affected by finite-size
effects and limited numerical resources for the wider systems,
where the entanglement across the chains increases strongly.
This limits the numerically accessible range. For the width-4
system in Fig. 7, for J' < 0.5, a slight spread is seen in the
individual bond correlations (solid lines) in Fig. 7(a), and more
pronouncedly, in Fig. 7(b) where the effective dimension D*
is cut off by the maximum number of states that could be
kept (m < 7000). Similar to the width-2 system, D* shows a
strong exponential increase for intermediate decreasing J' <
J¢ >~ 1.78. For the width-6 system, strong convergence issues
arise for J < 0.6 [Fig. 8(a)], for the width-8 system for J' <
0.7 [Fig. 10(a)], and for the width-10 system for J' < 0.8
[Fig. 11(a)]. In the latter case, the accuracy is already also
compromised for intermediate J', as seen by the slight spread
in the individual bond data for J’ < 1.10.
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FIG. 12. (Color online) Summarized incommensurate data §; =
7w — g, for width-2 to width-10 systems [Figs. 610, panel (d), and
Fig. 11(b), respectively]. For wider systems, the incommensurate
phase terminates at J. >~ 1.25. The inset shows the same data vs. J’
on a linear scale.
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FIG. 13. (Color online) Combined data of correlation length
defined through Eq. (5) for width-2 to width-10 systems. The
correlation length is shown only in the parameter regime where the
systems show incommensurate behavior. Outside this range (i.e., for
large J'/J), depending on system width, exponential decay can be
replaced by algebraic decay.

Bearing in mind this limited numerical accessibility of
small J’, the incommensurate behavior for smaller J' is
analyzed exactly the same way as for the width-2 system
in Fig. 6(d) for the width-4 [Fig. 7(d)], width-6 [Fig. 8(d)],
width-8 [Fig. 10(d)], and the width-10 system [Fig. 11(b)].
The data was fitted both with an exponential fit as in Eq. (7), as
well as with a plain polynomial fit. Interestingly, for all systems
from width-2 to width-10, the plain polynomial fit g; ~ (J')?
does represent a very close fit, in agreement with Ref. 14.
However, similar to the discussion of the width-2 system, there
appear systematic deviations that can be improved upon by
using an exponential fit. This is clearly seen for the width-4
system [see inset to Fig. 7(d)], and to a somewhat lesser
degree given numerical limitations for the width-6 [Fig. 8(d)]
or width-8 system [Fig. 10(d)].
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Finally, the incommensurate data of all systems analyzed
[Figs. 6-10, panel(d), and Fig. 11(b)] is summarized in Fig. 12.
Since the data for the width-2 system is calculated without
periodic wrapping (as this just doubles the strength of the
interactions of existing bonds between the chains), a factor
of 2/3 was applied onto J'for the width-2 system such that
the incommensurate data visibly coincides at J' =1 with
the data from the wider systems. With this, for smaller J’
(large J/J'), the incommensurate data shows little qualitative
and quantitative differences. This supports the intuitive notion
that, as the chains become more and more independent, the
dependence of the incommensurate behavior on the actual
system width also weakens. In particular, none of the data
indicates that the incommensurability may vanish for small
but finite J'.

3. Correlation length

In contrast to the incommensurate wave vectors, the
correlation length £ still shows a pronounced dependence on
the system width. Following the analysis in Eq. (5), in the
incommensurate regime aside from the oscillating behavior
that determines ¢, a clear exponential decay is observed and
fitted in the central area of the system away from the open left
and right boundaries (cf. Figs. 4 and 5). The combined results
for width-2 to width-10 are shown in Fig. 13. The horizontal
axis of the width-2 system again has been scaled the same
way as shown and discussed with Fig. 12. Considering the
qualitative difference between width-4n and width-(4n + 2)
systems then, only width-(2, 6, 10,...) or width-(4, 8,...) may
be directly comparable. This strongly limits finite-size analysis
in terms of the system width. While the correlation length
strongly grows with the width of the systems, consistent
with the fact, for example, that the isotropic case has finite
magnetization,'6 nevertheless, finite-size scaling in the width
of the system would be crucial in the explicit determination
of the existence of magnetization for arbitrary J’ in the
thermodynamic limit. This is thus beyond the scope of this

paper.

IV. SUMMARY AND OUTLOOK

The incommensurate correlations on the anisotropic spin-
1/2 Heisenberg lattice have been analyzed over a wide range of
chain couplings J’/J. The incommensurate behavior in terms
of the Brillouin zone of a single chain is found to change
smoothly from g; — 7 for weak chain coupling to g; = O for
J’ > J{ > 1.In particular, our results are consistent with the
120° order for the isotropic lattice, which is also reflected in
the crossing of g; with the classical incommensurability qjl
at J = 1 in panel (c) of Figs. 7-10. Away from the isotropic
point, the 120° order in the spin correlations changes smoothly
into the 1D-AF correlations for J' < 1 or into the square AF
correlations for J’ > J.. Note that the emphasis here is on
the relative order of spin correlations, rather than on explicit
magnetization.'® The latter is out of the scope of this paper
and thus left as an outlook.

Given the strong frustration in the system, one may
expect that for smaller interchain couplings J’ the actual
data becomes less sensitive to the width of the system '*
(see Fig. 12). Therefore, already the narrower even-width
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systems provide a good qualitative description of the two-
dimensional triangular lattice in the regime of small J'.
Finite-size effects on our cylinders include symmetry-broken
and non-symmetry-broken ground states as for width-(4n + 2)
and width-4n systems, respectively, so extrapolations in the
width should separate these two classes.'*!* From the analysis
of the incommensurate data, we find that exponential fits of
the form Eq. (7) fit the data for the incommensurate wave
vectors best. While the accessible range is limited to finite
J', we nevertheless see very systematic behavior for smaller
J" down to J' 2 0.5 where the correlations between the
chains are already strongly reduced due to inherent frustration.
We take this as indication that the exponential behavior is
valid down to J’ = 0. That is, the incommensurate behavior
remains present for any finite 0 < J' < J{. Given the derived
exponential fits, one may estimate the required system sizes for
J’ < 0.5. Taking J' = 0.2 for the width-4 (width-6) system,
for example, a system length of >8700 sites (23400 sites)
would be required, respectively. From a DMRG point of
view, this is completely out of reach at this stage. It needs
to be seen to what extent recently emerging infinite-size
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algorithms, such as iTEBD?? or iDMRG,?** will be able to
deal with this kind of situation while bearing in mind that
incommensurate correlations with an (exponentially) large
underlying wavelength represent a delicate issue.

Meanwhile, experimental quantum simulations utilizing
ultracold atoms are making rapid progress. With simulations
on the classical anisotropic Heisenberg lattice performed
successfully recently,® this provides the exciting outlook that
the simulation of quantum spin models may become accessible
to this highly controlled experimental arena in the near future.
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