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We show that work distributions and non-equilibrium work fluctuation theorems can be measured
in optical spectra for a wide class of quantum systems. We consider systems where the absorption
or emission of a photon corresponds to the sudden switch on or off of a local perturbation. For the
particular case of a weak local perturbation, the Crooks relation establishes a universal relation in
absorption as well as in emission spectra. Due to a direct relation between the spectra and work
distribution functions this is equivalent to universal relations in work distributions for weak local
quenches. As two concrete examples we treat the X-ray edge problem and the Kondo exciton.
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Equilibrium thermodynamics provides the framework
for the description of the equilibrium properties of macro-
scopically large systems. This includes the properties
of systems in equilibrium states given fixed external pa-
rameters. Additionally, equilibrium thermodynamics al-
lows for the description of transitions between different
equilibrium states even if the system is not in equilib-
rium in the meantime. The near-equilibrium proper-
ties of systems driven only slightly out of equilibrium
are determined by its equilibrium fluctuations accord-
ing to linear response theory. Starting in 1997 with a
seminal contribution from Jarzynski [1], the field of non-
equilibrium work fluctuation theorems opened up. These
relate a measurable non-equilibrium quantity, the work
performed, to equilibrium free energies even if the system
is driven arbitrarily far away from equilibrium. Most im-
portantly, it is not required to wait for the system to
equilibrate.

Suppose a system is initially prepared in an equilibrium
state at a temperature T = 1/kBβ. If the Hamiltonian
H(t) of the system changes during a time interval from
0 to tf according to an arbitrary protocol, energy is not
conserved and work is performed on the system. In order
to determine the work done on a system two energy mea-
surements are necessary leading to the notion that work
is not an observable [2]. The work ω rather is a random
variable with a probability distribution function [2]

PF (ω) =

∫
dt

2π
eiωtG(t), G(t) =

〈
eiH(0)te−iHH(tf )t

〉
.

(1)
Here 〈· · ·〉 denotes the thermal average over the
initial equilibrium configuration and HH(tf ) =
U†(tf )H(tf )U(tf ) is the time-evolved final Hamiltonian
with U(tf ) the time-evolution operator obeying the dif-
ferential equation i∂tU(t) = H(t)U(t).

Let PB(ω) denote the probability distribution function
for the backward protocol. Then the Crooks relation,
first shown for classical systems [3] and later extended to

closed as well as open quantum systems [4–6]:

PF (ω)

PB(−ω)
= eβ(ω−∆F ), (2)

establishes a universal connection between the forward
and backward processes that only depends on the equi-
librium free energy difference ∆F of the final and initial
state independent of the details of the protocol. The
Jarzynski relation [1] is contained in Eq. (2) as a special
case.

Experimental tests of the Crooks relation and of its
variants have been performed in recent years. Among
these are folding-unfolding experiments of small RNA-
hairpins where the free energy difference between the
folded and unfolded state has been extracted using the
Crooks relation [7, 8]. Moreover, the Crooks relation has
been verified in electrical circuits [9], mechanical oscilla-
tors [10], for small colloidal particles [11] and for non-
thermal systems, specifically a driven two-level system in
a non-equilibrium steady state [12].

In this work it will be shown that work distributions
and therefore the non-equilibrium work fluctuation the-
orems such as the Crooks relation can be measured in
a large class of quantum systems. Namely, optical spec-
tra of systems where the absorption and emission of a
photon corresponds to the sudden switch on or off of a
local perturbation are in fact work distributions. Among
these are X-ray spectra of simple bulk metals as well as
of quantum dots coupled to fermionic reservoirs. In such
systems, the absorption spectra A(ω) and emission spec-
tra E(ω) are proportional to forward and backward work
distributions such that they are connected to each other
via the Crooks relation. For the particular case of a weak
local perturbation, they satisfy the universal relations

A(ω + ∆F )

A(−ω + ∆F )
= eβω,

E(ω + ∆F )

E(−ω + ∆F )
= e−βω (3)

in second order renormalized perturbation theory. Here
∆F is the free energy difference between the system with
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and without local perturbation. Notice that an inde-
pendent measurement of ∆F is not required to establish
Eq. (3) in an experiment. Actually, Eq. (3) permits a
determination of ∆F by plotting the spectrum, see be-
low. Due to the correspondence between spectra and
work distributions, Eq. (3) implies universal relations for
work distributions of weak local quenches:

PF (ω + ∆F )

PF (−ω + ∆F )
= eβω,

PB(ω −∆F )

PB(−ω −∆F )
= eβω. (4)

Here, PF (ω) is the work distribution for a protocol where
the local perturbation is suddenly switched on and PB(ω)
is the work distribution for the backward protocol.

Consider a system that is coupled to a monochromatic
light field of frequency ω. This coupling is assumed to be
small such that it can be treated perturbatively. In the
following, we will concentrate on the class of systems in
which the absorption or emission of a photon corresponds
to the sudden switch on or off of a local perturbation. In
the remainder, H denotes the Hamiltonian with the local
perturbation and H0 without, respectively. Such systems
have already been discussed extensively in the literature.
In the X-ray spectra of simple metals, for example, a
system of free fermions has to adapt to a suddenly created
or annihilated local potential scatterer [13–15]. Quantum
dots coupled to fermionic reservoirs can be initialized in
such a way that the absorption of a photon implements
the sudden switch on of a Kondo impurity [16].

Crooks relation in absorption and emission spectra.
First, we concentrate on the absorption case, the related
emission spectra will be discussed below. The absorption
spectrum for incident light of frequency ω in second order
of the system-light field coupling (Fermi’s golden rule) is
related to a dynamical correlation function via Fourier
transformation

A(ω) = κA

∫
dt

2π
eiωt GA(t). (5)

The constant κA contains parameters depending on the
experimental details such as the intensity of the incident
light beam or the system-light field coupling. Its precise
value, however, is irrelevant for the derivation of Eq. (3).
We consider those systems where the dynamical correla-
tion function GA(t) appearing in Eq. (5) is of the struc-
ture

GA(t) =
1

ZA
Tr
(
e−βH0eiH0te−iHt

)
, ZA = Tr

(
e−βH0

)
.

(6)
This is the case for X-ray edge type problems such as the
original X-ray edge problem or the Kondo exciton. Thus,
GA(t) is the characteristic function of a work distribution
for a quench from H0 to H, cf. Eq. (1). This is the origin
of the connection between optical spectra and the work
distribution that allows to observe the Crooks relation

in an optics experiment. Recently, X-ray edge singular-
ities have been observed in work distributions for local
quenches in an Ising chain at criticality [17].

The emission spectrum E(ω) corresponding to the
same setup formally resembles the absorption case, only
the roles of H0 and H are interchanged and the sign of
ω is altered. The rate of photon emission E(ω) is given
by:

E(ω) = κE

∫
dt

2π
e−iωtGE(t) (7)

with

GE(t) =
1

ZE
Tr
(
e−βHeiHte−iH0t

)
, ZE = Tr

(
e−βH

)
.

(8)
Hence, E(−ω) is proportional to the work distribution
for a protocol where the local perturbation is switched
off, that is precisely the backward process to absorption.
A direct application of the Crooks relation in Eq. (2)
therefore yields

A(ω)

E(ω)
=
κA
κE

eβ(ω−∆F ) (9)

as an exact result. This relation depends on experimental
details through the parameters κA and κE . The linear
scaling of ln(A(ω)/E(ω)) with the frequency ω of the
light beam, however, is universal with a slope β.

Two different measurements are necessary to explore
this relation in experiment, one to determine the absorp-
tion and one to obtain the emission spectrum. However,
the Crooks relation can also be measured in a single ex-
periment for weak local perturbations: the emission and
absorption spectra are directly related to each other such
that in second order renormalized perturbation theory
Eq. (3) holds. This has the additional advantage as op-
posed to the exact relation in Eq. (9) that also the ex-
periment specific constants κA and κE drop out.

Crooks relation in a single spectrum. Suppose V is
the unitary transformation that diagonalizes the Hamil-
tonian H. As it is well known for generic weak cou-
pling impurity problems [18] the diagonalized Hamilto-
nian, V HV † = H0 + ∆F , is given by the unperturbed
one in the thermodynamic limit up to a constant ∆F [19].
The shift ∆F is the free energy difference between H and
H0. More details about the unitary transformation will
be given below. This relation between the diagonalized
HamiltonianH andH0 allows to write the dynamical cor-
relation functions GA/E(t) in terms of overlaps between

V and V †:

GA(t) =
1

ZA
Tr
(
e−βH0V †(t)V

)
e−i∆Ft,

GE(t) =
1

ZA
Tr
(
e−βH0V (t)V †

)
ei∆Ft (10)
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For all the relevant cases, it is possible to represent the
unitary transformation V as an ordered exponential

V = O exp[χ] (11)

where χ is antihermitian, χ† = −χ, and O denotes
some ordering prescription. Thus, the adjoint is given
by V † = O exp[−χ] where O is the ordering prescription
opposite to O. In the X-ray edge problem no ordering
prescription is needed and χ = i(1 + g)φ(0) with g the
strength of the potential scatterer and φ(x) a bosonic
field [15]. For generic weak coupling problems such as the
Kondo model at nonzero temperature analyzed later, the
flow equation approach [18] provides a general prescrip-
tion for the construction of the unitary transformation V
as an ordered exponential of its generator η(B)

V = TB exp

[∫ ∞
0

dB η(B)

]
(12)

where the generator is determined by a set of differential
equations. Here, the symbol TB orders an η(B) left of an
η(B′) if B > B′ as the usual time ordering operator. In
view of Eq. (10) and Eq. (11), the dynamical correlation
functions GA/E(t) can be written as the expectation val-
ues of a single exponential with an appropriate ordering
prescription PA/E . Here, only the absorption case will
be shown in detail, the emission case can be obtained
analogously,

GA(t) = 〈PA exp [χ− χ(t)]〉 e−i∆Ft (13)

where 〈· · ·〉 denotes a thermal average with respect to H0.
The ordering prescription PA orders all time-dependent
χ’s to the left of all time-independent ones, the time-
independent χ’s according to O, and the time-dependent
ones according to O. For expectation values of ordered
exponentials such as in the equation above, there exists
a general identity [20]

GA(t) = exp 〈PA exp [χ− χ(t)]− 1〉c e
−i∆Ft (14)

relating them to the exponential of a cumulant average
indicated by an index c. At this point we perform a
cumulant expansion up to second order in χ whose va-
lidity depends on the strength of the local perturbation
as we will discuss below. The first cumulant vanishes as
χ can be chosen normal ordered relative to the initial
state. For the X-ray edge problem the cumulant expan-
sion up to second order is exact within the validity of the
bosonization technique as χ is linear in bosonic opera-
tors. For more complicated problems such as the Kondo
exciton the diagonalizing unitary transformation can be
obtained by the flow equation framework, see Eq. (12).
In this case, the generator η(B) and thus the operator χ
is proportional to the strength of the local perturbation
such that in the case of a weak local perturbation the ex-
pansion is controlled by a small parameter. For systems

where renormalization effects are important, not only the
bare coupling has to be small but also the renormalized
one.

Implementing the same procedure for the emission case
GE(t) one observes that GA(t) and GE(t) are directly
related to each other within the cumulant expansion up
to second order via GA(t)ei∆Ft = GE(t)e−i∆Ft. For the
spectra this result implies:

E(ω + ∆F ) =
κE
κA

A(−ω + ∆F ). (15)

Plugging this relation into the Crooks relation, see
Eq. (9), one directly proves the main result, Eq. (3), in
second order renormalized perturbation theory.

In the remainder of this letter, we will discuss two ex-
amples for the Crooks relation in absorption spectra: the
X-ray edge problem and the Kondo exciton.
The X-ray edge problem. In the X-ray edge problem

the absorption of a photon is accompanied by the sudden
creation of a local potential scatterer in a sea of noninter-
acting fermions [14]. Hence, we have H0 =

∑
k εk: c†kck:

and H = H(g) = H0+(2π/L)g
∑
kk′ : c

†
kck′ :. We consider

a linearized dispersion εk = vF k and set vF = 1. The
Fourier transform of the absorption spectrum is given
by [14]

S(t) =
1

ZA
Tr
(
e−βH0eH0tψ(0)e−iH(g)tψ†(0)

)
(16)

that is yet not in the desired form as in Eq. (6). Us-
ing the bosonization technique, the fermionic fields ψ(x)
can be represented in terms of bosonic ones, φ(x), via
ψ(x) = a−1/2Fe−iφ(x) with a−1 an ultra-violet cut-
off [21]. The Klein factor F commutes with H(g) and
does not contribute to S(t) due to its property FF † = 1.
The bosonization identity allows to regard the fermionic
fields as a unitary transformation acting on H(g) such
that S(t) ∝ GA(t)e−i∆t with a constant energy shift ∆
that can be absorbed into a redefinition of the threshold
frequency and GA(t) is in the desired form:

GA(t) =
1

ZA
Tr
(
e−βH0eiH0te−iH(1+g)t

)
. (17)

The diagonalizing transformation V of H(1 + g) equals
V = ei(1+g)φ(0) [15]. Although the effective strength of
the scatterer 1 + g is not small, the cumulant expansion
stops at second order as the operator in the exponent is
linear in bosonic operators. Hence, in the range of va-
lidity of the bosonization treatment, the Crooks relation
in Eq. (3) holds exactly for the X-ray edge absorption
spectrum. Comparing bosonization [15] with the exact
treatment [14], it yields the correct result up to second
order in g. This restriction stems from the linearization
of the free fermionic spectrum [15].

In view of Eq. (16) it is an interesting question if cor-
relation functions in other systems can be transformed
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Figure 1: Absorption spectrum of a Kondo exciton for differ-
ent temperatures as a function of the light frequency ω+∆F .
As a reference, a NRG curve for T = 100TK is shown taken
from Türeci et al. [16]. In the regime |ω| > T where the NRG
data is accurate the agreement is excellent. The inset exem-
plifies the validity of the Crooks relation in the absorption
spectrum of the Kondo exciton.

into the form as in Eq. (6). This may allow to deter-
mine similar relations or to gain an additional point of
view by realizing the equivalence to a work distribution.
One example is the local density of states in a Luttinger
liquid.

The Kondo exciton. Recently, Türeci et al. [16] pro-
posed an experimental setup for a quantum dot where
the absorption of a photon corresponds to the sud-
den switch on of a Kondo impurity. Hence, we have
H0 =

∑
kσ εk: c†kσckσ: and H = H0 +

∑
kk′ Jkk′ :

~S · ~skk′ :.
For details about the Kondo problem see for example
Ref. [22]. The dynamical correlation function GA(t) for
the absorption spectrum is given by Eq. (6). The di-
agonalizing unitary transformation V can be obtained
by the flow equation approach [18], cf. Eq. (12), with

η(B) =
∑
kk′ (εk − εk′) Jkk′(B): ~S · ~skk′ : in 1-loop order.

The couplings Jkk′(B) are determined by a set of dif-
ferential equations [23]. Importantly, the flow equation
framework includes all the renormalization effects such
as the emergence of a low-energy scale TK , the Kondo
temperature. The absorption spectrum is obtained via
the cumulant expansion up to second order in the cou-
pling strength. Its validity is restricted to weak coupling
problems such that we have to require T � TK [24].
A plot of the absorption spectrum is shown in Fig. 1
for different temperatures. As a reference, a NRG-curve
for T = 100TK obtained by Türeci et al. [16] for an
Anderson impurity model in the Kondo regime is in-
cluded in this figure [25]. In the vicinity of the main
peak at small |ω| < T , the NRG calculation contains
an unphysical double peak structure. For more details

we refer to Ref. [16]. For frequencies |ω| > T , however,
where the NRG data is accurate we observe excellent
agreement with the results of the flow equation formal-
ism. The inset shows the validity of Eq. (3). The ratio
A(ω + ∆F )/A(−ω + ∆F ) is the universal function eβω

independent of any details.

Conclusions. We have shown that work distributions
and thus the non-equilibrium work fluctuation theorems
can be measured in optical spectra of quantum systems
such as the X-ray edge problem or the Kondo exciton.
For weak local perturbations, the Crooks relation estab-
lishes a universal relation within a single spectrum, ab-
sorption or emission, cf. Eq. (3). Due to the correspon-
dence between optical spectra and work distributions this
translates directly into universal relations for work dis-
tributions of weak local quenches, see Eq. (4).
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