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Abstract. The recent experimental implementation of condensed matter
models in optical lattices has motivated research on their non-equilibrium
behavior. Predictions about the dynamics of superconductors following a sudden
quench of the pairing interaction have been made based on the effective
Bardeen–Cooper–Schrieffer (BCS) Hamiltonian; however, their experimental
verification requires the preparation of a suitable excited state of the Hubbard
model along a twofold constraint: (i) a sufficiently non-adiabatic ramping
scheme is essential to excite the non-equilibrium dynamics and (ii) overheating
beyond the critical temperature of superconductivity must be avoided. For
commonly discussed interaction ramps, there is no clear separation of the
corresponding energy scales. Here we show that the matching of both
conditions is simplified by the intrinsic relaxation behavior of ultracold fermionic
systems: for the particular example of a linear ramp we examine the transient
regime of prethermalization (Moeckel and Kehrein 2008 Phys. Rev. Lett. 100
175702) under the crossover from sudden to adiabatic switching using Keldysh
perturbation theory. A real-time analysis of the momentum distribution exhibits
a temporal separation of an early energy relaxation and its later thermalization
by scattering events. For long but finite ramping times this separation can be
large. In the prethermalization regime, the momentum distribution resembles a
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zero-temperature Fermi liquid as the energy inserted by the ramp remains located
in high-energy modes. Thus ultracold fermions prove to be robust to heating,
which simplifies the observation of non-equilibrium BCS dynamics in optical
lattices.
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1. Introduction

Stimulated by the development of new experimental techniques in the field of ultracold atom
gases and pump–probe laser spectroscopy, the simulation and implementation of established
condensed matter model Hamiltonians in novel experimental setups and the study of their non-
equilibrium behavior have flourished recently [1]–[12]. In these systems, precise and rapid
control over parameters can be combined with a high temporal resolution for the observation
of the many-body quantum dynamics. Thus, the switch of an interaction and the analysis of
the subsequent response allow one to address the interplay of particle correlations imposed by
interactions and non-equilibrium initial conditions.

For many systems, a slow adiabatic change of a two-particle interaction may modify
the ground state(s) of a system, but no excitations to higher energy states occur. Therefore,
adiabatic switching procedures allow one to develop equilibrium properties of interacting
systems from those of non-interacting ones. Due to the broad applicability of this approach,
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they have been counted among the ‘basic notions’ of condensed matter theory [13]. The most
prominent example is Landau’s theory of a Fermi liquid [14]. Based on its main prerequisite,
the adiabatic increase of the fermion interaction starting from the non-interacting Fermi gas,
Landau could establish a one-to-one relation between the eigenstates of the non-interacting
Fermi gas and approximate eigenstates of the interacting Fermi liquid. This link allows one to
carry over an approximate particle-like description to the interacting system and leads to the
celebrated and imaginative concept of quasi-particles. Reminiscent of the constituent physical
fermions, albeit modified by a renormalization of their energies and masses, they represent the
elementary excitations of the interacting system. Note that the quality of this approximation, i.e.
the considerable time stability of low-energy quasi-particles, is owed to phase space restrictions
for elastic scattering of fermions around the Fermi energy. These restrictions, which emerge
from the Pauli exclusion principle for fermions, prevent a fast decay of approximate quasi-
particles into the true eigenstates of the interacting system and are the root of the universal
applicability of Fermi liquid theory to many interacting fermionic systems.

However, non-adiabatic switching, e.g. of the strength of trapping potentials or magnetic
fields, of optical lattices or by applying ultrashort laser (pump) pulses may drive a system away
even from its interacting ground state. Hence, fast parameter switching has shown to be a helpful
tool to impose non-equilibrium initial conditions onto many-particle quantum systems. The
limiting case of an instantaneous switch, called a quantum quench, provides a convenient
starting point for theoretical investigations. Afterwards, the evolution of the excited many-body
state can be followed in real time and different stages of the relaxation dynamics have been
observed.

In fermionic systems, non-adiabatic switching of the interaction challenges the main
prerequisite of Fermi liquid theory. Nonetheless, for not too strong sudden interaction quenches
within the Fermi liquid phase of the Hubbard model, it has been predicted analytically [15, 16],
confirmed numerically [11] and further on discussed [17, 18] that during the initial stage of the
relaxation a non-equilibrium description builds up, which is strongly reminiscent of Fermi liquid
theory. The same fermionic phase space restrictions that ensure the persistence of quasi-particles
in equilibrium restrict a rapid relaxation of the momentum distribution in nonequilibrium.
Hence, a transient regime of prethermalization has been observed. Whereas, for instance,
the total kinetic energy has already relaxed to its final value, the momentum distribution
combines different features: a sharp step at the Fermi energy indicates zero temperature, while
deviations from its equilibrium shape represent the non-equilibrium nature of the transient
state. Hence, during the first phase of the relaxation dynamics, no substantial conversion of
the initial excitation energy into heat can be observed and thermalization is deferred to a later
timescale [15].

In this paper, we generalize these observations to finite switching times, assuming a linear
ramping procedure. This introduces a new timescale, the ramp-up time that is defined as the time
duration over which the parameter change occurs. This ramp-up scale can be used deliberately
by finite-time ‘ramp-up’ protocols to prepare a system in particular (excited) states which
are different from those reachable by sudden switching [19]. For instance, ramping on finite
timescales has been suggested as a way to access the non-equilibrium regime of systems that
are sensitive to heating effects since slower parameter changes reduce the excitation energy
inserted into a system.

In particular, this argument has been applied to the analysis of superconducting BCS
systems in non-equilibrium. Theoretical studies have examined an interaction quench in the
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BCS Hamiltonian and predicted interesting non-equilibrium dynamics, e.g. oscillations of the
order parameter in time [20]–[26]. However, the BCS interaction emerges from a local two-
particle interaction between fermions, which is the tunable switching parameter in experiments
with ultracold fermions loaded onto an optical lattice. A realistic modeling of non-equilibrium
dynamics in ultracold atomic gases therefore has to start with a quench of a spatially local
interaction. Hence, BCS quench dynamics must be discussed against the background of a
quenched Fermi liquid. Obviously, BCS dynamics can only be expected for temperatures
below the critical temperature Tc of superconductivity. A first approach based on a golden rule
argument suggested that overheating can be avoided as energy scales of heating and of the non-
adiabaticity requirement imposed on the ramp should separate [26]. However, we will show in
the sequel that this argument neglects contributions of high-energy momentum modes, which
are relevant in commonly discussed ramping models. Therefore, the argument turns out to be
inconclusive in the case of linear ramping. Fortunately, the problem of overheating is mitigated
by two aspects: in another article published in this focus issue, M Eckstein and M Kollar discuss
the dependence of the excitation energy inserted by interaction ramping on the functional shape
of the ramp [27]; this opens space for optimizing the ramping procedure.

We address, on the other hand, the intrinsic robustness of fermionic systems at zero
temperature to heating. Even for ramping scenarios that do not lead to a clear energy separation
of the relevant BCS energy scale and the effective temperature after heating, we find a temporal
separation of the characteristic timescales of BCS dynamics and thermalization, respectively.
Our observation mirrors the notorious problem of cooling a gas of cold fermionic atoms to even
lower temperatures and views a current technical limitation as a desirable feature for future
experiments. On the one hand, the Pauli principle suppresses s-wave scattering between the
fermions. This hinders the equilibration of the gas at a lower temperature after high-energy
particles have been lost by evaporation and poses a great challenge to experimentalists on
their way to reach a ‘zero-temperature’ Fermi gas. On the other hand, we will show that the
same mechanism prevents a rapid thermalization of excitations of high-energy modes in a
fermionic system that has been previously cooled down to zero temperature. Then a long-lasting
transient state of prethermalization emerges, during which no heating occurs. This behavior of
cold fermionic many-particle systems will simplify the observation of non-equilibrium BCS
dynamics during a long transient time window before thermalization sets in. Since it is rooted
in Fermi degeneracy caused by the Pauli principle, it is independent of any details of the applied
ramp.

In this work, we perform a careful investigation of the crossover from adiabatic to
instantaneous linear switching procedures on the grounds of second-order Keldysh perturbation
theory. We follow the evolution of the momentum distribution function for original fermions4

after a linear interaction ramp of finite duration tR and discuss the kinetic energy in a long-
time limit of the second-order result. We observe that the corresponding effective temperature
is of the same order of magnitude as the critical temperature Tc. Hence overheating cannot
be excluded by an argument based on energy scale separation. However, we still observe
prethermalization behavior of the Fermi gas. Therefore, this temperature is only reached after
a long transient regime. Since in this regime the momentum distribution resembles closely a

4 Note that we analyze the non-equilibrium properties of the interacting system in terms of the unrenormalized
eigenmodes of the non-interacting system. This differs from other approaches, which assume the existence of a
quasi-particle picture and directly discuss the behavior of non-equilibrium quasi-particle distributions.
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zero-temperature Fermi liquid, we conclude that the observation of non-equilibrium BCS
dynamics can be expected before overheating wipes out all BCS signatures.

2. Hubbard model with time-dependent interaction

For an analysis of many-body quantum dynamics, we implement Fermi liquid theory
microscopically by the Hubbard Hamiltonian H HM

= H HM
kin + H HM

int . It provides a paradigmatic
description for correlated fermions on a lattice; it includes spin and implements the Pauli
principle by restricting to a local state space of dimension four. The itinerant properties of the
fermions are contained in the kinetic part of the Hamiltonian and are described as coherent
hopping processes between neighboring lattice sites with a hopping matrix element h. The
chemical potential µ is fixed to ensure half filling

H HM
kin = −h

∑
〈i, j〉σ

c†
iσ c jσ − µ

∑
j

(
n j↑ + n j↓

) FT
=

∑
k∈K,σ∈{↑,↓}

(εk − µ) c†
kσ ckσ . (1)

A momentum space representation is obtained by a Fourier transform. The dispersion relation
εk depends on the details of the lattice. For convenience, explicit numerical calculations of the
momentum distribution are performed on a hypercubic lattice in the limit of infinite dimensions
(d → ∞) for which a Gaussian density of states is applicable [28]:

ρ(ε) = exp
(
−(ε/h∗)2/2

)
/
√

2πh∗, (2)

where h∗ is linked to the hopping matrix element by dimensional scaling h −→ h∗/
√

2d [28].
For convenience, we set h̄ = 1 and kB = 1.

Correlations between the lattice fermions are modeled by a local two-particle interaction
U acting between fermions of different spin, with n jσ denoting the local occupation,

H HM
int = U (t)

∑
j

(
n j↑ −

1

2

) (
n j↓ −

1

2

)
. (3)

Since our interest is in Fermi liquid properties of the model, we restrict ourselves to a regime
of weak interaction strength (U (t) � h∗

∀t). This rules out the observation of any features of
the Mott–Hubbard phase transition. As a consequence, the hopping matrix element is a natural
choice for the energy unit (h∗

≡ 1).
To study switch-on processes, we assume that the bare interaction U (t) is a time-dependent

parameter. For simplicity, linear ramps of the interaction are considered, which are characterized
by a ramp-up timescale tR:

U (t) = U

0 t 6 0,

t/tR 0 < t < tR,

1 t > tR.

(4)

In the following, we discuss the effects of variations of the parameter tR on the real-time
evolution of the momentum distribution. We assess the dependence of the heating on the ramp-
up time tR by analyzing the tR dependence of the kinetic energy for deviations from adiabatic
switching procedures.

3. Keldysh perturbation theory for the time-dependent Hubbard model

Perturbation theory for the Hubbard model has been set up previously by various authors [29].
Here a real-time Keldysh approach following Rammer [30] allows one to extract the time-
dependent behavior of the momentum distribution function N NEQ

k (t) from the Keldysh
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component Greens function GK(x, t, σz, x, t, σz). Both functions are evaluated in second order
of the time-dependent local two-particle interaction and in the initial representation of non-
interacting fermions. The latter implies that interaction effects become visible only by a
redistribution of occupation among the unrenormalized momentum modes:

N NEQ
k (t) = −i

∑
σz

∫
dx eikx GK(x, t, σz, x, t, σz). (5)

Since first-order diagrams vanish due to symmetry, only a single second-order diagram has to
be evaluated for a consistent second-order result of the momentum distribution function. Details
of the calculation can be found in appendix A or in [31].

The second-order result describes the dynamics of the momentum distribution during
a first stage of its relaxation and exhibits the early relaxation of the kinetic energy. Higher
order corrections, however, induce different behavior on a second timescale. We describe this
second stage by means of the quantum Boltzmann equation, taking the formal long-time limit
of the second-order Keldysh perturbative calculation as an initial condition. It will lead to a
thermalization of the momentum distribution. In section 6, we will justify this treatment, explain
the separation of both relaxation scales as a consequence of fermionic phase space restrictions
and discuss the characteristics of the transient regime of prethermalization.

4. Evaluation of the momentum distribution

We have evaluated the time-dependent momentum distribution function of original fermions
in the regime t > tR for arbitrary ramp-up times tR. Within the validity of second-order time-
dependent perturbation theory, i.e. for not too large times t , the momentum distribution function
reads

1N NEQ
k (t, tR) = −U 2

∫
dE Jk(E; n)

{
1

t2
R

2 (1 − cos((E − εk)tR))

(E − εk)4
+

1

(E − εk)2

−
2

tR

sin((E − εk)tR) cos((E − εk)t) + sin((E − εk)t) (1 − cos((E − εk)tR))

(E − εk)3

}
. (6)

Jk(E; n) represents a fermionic phase space factor, which is discussed in more detail in
appendix B. Here we note that in the case of εk > 0 it is non-vanishing only for negative energies
E , in the case of εK< 0 for positive ones. Moreover, it asymptotically approaches a quadratic
energy dependence for small absolute values of E , i.e. limE→0 J (E; n) ∼ E2. Together, these
observations imply that all formal energy divergences in equation (6) are cut off or regularized
by the phase space factor.

4.1. No secular terms

A second glance at result (6) shows that—contrary to the Keldysh Greens function itself (see
appendix A)—the momentum distribution function does not exhibit secular terms that are
proportional to time t and typically would restrict the validity of a perturbative approach to
short-time regimes. This advantage is a consequence of the simplicity of the number operator
and of the linear ramping assumption (4).
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4.2. Limiting cases for linear ramping

For the correction to momentum distribution, two limiting cases have previously been discussed
based on a flow equation calculation [15, 16]. Both limits are reproduced by Keldysh
perturbation theory.

4.2.1. Adiabatic limit. The adiabatic limit is given by an arbitrary slow linear increase in the
interaction strength and corresponds to tR → ∞. Then only the tR-independent term (E − εk)

−2

contributes:

lim
tR→∞

1N NEQ
k (t, tR) = −U 2

∫
dE Jk(E; n)

1

(E − εk)2
=: 1N EQU

k . (7)

This is a truly stationary state. It equals the second-order equilibrium result 1N EQU
k for a

microscopic implementation of Landau’s Fermi liquid theory.

4.2.2. Quench limit. The limit of a quantum quench, i.e. a sudden switch-on of the interaction,
is obtained for tR → 0 and represents the maximally non-equilibrium case for any linear
ramping procedure. Replacing 1 − cos((E − εk)tR) = 2sin2((E − εk)T/2), the correction to the
momentum distribution shows a nontrivial time evolution, which incorporates the initial build-
up of correlations:

1N qq
k (t) := lim

tR→0
1N NEQ

k (t, tR) = −U 2

∫
dE Jk(E; n)

2 (1 − cos((E − εk)t))

(E − εk)2
. (8)

The non-equilibrium nature of this distribution is best analyzed in the long-time limit of this
second-order result. It is defined for any time-dependent function f (t) by

f (t) = lim
t→∞

1

t

∫ t

0
dt ′ f (t ′).

Note that the notation f (t) intends to resemble the generic time dependence of the function
f (t) but not a possible time dependence of the long-time average. In this limit, a characteristic
mismatch µ(εk) between non-equilibrium distribution and a corresponding equilibrium one—
computed for the same interaction strength U—has been found and will be discussed in great
detail later.

5. Discussion of the crossover from instantaneous to adiabatic switching

We discuss the crossover from instantaneous to adiabatic switching by analyzing two
observables, which show significantly different behavior, namely:

1. the time-dependent momentum distribution function N NEQ
k (t, tR);

2. the kinetic energy Ekin in a formal long-time limit of a perturbative result.

The observed differences illustrate and resolve prior confusion about the relevant energy
scales of fermionic systems in non-equilibrium.
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Figure 1. Build-up of an interacting Fermi liquid description after fast (tR = 1),
intermediate (tR = 4) and adiabatic (tR → ∞) ramping.

5.1. Time-dependent momentum distribution function

After the interaction has been switched on, correlations between particles develop. In the
following, we observe their impact on the momentum distribution, leading to a redistribution
of occupation among the momentum modes with time. Features of the long-time limit of these
dynamics are discussed in a second step.

5.1.1. Correlation build-up for arbitrary ramping times. The initial build-up of correlations is
mirrored by a reshape of the momentum distribution. In figure 1, we picture this process for
five time steps, comparing three ramping scenarios: (i) a fast ramp-up of the interaction (black
line for tR = 0), (ii) an intermediate ramping speed (red line, tR = 4) and (iii) the adiabatic limit
(tR → ∞). In the first case, the evolution of the momentum distribution can be clearly followed:
for small times, 1/t oscillations depict a rapid redistribution of the initial occupation (at t = 1)
into many high-energy modes. With increasing time, occupation is transferred back towards the
Fermi energy such that in the long-time limit changes to the momentum distribution are most
relevant around the Fermi energy.

For intermediate switching times, the process of redistribution of momentum mode
occupation occurs in a decelerated way. Since we have assumed t > tR in the derivation of (6),
the second time slice (tR = 4, t = 2) does not include possible transient corrections that might
change the short-time dynamics.

A comparison of all three ramp-up scenarios in the long-time limit shows that the absolute
change in the momentum distribution is reduced with increasing ramp-up time tR. Most clearly,
this is seen at the Fermi energy.
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R
=12

Figure 2. The mismatch function µ(ε) is plotted for different ramp-up times.
Deviations from the value µ(ε) = 1 depict the non-equilibrium nature of the
transient state, which is described by the long-time limit of a second-order
perturbative calculation. Those are bounded by an upper value of µ(εF) = 2 in
the limit of a quantum quench. For small corrections to the adiabatic limit, i.e.
for long ramp-up times, they are sharply peaked around the Fermi energy.

5.1.2. Mismatch function. A quantitative measure for deviations of the long-time limit of the
non-equilibrium momentum distribution (tR < ∞) from the equilibrium one (tR → ∞) is given
by the mismatch function

µ(εk, tR) =
1N NEQ

k (t, tR)

1N EQU
k (tR)

.

While for adiabatic switching-on of the interaction µ(εk, tR → ∞) ≡ 1 is trivial for all values
of εk , for finite ramp-up times deviations become visible around the Fermi energy. Within a
finite environment of approximate radius, εR ∼ 2/tR, the values of µ(εk, tR) increase up to a
maximum value of two, which is reached in the limiting case of a sudden interaction quench.
This confirms previous observations based on a flow equations approach [15, 16].

Figure 2 shows numerical computations of µ(εk) for different ramp-up times. While for
strictly sudden switching the maximum value of two is assumed for all energies, even for
very fast switching (tR = 0.1) a reduction of this value at the band edges (bandwidth D = 6)
is noticeable. On the other hand, even slight deviations from adiabatic switching leave an
observable ‘spike’ around the Fermi energy in the mismatch function µ(εk, tR �1). This proves
that around the Fermi edge the momentum distribution is highly sensitive even for small
departures from the adiabatic limit.

Deviations from the adiabatic behavior are most pronounced at the Fermi energy. Hence,
the (numerical resolvable) peak height of the mismatch function at the Fermi energy µ(εF, tR)

New Journal of Physics 12 (2010) 055016 (http://www.njp.org/)

http://www.njp.org/


10
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t
R
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1.6

1.8

2.0

μ
(ε

F
,t R

)

Figure 3. Numerically calculated values of the mismatch function at the Fermi
energy (circles) are given for different ramp-up times tR. Within a wide range
of ramping times, correction to the adiabatic limit (tR → ∞) can be fitted by
µ(εF, tR) ≈ 1.03 + 1.761/tR − 0.921/t2

R + 0.621/t3
R (χ2

≈ 10−6, nine data points
were fitted); this agrees with the asymptotic expectation µ(εF, tR → ∞) = 1.
Close to a sudden switch there is saturation at the value µ(εF, tR → 0) = 2. The
crossover between both regimes can be estimated as t̃R ≈ 1/h∗

≡ 1 where the
inverse power-law fitting has broken down.

defines a simple measure for the adiabatic character of the momentum distribution. Figure 3
displays its dependence on the ramp-up time for some values of tR.

5.1.3. Intrinsic energy scales of the momentum distribution. From the peak width in figure 2,
one may be tempted to read off the appearance of a new energy scale εR ∼ 1/tR in the non-
equilibrium momentum distribution. It describes the extension of an environment around the
Fermi energy εF ≡ 0 where significant deviations from equilibrium can be observed. Note that
it is not equivalent to a scale set by an effective temperature since the momentum distribution
still exhibits a discontinuity at the Fermi-energy, which indicates zero-temperature behavior.

The same scale can be extracted from a formal analysis of the momentum distribution.
Since the sinusoidal functions in (6) can be discussed in two limiting cases known as the ‘rapid
oscillation’ and the ‘small angle’ regime, two energy scales εR = 1/tR and 1/t emerge. However,
only the first one is relevant in the long-time limit. This motivates the discussion of two extremal
cases of the internal energy integration in (6): |E − εk| � 1/tR (a) and |E − εk| � 1/tR (b). Due
to the properties of the phase space factor Jk(E, n) (cf appendix B), these restrictions give rise
to an analogous separation of regimes for the external energies εk ≷ 1/tR.

In the first case, the rapid oscillations and the small 2/t2
R(E − εk)

4 contributions to the
integral can be neglected:

1N NEQ
k (t, tR)

∣∣∣
|E−εk |�1/tR

= −U 2

∫
dE

Jk(E, n)

(E − εk)2

∣∣∣∣
|E−εk |�1/tR

≈ 1N EQU
k

∣∣∣
|εk |�1/tR

. (9)
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For finite ramp-up times and large values of |εk|, condition (a) is satisfied for all values of E .
Hence, far away from the Fermi energy, the non-equilibrium momentum distribution equals the
adiabatic one (7).

In the second case, we consider the long-time limit such that the time-dependent arguments
average out. Since now |E − εk| < 1/tR, the main contributions to the energy integral in (6)
originate from the term∫

dE Jk(E, n)

[
2

t2
R

(1 − cos ((E − εk)tR))

(E − εk)4

∣∣∣∣
|E−εk |<1/tR

+
Jk(E, n)

(E − εk)2

]
.

In the case of rapid switching, the condition |E − εk| < 1/tR can be satisfied both for a large
range of energies εk and, at the Fermi energy, for a large energy interval in E . This implies
substantial deviations from the equilibrium behavior in an environment around the Fermi energy.
There it leads to the increase in the mismatch function up to a value of two:

1N NEQ
k (t, tR)

∣∣∣
|εk |�1/tR

≈ 2 1N EQU
k

∣∣∣
|εk |�1/tR

.

For slower ramping times, the restriction cuts off the internal energy integration such that the
maximum value of two is not reached any more.

6. Effective heating for deviations from adiabatic switching

We start the discussion of the kinetic energy by considering small non-adiabatic corrections to
an adiabatic switching procedure, i.e. we focus on large ramp-up times. While the energy scale
εR = 1/tR allows one to discuss energetically well-separated limiting cases of the momentum
distribution, it leads to wrong expectations when it is carried over naively to the kinetic energy.
We will discuss this observation and its consequences in the following sections.

For the purpose of ramp-up dynamics, the kinetic energy 1EKIN(tR) is defined as the excess
of kinetic energy with respect to the corresponding interacting ground state:

1EKIN(tR) :=
∫

∞

−∞

dεk εk δnk :=
∫

∞

−∞

dεk εk

[
1N NEQ

k (t, tR) − 1N EQU
k

]
. (10)

Note that this quantity provides an integrative view of the implications of non-adiabatic
switching; it includes energy contributions both from the pronounced non-equilibrium regime
|εk| � 1/tR and from a large crossover region |εk|& 1/tR of higher energy modes.

6.1. Full numerical solution of the kinetic energy

A numerical integration of (10) after insertion of (6) exhibits the dependence of the kinetic
energy 1EKIN(tR) on the ramp-up time (see figure 4). For small corrections to the adiabatic
limit, i.e. for long ramp-up times, this behavior agrees with expectations formulated on
thermodynamic grounds [32]:

1EKIN(tR) ∼
U 2

t2
R

. (11)

The quadratic behavior can be attributed to the contributions of high-energy modes with
energies larger than a cut-off set by 1/tR. This can be seen if one deliberately cuts off these
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Figure 4. The kinetic energy is evaluated numerically for large ramping times
(circles). Fits for different power-law behavior are given. Obviously, only the
inverse quadratic fit 1EKIN(tR) ∼ 1/t2

R agrees well with the data.
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Figure 5. The kinetic energy in the limit of fast ramp-up times saturates for a
sudden quantum quench.

contributions in the numerical result: then a different dependence of the kinetic energy on the
ramping 1ẼKIN(tR) ∼ U 2t−3

R is rediscovered, which has been published previously [26, 27].
This indicates that the excitation energy per momentum mode εkδnk remains of the order of the
average 1EKIN/D even for |εk| � 1/tR, where D represents the finite bandwidth. The additional
power 1/tR in 1ẼKIN(tR) then merely reflects the arbitrarily chosen integration limits introduced
by the cut-off.

In the opposite limit of a rapid switch, the kinetic energy saturates at the value found for
the quantum quench scenario (cf figure 5).
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6.2. Fermi’s golden rule analysis for a ramping model

The same observation can be made analytically in the ramping model defined by λ(t, tR) =

λ02(0)(1 − e−t/tR), which has been discussed before [26]. In the following, we will calculate
the excitation energy according to Fermi’s golden rule:

1EFGR
=

∑
0<ω<3

ω |λ(ω)|2

[∑
1234

n1n2(1 − n3)(1 − n4)δ1234

]
︸ ︷︷ ︸

N (ω)

. (12)

We denote the phase space factor of two-particle scattering in the presence of a filled Fermi sea
by N (ω) and analyze the role of an energy cut-off 3.

Fourier transforming the time-dependent interaction reads λ(ω, tR) = iλ0/ω(1 − iωtR) or
|λ(ω, tR)|2 = |λ0|

2 /ω2(1 + ω2t2
R) . In a small frequency limit, the phase space factor for a Fermi

liquid can be approximated by N (ω) ≈ (ρ4
F/p4

F)ω
3 such that

1EFGR
=

∫ 3

0
dω

|λ0|
2

ω2(1 + ω2t2
R)

ρ4
F

p4
F

ω4

=
ρ4

F

p4
F

|λ0|
2

t3
R

∫ 3tR

0
d(ωtR)

(ωtR)2

1 + (ωtR)2

=
ρ4

F

p4
F

|λ0|
2 3tR − arctan(3tR)

t3
R

. (13)

Now one easily observes that the dependence of the excitation energy on the ramping time is
a direct consequence of the applied cut-off. Firstly, the pronounced low-energy approach taken
by Barankov and Levitov cuts off all contributions on the scale 3 = 1/tR, i.e. assuming that
for all relevant energy modes ωtR � 1. This corresponds to an approximation of the Fourier
transform by its low-frequency asymptotic behavior λ(ω, tR) ≈ limω→0λ(ω, tR) = iλ0/ω. Since
this approximation mirrors the Fourier transform of a sudden switch F[2(t)](ω) = i/ω, all
details of the ramping model are lost. The resulting power-law behavior is 1EFGR(tR) ∼ t−3

R .
If, on the other hand, one chooses a cut-off that is independent of the ramping time

(3 6= 3(1/tR)) but small enough such that the low-frequency approximation of the phase
space still holds (this is possible for small corrections to adiabatic ramping), one observes
the different behavior 1EFGR(tR) ∼ t−2

R . This corresponds to replacing the Fourier transform
of the switching model by its high-frequency asymptotic limit limω→∞λ(ω, tR) = −λ0/ω

2tR

and includes excitations that are characteristic for the particular ramping scheme. This
approximation agrees well with our numerical calculations for linear ramping and is in full
agreement with the general analysis provided in [27]. Since finite-time ramping remains in all
cases linked to a continuous increase in the interaction strength on the chosen timescale, we
expect that high-frequency excitations will be present in many experimental implementations.
However, in the following, we will show that the influence of high-frequency excitations on
the low-energy behavior can be delayed by a relaxation bottleneck. Independent of the applied
ramping procedure, the latter accounts for the emergence of a transient regime characterized
by prethermalization. This defers the problem of overheating to late times of the relaxation
dynamics.
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6.3. Prethermalization for arbitrary switching times

As already mentioned, the observation of a prethermalization regime has been first reported
in the case of a sudden interaction quench in the Hubbard model. Here we have discussed the
behavior of the momentum distribution function and of the kinetic energy on a first timescale set
by second-order perturbation theory tPT ∼ ρFU−2. For this time regime and in the case of finite
switching times tR � tPT, we observed that the additional kinetic energy remains smaller than
the one inserted under a quantum quench; moreover, that the momentum distribution function
retains a sharp step and differs only quantitatively but not qualitatively from that of the quantum
quench. As a consequence, we note that the phase space restrictions for scattering processes
are not overcome by finite ramping times. On the contrary, the non-equilibrium character of
the momentum distribution is less pronounced, which makes those restrictions more severe.
This can be seen when the scattering integral Ik[N QP

k (t)] of a quantum Boltzmann equation

∂ Nk(t)

∂t
= Ik[Nk(t)] (14)

is discussed. Note that the scattering integral vanishes for Fermi–Dirac distribution functions
at arbitrary temperature and that the quantum Boltzmann equation provides an effective
description for the evolution of a quasi-particle distribution function. Quasi-particles are
approximately non-interacting degrees of freedom that absorb most of the interaction effects
present among the physical fermions. Therefore, we construct a rough approximation to quasi-
particle mapping by the linear extrapolation

N QP
k = Nk − 1N EQU

k ,

which strictly holds in the adiabatic limit. In the nonequilibrium case, it provides an approximate
representation of the quasi-particle momentum distribution

1N NEQ:QP
k = 1N NEQ

k − 1N EQU
k .

Note that 1N NEQ:QP
k ∼ O(U 2). Since around the Fermi energy

∣∣∣1N NEQ
k

∣∣∣ >

∣∣∣1N EQU
k

∣∣∣, the

second-order perturbative long-time limit of the quasi-particle distribution shows a reduction
of the quasi-particle residue and open phase space for quasi-particle scattering. Hence, the
scattering integral, initialized with this long-time limiting state, does not vanish but gives rise
to subsequent Boltzmann dynamics of the momentum distribution (14). Since its fixed point is
a thermal state, thermalization can be predicted. The corresponding timescale can be extracted
from a linearization of the scattering integral w.r.t. 1N NEQ:QP

k around the zero-temperature initial
state. At the Fermi energy, the linearized scattering integral can be expressed in terms of the
long-time limit of the kinetic energy 1EKIN (10) after the initial energy relaxation has been
accomplished 5:

Ik≈kF[N NEQ:QP
k ] ≈

3

2
U 2ρ2

F

∫
∞

−∞

dε jε j

[
1N NEQ(t, ε j) − 1N EQU

k

]
=

3

2
U 2ρ2

F 1EKIN.

5 The linearization of the scattering integral around the zero-temperature initial state is valid at the onset of
thermalization. With increasing temperature, however, the linearization must be performed around a Fermi–Dirac
distribution of nonzero temperature. This leads to a reduction in the scattering integral with time and to the expected
asymptotic behavior of the relaxation dynamics. We do not follow the Boltzmann dynamics here.
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Inserting this into (14) and using—for not too strong derivations from the adiabatic limit—
the quadratic dependence of the kinetic energy on the ramping time (11) shows that the
corresponding elastic relaxation occurs on a separated timescale

τel ∼
1

U 2ρ2
F 1EKIN

∼
t2
R

U 4
. (15)

For small values of U , this can be much larger than the first relaxation time. Moreover, long
ramp-up times delay the onset of elastic relaxation. This is a consequence of the reduced
deviations of the transient momentum distribution from its equilibrium counterpart; hence even
less phase space is available for scattering processes and thermalization, hence Boltzmann
dynamics is even more delayed.

As a consequence, the temporal separation of elastic relaxation by scattering events from
the earlier energy relaxation spans a transient prethermalization regime. Approaching the
adiabatic limit, i.e. for long ramp-up times tR or weak interactions U , this time regime becomes
more extended in time. This agrees with the physical intuition on momentum relaxation by
scattering processes which should be enhanced by higher kinetic energies. Such observations
parallel those made, for instance, in glasses where relaxation times from transient non-
equilibrium states increase with decreasing kinetic energies (low temperatures).

The most important observation is that within the prethermalization regime the kinetic
energy does not equal an effective temperature. Instead, the continued presence of an
approximate or even sharp [17] discontinuity at the Fermi energy suggests a zero-temperature
description for the prethermalized transient state. After thermalization has been completed,
the kinetic energy determines an effective temperature Teff defined by 1EKIN

= π2ρFT2
eff/6.

Inserting the temperature dependence of 1EKIN (11), one observes that the effective temperature
is proportional to the inverse ramp-up speed:

Teff ∼
|U |

tR
. (16)

7. Consequences for the observability of nonequilibrium Bardeen–Cooper–Schrieffer
(BCS) dynamics

As the above results, which have been obtained for the repulsive Hubbard model, depend only on
even powers of the interaction, they can be carried over to the case of an attractive interaction
U < 0. In both cases the initial state is given by the non-interacting Fermi gas, but the final
states after the adiabatic or sudden ramping differ. For both attractive and repulsive interactions,
a correlated many-particle state builds up; however, below the critical temperature Tc a Fermi
liquid with pairwise attractive interactions around the Fermi surface exhibits the distinct feature
of superconductivity or superfluidity: then a single particular normal mode of the Fermi liquid
becomes unstable with respect to Cooper pairing of low-energy fermions.

The pairing behavior can be discussed both within the attractive Hubbard model and by
referring to the effective BCS Hamiltonian

H BCS
int = λ(t)

∑
p,q

c†
p↑

c†
−p↓

c−q↓cq↑. (17)
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Although both approaches describe pairing in a similar way, they are not fully equivalent: the
BCS interaction can be considered as that subset of the two-particle Hubbard interaction matrix
elements which describes the behavior of pairs of fermions with opposite momenta. Other
two-particle interaction matrix elements of the Hubbard model are not represented in the BCS
Hamiltonian (17).

The non-equilibrium behavior of the BCS Hamiltonian (17) following a non-adiabatic
switch of the interaction λ(t) has recently been discussed [20]–[24]. There it has been shown
that a quantum quench in the effective pairing interaction λ leads to the build-up of a paired
many-particle state which, furthermore, exhibits characteristic non-equilibrium signatures. For
example, temporal oscillations of the order parameter of the superfluid transition, the energy
gap parameter 1(t), have been observed.

However, experiments in ultracold fermions are well described by the Hubbard model.
While it is experimentally feasible to change the relative strength of the Hubbard interaction
in time, it is not possible to do so only for that subset of matrix elements which correspond to
the BCS Hamiltonian. Hence, the question arises as to whether the dynamics described by the
remaining matrix elements interfere with the predicted non-equilibrium BCS dynamics.

7.1. Excitation of non-equilibrium BCS dynamics by finite time ramping of the Hubbard
interaction

In the following, we will address one aspect of that question: whether the effects of the
additional heat inserted by the feasible quench of the Hubbard interaction as compared to
a theoretical quench of the BCS interaction alone already rule out the observation of non-
equilibrium BCS dynamics.

Obviously, the inserted energy depends on the ramping time. In order to observe non-
equilibrium BCS dynamics in ultracold Fermi gases, two competing requirements must be met:

1. The ramping must be sufficiently non-adiabatic to excite non-equilibrium behavior.
2. The system must not heat up beyond the critical temperature of superconductivity despite

the energy intake by the ramping.

In previous work [26], it has been pointed out that a ramp-up that is non-adiabatic on the
scale of BCS instability, i.e.

tR . 1/1, (18)

is sufficient to excite non-equilibrium BCS dynamics. As 1 is typically a small parameter and as
the kinetic energy depends inversely on the ramp-up time, this eases the problem of overheating
with respect to a sudden quantum quench.

7.2. Overheating of the BCS system beyond its critical temperature cannot be excluded

However, plugging the slowest sufficiently non-adiabatic linear ramp tR = tBCS
def
= 1/1 (cf

equation (18)) into (16) shows that even for that limiting case the energy intake is not negligibly
small. Instead, the final temperature is of a similar order of magnitude as the characteristic
energies involved in the BCS dynamics, namely Teff ∼ U1. Hence, energetic arguments do not
imply a clear separation of energy scales related to the non-equilibrium BCS dynamics and
temperature, respectively. Therefore, we expect that finally the temperature will influence and
possibly destroy the non-equilibrium BCS behavior.
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Figure 6. This sketch compares the relevant relaxation timescales in the case of
linear finite time ramping on the timescale tR ∼ 1/1BCS (1) with those following
a quantum quench (2); the latter is assumed to be sudden w.r.t. the timescale
set by the hopping matrix element. In both cases, an initial relaxation (IR) is
followed by a transient prethermalization regime and final thermalization (Th).
The finally achieved effective temperature is of the order or larger than the
critical temperature of superconductivity. Note that the prethermalization regime
following a sudden quench may not reach the time regime where signatures of
the BCS non-equilibrium dynamics can be expected. Hence, the long duration
of the prethermalization regime in the case of finite time ramping is crucial for a
clear observability of non-equilibrium BCS dynamics.

7.3. Prethermalization opens a window for the observation of non-equilibrium BCS behavior

Fortunately, the thermalization of momentum distribution is delayed by prethermalization.
For the limiting ramping time tR = 1/1, thermalization due to elastic scattering processes is
deferred to the timescale set by

τel ∼
t2
R

U 4

BCS
∼

1

U 412
∼

1

U 4
e2/ρFU

� tBCS.

For small interaction strengths, the elastic relaxation time becomes much larger than the
timescale of the BCS dynamics. Hence, a long-lasting transient time window is opened by
prethermalization. During this time, the momentum distribution around the Fermi energy
resembles that of a Fermi liquid at zero temperature and most of the excitation energy is virtually
stored in high-energy modes sufficiently far apart from it. Thus, we expect the build-up of BCS
instability and the persistence of BCS dynamics until quasi-particle scattering redistributes the
excitation energies down to low-energy modes, implying thermalization.

Based on our observation of prethermalization, we are happy to report that non-equilibrium
BCS dynamics is, in principle, accessible by suitable linear ramping protocols performed with
ultracold fermions (cf figure 6). Other ramping protocols as discussed by Eckstein and Kollar
can further facilitate these experiments by reducing the effective temperature.
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8. Conclusions

In this paper, we have analyzed the implications of linearly ramping up the interaction
strength of the Hubbard model in more than one dimension and at zero temperature. We
assumed a finite ramping time and discussed corrections to the adiabatic limit as well as
the crossover into a quantum quench using second-order Keldysh perturbation theory in real
time. We observed different relaxation behaviors for two observables, namely momentum
distribution and kinetic energy. On the one hand, momentum distribution does not relax on
a first timescale that is related to second-order perturbation theory; it shows a characteristic
mismatch of the quasi-particle residue if compared with adiabatic ramping. This mismatch
provides a quantitative measure for the non-equilibrium character of the momentum distribution
in the first time regime after ramping. On the other hand, the kinetic energy summed over
all momentum modes remains unchanged under the subsequent Boltzmann dynamics of the
momentum distribution; the latter becomes effective on a second, much longer timescale and
leads to the thermalization of the momentum distribution. Consequently, a transient time regime
characterized by prethermalization appears between these two well-separated timescales.
During this regime, the excitation energy of the switching process is present predominantly
in high-energy momentum modes; around the Fermi energy a zero-temperature description
remains applicable. For small deviations from adiabatic switching, i.e. for small energy intakes
due to the ramping, this regime is particularly extended in time. We compute the dependence
of the final temperature on the ramping time and explain how differing expectations have been
obtained previously. Finally, we apply our findings to the question of whether non-equilibrium
BCS dynamics can be observed in ultracold Fermi gases. On the one hand, the final temperature
reaches the same order of magnitude as the critical temperature of the BCS problem, which
makes the observation of such dynamics in a true long-time limit—at least—very difficult. On
the other hand, a suitable choice of the ramping speed and the observed prethermalization of
the momentum distribution function open a long transient time window; during that time the
excitation energy inserted by the ramping remains located in high-energy momentum modes.
Therefore, non-equilibrium BCS dynamics, which happen on a small energy scale around the
Fermi surface, are not affected by the inserted energy. We expect that prethermalization fosters
in a similar way the observability of low-temperature non-equilibrium quantum dynamics of
other phenomena that also require the presence of a sharp Fermi surface.
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Appendix A. Keldysh perturbation theory for the Hubbard model

In this appendix, we sketch the real-time Keldysh perturbative approach to the Hubbard model.
For conventional perturbation theory of the ground state, the Gell-Mann and Low theorem links
the asymptotically free ingoing (t → −∞) and outgoing (t → ∞) ground state. Interaction
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Table A.1. Feynman rules for the Hubbard interaction in Keldysh space.
κ represents indices in Keldysh space, σ in spin space, τ

(i)
κ ′κ ′′ the 2 × 2 Pauli

matrices. The boson absorption and emission vertices (which are 3-tensors in
Keldysh space) differ in the chosen Larkin–Ovchinnikov representation.

Fermionic propagator: Gκκ ′(x, t, σz, x ′, t ′, σ ′
z) (cf equation (A.1))

Boson propagator: Dκκ ′(x, t, σz, x ′, t ′, σ ′
z) = δ(t − t ′)δ(x − x ′)δκ ′

κ δ
σ ′

z
σ z

Boson absorption vertex: γ κ
κ ′κ ′′(t) =

(
γ 1

κ ′κ ′′

γ 2
κ ′κ ′′

)
=

√
U (t)
√

2

(
δκ ′κ ′′

τ
(1)
κ ′κ ′′

)
Boson emission vertex: γ̃ κ

κ ′κ ′′(t) =

(
γ̃ 1

κ ′κ ′′

γ̃ 2
κ ′κ ′′

)
=

√
U (t)
√

2

(
τ

(1)
κ ′κ ′′

δκ ′κ ′′

)

effects are switched on adiabatically, treated perturbatively and switched off again on the way
of a linear time evolution. Perturbation theory beyond the ground state, however, cannot rely on
the Gell-Mann and Low theorem, which only links ground states. Therefore, calculations have
to be performed on a closed time contour, mapping the outgoing state back into a representation
of the ingoing states. The Keldysh technique [33] has implemented this contour evolution for
the calculation of non-equilibrium Greens functions by representing those on a 2 × 2 Keldysh
index space. Hence, Feynman rules have to be set up that include the matrix structure of Keldysh
Greens functions. Details of the following calculation can be found in [31].

A.1. Non-equilibrium Feynman rules for the Hubbard interaction

The tensor structure of Feynman rules for the Hubbard interaction on Keldysh space can
be constructed in analogy with any exchange interaction: fundamental vertices describe
the emission and absorption of exchange bosons by free fermions; working in the
Larkin–Ovchinnikov representation of Keldysh space, their nontrivial tensor structure can be
found in [30] and is quoted in table A.1. A Keldysh representation of the Hubbard interaction
can be constructed by linking emission (γ̃ ) and absorption (γ ) vertices by a local, instantaneous
boson propagator (D) that is diagonal in spin and Keldysh space. The time dependence of
the ramping process is included in an explicitly time-dependent interaction strength U (t)
and symmetrically attributed to both vertices. In the Larkin–Ovchinnikov representation, the
Keldysh matrix Greens function can be composed from the retarded (GR), advanced (GA) and
Keldysh component (GK) Greens function:

Gκκ ′(x, t, σz, x ′, t ′, σ ′

z) =

(
GR GK

0 GA

)
(x, t, σz, x ′, t ′, σ ′

z). (A.1)

For non-interacting fermions, GR, GA and GK are given by

G(0)

κκ ′(x, t, σz, x ′, t ′, σ ′

z) = −i
∑

k

eik(x1−x2)−iεk(t1−t2)

(
2(t1 − t2) (1 − 2nk)

0 −2(t2 − t1)

)
. (A.2)

This makes the free fermion propagator explicit. Diagrams can be evaluated using real-space
Feynman rules for Greens functions. Note that whenever propagators are linked to vertices, the
related Keldysh indices have to be contracted.
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Figure A.1. The only diagram contributing to a second-order perturbative
expansion of the Keldysh Greens function.

A.2. Second-order Keldysh perturbation theory for the Hubbard model

Fortunately, perturbation theory for the Hubbard model is simplified by various symmetries:
the bare first-order Hartree diagram is canceled by a symmetric definition of the Hubbard
interaction, renormalized Hartree diagrams vanish to all orders because of particle–hole
symmetry and Fock diagrams do not arise because the interaction is effective only between
particles of different spin. As a consequence, only a single diagram contributes to a second-
order perturbative calculation of the Keldysh Greens function (cf figure A.1).

A.2.1. Polarization operator. In order to make the explicit expressions more handy, it is
advisable to split off the calculation of the closed fermionic loop, known as the polarization
operator 5. Moreover, the shorthand notation i = {xi , ti , σ

z
i }, where i is an integer number, is

introduced. To avoid confusion, it does not extend to Keldysh indices. The latter are, generically,
denoted by Greek letters or, explicitly, by their values (1 or 2):

5κ3κ2(3, 2) =

∑
η4η5ν4ν5

γ̃ κ3
η5ν5

(t3)Gη5η4(3, 2)Gν5ν4(2, 3)γ κ2
η4ν4

(t2) (A.3)

Performing the contractions of the Keldysh indices allows one to represent the polarization
operator as a 2 × 2 matrix in Keldysh space

5(3, 2) =

√
U (t3)U (t2)

2

 GR(3, 2)GK(2, 3) GA(3, 2)GR(2, 3) + GR(3, 2)GA(2, 3)

+GK(3, 2)GA(2, 3) +GK(3, 2)GK(2, 3)

0 GA(3, 2)GK(2, 3) + GK(3, 2)GR(2, 3)

 .

(A.4)

This defines naturally the components 5R
= 511, 5K

= 512 and 5A
= 522.

A.2.2. The ‘setting sun’ diagram. The second-order correction to the Keldysh Greens function
follows from the evaluation of the diagram (figure A.1), which can be written as

G(2)
κ1κ1′

(1, 1′) =
1

2

∫
dx2 dx3 dx4 dx5

∫
dt2 dt3 dt4 dt5

∑
κ2κ3κ4κ5η2η3ν2ν3

Gκ1η3(1, 3)γ κ3
η3ν3

(t3)

×Dκ3κ5(3, 5)5κ5κ4(5, 4)Dκ4κ2(4, 2)Gν3ν2(3, 2)γ̃ κ2
ν2η2

(t2)Gη2κ1(2, 1′). (A.5)

To achieve a second-order correction, G denotes on the right-hand side the respective non-
interacting Greens function (superscripts are suppressed). Performing all contractions over
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Keldysh indices and integrations over trivial bosonic propagators leads to

G(2)
κ1κ1′

(1, 1′) =
1

2

∫
dx2 dx3

∫
dt2 dt3

√
U (t3)U (t2)

2

×

{
Gκ11(1, 3)GR(3, 2)5R(3, 2)G2κ1(2, 1′) (A.6a)

+Gκ11(1, 3)GK(3, 2)5R(3, 2)G1κ1(2, 1′) (A.6b)

+Gκ12(1, 3)GA(3, 2)5R(3, 2)G1κ1(2, 1′) (A.6c)

+Gκ11(1, 3)GA(3, 2)5A(3, 2)G2κ1(2, 1′) (A.6d)

+Gκ12(1, 3)GR(3, 2)5A(3, 2)G1κ1(2, 1′) (A.6e)

+Gκ12(1, 3)GK(3, 2)5A(3, 2)G2κ1(2, 1′) (A.6f)

+Gκ11(1, 3)GR(3, 2)5K(3, 2)G1κ1(2, 1′) (A.6g)

+Gκ11(1, 3)GK(3, 2)5K(3, 2)G2κ1(2, 1′) (A.6h)

+Gκ12(1, 3)GA(3, 2)5K(3, 2)G2κ1(2, 1′)
}
. (A.6i)

From this result second-order corrections to all components of the Keldysh matrix Greens
function can be extracted by specifying the remaining Keldysh indices κ1 and κ ′

1.

A.3. Second-order correction for the Keldysh component Greens function

Evaluating the Keldysh component Greens function G K is sufficient to extract the information
on the momentum distribution function (cf. 5). This is done by setting κ1 = 1 and κ1′ = 2 in
(A.6). Inserting (A.2) together with (A.4) into the Keldysh component of (A.6) shows that –
because of mismatching time restrictions imposed by the involved 2-functions – the terms
(A.6c) and (A.6e) vanish. The remaining terms can be paired such that all pairs share the same
momentum sums and spatial dependences.

G(2)
κ1κ1′

(1, 1′) =
1

2

∫
dx2 dx3

∫
dt2 dt3

√
U (t3)U (t2)

2
GR(1, 3)GR(3, 2)5R(3, 2)GA(2, 1′)

+GR(1, 3)GA(3, 2)5A(3, 2)GA(2, 1′) (A.7.1 + 3)

+GR(1, 3)GK(3, 2)5R(3, 2)GK(2, 1′) + GK(1, 3)GK(3, 2)5A(3, 2)GA(2, 1′) (A.7.2 + 4)

+GR(1, 3)GR(3, 2)5K(3, 2)GK(2, 1′) + GK(1, 3)GA(3, 2)5K(3, 2)GA(2, 1′) (A.7.5 + 7)

×GR(1, 3)GK(3, 2)5K(3, 2)GA(2, 1′)
}
. (A.7.6)

Although they also share a common time-dependent phase factor ei(t2−t3)(εp−ε p′ +εq2−εq1 ), their
time dependencies Ti and phase space factors Pi vary. Integrating out the internal positions
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makes momentum conservation explicit. Then the Keldysh component Greens function can be
written as a sum over four pairs:

GK (2)(1, 1′) =
i

4
U 2

∑
p′ pq1q2

eiq1(x1−x1′ )e−iεq1 (t1−t1′ )

×

∑
i=1...4

Ti(t1, t1′, 1ε)Pi(n p′, n p, nq1, nq2)δ(p′
− p − q2 + q1). (A.8)

The phase space factors Pi can be easily read off:

P1+3(n p′, n p, nq1, nq2) = − (n p′ − n p), (A.9.1 + 3)

P2+4(n p′, n p, nq1, nq2) = (1 − 2nq1)(1 − 2nq2)(n p′ − n p), (A.9.2 + 4)

P5+7(n p′, n p, nq1, nq2) = (1 − 2nq1)[n p′ + n p − 2n p′n p], (A.9.5 + 7)

P6(n p′, n p, nq1, nq2) = − (1 − 2nq2)[n p′ + n p − 2n p′n p]. (A.9.6)

The time-dependent integration kernels Ii are evaluated for the linear ramp-up scenario (4),

assuming that t1, t1′ > tR. This means, in a strict interpretation, that the obtained result is only
applicable to study the behavior of the momentum distribution function as soon as the full
interaction has been reached. Transient phenomena during the ramp-up are neglected. Then
integrating out internal times leads to

T1+3 = T2+4 = T5+7 =
1

t2
R

2(1 − cos(1εtR))

(1ε)4
+

1

T

i

(1ε)3

[
ei1ε(tR−t1) − e−i1ε(tR−t1′ ) + ei1εt1′

− ei1εt1
]

+

[
1

(1ε)2
+ i

t1′ − t1

1ε

]
, (A.10)

T6 =
1

t2
R

2(1 − cos(1εtR))

(1ε)4
+

1

tR

i

(1ε)3

[
ei1ε(tR−t1) − e−i1ε(tR−t1′ ) + ei1εt1′

− e−i1εt1
]

+
1

(1ε)2
ei1ε(t1′−t1). (A.11)

Obviously, this calculation has produced a secular term in (A.10), which is proportional to
the difference of external times t1′ − t1. However, this term does not affect the momentum
distribution.

A.4. Second-order correction to the momentum distribution

Since the momentum distribution follows from the Keldysh component Greens function at
equal times (5), the secular terms in its second-order correction drop out from the final result.
Moreover, this implies that for linear ramping procedures and the assumption t1′ = t1 all time-
dependent integration kernels T1+3 = T2+4 = T5+7 = T6 =: T coincide.

Factorizing I from the second sum in (A.8) allows one to add up the phase space factors of
the paired terms. In total, this generates

P= −4[nq1n p′(1 − n p)(1 − nq2) − (1 − nq1)(1 − n p′)n pnq2]. (A.12)
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Figure B.1. Comparison of the analytical approximate calculation (B.4) and
a full numerical evaluation of the phase space factor Ik(E). Prefactors are
suppressed. One observes that the approximation overestimates the available
phase space.

Inserting
∫

dEδ(εp − εp′ + εq2 − E) and canceling prefactors allows us to define the fermionic
phase space factor

Jk(E, n) =

∑
p′ pq2

δ p′+q1
p+q2

δ(εp − εp′ + εq2 − E)[nq1n p′(1 − n p)(1 − nq2) − (1 − nq1)(1 − n p′)n pnq2].

(A.13)

Then reading off the Fourier transform, we arrive at the second-order correction to the
momentum distribution given in (6).

Appendix B. Review of properties of the phase space factor Jk(E, n)

The fermionic phase space factor Jk(E, n) has been discussed previously [34, 35]. Here,
we review some of its properties. Firstly, it shows quadratic asymptotical behavior for small
energies around the Fermi energy εF:

Jk(E, n)
E→εF
−→∼ (E − εF)

2. (B.1)

Then we denote a second proportionality, with 2(x) being the Heaviside step function and
Ik(E) a suitable reduced phase space factor:

Jk(E, n) ∼ [2(−εk)2(E) − 2(εk)2(−E)] Ik(|E |) ⇔

{
Jk(E < 0) = 0, ∀εk < 0,

Jk(E > 0) = 0, ∀εk > 0,
(B.2)

This implies that the phase space factor cuts off all formal energy divergences in (6). Thirdly,
we evaluate the reduced phase space factor in the limit of infinite dimensions. In this limit,
all three momentum sums in (A.13) are promoted to energy integrations with respect to a
Gaussian density of states (2). This already includes momentum conservation [28]. While the
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first integration is trivial (energy conservation), the second one can be performed analytically.
This gives

Ik(E) =

(
1

√
2πh∗

)3

h∗
π

2
e−E2/4h∗

2
∫ E

0
dε e−(3ε2

−2Eε/4h∗
2
)

[
erf

( ε

h∗

)
− erf

(
ε − E

h∗

)]
. (B.3)

A first-order expansion of the error function effectively decouples two internal energy
integrations such that an analytic approximation becomes possible:

Ik(E) ≈

(
1

√
2πh∗

)3

E2 e−E2/6h∗
2

. (B.4)

Figure B.1 compares this approximation with a full numerical evaluation of (B.3). As for all
numerical computations, the bandwidth has been set to six times the hopping rate and an energy
resolution of N = 6000 sites has been used.
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