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Hund metals have attracted attention in recent years due to their unconventional superconductivity,
which supposedly originates from non-Fermi-liquid (NFL) properties of the normal state. When studying
Hund metals using dynamical mean-field theory, one arrives at a self-consistent “Hund impurity problem”
involving a multiorbital quantum impurity with nonzero Hund coupling interacting with a metallic bath. If
its spin and orbital degrees of freedom are screened at different energy scales, Tsp < Torb, the intermediate
energy window is governed by a novel NFL fixed point, whose nature had not yet been clarified. We
resolve this problem by providing an analytical solution of a paradigmatic example of a Hund impurity
problem, involving two spin and three orbital degrees of freedom. To this end, we combine a state-of-
the-art implementation of the numerical renormalization group, capable of exploiting non-Abelian
symmetries, with a generalization of Affleck and Ludwig’s conformal field theory (CFT) approach for
multichannel Kondo models. We characterize the NFL fixed point of Hund metals in detail for a Kondo
model with an impurity forming an SUð2Þ × SUð3Þ spin-orbital multiplet, tuned such that the NFL energy
window is very wide. The impurity’s spin and orbital susceptibilities then exhibit striking power-law
behavior, which we explain using CFT arguments. We find excellent agreement between CFT predictions
and numerical renormalization group results. Our main physical conclusion is that the regime of spin-
orbital separation, where orbital degrees of freedom have been screened but spin degrees of freedom
have not, features anomalously strong local spin fluctuations: the impurity susceptibility increases as

χimp
sp ∼ ω−γ , with γ > 1.

DOI: 10.1103/PhysRevX.10.031052 Subject Areas: CondensedMatter Physics,Mesoscopics,
Strongly Correlated Materials

I. INTRODUCTION

A. Motivation: Hund metals

Hund metals are multiorbital materials with broad bands
which are correlated via the ferromagnetic Hund coupling
JH, rather than the Hubbard interactionU. The coupling JH
implements Hund’s rule, favoring electronic states with
maximal spin, which causes Hund metals to be fundamen-
tally different from Mott insulators. This is a new exciting
area of condensed matter physics; for a recent review with
numerous references, see Ref. [1]. Hund metals are a very
diverse class of materials, including transition metal oxides

with partially filled d shells, such as the iron-based pnictide
and selenide superconductors, the ruthenates, and many
others [1–13].
The iron-based superconductors, in particular, raised

much interest in recent years because of the unconventional
nature of their superconductivity. It has been argued that the
Hund nature of their normal state is essential for the onset
of superconductivity [14]. In particular, spin fluctuations
with a power-law divergent susceptibility ∝ ω−γ, with
γ > 1, have been evoked in an explanation for the anoma-
lously large ratio of 2Δmax=Tc observed experimentally,
where Δmax is the maximum superconducting gap and Tc

the critical temperature [14]. The normal state of Hund
metals is of great interest on its own, since it typically
shows bad-metal behavior [6,15,16]. Motivated by these
considerations, computational and experimental studies of
Hund metals have begun to uncover their rich physics in
recent years [4,5,8,11,12,17–21].
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When studying Hund metals in the context of dynamical
mean-field theory (DMFT), the problem of a crystal lattice
with many strongly interacting lattice sites is mapped onto
a “Hund impurity,” coupled self-consistently to an effective
noninteracting metallic bath. A Hund impurity has both
spin and orbital degrees of freedom and a finite Hund
coupling, favoring a large local spin.
A particularly fascinating consequence of the interplay

between spin and orbital degrees of freedom is the
phenomenon of spin-orbital separation (SOS): Kondo
screening of Hund impurity models occurs in two stages,
and the energy scales below which free spin and orbital
degrees are screened differ, Tsp < Torb [8,9,22–24]. The
low-energy regime below Tsp shows Fermi-liquid (FL)
behavior. The intermediate SOS window ½Tsp; Torb�, by
contrast, shows incoherent behavior, featuring almost fully
screened orbital degrees of freedom coupled to almost free
spin degrees of freedom. The incoherent regime has been
conjectured to have non-Fermi-liquid (NFL) properties and
argued to be relevant for the bad-metal behavior of Hund
metals [8,25]. However, the nature of the putative under-
lying NFL state has not yet been clarified.
A major obstacle for analyzing the conjectured NFL

regime of Hund metals has been a lack of detailed,
analytical understanding of the basic properties of Hund
impurity models, since theoretical work has overwhelm-
ingly focused on Kondo models without orbital degrees of
freedom. In this work, we overcome this obstacle in the
context of an instructive case study of a specific Hund
impurity model.
Before specifying the latter in detail, though, let us put

our study into perspective by providing a brief historical
overview of Hund impurity models.

B. Brief history of Hund impurity models

Hund impurity models are natural multiorbital general-
izations of single-orbital magnetic impurity models such as
the Kondo model used by Kondo in 1964 to explain the
resistance minimum in magnetic alloys [26]. The search for
a detailed understanding of the Kondo model beyond
Kondo’s perturbative calculation was a cornerstone toward
the development of renormalization group techniques,
starting with Anderson’s poor man’s scaling approach
[27] and culminating in Wilson’s numerical renormaliza-
tion group (NRG) [28]. These methods confirmed that
below a characteristic Kondo temperature the metallic bath
screens the impurity spin, leading to the formation of a
singlet state between impurity and conduction electrons.
Following these findings, naturally the question arises:

What happens if the impurity has multiple orbitals? In
particular, electrons on a multiorbital impurity experience
not only a Coulomb interaction stabilizing a magnetic
moment on the impurity, but also a Hund coupling,
enforcing the effect of Hund’s rule to maximize the total

impurity spin. These two interactions lead to an intricate
interplay, crucially depending on the number of electrons
on the impurity. Indeed, it had been observed already in the
1960s that the Kondo scale for impurities in transition metal
alloys with partially filled d shells decreases exponentially
as the shell filling approaches 1=2 [29,30], drawing
attention to the question of understanding Kondo screening
in the presence of multiple orbitals. Coqblin and Schrieffer
[31] developed a generalization of the Kondo model for
multiorbital impurities, yet only involving the spin degree
of freedom. Okada and Yosida [32] included orbital degrees
of freedom and in particular pointed out the importance of a
finite Hund coupling, enforcing the effect of Hund’s rule in
such multiorbital systems. However, theoretical tools for
analyzing a model with nonzero Hund coupling away from
half filling were lacking at the time.
Later, Nozières and Blandin [33] studied a spin Kondo

impurity immersed in a metallic bath with multiple orbital
channels. A major conclusion of their work was that such
models lead to overscreening of the impurity spin and NFL
behavior, if the number of channels exceeds twice the
impurity spin (k > 2S). This generated great theoretical
interest in multichannel Kondo models, including exact
Bethe solutions providing information on thermodynamical
properties [34–39], and NRG studies [40,41]. Affleck and
Ludwig (AL) [42–46] developed a powerful conformal
field theory (CFT) approach for studying the strong-
coupling fixed points of such multiband Kondo models,
providing analytical results for finite-size spectra and the
scaling behavior of correlation functions. However, their
work was restricted to pure spin impurities without non-
trivial orbital structure. Thus, their methods have not yet
been applied to Hund impurity models, including orbital
degrees of freedom and a finite Hund coupling.
In this work, we fill this long-standing void and provide a

detailed and comprehensive analysis of a prototypical Hund
impurity model (specified below). We achieve this by
advancing and combining two powerful complementary
techniques that both arose in the very context of Kondo
physics: An analytical solution based on AL’s celebrated
CFTapproach, generalized from a pure spin impurity to one
with spin and orbital structure, and a quasiexact numerical
solution using a state-of-the-art implementation of Wilson’s
NRG, allowing studies of multiorbital systems by fully
exploiting Abelian and non-Abelian symmetries. This
allows us to achieve a detailed understanding of the
NFL behavior arising in this Hund impurity model.

C. Minimal models for Hund metals

We next describe the considerations motivating the
specific choice of model studied below.
A minimal model for Hund metals has been proposed in

Ref. [8]. It is a three-orbital Hubbard-Hund model, and it
has been studied extensively in Refs. [2,6,9,11,22–24,47].
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A treatment of this model by DMFT at 1=3 filling yields a
self-consistent Hund impurity model. More specifically,
one obtains a self-consistent three-orbital Anderson-Hund
(3oAH) model, in which bath and impurity both have
spin and orbital degrees of freedom. The impurity hosts
two electrons forming an antisymmetric orbital triplet
and a symmetric spin triplet (S ¼ 1), reflecting Hund’s
rule. At energies so low that charge fluctuations can
be treated by a Schrieffer-Wolff transformation [9], the
3oAH model maps onto a three-channel spin-orbital Kondo
(3soK) model whose impurity forms a (3 × 3)-dimensional
SUð2Þ × SUð3Þ spin-orbital multiplet.
The 3oAH model exhibits SOS [8,9,22–24]. Within the

SOS window ½Tsp; Torb�, the imaginary part of the spin
susceptibility scales as χimpsp ∼ ω−6=5 [22,47]. The fact that
the exponent, γ ¼ 6=5, is larger than 1 has been argued to
lead to the anomalous superconducting state of the iron
pnictide Hund metals, as mentioned above [14]. However,
the origin of this power law has remained unclear. One
impediment toward finding an explanation is the fact that for
the 3oAH model the orbital and spin screening scales cannot
be tuned independently. The SOS window turns out to be
rather small, masking the NFL behavior expected to occur
within it.
In this paper, we sidestep this limitation by instead

studying the 3soKmodel and treating its exchange couplings
as independent parameters, freed from the shackles of their
3oAH origin. We tune these such that the regime of SOS is
very wide, with Tsp ≪ Torb. This enables us to characterize
the NFL fixed point obtained for Tsp ¼ 0, which also
governs the intermediate NFL window if Tsp ≪ Torb. We
compute fixed-point spectra and the scaling behavior of
dynamical spin and orbital susceptibilities using both NRG
and CFT, with mutually consistent results. In particular, we
find an analytical explanation for the peculiar power law
χimp
sp ∼ ω−6=5: It turns out to be governed (albeit somewhat
indirectly) by the NFL fixed point mentioned above. Finally,
we demonstrate the relevance of these 3soK results for the
low-energy behavior of the 3oAH model by employing a
hybrid Anderson-Kondo model which smoothly interpolates
between the physics of the 3soK and 3oAH models. This
interpolation shows that our new results also shed light
on previous DMFT results for a self-consistent 3oAH
model [22,47].
Our CFT analysis builds on that devised by AL [42–46]

for the k-channel Kondo model, describing k spinful
channels exchange coupled to an impurity with spin S,
but no orbital degrees of freedom. If k > 2S, the impurity
spin is overscreened. AL described the corresponding NFL
fixed point using a charge-spin-orbital Uð1Þ × SUð2Þk ×
SUðkÞ2 Kac-Moody (KM) decomposition of the bath
states, and fusing the spin degrees of freedom of impurity
and bath using SUð2Þk fusion rules. Here we generalize this
strategy to our situation, where the impurity has spin and
orbital “isospin” degrees of freedom: the NFL fixed point at

Tsp ¼ 0 can be understood by applying SUð3Þ2 fusion rules
in the orbital sector, leading to orbital overscreening. If Tsp

is nonzero (but≪ Torb), the overscreened orbital degrees of
freedom couple weakly to the impurity spin, driving the
system to a FL fixed point. There both spin and orbital
degrees of freedom are fully screened, in a manner
governed by SUð6Þ1 fusion rules.
The paper is structured as follows. Section II defines the

3soK model and discusses its weak-coupling renormaliza-
tion group (RG) flow. Section III presents our NRG results.
Section IV gives a synopsis of our CFT results, summa-
rizing all essential insights and arguments, while Sec. V
elaborates the corresponding CFT arguments in more
detail. Section VI discusses a hybrid Anderson-Kondo
model which interpolates between the 3soK model and
the 3oAH model. Section VII summarizes our conclusions.
The Appendix revisits a two-channel spin-orbital Kondo
model studied by Ye in 1997 [48], pointing out the
similarities and differences between his work and ours.

II. MODEL, PERTURBATIVE RG FLOW

We study the 3soK model proposed in Ref. [9]. Hbath ¼P
pmσ εpψ

†
pmσψpmσ describes a symmetric, flat-band bath,

where ψ†
pmσ creates an electron with momentum p and spin

σ in orbital m ∈ f1; 2; 3g. The bath couples to the impurity
spin S and orbital isospin T via

Hint ¼ J0S · Jsp þ K0T · Jorb þ I0S · Jsp-orb · T: ð1Þ

Here S are SU(2) generators in the S ¼ 1 representation,
normalized as TrðSαSβÞ ¼ 1

2
δαβ, andT are SU(3) generators

in the representation with Young diagram , and
TrðTaTbÞ ¼ 1

2
δab. Jsp, Jorb, and Jsp-orb are the bath spin,

orbital, and spin-orbital densities at the impurity site,
with Jαsp ¼ ψ†

mσ
1
2
σασσ0ψmσ0 , Jaorb ¼ ψ†

mσ
1
2
τamm0ψm0σ , J

α;a
sp-orb ¼

ψ†
mσ

1
2
σασσ0

1
2
τamm0ψm0σ0 (summation over repeated indices is

implied), where fields are evaluated at the impurity site,
ψ†
mσðr ¼ 0Þ, and σα [τa] are Pauli [Gell-Mann] matrices,

with normalization TrðσασβÞ ¼ 2δαβ [TrðτaτbÞ ¼ 2δab]. We
use Young diagrams as labels for irreducible representations
(irreps) of the SU(3) group. An alternative notation, also
frequently used, would be to label SU(3) irreps by their
dimension: • ¼ 1, □ ¼ 3, , where 3̄ refers to the
conjugate represenation of 3, , , , etc.
The Hamiltonian has Uð1Þch × SUð2Þsp × SUð3Þorb sym-

metry. We label its symmetry multiplets by Q ¼ ðq; S; λÞ,
with q the bath particle number relative to half filling (the
3soK impurity has no charge dynamics; hence we may
choose qimp ¼ 0), S the total spin, and λ a Young diagram
denoting an SU(3) representation. The values of the spin,
orbital, and spin-orbital exchange couplings, J0, K0, I0, can
be derived from the 3oAH model by a Schrieffer-Wolff
transformation [9]. When the 3oAH model is studied in the
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regime relevant for Hund metals, i.e., with a ferromagnetic
on-site Hund coupling JH favoring maximization of the local
spin, and with a local filling nd differing by ≃1 from half
filling, the resulting 3soK exchange couplings J0, K0, I0 are
typically all positive, i.e., antiferromagnetic. [This can be
inferred from Eqs. (4)–(7) of Ref. [9].] Furthermore, when
the weak-coupling RG flow of the 3soK model is studied in
the presence of finite K0 > 0 and I0 > 0, one finds that J0
flows toward positive values regardless of whether its initial
value is chosen positive or negative [the latter case is
illustrated by the purple arrows in Fig. 1(a)]. Hence, we
here focus on positive exchange couplings only. However,
instead of using values obtained from a Schrieffer-Wolff
transformation, here we take the liberty of choosing J0, K0,
I0 to be independent, tuning them such that Tsp ≪ Torb. This
is in extension of the 3oAH model, in which Tsp is only at
most about an order of magnitude smaller than Torb.
Aron and Kotliar [9] have performed a perturbative

analysis of the RG flow of the 3soK model. Their
Eqs. (8)–(10) describe the flow of the coupling vector,
cðDÞ ¼ ðJ; K; IÞ, upon reducing the half-bandwidth D
starting from c0 ¼ ðJ0; K0; I0Þ at D0. For the 3soK model,
these equations read

βJ ¼ −
�
1−

3

2
J

��
J2 þ 2

9
I2
�
þ � � � ;

βK ¼ −
3

2
ð1−KÞ

�
K2 þ 1

2
I2
�
þ � � � ;

βI ¼ −
3

2

��
4

3
Jþ 2K − J2 −K2

�
I −

5

18
I2 −

17

36
I3
�
þ � � � ;

ð2Þ
where βJ ¼ dJ=d lnD, etc., with energies in units of D0.
Figure 1 illustrates the resulting RG flow. There are several
fixed points. The free-impurity fixed point, c�FI ¼ ð0; 0; 0Þ, is
unstable: for any nonzero c0, one or more couplings flow
toward strong coupling, and the D values where J or K
become of order unity yield estimates of Tsp and Torb,
respectively. For c0 ¼ ð0; K0 ≠ 0; 0Þ [black arrows in
Fig. 1(a)], the system flows toward a NFL fixed point,
c�NFL ¼ ð0; 1; 0Þ. This fixed point is unstable against nonzero
J0 or I0. For I0 ¼ 0, the flow equations for J and K are
decoupled, such that for a small but nonzero J0 ≪ K0 (red
arrows) the flow first closely approaches c�NFL, until J grows
large, driving it toward a FL fixed point c�FL. Figure 1(b)
shows that the NFL regime (J ≪ K) governed by c�NFL can
be large. For I0 ≠ 0, the J and K flows are coupled, hence
the growth of K triggers that of J, accelerating the flow
toward c�FL. In this case, the NFL energy window is rather
small [cf. Fig. 1(c)]. For example, for c0 ¼ ð0.1; 0.3; 0.5Þ
(light green arrows), typical for the values obtained through a
Schrieffer-Wolff 3oAH to 3soK mapping, the RG flow does
not approach c�NFL very closely; thus fully developed NFL
behavior is not observed.

Figure 1(d) offers a qualitative depiction of the conjec-
tured RG flow in the full J-K-I space, for all couplings non-
negative. Fat, faint dashed lines show the solutions cðDÞ
of the weak-coupling Eqs. (2). However, these equations
lose validity once the couplings are no longer small (and
their above-mentioned predictions that K�

NFL ¼ K�
FL ¼ 1

should not be trusted). Solid lines, drawn by hand,
qualitatively depict the flow expected beyond the weak-
coupling regime, based on the following considerations.

(a)

(d)

(b) (c)

FIG. 1. (a) RG flow of the coupling vector c ¼ ðJ; K; IÞ
(projected into the J-K plane), obtained by solving the weak-
coupling RG equations (2) [Eqs. (8)–(10) of Ref. [9] ] for various
initial values, c0 ¼ ðJ0; K0; I0Þ. Arrows depict the gradient vector
−½d=ðd lnDÞ�ðJ; KÞ at equal steps of lnD. (b),(c) Weak-coupling
RG flow of cðDÞ for (b) c0 ¼ ð0.01; 0.3; 0Þ [red arrows in (a)]
and (c) (0,0.3,0.01) [blue arrows in (a)]. (d) Qualitative depiction
of the conjectured RG flow in the full J-K-I space, for all
couplings non-negative. Fat, faint dashed lines show the solutions
cðDÞ of the weak-coupling equations (2), initialized at K0 ≪
K�

NFL with ðJ0; I0Þ ¼ ð0; 0Þ (black), ð> 0; 0) (yellow), or ð0; > 0Þ
(blue), and plotted only in the weak-coupling regime [beyond the
latter, Eqs. (2) lose validity]. Solid lines, drawn by hand,
qualitatively show the flow expected beyond the weak-coupling
regime, including trajectories initialized at K0 ≫ K�

NFL, with
ðJ0; I0Þ ¼ ð0; 0Þ (green), ð> 0; 0Þ (orange), or ð0; > 0Þ (purple).
The black squares, cross, and circle depict fixed points.
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First, for K0 > 0 and J0 ¼ I0 ¼ 0, the NRG analysis of
Sec. III suggests that the flow proceeds along a trajectory
where I and J remain zero, reaching a NFL fixed point,
c�NFL ¼ ð0; K�

NFL; 0Þ at a finite value of K�
NFL. This fixed

point is stable, approached by RG flow both from below
and above. Correspondingly, the line J0 ¼ I0 ¼ 0 contains
another fixed point at K0 ¼ ∞, which is unstable. To
understand the latter point heuristically, consider taking K0

very large. Then the system will attempt to screen its local
orbital degree of freedom, with representation , into an
orbital singlet. Doing so by binding just a bath single
electron, spin up or down, would break spin symmetry.
Hence, it must bind two bath electrons, spin up and down,
yielding a local orbital degree of freedom yet again, with
representation □. Thus, choosing K0 very large is equiv-
alent to initializing the model with local orbital represen-
tation □ and small initial coupling (presumably ∼1=K0).
This would grow under the RG flow; hence K0 ¼ ∞ is an
unstable fixed point, just as K0 ¼ 0. (This argumentation is
entirely analogous to that familiar from the two-channel
Kondo model [33]; for the present 3soK model, it is further
elaborated in Ref. [49].)
ForK0 > 0 andJ0, I0 both non-negativebut not both zero,

the NRG analysis of Sec. V E suggests that the flow always
ends up at a unique FL fixed point c�FL. Hence c�NFL is
unstable against turning on J0 or I0. The fixed point c�FL
features a fully screened spin and orbital singlet ground state
and an excitation spectrum with SU(6) symmetry. This
implies that as the flow approaches c�FL, all three couplings
J,K, and I tend to infinity, with relative values such that the
fixed-point Hamiltonian has SU(6) symmetry, i.e., 3J ¼
2K ¼ I [9].

III. NRG RESULTS

To study the RG flow in a quantitatively reliable
manner, we solve the 3soK model using NRG [28,50,51],
exploiting non-Abelian symmetries using QSpace [50]. The
bath is discretized logarithmically and mapped to a semi-
infinite “Wilson chain” with exponentially decaying
hoppings, and the impurity coupled to site 0. The chain
is diagonalized iteratively while discarding high-energy
states, thereby zooming in on low-energy properties: the
(finite-size) level spacing of a chain ending at site k is of
order ωk ∝ Λ−k=2, where Λ > 1 is a discretization param-
eter. The RG flow can be visualized using NRG eigenlevel
spectra, showing how the chain’s lowest-lying eigenener-
gies E evolve when k is increased by plotting the dimen-
sionless rescaled energies E ¼ ðE − ErefÞ=ωk versus ωk for
odd k. The E-level flow is stationary (ωk independent)
while ωk traverses an energy regime governed by one of
the system’s fixed points, but changes during crossovers
between fixed points.

(a)

(b)

(c)

(d)

FIG. 2. NRG results for c0 ¼ ðJ0; K0; I0Þ ¼ ð10−4; 0.3; 0Þ.
(a) Finite-size eigenlevel spectrum computed by NRG, with

as reference energy. Quantum numbers Q ¼
ðq; S; λÞ are shown at the top, and→ indicates boundary operators
obtained via double fusion. (NRG parameters: Λ ¼ 2.5; number
of kept multiplets, Nkeep ¼ 3000; half-bandwidth of the bath,
D ¼ 1.) (b) Illustrations of the ground states encountered during
the flow. (c),(d) Imaginary part of the spin and orbital suscep-
tibilities of (c) the impurity and (d) the bath site coupled to it
(Wilson chain site k ¼ 0). Gray lines show power laws predicted
by CFT. Vertical lines show the crossover scales for orbital and
spin screening, Torb and Tsp, marking the maxima of χimp

orb and

χimp
sp , and for spin splitting Tss, marking kinks in χimp;bath

sp;orb .
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To analyze the NFL regime in detail, we choose I0 ¼ 0
and J0 ≪ K0, so that the SOS window becomes very large,
with Tsp ⋘ Torb. Figure 2(a) shows the NRG eigenlevel
flow diagram for c0 ¼ ð10−4; 0.3; 0Þ. We discern four
distinct regimes, separated by three scales, Tsp, Tss, Torb.

(i) The free-impurity (FI) regime, ωk > Torb, involves
an unscreened impurity, with ground state multiplet

(flat brown line).
(ii) In the NFL regime, Tss < ωk < Torb, two degenerate

multiplets, ð1; 1
2
; •Þ and ð1; 3

2
; •Þ (dashed green and

red lines) become the new ground state multiplets.
Below the scale Torb, the impurity orbital isopin is
thus screened into an orbital singlet • by binding one
bath electron, which couples to the impurity spin 1
to yield a total spin of 1

2
or 3

2
.

(iii) In the spin-splitting (SS) regime, Tsp < ωk < Tss,
the effects of nonzero J0 become noticeable, split-
ting apart ð1; 1

2
; •Þ and ð1; 3

2
; •Þ, the latter drifting

down.
(iv) In the FL regime, ωk < Tsp, ð−2; 0; •Þ becomes the

new ground state multiplet. Below the scale Tsp, the
spin 3=2 is thus screened into a spin singlet by
binding three bath holes, yielding a fully screened
impurity. Note the equidistant level spacing, char-
acteristic of a FL.

To further elucidate the consequences of orbital and spin
screening, we computed the impurity’s zero-temperature
orbital and spin susceptibilities,

χimp
orb ðωÞ ¼ −

1

8π

X
a

ImhTakTaiω; ð3aÞ

χimp
sp ðωÞ ¼ −

1

3π

X
α

ImhSαkSαiω; ð3bÞ

where hXkXiω refers to the Fourier-transformed retarded
correlation functions −iΘðtÞh½XðtÞ; Xð0Þ�i with frequency
ω, and analogous susceptibilities, χbathorb , χbathsp (involving
Jorb, Jsp) for the bath site coupled to it. To this end we used
full-density-matrix (FDM) NRG [52] and adaptive broad-
ening of the discrete NRG data [53].
Figures 2(c) and 2(d) show these susceptibilities on a

log-log scale. χimp
orb and χimp

sp each exhibit a maximum, at two
widely different scales, Torb and Tsp, coinciding with the
onset of the stationary NFL or FL regimes in Fig. 2(a),
respectively. Moreover, the four susceptibilities χimp;bath

orb;sp all
exhibit kinks at a coinciding energy scale Tss, matching the
onset of the SS regime in Fig. 2(a). If ω lies within one of
the regimes NFL, SS, or FL, the susceptibilities all show
behavior consistent with power laws (gray lines). These
power laws can all be explained by CFT, as discussed in
Sec. IV. Here we focus on their qualitative features, which
by themselves give striking clues about the nature of orbital
and spin screening.

In the NFL regime, where χimp
orb decreases with decreasing

ω, it exhibits the same power law as χbathorb . In this sense, the
impurity’s orbital isospin has taken on the same character
as that of the bath site it couples to, indicative of orbital
screening—in the parlance of AL’s CFT analysis, it has
been “absorbed” by the bath. This power law ω1=5 is
nontrivial, differing from the ω1 expected for a fully
screened local degree of freedom. This indicates that the
local orbital degree of freedom, even while being screened,
is still somehow affected by the spin sector. The converse is
also true: the onset of orbital screening at Torb is accom-
panied by a change in behavior for both spin susceptibil-
ities, χimp

sp and χbathsp . Both increase with decreasing ω, with
different powers, indicative of the absence of spin screening
in the NFL regime. The exponent for the impurity spin
susceptibility, χimp

sp ∼ ω−11=5, is remarkably large in mag-
nitude. (For comparison, for the standard spin-1=2, single-
channel Kondo model, χimp

sp ∼ ω−1 for ω≳ Tsp.) The highly
singular ω−11=5 behavior—our perhaps most unexpected
result—indicates that the strength of spin fluctuations is
strongly amplified by the onset of orbital screening. Our
CFT analysis below will reveal the reason for this: orbital
screening is accompanied by a renormalization of the local
bath spin density at the impurity site.
Upon entering theSS regime, all susceptibility lines showa

kink, i.e., change in power law, such that the impurity and
bath exponents match not only in the orbital sector,
χimp
orb ∼ χbathorb , but now also in the spin sector, χimpsp ∼ χbathsp .
The latter fact indicates clearly that bath and impurity spin
degrees of freedom have begun to interact with each other.
However, this is only a precursor to spin screening, since the
spin susceptibilities still increase with decreasing ω, albeit
with a smaller exponent, χimp;bath

sp ∼ ω−6=5, than in the NFL
regime.However, since the exponent γ ¼ 6=5 is larger than 1,
spin fluctuations are anomalously large also in this regime.
Importantly, this regime persists also for parameters corre-
sponding to the more realistic 3oAHmodel. Indeed, previous
DMFT studies for a self-consistent 3oAHmodel have yielded
behavior for χimpsp which in the SOS regime is consistent with
an exponent of γ ¼ 6=5, as further discussed in Secs. IV
and VI. Moreover, as mentioned in the Introduction, anoma-
lously large spin fluctuations are of direct relevance for the
superconducting state of the iron pnictide Hund metals: in
Ref. [14], strong spin fluctuations with γ > 1 were a key
ingredient for a proposed explanation for the anomalously
large ratio of 2Δmax=Tc observed experimentally.
Full spin screening eventually sets in in the FL regime,

where the spin susceptibilities χimp;bath
sp show the ω1

behavior characteristic of a FL. We expect this behavior
also for the orbital susceptibilities, but have not been able to
observe it directly, since our results for χimp;bath

orb become
numerically unstable when dropping below ≃10−5 [as
indicated by dotted lines in Figs. 2(c) and 2(d)].
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In the following two sections we explain how the above
NRG results can be understood using CFT arguments.

IV. CFT ANALYSIS: SYNOPSIS

This section presents a synopsis of our CFT analysis. It
aims to be accessible also to readers without in-depth
knowledge of AL’s CFTwork on Kondo models. We begin
by summarizing AL’s strategy for analyzing strong-cou-
pling fixed points of quantum impurity models (Sec. IVA).
We then apply it to the NFL fixed point (Sec. IV B) and the
FL fixed point (Sec. IV C). A more elaborate discussion of
CFT details follows in Sec. V.

A. General strategy

AL’s strategy for determining spectra and correlation
functions from CFT involves three key concepts:

(C1) Independent excitations.—The starting assumption
is that the low-energy spectrum of a multiorbital
Kondo Hamiltonian at a conformally invariant fixed
point can be constructed from combinations of inde-
pendent charge, spin, and orbital excitations. The
excitation energies in each sector follow from the
commutation relations of certain charge, spin, and
orbital operators (these form a so-called Kac-Moody
algebra); this is expressed in Eqs. (4) and (12).

(C2)Gluing conditions and fusion rules.—The spectrum
of excitations in each sector (charge, spin, orbital) is
the same at the free and strong-coupling fixed points.
However, the way in which these three types of
excitations should be combined to obtain valid
many-body excitations, specified by so-called gluing
conditions, differs for the free and strong-coupling
fixed points. At the former, excitations are glued
together in such a manner that a free-fermion spectrum
is recovered. At the latter, the impurity has been
absorbed by the bath, implying changes in the gluing
conditions relative to those of the free fixed point.
These changes are governed by so-called fusion rules,
which specify how the impurity degrees of freedom
should be “added” to those of the bath. This is
conceptually similar to angular momentum addition,
but with additional constraints to respect the Pauli
principle.

(C3) Scaling dimensions.—Once the fusion rules and
thus the spectrum of valid many-body excitations is
known, the conformal scaling dimensions of operators
living at the impurity site can be determined by using
the same fusion rules once more (“double fusion”).
Because of conformal invariance, the functional form
of correlation functions is fully determined by the
scaling dimensions of their operators.

In practice, analyzing a conformally invariant strong-
coupling fixed point thus consists of three steps: (C1)
determine the independent excitations, (C2) use “single

fusion” to obtain the strong-coupling gluing conditions,
and (C3) use “double fusion” to obtain the scaling
dimensions of operators living at the impurity site. Even
though AL’s justification of this strategy involved sophis-
ticated CFT arguments, its application to an actual model is
rather straightforward, once one has determined the appro-
priate fusion rules. For the 3soK model, we present tables
with the explicit fusion rules in the Supplemental Material
(SM) [54], and Table II shows details on the fusion
procedure. These tables are also meant to serve as a guide
for future applications of AL’s methodology.

B. NFL regime

In the following, we follow this strategy for the NFL
fixed point of the 3soK model.
(C1) The 3soK model, being spherically symmetric

around the origin, describes an effectively one-dimensional
system. In the imaginary-time formalism, the field describ-
ing the conduction band, ψðτ þ irÞ, lives on the upper half
of the complex plane, with time τ on the real and the
distance r from the impurity on the imaginary axis. The
impurity at r ¼ 0 constitutes a “boundary” at the real axis.
The fixed points of the model, assumed to be scale
invariant, can thus be described using (1þ 1)-dimensional
boundary CFT.
The bath of the 3soK model trivially has Uð1Þ ×

SUð2Þ × SUð3Þ symmetry. Moreover, since we assumed
a flat band, i.e., a linear dispersion, it also has conformal
symmetry. The combination of both leads to the symmetry
Uð1Þ × SUð2Þ3 × SUð3Þ2, where SUð2Þ3 and SUð3Þ2 refer
to generalizations of the familiar SU(2) and SU(3) algebras,
known as Kac-Moody algebras [44,57,58]. The subscript
on SUð2Þ3 states that only those spin representations are
allowed which can be constructed from electrons living on
3 orbitals. In particular, spins larger than 3=2 do not occur
in this algebra. The subscript on SUð3Þ2 indicates analo-
gous restrictions for the allowed SU(3) representations.
(The consequences of these restrictions are made explicit in
Tables S3 and S2 of the SM [54].)
According to AL [42–46], the fixed points can be

analyzed as follows. First, standard Uð1Þ × SUð2Þ3 ×
SUð3Þ2 non-Abelian bosonization is used to decompose
the bath Hamiltonian into charge, spin, and orbital con-
tributions,

Hbath ∼
Z

dr

�
1

12
J2chðrÞ þ

1

5
J2spðrÞ þ

1

5
J2orbðrÞ

�
; ð4Þ

with JchðrÞ ¼ ψ†
mσðrÞψmσðrÞ, etc. (We omitted overall

prefactors; for a detailed discussion, see Refs. [44,57].)
Since Jch, Jsp, Jorb are generators of the U(1), SUð2Þ3,
SUð3Þ2 Kac-Moody algebras, respectively, the eigenstates
of Hbath can be organized into multiplets forming irreps of
the corresponding symmetry groups, labeled by quantum
numbers Qbath ¼ ðq; S; λÞ. If the bath is put in a box of
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finite size, the corresponding free-fermion excitation eige-
nenergies Eðq; S; λÞ are discrete and simple functions of the
quantum numbers [see Eq. (12)].
(C2) Next, we include the interaction with the impurity

in the orbital sector (K0 > 0, J0 ¼ I0 ¼ 0) to describe the
properties of the NFL fixed point c�NFL. The bosonized
Hbath is quadratic in Jorb, whereas the coupling term Hint ¼
K0T · Jorbðr ¼ 0Þ is linear. The latter can thus be absorbed
into the former, in the spirit of “completing the square.” AL
conjectured that at the strong-coupling fixed point, this
replacement takes the form

JorbðrÞ ↦ J orbðrÞ ¼ JorbðrÞ þ δðrÞT; ð5Þ
with J orb satisfying the same Kac-Moody algebra as Jorb.
At the strong-coupling fixed point, the Hamiltonian can
thus be expressed as H ¼ Hbath½Jorb� þHint ¼ Hbath½J orb�
(more details can be found in Sec. V B and Ref. [43]).
It follows immediately that at the fixed point, the

spectrum of irreps of the full Hamiltonian can be obtained
by combining the irreps of bath and impurity degrees of
freedom, Qbath ⊗ Qimp ¼

P
⊕Q0, and using “fusion rules”

to deduce the resulting irreps Q0. This is conceptually
similar to coupling two SU(2) spins, S00 ¼ Sþ S0, decom-
posing the direct product of their irreps as S ⊗ S0 ¼P

⊕ S00, and deducing that S00 ranges from jS − S0j to
Sþ S0. However, in the present context, specific assump-
tions must be made about which degrees of freedom are
involved in the screening processes and which are not, and
for those which are, Kac-Moody fusion rules have to be
used when combining irreps. For the present situation, we
have Qbath ¼ ðq; S; λÞ and and place
ourselves at the NFL fixed point, where bath and impurity
couple only in the orbital sector.

To find the allowed irreps Q0 ¼ ðq0; S0; λ0Þ, we therefore
posit the following fusion strategy (inspired by and general-
izing that of AL [42–46]). In the charge sector, qimp ¼ 0

trivially implies that q0 ¼ q. In the orbital sector, the
impurity’s orbital isospin is coupled to that of the bath
[Eq. (1)] and absorbed by it according to Eq. (5); hence,
λ ⊗ λimp ¼

P
⊕ λ0 is governed by the fusion rules of the

SUð3Þ2 Kac-Moody algebra. By contrast, in the spin sector
the impurity spin is a spectator, decoupled from the bath
(we are at c�NFL, where J0 ¼ I0 ¼ 0); hence, S ⊗ Simp ¼P

⊕ S0 is governed by the fusion rules of the SU(2) Lie
algebra [not the SUð2Þ3 Kac-Moody algebra]. The set of
excitations ðq; S0; λ0Þ so obtained have energies given by
Eðq; S; λ0Þ, not Eðq; S0; λ0Þ, since Hint only acts in the
orbital sector. A more complete discussion of our “fusion
hypothesis” is given in Sec. V B. The resulting spectrum
reproduces the NRG spectrum in the NFL fixed point
regime (see Table II).
Table I exemplifies a few many-body states obtained via

this fusion scheme (AL called it single fusion, in distinction
from a second fusion step, discussed below). In particular,
the degenerate ground state multiplets of c�NFL, ð1; 12 ; •Þ and
ð1; 3

2
; •Þ [cf. Fig. 2(a)], arise via fusion of a one-particle bath

excitation, ðþ1; 1
2
;□Þ, with the impurity , sche-

matically depicted in Fig. 2(b).
(C3) Next, we want to compute the leading scaling

behavior of spin and orbital correlation functions at the
impurity site, i.e., on the boundary of the CFT. The
absorption of the impurity into the bath (bulk)
Hamiltonian translates, in CFT language, to a change in
the boundary condition imposed on the theory at r ¼ 0. As
a result, a new set of “boundary operators,” i.e., local
operators living at the impurity site, appear in the theory.

TABLE I. Left: Five low-lying free-fermion multiplets (jFSi denotes the Fermi sea), with quantum numbers ðq; S; λÞ, multiplet
dimensions d, and energies Eðq; S; λÞ. Center: “Single fusion” with an impurity leads to multiplets with quantum
numbers ðq; S0; λ0Þ, dimensions d0, eigenenergies E0 ¼ Eðq; S; λ0Þ, and excitation energies δE0 ¼ E0 − E0

min. Right: “Double fusion,”
which fuses multiplets from the middle column with an impurity in the conjugate representation Q̄imp ¼ ð0; 1;□Þ [cf. Sec. V B, details
on (C3)], yields the multiplets ðq; S00; λ00Þ. These characterize the CFT boundary operators Ô, with scaling dimensions Δ ¼ Eðq; S; λ00Þ.
Φorb and Φsp are the leading boundary operators in the orbital and spin sectors, respectively. In the spin-splitting regime, their roles are
taken by Ψ̃orb and Ψ̃sp, respectively. “Bare” free-fermion versions of these boundary operators, having the same quantum numbers, are
listed on the very right. For clarity, not all possible multiplets arising from single and double fusion are shown. A more comprehensive
list is given in Table II.

Free fermions Single fusion Double fusion

State q S λ d E q S0 λ0 d0 δE0 q S00 λ00 Δ Ô Ôbare

jFSi 0 0 • 1 0 0 1 9 1
30

0 0 3
5

Φorb T; Jorb

ψ†
mσ jFSi 1 1

2
□ 6 1

2
1 f1

2
; 3
2
g • 6 0 � � �

ψmσ jFSi −1 1
2

6 1
2

−1 1
2

□ 6 4
15

−1 1
2

9
10 Ψ̃orb ðψ†

lσψ lσ − ψ†
mσψmσÞψnσ ,

ψ†
lσψmσψnσ , l ≠ m ≠ n

Jsp-orbjFSi 0 1 24 1 0 0 3 13
30

0 1 • 2
5

Φsp Jsp
� � � −3 1

2
16 3

2
−3 1

2
6 14

15
−3 1

2
• 9

10 Ψ̃sp ψ1σψ2σψ3σ̄
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These fully characterize the strong-coupling fixed point.
Each boundary operator can be viewed as the renormalized
version, resulting from the screening process, of some bare
local operator having the same quantum numbers.
According to AL, the boundary operators can be

obtained via a second fusion step (double fusion)
(cf. Refs. [44–46] and Appendix C of Ref. [57]). Each
multiplet ðq; S00; λ00Þ resulting from double fusion is asso-
ciated with a boundary operator Ô with the same quantum
numbers, and a scaling dimension given byΔ ¼ Eðq; S; λ00Þ
(cf. Table I). The realization that the scaling dimensions of
boundary operators are related to finite-size excitation
energies is due to Cardy [59]. Using a conformal mapping,
he mapped the complex upper half-plane to a strip of
infinite length and finite width, in such a way that the
nontrivial boundary condition of the half-plane is mapped
to both boundaries of the strip. He then showed that the
boundary operators of the half-plane and their scaling
dimensions can be associated with the finite-size spectrum
of a Hamiltonian defined along the width of this strip. Since
the strip has two nontrivial boundaries, one on each side,
the finite-size spectrum can be found using a double-fusion
procedure. The scaling dimensions of the boundary oper-
ators fully determine their time- or frequency-dependent
correlators, hÔðtÞÔð0Þi ∼ t−2Δ and hÔjjÔiω ≃ ω2Δ−1.
To explain the power laws found in the NFL regime of

Figs. 2(c) and 2(d), and particularly the fact that there χimp
orb

and χbathorb exhibit the same power law, while χimp
sp and χbathsp

do not, we posit that the local operators in the orbital and
spin exchange terms of Eq. (1) are renormalized to

Jorb↦Φorb; T↦Φorb; Jsp↦Φsp; S↦S: ð6Þ

HereΦorb has quantum numbers (same as T, Jorb)
and dimension Δorb ¼ 3

5
, while Φsp has quantum numbers

ð0; 1; •Þ (same as S, Jsp) and Δsp ¼ 2
5
(cf. Table I). The local

impurity and bath orbital susceptibilities thus both scale as

χimp;bath
orb ∼ hΦorbjjΦorbiω ∼ ω2Δorb−1 ¼ ω1=5; ð7Þ

and the bath spin susceptibility as

χbathsp ∼ hΦspjjΦspiω ∼ ω2Δsp−1 ¼ ω−1=5: ð8Þ

By contrast, the impurity spin S is not renormalized,
because at the fixed point c�NFL, where J0 ¼ 0, it is
decoupled from the bath. Thus its scaling dimension is
zero. The leading behavior of χimp

sp is obtained by now
taking J0 ≠ 0 but very small ð≪ K0Þ, and doing second-
order perturbation theory in the renormalized spin
exchange interaction. Thus, χimp

sp is proportional to the
Fourier transform of hSðtÞSð0ÞðR dt0J0S ·ΦspÞ2i, and
power counting yields

χimp
sp ∼ ω2Δsp−3 ¼ ω−11=5: ð9Þ

The above predictions are all borne out in Figs. 2(c)
and 2(d).
The remarkably large negative exponent, − 11

5
, for χimp

sp

reflects the fact that the renormalized spin exchange
interaction J0S ·Φsp, with scaling dimension 2

5
< 1, is a

relevant perturbation. Its strength, though initially minis-
cule if J0 ≪ 1, grows under the RG flow, causing a
crossover away from c�NFL for ω≲ Tss. This is reflected
in the level crossings around Tss in the NRG eigenlevel
flow of Fig. 2. In particular, the double-fusion parent
multiplets for Φorb and Φsp, namely and

, undergo level crossings with the downward-
moving multiplets ð−1; 1

2
;□Þ and , respectively.

These in turn are double-fusion parent multiplets for the
boundary operators Ψ̃orb and Ψ̃sp, with scaling dimensions
Δ̃orb ¼ Δ̃sp ¼ 9

10
(Table I). To explain the SS regime of

Figs. 2(c) and 2(d), and particularly that there the power
laws for χimp and χbath match in both the orbital and spin
sectors, we posit the RG replacements

Jorb ↦ Ψ̃orb; T ↦ Ψ̃orb;

Jsp ↦ Sþ Ψ̃sp; S ↦ Sþ Ψ̃sp:

Here Sþ Ψ̃sp is symbolic notation for some linear admix-
ture of both operators, induced by the action of the
renormalized spin exchange interaction. We thus obtain

χimp;bath
orb ∼ hΨ̃orbjjΨ̃orbiω ∼ ω2Δ̃orb−1 ¼ ω4=5; ð10Þ

and the leading contribution to χimp
sp and χbathsp , obtained by

perturbing hSðtÞSð0Þi to second order in SΨ̃sp [60], is

χimp;bath
sp ∼ ω2Δ̃sp−3 ¼ ω−6=5: ð11Þ

This reproduces the power laws found in Figs. 2(c)
and 2(d).
Remarkably, χimp

sp ∼ ω−6=5 behavior has also been found
in studies of the self-consistent 3oAH model arising in our
DMFT investigations of the three-orbital Hubbard-Hund
model for Hund metals. For the 3oAH model the spin-
orbital coupling I0 in Eq. (1) is always nonzero, so that a
fully fledged NFL does not emerge—instead, Torb and Tss
effectively coincide (as further discussed in Sec. VI).
However, the SS regime between Tsp and Tss ≃ Torb can
be quite wide, typically at least an order of magnitude. In
Fig. 3(c) of Ref. [22], the behavior of χimp

sp in this regime
(between the vertical solid and black lines there) is
consistent with ω−6=5 behavior. Though this fact was not
noted in Ref. [22], it was subsequently pointed out in
Ref. [14] (see Fig. S1 of their Supplemental Material).
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Behavior consistent with χimp
sp ∼ ω−6=5 can also be seen in

Figs. 5.1(c) and 5.1(d) of Ref. [47], as discussed on p. 152
therein. The explanation for this behavior presented here,
via a CFTanalysis of the NFL and SS regimes, is one of the
main results of this work, and the justification for the first
part of the title of this paper.

C. Fermi-liquid regime

As mentioned above, the low-energy regime below Tsp is
a FL. The fixed-point spectrum at c�FL can be obtained by
fusing a free-fermion spectrum with an impurity with
Qimp ¼ ð1; 3

2
; •Þ, representing the effective local degree

of freedom obtained after completion of orbital screening
(see Table III). Since the ground state describes a fully
screened orbital and spin singlet, it actually is the singlet of
a larger symmetry group, Uð1Þ × SUð6Þ. Indeed, the fixed-
point spectrum at c�FL matches that of the Uð1Þ × SUð6Þ
symmetric Kondo model. We demonstrate this, using
both NRG and CFT with SUð6Þ1 fusion rules, in Sec. V E
(see Table IV). The FL nature of the ground state is also
borne out by the ω1 scaling of χimp;bath

sp in the FL regime of
Figs. 2(c) and 2(d).

V. CFT ANALYSIS: DETAILS

We now provide technical details for our CFTanalysis of
the NFL and FL fixed points of the three-orbital Kondo
model discussed in Secs. III and IV. We closely follow the
strategy devised by Affleck and Ludwig for their pioneer-
ing treatment of the strong-coupling fixed points of Kondo
models [42–46] (for pedagogical reviews, see Refs. [58,61]
and Appendixes A–D of Ref. [57]). In a series of works,
they considered a variety of Kondo models of increasing
complexity. These include the standard one-channel,
SU(2) spin Kondo model with a spin exchange interac-
tion between bath and impurity with Uð1Þ × SUð2Þ1
symmetry; a spinful k-channel bath coupled to an SU(2)
impurity [Uð1Þ × SUð2Þk × SUðkÞ2 symmetry], and a
SUðNÞ k-channel bath coupled to an SUðNÞ impurity
[Uð1Þ × SUðNÞk × SUðkÞN symmetry].
Our 3soK model features a spinful three-channel bath

and an SUð2Þsp × SUð3Þorb impurity [Uð1Þ × SUð2Þ3 ×
SUð3Þ2 symmetry]. The impurity multiplet is a direct
product of a spin triplet (S ¼ 1) and an orbital triplet

. Its direct-product structure is more general than
any of the cases considered by AL. [A two-channel version
of our model, with Uð1Þ × SUð2Þ2 × SUð2Þ2 symmetry,
has been studied by Ye [48], which we discuss in the
Appendix.] However, at the NFL fixed point c�NFL of our
model, where J0 ¼ I0 ¼ 0, the impurity’s SU(2) spin is a
decoupled, threefold degenerate spectator degree of free-
dom. Hence AL’s analysis [46] can be employed, with
N ¼ 3 and k ¼ 2 channels, modulo some minor changes to
account for the impurity spin.

By contrast, in the spin-splitting crossover regime the
spin exchange interaction comes to life, so that the
impurity’s SU(2) spin degrees of freedom cease to be mere
spectators. This regime thus lies outside the realm of cases
studied by AL; in particular, it is not manifestly governed
by the NFL fixed point c�NFL, or any other well-defined
fixed point. Correspondingly, our discussion of this cross-
over regime in Sec. V C 2 is more speculative than that of
the NFL regime, though our heuristic arguments are guided
by and consistent with our NRG results.
Finally, for our model’s FL fixed point c�FL, we are again

in well-chartered territory: it can be understood by applying
AL’s strategy to an SU(6) one-channel bath coupled to an
SU(6) impurity [Uð1Þ × SUð6Þ1 symmetry].
Below we assume the reader to be familiar with AL’s

work and just focus on documenting the details of our
analysis. Section VA describes how the free-fermion
bath spectrum is decomposed into charge, spin, and orbital
excitations using Uð1Þ × SUð2Þ3 × SUð3Þ2 non-Abelian
bosonization. Section V B derives the finite-size spectrum
and boundary operators of the NFL fixed point via single
and double fusion, using the fusion rules of the SUð3Þ2
Kac-Moody algebra in the orbital sector and the SU(2)
Lie algebra in the spin sector. Section V C describes the
computation of the spin and orbital susceptibilities in the
NFL and SS regimes, linking AL’s strategy for computing
such quantities to the compact scaling arguments used in
Sec. IV. Section V D presents our results for the impurity
spectral function in the NFL regime. Finally, Sec. V E,
devoted to the FL regime, shows how its spectrum can
be derived using either SUð2Þ3 fusion rules in the spin
sector or SUð6Þ1 fusion rules in the flavor (combined
spinþ orbital) sector.

A. Non-Abelian Uð1Þ × SUð2Þ3 × SUð3Þ2 bosonization

(C1) The first step of AL’s CFT approach for multi-
channel Kondo models is to use non-Abelian bosonization
to decompose the bath degrees of freedom into charge,
spin, and orbital excitations in a manner respecting the
symmetry of the impurity-bath exchange interactions.
Our 3soK model features a spinful three-channel bath,
with Hbath ¼

P
pmσ εpψ

†
pmσψpmσ. We assume a linear

dispersion, εp ¼ ℏvFp, with ℏvF ¼ 1. Using non-
Abelian bosonization with the Uð1Þ × SUð2Þ3 × SUð3Þ2
Kac-Moody current algebra, the spectrum of bath excita-
tions can be expressed as (see Refs. [42,44] or Appendix A
of Ref. [57])

Eðq; S; λÞ ¼ 1

12
q2 þ 1

5
κ2ðSÞ þ

1

5
κ3ðλÞ þ l; ð12aÞ

κ2ðSÞ ¼ SðSþ 1Þ; ð12bÞ

κ3ðλÞ ¼
1

3
ðλ21 þ λ22 þ λ1λ2 þ 3λ1 þ 3λ2Þ: ð12cÞ
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Here κ2ðSÞ and κ3ðλÞ are the eigenvalues of the quadratic
Casimir operators of the SU(2) and SU(3) Lie algebras,
respectively [62]. q ∈ Z is the U(1) charge quantum
number, S ∈ 1

2
Z the SU(2) spin quantum number, and

λ ¼ ðλ1; λ2Þ the SU(3) orbital quantum number, denoting a
Young diagram with λj j-row columns:

Finally, l ∈ Z counts higher-lying “descendent” excita-
tions; for present purposes it suffices to set l ¼ 0.
The free-fermion spectrum of Hbath is recovered from

Eq. (12) by imposing free-fermion “gluing conditions,”
allowing only those combinations of quantum numbers
ðq; S; λÞ for which Eðq; S; λÞ is an integer multiple of 1=2.
The resulting multiplets are listed in the left-hand column
(“Free fermions”) of Table II.

B. Non-Fermi-liquid fixed point

(C2) We now focus on the NFL fixed point of the 3soK
model, at c�NFL, where ðJ0; K0; I0Þ ¼ ð0; 1; 0Þ. According
to AL’s general strategy, the orbital isospin T can be then
“absorbed” by the bath through the substitution

Jorb;n ↦ J orb;n ¼ Jorb;n þ T: ð13Þ

Here Jorb;n and J orb;n are Fourier components (n being a
Fourier index) of the bare and bulk orbital isospin currents,
respectively, defined for a bath in a finite-sized box. (The
local bath operator Jorb is proportional to

P
n∈Z Jorb;n.) The

right-hand side of Eq. (13) is reminiscent of the addition of
Lie algebra generators, S0 ¼ Sþ S̃, when performing a
direct product decomposition, S ⊗ S̃ ¼ P

⊕ S0, of SU(2)
multiplets. The terms added in Eq. (13), however, generate
two different algebras: Jorb;n are generators of the SUð3Þ2
KM algebra, T of the SU(3) Lie algebra. AL proposed a
remarkable fusion hypothesis for dealing with such sit-
uations (and confirmed its veracity by detailed comparisons
to Bethe ansatz and NRG computations). For the present
context their fusion hypothesis states: the eigenstates of the
combined bathþ impurity system can be obtained by
combining (or “fusing”) their orbital degrees of freedom,
λ ⊗ λimp ¼

P
⊕ λ0, using the fusion rules of the SUð3Þ2

KM algebra, as though the impurity’s orbital multiplet were
an SUð3Þ2, not SU(3), multiplet. The SUð3Þ2 fusion rules
are depicted in Table S2 of the Supplemental Material [54].
Having discussed orbital fusion, we now turn to the spin

sector—how should the impurity’s spectator spin be dealt
with? This question goes beyond the scope of AL’s work,
who did not consider impurities with spectator degrees of
freedom. We have explored several spin fusion strategies
and concluded that the following one yields spectra
consistent with NRG: In parallel to orbital fusion, the bath
and impurity spin degrees should be combined too, as

TABLE II. Fusion table for orbital screening at the NFL fixed point c�NFL of the 3soK model. Left: The 14 lowest low-lying free-
fermion multiplets ðq; S; λÞ, with multiplet dimensions d and energies Eðq; S; λÞ, computed using Eqs. (12) and Table S1 of the SM [54].
Center: Single fusion with a impurity, using SU(2) fusion rules in the spin sector and SUð3Þ2 fusion rules (listed in
Table S2 of the SM [54]) in the orbital sector. This yields multiplets ðq; S0; λ0Þ, with dimensions d0, energies E0 ¼ Eðq; S; λ0Þ, and
excitation energies δE0 ¼ E0 − E0

min. These are compared to the values, ENRG, computed by NRG for ðJ0; K0; I0Þ ¼ ð0; 0.3; 0Þ. The NRG
energies have been shifted and rescaled such that the lowest energy is zero and the second-lowest values for ENRG and δE0 match. The
single-fusion and NRG spectra agree well (deviations ≲10%). Right: Double fusion, which fuses multiplets from the middle column
with an impurity in the conjugate representation Q̄imp ¼ ð0; 1;□Þ, yields the quantum numbers ðq; S00; λ00Þ. These characterize the CFT
boundary operators Ô, with scaling dimensions Δ ¼ Eðq; S; λ00Þ.

(Table continued)
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TABLE II. (Continued)

(Table continued)
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S ⊗ Simp ¼
P

⊕ S0, but using the fusion rules of the SU(2)
Lie algebra, not the SUð2Þ3 KM algebra. Heuristically,
the difference—KM versus Lie—between the algebras
governing orbital and spin fusion reflects the fact that

the bath and impurity are coupled in the orbital sector,
where the bath “absorbs” the impurity orbital isospin, but
decoupled in the spin sector, where the impurity spin
remains a spectator.

TABLE II. (Continued)
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The fusion of bath and impurity degrees of freedom,
called single fusion byAL, is illustrated schematically in the
left-hand part of Fig. 3 for four selected multiplets. Table II
gives a comprehensive list of low-lying multiplets obtained
in this manner. On the left it enumerates the 14 lowest-lying
multiplets, ðq; S; λÞ, of the free bath, with dimensions d and
energies Eðq; S; λÞ. Fusing these with a
impurity yields the multiplets ðq; S0; λ0Þ listed in the center.
Their energies are given byE0 ¼ Eðq; S; λ0Þ, notEðq; S0; λ0Þ,
since at the NFL fixed point, where J0 ¼ I0 ¼ 0, the
impurity spin is decoupled from the bath.
The single-fusion excitation energies, δE0 ¼ E0 − E0

min,
relative to the lowest-lying multiplet (E0

min ¼ 7=30) are in
good agreement (deviations ≲10%) with the values, ENRG,
found by NRG (for K0 ¼ 0.3, J0 ¼ I0 ¼ 0) for multiplets
with corresponding quantum numbers. The agreement
improves upon decreasing the NRG discretization para-
meter Λ (here Λ ¼ 2.5 was used). This remarkable agree-
ment between CFT predictions and NRG confirms the
applicability of the SUð2Þ ⊗ SUð3Þ2 fusion hypothesis
proposed above.
(C3) As mentioned in Sec. IV, the fixed point c�NFL is

characterized by a set of local operators, called boundary
operators by AL (since they live at the impurity site, i.e., at
the boundary of the two-dimensional space-time on which
the CFT is defined). These can be obtained by a second
fusion step, called double fusion by AL: the multiplets

ðq; S0; λ0Þ obtained from single fusion are fused with the
conjugate impurity representation, Q̄imp ¼ ð0; 1;□Þ, to
obtain another set of multiplets, ðq; S00; λ00Þ, listed on the
right-hand side of Fig. 3 and Table II. (The conjugate
impurity representation has to be used for double fusion to
ensure that the set of boundary operators contains the
identity operator, λ̄ ⊗ λ ¼ 1.) Each such multiplet is asso-
ciated with a boundary operator Ô with the same quantum
numbers and scaling dimension, Δ ¼ E00 ¼ Eðq; S; λ00Þ.
The operators calledΦorb andΦsp are the leading boundary
operators (with smallest scaling dimension) in the orbital
and spin sectors, respectively. They determine the behavior
of the orbital and spin susceptibilities in the NFL regime
(see Sec. V C). In the spin-splitting regime, their role is
taken by the operators Ψ̃orb and Ψ̃sp, respectively, as
discussed in Sec. IV.

C. Scaling behavior of the susceptibilities

In this section, we compute the leading frequency
dependence of the dynamical spin and orbital suscepti-
bilities. We begin with the NFL regime, where we directly
follow the strategy used by AL in Sec. 3.3 of Ref. [44]
and show how it reproduces the results presented in
Sec. IV. Thereafter we discuss the SS regime, which has
no analog in AL’s work, using somewhat more heuristic
arguments.

FIG. 3. Schematic depiction of single fusion (left) and double fusion (right), for the four multiplets giving rise to the boundary
operatorsΦorb,Φsp, Ψ̃orb, Ψ̃sp discussed in Sec. IV (corresponding to rows 1, 3, 4, 5 in Table I). Filled arrows represent electrons, empty
arrows represent holes. An electron with spin ↑ and a hole with spin⇓ (missing electron with spin ↑) can be combined to annihilate each
other, as indicated by small dashed circles in the last column. Our illustrations depict the impurity using a fermionic representation, as
would be appropriate for the 3oAH model, even though the 3soK impurity has no charge dynamics. In the “single fusion” column,
excitations of the free bath are fused with the impurity, , to obtain the eigenmultiplets of the full system at the NFL
fixed point. In the “double fusion” column (right), the single-fusion results are fused with the conjugate impurity representation,
Q̄imp ¼ ð0; 1;□Þ. Each of the resulting multiplets is associated with a boundary operator having the same quantum numbers. Colors
relate the multiplets obtained after single fusion to the corresponding lines in Fig. 2.
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1. NFL regime

At the NFL fixed point, the impurity’s orbital isospin T
has been fully absorbed into the bath orbital current J orb
[cf. Eq. (13)]. From this perspective, the impurity orbital
susceptibility χimp

orb is governed by the leading local per-
turbation of the bulk orbital susceptibility, χbulkorb ∼
hJ bulk

orb kJ bulk
orb iω, where J bulk

orb ðtÞ ¼
R
∞
−∞ dxJ orbðt; xÞ ∼

J orb;n¼0 is the bulk orbital current. The leading local
perturbations are those combinations of boundary operators
(found via double fusion; see Table II) having the smallest
scaling dimensions and the same symmetry as the bare
Hamiltonian [43–45].
In the orbital sector, the leading boundary operator is

Φorb, with quantum numbers and scaling dimen-
sion Δorb ¼ 3

5
(cf. Tables I and II). The orbital current J orb

has the same quantum numbers. Its first descendantJ orb;−1
can be combined with Φorb to obtain an orbital SU(3)
singlet boundary operator, H0

orb ¼ J orb;−1 ·Φorb, with
scaling dimension 1þ Δorb ¼ 1þ 3

5
. This is the leading

irrelevant (dimension > 1) boundary perturbation to the
fixed-point Hamiltonian in the orbital sector. Its contribu-
tion to the impurity orbital susceptibility, χimp

orb ∼ χbulkorb ,
evaluated perturbatively to second order, is

χimp
orb ðωÞ ∼

Z
∞

−∞
dt1

Z
∞

−∞
dt2

Z
∞

−∞
dt3eiωt1

× hJ bulk
orb ðt1Þ ·J bulk

orb ð0ÞH0
orbðt2ÞH0

orbðt3Þi
∼ ω2Δorb−1 ¼ ω1=5: ð14Þ

The last line follows by power counting (J bulk
orb has

dimension 0, each time integral dimension −1).
The local bath site coupled to the impurity will show the

same behavior, χbathorb ∼ ω1=5, since the orbital exchange
interaction strongly couples its orbital isospin Jorb to T—
indeed, J orb is constructed from a linear combination of
both these operators [cf. Eq. (13)].
The above results can be obtained in a more direct way

by positing that at the NFL fixed point, orbital screening
causes both T and Jorb to be renormalized into the same
boundary operator Φorb. We then obtain

χimp
orb ðωÞ ∼ χbathorb ðωÞ ∼ hΦorbkΦorbiω ∼ ω2Δorb−1; ð15Þ

reproducing Eq. (14). This is the argument presented
in Sec. IV.
We next turn to the spin sector. Exactly at the NFL

fixed point, where J0 ¼ I0 ¼ 0, the impurity spin S is
decoupled from the bath. At c�NFL it hence has no dynamics,
scaling dimension 0, and a trivial spin susceptibility,
χimp
sp ðωÞ ∼ δðωÞ. By contrast, χbathsp , the susceptibility of
Jsp, the local bath spin coupled to the impurity, does show
nontrivial dynamics at the fixed point. The reason is that

some of the boundary operators induced by orbital screen-
ing actually live in the spin sector (a highly nontrivial
consequence of non-Abelian bosonization and orbital
fusion). The leading boundary operator in the spin sector
is Φsp, with quantum numbers ð0; 1; •Þ and scaling dimen-
sion Δsp ¼ 2

5
(cf. Tables I and II). It can be combined

with the first descendant of the (bare, unshifted) spin
current to obtain a spin SU(2) singlet boundary operator,
H0

sp ¼ Jsp;−1 ·Φsp, with scaling dimension 1þ Δsp ¼
1þ 2

5
. This is the leading irrelevant boundary perturbation

to the fixed-point Hamiltonian in the spin sector. Its con-
tribution to the local bath spin susceptibility, χbathsp ∼ χbulksp ,
evaluated to second order, is

χbathsp ðωÞ ∼
Z

∞

−∞
dt1

Z
∞

−∞
dt2

Z
∞

−∞
dt3eiωt1

× hJbulksp ðt1Þ · Jbulksp ð0ÞH0
spðt2ÞH0

spðt3Þi
∼ ω2Δsp−1 ¼ ω−1=5: ð16Þ

This result, too, can be obtained more directly, by positing
that Jsp is renormalized to Φsp, with

χbathsp ðωÞ ∼ hΦspkΦspiω ∼ ω2Δsp−1; ð17Þ

as argued in Sec. IV.
If the system is tuned very slightly away from the NFL

fixed point, J0 ≪ 1, I0 ¼ 0, the impurity spin does acquire
nontrivial dynamics, due to the action of the spin exchange
interaction, J0S · Jsp. According to the above argument,
orbital screening renormalizes it to J0S ·Φsp. Its second-
order contribution to the impurity spin susceptibility is

χimp
sp ðωÞ ∼

Z
∞

−∞
dt1

Z
∞

−∞
dt2

Z
∞

−∞
dt3eiωt1

× hSðt1Þ · Sð0ÞðS ·ΦspÞðt2ÞðS ·ΦspÞðt3Þi
∼ ω2Δsp−3 ¼ ω−11=5: ð18Þ

The occurrence of such a large, negative exponent for the
spin susceptibility is very unusual. It reflects the fact that
near (but not at) the NFL fixed point the impurity spin is
almost (but not fully) decoupled from the bath, and hence
able to “sense” that orbital screening modifies the bath spin
current in a nontrivial manner.

2. Spin-slitting regime

The renormalized exchange interaction J0S ·Φsp is a
relevant perturbation, with scaling dimension 2

5
< 1. It

grows under the RG flow, eventually driving the system
away from the NFL fixed point and into a crossover regime,
Tsp < ω < Tss, called the spin-splitting regime in Sec. III.
In the NRG flow diagram of Fig. 2(a), this regime is
characterized by level crossings, extending over several
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orders of magnitude in energy, rather than a stationary level
structure. Hence the SS regime cannot be characterized by
proximity to some well-defined fixed point. (A stationary
level structure, characteristic of a FL fixed point, emerges
only after another crossover, setting in at the scale Tsp.)
Nevertheless, Figs. 2(c) and 2(d) show that the local orbital
and spin susceptibilities do exhibit well-defined power-law
behavior in the SS regime:

χimp;bath
orb ðωÞ ∼ ω4=5; χimp;bath

sp ðωÞ ∼ ω−6=5: ð19Þ

We define the width of the SS regime as the energy range
showing this behavior. It extends over about 3 orders of
magnitude, independent of J0 and I0—increasing either of
these couplings rigidly shifts the SS regime to larger
energies without changing its width (see Fig. 4); i.e., the
ratio Tsp=Tss is independent of these couplings.
The latter fact leads us to conjecture that the NFL fixed

point does, after all, govern the SS regime too, though
“from afar” rather than from up close. In technical terms,
we conjecture that the leading behavior in the SS regime is
governed by two different boundary operators, Ψ̃orb and
Ψ̃sp, with scaling dimensions Δ̃orb ¼ Δ̃sp ¼ 9

10
(cf. Tables I

and II) instead of the boundary operators Φorb and Φsp

governing the NFL regime. This conjecture is encoded in
the equation above Eq. (10). It states that Jorb and T are
both renormalized to Ψ̃orb, causing χbathorb and χimp

orb to scale
with the same power,

χbath;imp
orb ∼ hΨ̃orbkΨ̃orbiω ∼ ω2Δ̃orb−1 ¼ ω4=5; ð20Þ

and that Jsp and S are both renormalized to Sþ Ψ̃sp,

causing χbathsp and χimp
sp to scale with the same power,

χbath;imp
sp ∼ hΨ̃spkΨ̃spiω ∼ ω2Δ̃sp−3 ¼ ω−6=5: ð21Þ

The latter result is obtained in a manner analogous to
Eq. (18), with S ·Φ replaced by SΨ̃sp [60].

D. Impurity spectral function

We next consider the leading frequency dependence
of the impurity spectral function in the NFL regime.
For a Kondo-type impurity, this function is given by
−ð1=πÞImT ðωÞ, where T ðωÞ ¼ hOmσkO†

mσiω is the impu-
rity T matrix, with Omσ ¼ ½ψmσ; Hint� [63].
As discussed in Sec. V C 1, the leading irrelevant

boundary operators in the NFL regime are H0
orb ¼ J orb;−1 ·

Φorb and H0
sp ¼ Jsp;−1 ·Φsp, with scaling dimensions 1þ

Δorb ¼ 1þ 3
5
and 1þ Δsp ¼ 1þ 2

5
, respectively. AL have

shown that a boundary perturbation of this type, with
dimension 1þ Δ, causes the T matrix to acquire a leading
frequency dependence of ImT ∼ jωjΔ [45].
For ω > 0, our NRG results are consistent with ImT ∼

ω3=5 (cf. Fig. 5). This suggests that the prefactor of H0
orb

is much larger than that of H0
sp, presumably because the

computation was done for J0¼I0¼0. For ω < 0, by con-
trast, our numerical results do not exhibit clear power-law

(a)
(b) (c) (d)

(h)(g)(f)
(e)

FIG. 4. Imaginary part of the zero-temperature impurity spin and orbital susceptibilities for the 3soK model. We keep K0 ¼ 0.3 fixed
throughout, and (a)–(d) vary J0 at fixed I0 ¼ 10−6, or (e)–(h) vary I0 at fixed J0 ¼ 0. (a)–(d) As J0 is increased from 0 (left) to 10−1

(right), the width of the NFL regime ½Tss; Torb� shrinks, while that of the SS regime ½Tsp; Tss� remains constant. (e)–(h) We find the same
behavior when increasing I0 with K0 and J0 kept fixed.
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behavior for small jωj, implying that ImT does not have
particle-hole symmetry. This is not surprising: the 3soK
model itself breaks particle-hole symmetry, since under a
particle-hole transformation, the impurity’s orbital multiplet
is mapped to□. We suspect that the prefactor of the jωjΔorb

contribution to ImT vanishes for ω < 0 for the impurity
orbital representation , such that only subleading boundary
operators, with dimensions Δ ≥ 9=10 (cf. Table II),
determine the small-ω scaling behavior. However, a detailed
understanding of this matter is still lacking.

E. Fermi-liquid fixed point

In this section we show how the FL spectrum at the fixed
point c�FL can be derived analytically. This can be done in
two complementary ways. The first uses SUð2Þ3 fusion in
the spin sector, the second SUð6Þ1 fusion in the flavor
(combined spinþ orbital) sector.

1. Fermi-liquid spectrum via SUð2Þ3 fusion

It is natural to ask whether the FL spectrum at c�FL can be
derived from the NFL spectrum of c�NFL via some type of
fusion in the spin sector, reflecting spin screening induced
by the spin exchange interaction. For example, we have tried
the following simple strategy (“naive spin fusion”): when
setting up the fusion table (Table II), the bath and impurity
spin degrees of freedom are combined, S ⊗ Simp ¼

P
⊕ S0,

using the fusion rules of the SUð2Þ3 KMalgebra (Table S3 in
the SM [54]) instead of the SU(2) Lie algebra, and the orbital
degrees of freedom, λ ⊗ λimp ¼

P
⊕ λ0, using SUð3Þ2 KM

fusion rules (as before; see Table S2 in the SM [54]).
Moreover, the energies of the resulting multiplets are
computed as Eðq; S0; λ0Þ, not Eðq; S; λ0Þ. However, this
naive spin fusion strategy completely fails to reproduce
the FL fixed point spectrum obtained by NRG, yielding
completely different excitation energies and degeneracies.
We suspect that this failure is due to the fact that the RG

flow does not directly pass from the NFL regime into the
FL regime, but first traverses the intermediate SS regime.

TABLE III. Fusion table for spin screening at the FL fixed point c�FL of the 3soK model. It has the same structure as Table II, but here
single fusion of bath and impurity multiplets in the charge and spin sectors is performed using Uð1Þ × SUð2Þ3 fusion rules (listed in
Table S3 of the SM [54]). Moreover, we choose Qimp ¼ ð1; 3

2
; •Þ for the impurity, representing the effective local degree of freedom

obtained after the completion of orbital screening. The resulting multiplets ðq0; S0; λÞ have eigenenergies E0 ¼ Eðq0; S0; λÞ and excitation
energies δE0 ¼ E0 − E0

min. The NRG energies, computed for ðJ0; K0; I0Þ ¼ ð10−4; 0.3; 0Þ, have been shifted and rescaled such that the
lowest energy is zero and the second-lowest values for ENRG and δE0 match. The single-fusion and NRG spectra agree very well
(deviations ≲2%).

Free fermions Single fusion, with Qimp ¼ ð1; 3
2
; •Þ NRG Double fusion, with Q̄imp ¼ ð−1; 3

2
; •Þ

q S λ d E q0 S0 λ0 d E0 δE0 ENRG q00 S00 λ00 Δ

0 0 • 1 0 þ1 3
2

• 4 5
6

1
2

0.50 0 0 • 0

þ1 1
2

□ 6 1
2

þ2 1 □ 9 1 2
3

0.67 þ1 1
2

□ 1
2

−1 1
2

6 1
2

0 1 9 2
3

1
3

0.33 −1 1
2

1
2

0 1 24 1 þ1 1
2

16 5
6

1
2

0.50 0 1 1

þ2 0 6 1 þ3 3
2

24 13
6

11
6

1.87 þ2 0 1

−2 0 6 1 −1 3
2

24 3
2

7
6

1.16 −2 0 1

þ2 1 9 1 þ3 1
2

6 7
6

5
6

0.84 þ2 1 1

−2 1 □ 9 1 −1 1
2

□ 6 1
2

1
6

0.17 −2 1 □ 1

þ1 3
2

24 3
2

þ2 0 6 1 2
3

0.68 þ1 3
2

3
2

−1 3
2

24 3
2

0 0 6 2
3

1
3

0.34 −1 3
2

3
2

�3 1
2

16 3
2

−2 1 24 4
3

1 0.99 −3 1
2

3
2

�3 3
2

• 4 3
2

−2 0 • 1 1
3

0 0.00 −3 3
2

• 3
2

FIG. 5. Impurity spectral function, computed by FDM NRG
[52], for ðJ0; K0; I0Þ ¼ ð0; 0.3; 0Þ. For ω > 0, the ω3=5 behavior
is consistent with a boundary perturbation given by H0

orb. For
ω < 0, clear power law cannot be determined.
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In the latter, the degeneracy between the two degenerate
ground state multiplets of the NFL regime, ð1; 1

2
; •Þ and

ð1; 3
2
; •Þ, is lifted, in a manner that seems to elude a simple

description via a modified spin fusion rule.
Instead, the FL spectrum can be obtained via the

following arguments. The ground state multiplet of the
SS regime, ð1; 3

2
; •Þ, describes an effective local degree of

freedom coupled to a bath in such a manner that one bath
electron fully screens the impurity orbital isospin, while
their spins add to a total spin of 1

2
þ 1 ¼ 3

2
[see Fig. 2(b)]. Let

us view this as an effective impurity with Qimp ¼
ð1; 3

2
; •Þ. If we combine its charge and spin degrees of

freedom with those of a free bath, using qþ qimp ¼ q0 and
S ⊕ Simp ¼

P
⊕ S0, fused according to the SUð2Þ3 KM

algebra, the resulting single-fusion spectrum fully repro-
duces the FL spectrum found byNRG, as shown in Table III.

2. Fermi-liquid spectrum via SUð6Þ1 fusion

The FL ground state of the 3soK model is a fully
screened spin and orbital singlet. It is therefore natural to
expect that the FL spectrum has a higher symmetry, namely
that of the group Uð1Þ × SUð6Þ, which treats spin and
orbital excitations on an equal footing.
This is indeed the case: we now show that the FL

spectrum of the 3soK model discussed above matches
that of an SU(6) Kondo model which does not distinguish
between spin and orbital degrees of freedom. We con-
sider a bath with six flavors of electrons, Hbath ¼P

p

P
6
ν¼1 εpψ

†
pνψpν and an impurity-bath coupling of

the form JUU · Jfl. Here Jfl is the flavor density at the
impurity site, with Jafl ¼ ψ†

ν
1
2
λaνν0ψν0 , where λa are SU(6)

matrices in the fundamental representation, andU describes
the impurity’s SU(6) flavor isospin, chosen in the fully
antisymmetric representation . The latter has dimension
15, representing the ð6

2
Þ ways of placing two identical

particles into six available states.

Figure 6 shows the NRG finite-size eigenlevel flow
for this model. It exhibits a single crossover from a
free-impurity fixed point, with ground state multiplet

, to a FL fixed point, whose ground state
multiplet ð−2; •Þ involves complete screening of the
impurity’s flavor isospin degree of freedom.
This crossover can be described analytically by using

non-Abelian bosonization followed by flavor fusion. We
begin by using non-Abelian bosonization with the Uð1Þ ×
SUð6Þ1 KM current algebra to express the bath excitation
spectrum in the form

Eðq; λÞ ¼ 1

12
q2 þ 1

7
κ6ðλÞ þ l; ð22aÞ

κ6ðλÞ ¼
1

12
ð5λ21 þ 8λ22 þ 9λ23 þ 8λ24 þ 5λ25Þ

þ 1

2
ð5λ1 þ 8λ2 þ 9λ3 þ 8λ4 þ 5λ5Þ

þ 1

6
ð6λ2λ3 þ 6λ3λ4 þ 4λ1λ2 þ 4λ2λ4 þ 4λ4λ5

þ 3λ1λ3 þ 3λ3λ5 þ 2λ1λ4 þ 2λ2λ5 þ λ1λ5Þ; ð22bÞ

with l ∈ Z, where κ6ðλÞ is the quadratic Casimir for
the representation λ ¼ ðλ1; λ2; λ3; λ4; λ5Þ of the SU(6) Lie
algebra [62]. [The contributions from the two terms of
Eq. (22a) are listed in Table S4 in the SM [54] for all q and
λ values needed in Table IV.] The few lowest-lying ðq; λÞ

FIG. 6. NRG results for the SU(6) Kondo model with JU ¼ 0.1,
shown using as reference energy. The compu-
tation was performed using QSpace [50] to exploit the model’s full
Uð1Þ × SUð6Þ symmetry. (NRG parameters: Λ ¼ 2.5,
Nkeep ¼ 2000, D ¼ 1.)

TABLE IV. Fusion table for flavor screening at the FL fixed
point of the SU(6) Kondo model. The table has the same structure
as the left and center parts of Table II, but here the free bath
excitations are labeled ðq; λÞ, their energies are computed using
Eqs. (22) and Table S4 of the SM [54], and flavor fusion with

is performed using SUð6Þ1 fusion rules (listed in
Table S5 of the SM [54]). The resulting multiplets ðq; λ0Þ have
eigenenergies E0 ¼ Eðq; λ0Þ, degeneracies d0, and excitation
energies δE0 ¼ E0 − E0

min. The FL spectrum, obtained by Uð1Þ ×
SUð6Þ NRG calculations (Fig. 6) for JU ¼ 0.1, is shown on the
right. It has been shifted and rescaled such that the lowest energy
is zero and the second-lowest values for ENRG and δE0 match. The
single-fusion and NRG spectra agree very well (deviations≲1%).

Free fermions Single fusion, NRG

q λ d E q λ0 d0 E0 δE0 ENRG

0 • 1 0 0 15 2
3

1
3

0.33

þ1 □ 6 1
2

þ1 20 5
6

1
2

0.50

−1 6 1
2

−1 □ 6 1
2

1
6

0.17

þ2 15 1 þ2 15 1 2
3

0.67

−2 15 1 −2 • 1 1
3

0 0

�3 20 3
2

�3 6 7
6

5
6

0.84
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multiplets of the free bath, having Eðq; λÞ ∈ 1
2
Z, are listed

on the left-hand side of Table IV. The strong-coupling FL
spectrum can be obtained by combining the bath and
impurity flavor degrees of freedom, λ ⊗ λimp ¼

P
⊕ λ0,

using the fusion rules of the SUð6Þ1 KM algebra (see
Table S5 in the SM [54]). The resulting multiplets ðq; λ0Þ
are listed in the center of Table IV. Their eigenenergies fully
match those from NRG.

VI. THREE-ORBITAL ANDERSON-KONDO
MODEL

The 3soK model, which we study in detail above, is
derived from the more realistic 3oAH model by a
Schrieffer-Wolff transformation. In the following, we
explore another route for smoothly connecting the physics
of the two models, namely starting from the 3oAH model
and then additionally turning on the spin and orbital
exchange couplings of the 3soK model.
The Hamiltonian of the 3oAH model [22] has the

following form: Hbath þHhyb þH3oAH,

H3oAH¼ 3

4
JHNimpþ

1

2

�
U−

1

2
JH

�
NimpðNimp−1Þ−JHS2;

Hhyb ¼
X
pmσ

Vpðf†mσψpmσþH:c:Þ;

with the impurity occupation Nimp ¼
P

mσ f
†
mσfmσ, where

f†mσ creates an impurity electron with spin σ in orbital m.
A hybridization function, ΓðεÞ ¼ π

P
p jVpj2δðε − εpÞ≡

ΓΘðD − jεjÞ, controls the hopping between the impurity
and the bath. U is the local Coulomb interaction and JH the
Hund’s coupling, favoring a large spin. To this Hamiltonian
we add J0S · Jsp þ K0T · Jorb, the Kondo-type spin and
orbital exchange couplings between impurity and bath from
Eq. (1), with Sα ¼ f†mσ

1
2
σασσ0fmσ0 , Ta ¼ f†mσ

1
2
τamm0fm0σ . We

treat J0 andK0 as free parameters and use them to “deform”
the 3oAH model in a way that widens the SOS regime
between Tsp and Torb.
Figures 7(a)–7(d) show how the spin and orbital sus-

ceptibilities change upon increasing jJ0j and jK0j, with

J0 < 0 and K0 > 0. A pure 3oAH model, with ðJ0; K0Þ ¼
ð0; 0Þ, clearly shows spin-orbital separation, but Tsp and
Torb differ by less than two decades [Fig. 7(a); see also
Ref. [22] ]. Though the SOS window is too small to reveal a
true power law for χimp

sp , the hints of ω−6=5 behavior are
already discernable. Turning on the additional exchange
coupling terms, with J0 < 0 and K0 > 0, causes Tsp to
decrease and Torb to increase, respectively, widening the
SOS regime [Figs. 7(b)–7(d)]. For ðJ0; K0Þ ¼ ð−0.5; 0.5Þ
it spans more than 6 orders of magnitude, so that clear
power laws, χimp

sp ∼ ω−6=5 and χimp
orb ∼ ω4=5, become acces-

sible [Fig. 7(d)]. These power laws are consistent with our
findings for the spin-splitting regime in Secs. III and V.
This scenario is evidently smoothly connected to that of the
pure 3soK model [Fig. 2(c)]. There the absence of charge
fluctuations makes it possible to fully turn off the I0
contribution implicitly present in the 3oAH model, thereby
widening the SOS regime even further and allowing the
true NFL regime to be analyzed in detail.

VII. CONCLUSION

While the main aim of this work was to understand NFL
behavior in Hund metals, it has much wider implications, as
already indicated in Sec. I. Let us assess these from several
perspectives of increasing generality.

(i) We have used NRG and CFT to elucidate the NFL
regime of a 3soK model, fine-tuned such that spin
screening sets in at very much lower energies than
orbital screening. We were able to analytically
compute the scaling behavior of dynamical spin
and orbital susceptibilities, finding χimp

orb ∼ ω1=5,
χimp
sp ∼ ω−11=5 in the NFL regime and χimp

sp ∼ ω−6=5

in the spin-splitting regime. The main significance of
these findings lies in the qualitative physical behav-
ior which they imply. An orbital susceptibility
decreasing with an exponent < 1, rather than the
Fermi-liquid exponent 1, indicates that the orbital
degrees of freedom, though screened, are still
affected by the unscreened spin degrees of freedom.
A spin susceptibility diverging as ω−γ , with γ > 1,

(a) (b) (c) (d)

FIG. 7. Imaginary part of the impurity spin and orbital susceptibilities for the Anderson-Kondo model, with U ¼ 5, JH ¼ 1, Γ ¼ 0.1,
I0 ¼ 0, and J0, K0 varying from (a) J0 ¼ K0 ¼ 0 (pure Anderson-Hund model) to (d) −J0 ¼ K0 ¼ 0.5. The energy scales for spin and
orbital screening, Tsp and Torb, are pushed apart with increasing −J0 ¼ K0.
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indicates anomalously strong spin fluctuations. This
seems to be a characteristic property of the incoher-
ent regime of Hund metals. As pointed out in Sec. I,
anomalously strong spin fluctuations have direct
consequences for theories of the superconducting
state of the iron pnictides [14].

(ii) We have uncovered the origin of hints of NFL
behavior found previously for a 3oAH model and
related models [1,3–5,8,22–24]. There the spin-
orbital coupling I0 is always nonzero, preventing
RG trajectories from closely approaching the NFL
fixed point. Nevertheless, even if they pass this fixed
point “at a distance,” it still leaves traces of NFL
behavior for various observables, such as χimpsp ∼
ω−6=5 behavior for the imaginary part of the impur-
ity’s dynamical spin susceptibility. We showed in
Sec. VI how NFL behavior emerges if the 3oAH
model is “deformed” by additionally turning on the
spin and orbital exchange couplings of the 3soK
model, thereby adiabatically connecting the SS regime
of the 3soK model to the incoherent regime of the
3oAH model. Furthermore, it has been shown in
Ref. [22] that DMFT self-consistency does not sig-
nificantly influence the behavior of the susceptibilities
in the3oAHmodel. Thusour conclusions, inparticular
regarding the prevalence of strong spin fluctuations in
the SOS regime, should also apply to DMFT calcu-
lations. Indeed, DMFT studies [22,47] of a self-
consistent 3oAHmodel contain results for χimp

sp which,
in the SOS window, are consistent with the ω−6=5

scaling found and explained here for the SS regime.
(iii) Taking a broader perspective, we have provided an

analytic solution of a paradigmatic example of a
“Hund impurity problem.” We were able to address
this fundamental type of problem by combining
state-of-the-art multiorbital NRG with a suitable
generalization of Affleck and Ludwig’s CFT ap-
proach [42–46].

(iv) Regarding experimental relevance, Hund impurities
are of central importance for understanding Hund
metals, including almost all 4d and 5d materials,
and even in the 5f actinides Hund’s coupling is the
main cause for electronic correlations. Our work
illustrates paradigmatically why hints of NFL physics
can generically be expected to arise in such systems.
Moreover, tunable Hund impurities can be realized
using magnetic molecules on substrates [64] or multi-
level quantum dots, raising hopes of tuning Hund
impurities in such away that trulywell-developedNFL
behavior can be observed experimentally.
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Note added.—Recently, a paper closely related to ours
appeared [65], with similar goals, a complementary analy-
sis (using NRG but not CFT), and conclusions consistent
with ours.

APPENDIX: YE’S SUð2Þ × SUð2Þ SPIN-ORBITAL
KONDO MODEL

In this appendix, we revisit an SUð2Þ × SUð2Þ spin-
orbital Kondo (2soK) model studied in a pioneering paper
by Ye in 1997 [48]. It is a simpler cousin of our 3soK
model, having a Hamiltonian of precisely the same form,
with the following differences: the orbital channel index
takes only two values, m ¼ 1, 2; the local orbital current
Jorb is defined using Pauli (not Gell-Mann) matrices; and
the impurity spin and orbital isospin operators, S and T, are
both SU(2) generators, in the representation S ¼ λ ¼ 1

2
.

In the context of the present study, Ye’s paper is of
interest because his Kondo impurity likewise features
both spin and orbital degrees of freedom. From a con-
ceptual perspective, his and our models differ only in the
symmetry group, SU(2) versus SU(3) in the orbital sector,
and the choice of impurity multiplet, Qimp ¼ ð1

2
; 1
2
Þ versus

. Moreover, he was able to obtain exact results for his
model using Abelian bosonization. Below, we verify that
when the NRG and CFT methodology used in the main text
is applied to Ye’s 2soK model, the results are consistent
with his conclusions.
Before proceeding, however, let us also briefly address

some differences between Ye’s work and ours. Since he
uses Abelian bosonization, his approach does not readily
generalize to the Uð1Þ × SUð2Þ × SUð3Þ impurity model
considered here. Ye does mention very briefly that some of
his results can also be obtained using non-Abelian boso-
nization, employing simultaneous fusion in the spin and
orbital sectors. However, we show below that that fusion
scheme is applicable only when particle-hole symmetry is
present. This is the case for Ye’s application, but not for our
3soK model. When particle-hole symmetry is absent, the
fusion schemes needed for the spin and orbital are subtly
different—indeed, clarifying these differences was the
conceptually most challenging aspect of our work. Note
that the particle-hole asymmetry of our 3soK model is not a
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mere technical complication, but an essential ingredient of
the physics of Hund metals, which typically feature fillings
one particle away from half filling. Finally, note that Ye’s
model, involving an impurity with spin 1=2, is not relevant
for Hund metals, where Hund’s coupling favors local spins
larger than 1=2.

1. I0 = 0: NFL fixed point

For I0 ¼ 0, the 2soK model obeys particle-hole sym-
metry. Figure 8(a) shows the finite-size eigenlevel flow
computed by NRG for c0 ¼ ðJ0; K0; I0Þ ¼ ð0.1; 0.3; 0Þ.
The low-energy fixed-point spectrum features equidistant
levels, but nevertheless has NFL properties, as predicted by
Ye, in that it cannot be understood in terms of combinations
of single-particle excitations. Remarkably, this fixed-point
spectrum can be reproduced by CFTarguments. Using non-
Abelian bosonization according to the Uð1Þ × SUð2Þ2 ×
SUð2Þ2 KM algebra, the spectrum of free bath excitations
can be expressed as

Eðq; S; λÞ ¼ 1

8
q2 þ 1

4
κ2ðSÞ þ

1

4
κ2ðλÞ þ l; ðA1aÞ

κ2ðSÞ ¼ SðSþ 1Þ; κ2ðλÞ ¼ λðλþ 1Þ; ðA1bÞ
with l ∈ Z, while κ2ðSÞ, κ2ðλÞ are the quadratic SU(2)
Casimirs in the spin and orbital sectors, respectively. We

now combine bath and impurity degrees of freedom using
simultaneous fusion in the spin and orbital sectors, S ⊗
Simp ¼

P
⊕ S0 and λ⊗ λimp¼

P
⊕ λ0, employing the fusion

rules of the SUð2Þ2 × SUð2Þ2 KM algebra (Table S7 in the
SM [54]). This reproduces the NFL fixed-point spectrum
found by NRG, as shown in Table V.
By contrast, we recall that for the 3soKmodel our attempts

to use simultaneous spin and orbital fusion to obtain the
FL ground state for 0 ≠ J0 ≪ K0, I0 ¼ 0were unsuccessful
(cf. Sec. V E 1). Thus the 2soK and 3soK models provide
an example and a counterexample for the success of
simultaneous spin and orbital fusion, succeeding or failing
for a NFL or FL fixed point spectrum, respectively.
We have also computed the imaginary parts of spin and

orbital susceptibilities χimp
sp;orbðωÞ. Figure 8(b) shows the

results. Both functions approach constants in the zero-
frequency limit, i.e., scale as ω0. This can be understood in
terms of the scaling dimensions of the leading boundary
operators in the spin and orbital sectors, Φsp and Φorb,
which have dimensions Δsp ¼ Δorb ¼ 1

2
(Table V). By the

arguments of Sec. V C, we thus obtain

χimp
sp;orb ∼ ω2Δsp;orb−1 ∼ ω0;

as predicted by Ye. This resembles the behavior observed
for the celebrated two-channel Kondo model, featuring a

(a) (c)

(b) (d)

FIG. 8. NRG results for Ye’s 2soK model, computed (a),(b) for ðJ0; K0; I0Þ ¼ ð0.1; 0.3; 0Þ, respecting particle-hole symmetry, and (c),
(d) for (0,0.3,0.05), breaking particle-hole symmetry. (a),(c) Eigenlevel flow diagrams, with quantum numbers ðq; S; λÞ shown at the top.
The low-energy fixed points in (a) and (c) exhibit a NFL or FL spectrum, respectively, reproduced analytically in Table V or VI,
respectively. (b),(d) Imaginary part of the impurity’s spin and orbital susceptibilities. Vertical lines indicate the crossover scales for
orbital screening Torb (dash-dotted) and spin screening Tsp (dashed), marking when χimp

orb and χimp
sp (b) bend over to constant behavior or

(d) reach their maxima, respectively. (NRG parameters: Λ ¼ 2.5, Nkeep ¼ 2000, D ¼ 1.)
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spin-1=2 impurity having no orbital isospin (obtained from
Ye’s model by using λ ¼ • for the impurity orbital pseu-
dospin, and setting K0 ¼ I0 ¼ 0).

2. I0 ≠ 0: FL fixed point

For I0 ≠ 0, particle-hole symmetry is broken. Figure 8(c)
shows the eigenlevel flow computed by NRG for c0 ¼
ð0; 0.3; 0.05Þ. The low-energy fixed point is a FL, as
predicted by Ye. Its spectrum shows the same equidistant
set of energies as the NFL spectrum of I0 ¼ 0 [Fig. 8(a)],
but the degeneracies are different. This fixed point cannot
be understood by simultaneous fusion in the spin and
orbital sector. However, it agrees with the FL spectrum
of an SU(4) Kondo model with the higher symmetry
Uð1Þch × SUð4Þfl, defined in analogy to the SU(6)
Kondo model from Sec. V E 2, with a flavor index ν ¼
1;…; 4 encoding both spin and orbital degrees of freedom.
Using non-Abelian bosonization according to the Uð1Þ ×
SUð4Þ1 KM algebra, the free bath spectrum can be
expressed as

Eðq; λÞ ¼ 1

8
q2 þ 1

5
κ4ðλÞ þ l; ðA2aÞ

κ4ðλÞ ¼
1

8
ð3λ21 þ 4λ22 þ 3λ23 þ 4λ1λ2 þ 2λ2λ3 þ 4λ1λ3

þ 12λ1 þ 16λ2 þ 12λ3Þ; ðA2bÞ

with l ∈ Z, where κ4ðλÞ is the quadratic Casimir for the
λ ¼ ðλ1; λ2; λ3Þ representation of the SU(4) Lie algebra.
[The contributions from the two terms of Eq. (A2) are listed
in Table S8 of the Supplemental Material [54] for the lowest
few q and λ values.] Combining the flavor degrees of
freedom of bath and impurity, λ ⊗ λimp ¼

P
⊕ λ0, using the

TABLE V. Fusion table for the NFL fixed point of Ye’s 2soK model. It is structured just as Table II for the 3soK model, but here the
free bath excitations are computed using Eqs. (A2) and Table S6 of the SM [54], and single fusion of bath and impurity degrees of
freedom is performed simultaneously in the spin and orbital sectors, using SUð2Þ2 × SUð2Þ2 fusion rules (listed in Table S7 of the
SM [54]). The resulting multiplets ðq; S0; λ0Þ have energies E0 ¼ Eðq; S0; λ0Þ and excitation energies δE0 ¼ E0 − E0

min. The NRG
energies, computed for ðJ0; K0; I0Þ ¼ ð0.1; 0.3; 0Þ [Fig. 8(a)], have been shifted and rescaled such that the lowest energy is zero and the
second-lowest values for ENRG and δE0 match. The single fusion and NRG spectra agree very well (deviations ≲1%).

Free fermions Single fusion, with Qimp ¼ ð0; 1
2
; 1
2
Þ NRG Double fusion, with Qimp ¼ ð0; 1

2
; 1
2
Þ

q S λ d E q S0 λ0 d0 E0 δE0 ENRG q S00 λ00 Δ Ô

0 0 0 1 0 0 1
2

1
2

4 3
8

1
4

0.25 0

8>>><
>>>:

0

1

�
0

1�
0

1

0
1
2

1
2

1

Φorb

Φsp

�1 1
2

1
2

4 1
2

�1

8>>>><
>>>>:

0

1

�
0

1�
0

1

1

3

3

9

1
8

5
8

5
8

9
8

0

1
2

1
2

1

0

0.5

0.5
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0 1 0 3 1
2

0 1
2

1
2

4 3
8

1
4

0.25

0 0 1 3 1
2

0 1
2

1
2

4 3
8

1
4

0.25

�2 0 0 1 1
2

�2 1
2

1
2

4 7
8

3
4

0.75

�2 1 0 1 1 �2 1
2

1
2

4 7
8

3
4
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�2 0 1 1 1 �2 1
2

1
2
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8

3
4
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�2 1 1 1 3
2

�2 1
2

1
2
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8

3
4
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TABLE VI. Fusion table for the FL fixed point of the SU(4)
Kondo model. It is structured just as Table IV for the SU(6)
Kondo model, but here the free bath excitations are computed
using Eqs. (A2) and Table S8 of the SM [54], and flavor fusion is
performed using SUð4Þ1 fusion rules (Table S9 of the SM [54]).
The NRG spectrum was computed for the 2soK model with
ðJ0; K0; I0Þ ¼ ð0; 0.3; 0.05Þ [Fig. 8(c)]. The single-fusion and
NRG spectra agree very well (deviations ≲1%).

Free fermions Single fusion, Qimp ¼ ð0;□Þ NRG

q λ d E q λ0 d0 E0 δE0 ENRG

0 • 1 0 0 □ 4 3
8

1
4

0.25

þ1 □ 4 1
2

þ1 6 5
8

1
2

0.50

−1 4 1
2

−1 • 1 1
8

0 0

�2 6 1 �2 4 7
8

3
4
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þ3 4 3
2

þ3 • 1 9
8

1 1.00
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2

−3 6 13
8

3
2

1.50
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fusion rules of the SUð4Þ1 KM algebra, we recover the FL
fixed point spectrum found by NRG. This is shown in
TableVI. In theFL regime, the spin andorbital susceptibilities
scale as χimp

sp;orb ∼ ω1 [Fig. 8(d)], as expected for a Fermi liquid
and predicted by Ye.
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