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We present an elementary derivation of the exact solution �Bethe-ansatz equations� of the Dicke model,
using only commutation relations and an informed ansatz for the structure of its eigenstates.
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In 1954, Dicke showed that a model describing a set of
two-level systems coupled to a quantized electromagnetic
mode leads to a superradient effect.1 Generalizations to mul-
ticomponent systems naturally appear in various experimen-
tally relevant contexts.2,3 Other generalizations involve a
spatially extended photonic field,4 or itinerant two-level
systems,5 motivated by an experiment on cold atoms in a
two-dimensional lattice coupled to an optical resonator.6

The Bethe-ansatz solution for the Dicke model with inho-
mogeneous excitation energies was originally obtained by
Gaudin7 as a side result of solving the central spin problem.
Using a variational method that results in complex algebraic
computations, he showed that the solution of the central spin
problem is equivalent to the Bethe-ansatz solution of the
BCS problem derived by Richardson.8 By expanding the
Bethe-ansatz equations for the central spin model in the limit
of large central spin, Gaudin obtained corresponding equa-
tions for the Dicke model.7 Though this procedure solves the
original problem, the derivation is computationally complex,
and thus not easily extended to other, related models.

The purpose of this Brief Report is to provide an elemen-
tary derivation that starts from the original Dicke model, in
the hope that our simplified treatment might pave the way
toward finding similar solutions to generalized Dicke mod-
els. We follow a method suggested by Richardson9 for the
BCS model and presented in Refs. 10 and 11. This method
exploits the observation that the structure of the exact eigen-
states of the Dicke model is similar to that of an auxiliary
model, involving only bosons. The only difference is that the
eigenvalue equations that determine the quasienergies char-
acterizing these states become more complicated for the
Dicke model: they turn into Gaudin’s Bethe-ansatz equa-
tions, which we derive here using only commutation rela-
tions.

The inhomogeneous Dicke model describes a set of non-
identical two-level systems with excitation energies � j and a
single photon mode with frequency �, coupled with interac-
tion strength g

H = �b†b + �
j=1

N

� j�Sj
z +

1

2
� + g�

j=1

N

�Sj
+b + Sj

−b†� . �1�

The spin-1
2 operators satisfy �Sj

��2=0 and

�Si
−,Sj

+� = − 2Sj
z�ij, �Si

z,Sj
�� = � Sj

��ij �2�

while the boson operators satisfy �b ,b†�=1.
Let �Vac	 be the “vacuum” state containing no boson ex-

citations and all spins down, i.e., b�Vac	=Sj
−�Vac	=0. H

commutes with the operator b†b+� j=1
N Sj

z, which counts the
number of excitations relative to �Vac	. Thus, H eigenstates
can be constructed by acting on �Vac	 with �products of�
linear combinations of Sj

+ and b† operators, of the general
�unnormalized� form

B�
† = b† + �

j=1

N

A�jSj
+, �3�

where the coefficients A�j are to be determined. For an eigen-
state with n excitations relative to �Vac	 we thus make the
ansatz �following Refs. 10 and 11�

��n	 = P1
n�Vac	 , �4�

where we use the shorthand notation �for n��n�

Pn�
n = 


�=n�

n

B�
† �5�

for a product of B†’s �for n��n, we set Pn�
n =1�. For later use,

note that such products satisfy the composition rule
Pn�

� P�+1
n = Pn�

n for n���	n.
We require that H��n	=En��n	. Commuting H past P1

n to
the right and using H�Vac	=0, we obtain

�EnP1
n − �H,P1

n���Vac	 = 0. �6�

Using the general operator identity

�X,Pn�
n � = �

�=n�

n

Pn�
�−1�X,B�

†�P�+1
n . �7�

Equation �6� can be written as

�EnP1
n − �

�=1

n

P1
�−1�H,B�

†�P�+1
n ��Vac	 = 0. �8�

The requisite commutator is given by

�H,B�
†� = �

j=1

N

�A�j� j + g�Sj
+ + �� − 2gX��b†, �9�

where X�=� j=1
N A�jSj

z. By making the choice

A�j =
g

E� − � j
, �10�

where the parameters E� will be called quasienergies, Eq. �9�
can be brought into the simplified form
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�H,B�
†� = E�B�

† + �� − E� − 2gX��b†. �11�

Inserting this into Eq. �8� and identifying the eigenenergy
with the sum on quasienergies, En=��=1

n E�, yields

�
�=1

n

P1
�−1�� − E� − 2gX��P�+1

n b†�Vac	 = 0. �12�

To make sense of this condition consider, for a moment, an
auxiliary, purely bosonic model, obtained from the Dicke
Hamiltonian �1� by replacing Sj

+, Sj
−, and �Sj

z+ 1
2 � by bj

†, bj,
and bj

†bj, respectively, with �bi ,bj
†�=�ij. Repeating the above

analysis yields only one change: since �bj ,bj
†� gives 1 instead

of �Sj
− ,Sj

+� giving −2Sj
z, the operator X� in Eq. �9� is replaced

by the c number x�=− 1
2� j=1

N A�j. Thus Eq. �12� can be satis-
fied by requiring that �−E�−2gx�=0 for all �. Via Eq. �10�
this implies �−E�+� j=1

N g2 / �E�−� j�=0, which determines
the E�. This equation can also be obtained by making the
ansatz H=��E�B�

†B� and demanding that �H ,B�
†�=E�B�

†. For
this auxiliary model the B�

† thus describe independent single-
particle excitations and the quasienergies E� are their
eigenenergies.

Let us now return to the Dicke model, where X� is an
operator, so that we have to work a little �but not much!�
harder to satisfy Eq. �12�. To this end, commute X� past P�+1

n

to the right and use X��Vac	=x��Vac	, to obtain

�
�=1
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=2g�
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To simplify the second line, use Eq. �7� and the relation
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which follows from A�jA
j =−g�A�j −A
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� to write
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Equation �15b� follows by relabeling �↔
 in the B�
† term of

Eq. �15a�. Inserting Eq. �15b� into Eq. �13b�, we note that
Eq. �13� is satisfied provided that the n quasienergies E�

obey the following n coupled equations:

� − E� + �
j=1

N
g2

E� − � j
= �


=1,
��

n
2g2

E� − E


. �16�

These are the celebrated Bethe-ansatz equations for the
Dicke model, first obtained by Gaudin.7 The fact that the
right-hand side couples the equations for different E� to-
gether presents the additional complication arising for the
Dicke model in comparison to the above-mentioned auxiliary
boson model. It implies that the B�

† do not describe indepen-
dent single-particle excitations, since the value of any E�

depends on that of all others.
Generally Eq. �16� has to be solved numerically. For suf-

ficiently small n, however, the original model Eq. �1� can be
diagonalized directly by solving the eigenvalue problem in
the basis of uncoupled bosonic and spin eigenstates12 instead
of the basis Eq. �4�.

It is straightforward to expand the normalization factors

of Gaudin eigenstates7 and verify that ���n ��n	�2=det M̂,

where M̂ is an n�n matrix with elements M��=1+� j=1
N A�j

2

−2�
=1,
��
n A
�

2 and M
�=2A
�
2 , and we used the shorthand

A�
=g / �E�−E
�.
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