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Photon shuttle: Landau-Zener-Stückelberg dynamics in an optomechanical system
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The motion of micro- and nanomechanical resonators can be coupled to electromagnetic fields. Such
optomechanical setups allow one to explore the interaction of light and matter in a new regime at the boundary
between quantum and classical physics. We propose an approach to investigate nonequilibrium photon dynamics
driven by mechanical motion in a recently developed setup with a membrane between two mirrors, where photons
can be shuttled between the two halves of the cavity. For modest driving strength we predict the possibility of
observing an Autler-Townes splitting indicative of Rabi dynamics. For large drive, we show that this system
displays Landau-Zener-Stueckelberg dynamics originally known from atomic two-state systems.
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Optomechanical systems couple mechanical degrees of
freedom to radiation fields and constitute a rapidly evolving
field of current research (reviewed in [1]). These systems
provide new means to manipulate both the light field and
the mechanical motion. Apart from the hope of eventually
exploring the quantum regime of mechanical motion, there
have been several studies of the complex nonlinear dynamics
of these systems [2–6]. An exciting recent development
is the introduction of setups with multiple coupled optical
(and vibrational) modes, pointing the way toward integrated
optomechanical circuits [7–10]. In this article, we show how
the application of an external mechanical drive to these
structures can open up the whole domain of strongly driven
two-level and multilevel systems to the field of optomechanics.
As a concrete example of such a mechanically driven coherent
photon dynamics, we consider the system recently realized
in [7,11], where we show that a vibrating membrane inside an
optical cavity can shuttle photons between two optical modes.
We predict Autler-Townes splittings due to Rabi processes and
Landau-Zener-Stueckelberg (LZS) oscillations visible in the
transmission spectrum. Landau-Zener (LZ) transitions [12,13]
and LZS oscillations [14] were originally studied in atomic
systems [15–17], but lately they have also been applied to
quantum dots and superconducting qubits [18–21]. Some
purely optical setups [22,23] have also mimicked two-level
and standard LZ dynamics, but not LZS oscillations. More
generally, the mechanically driven coherent photon dynamics
in multimode optomechanical systems introduced in this
article will allow one to realize analogs to driven atomic
multilevel systems, such as V -type and �-type level schemes
and effects such as coherent trapping or electromagnetically
induced transparency.

We consider two cavity modes coupled by a dielectric
membrane placed between two high-finesse mirrors [see
Fig. 1(a)]. The system Hamiltonian is

Ĥsys = h̄ω0

[
1 − x(t)

l

]
â
†
LâL + h̄ω0

[
1 + x(t)

l

]
â
†
RâR

+ h̄g(â†
LâR + â

†
RâL) + Ĥdrive + Ĥdecay. (1)

â
†
LâL and â

†
RâR are the photon numbers for the two optical

modes in the left and right cavity half (each of length
l), respectively, whose resonance frequency ω0 is changed
due to the displacement x of the membrane. The coupling
g describes photon tunneling through the membrane. Due
to the coupling, there is an avoided crossing in the op-
tical resonance frequency ω±(x) = ±

√
g2 + (ω0x/l)2 [see

Fig. 1(b)]. We propose to drive the membrane with mechanical
frequency � and resulting amplitude A around a mean
position x0,

x(t) = A cos(�t) + x0, (2)

and investigate photon dynamics in terms of the cavity trans-
mission in the regime where the time scale of photon exchange
is comparable to the time scale of the mechanical motion
(g � �). Recently, the coupling frequency g/2π has been sig-
nificantly reduced by exploiting properties of transverse modes
[23], and it is tunable down to 200 kHz at present. The me-
chanical eigenfrequencies of typical 1 mm × 1 mm × 50 nm
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FIG. 1. (Color online) (a) Setup. A dielectric membrane couples
two modes aL, aR inside a cavity. The left-hand side is excited
by a laser ωL while the transmission to the right is recorded.
(b) Optical resonance frequency as function of displacement. The
membrane’s displacement linearly changes the bare mode frequencies
(dashed). Due to the coupling g, there is an avoided crossing of
the eigenfrequencies ω± (black). The membrane is driven, with
x(t) = A cos(�t) + x0 (blue; thicker).
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membranes range between 100 kHz and 1 MHz. We point out
that here � need not coincide with the membrane’s eigenfre-
quency but depends only on the driving. In the experimental
scheme, we propose to optically drive the left-hand side of the
cavity with a laser of tunable frequency ωL and measure the
transmission T to the right with a photo detector placed on
the other side of the cavity [see Fig. 1(a)]. The mechanical
driving Eq. (2) might be realized by mounting the membrane
on a piezo actuator.

Using input-output theory, the equations of motion for the
average fields aL = 〈âL〉 and aR = 〈âR〉 read

d

dt
aL = 1

i
[−x̄(t) aL + g aR] − κ

2
aL − √

κ bin
L (t)

(3)
d

dt
aR = 1

i
[+x̄(t) aR + g aL] − κ

2
aR,

with the cavity decay rate κ for each of the modes, and
laser drive bin

L (t) = e−i�Ltbin with amplitude bin. Here, we
used a rotating frame, with laser detuning from resonance
�L = ωL − ω0. The displacement is written in terms of a
frequency via x̄(t) = (ω0/l)x(t); likewise for Ā, x̄0. The
transmission to the right, T (t) = κ〈â†

R(t)âR(t)〉/(bin)2, can be
expressed as

T (t) = κ2

∣∣∣∣
∫ t

−∞
G(t, t ′) e−i�Lt ′−(κ/2)(t−t ′) dt ′

∣∣∣∣
2

, (4)

where the phase factor includes laser drive and cavity decay,
while the Green’s function G(t, t ′) describes the amplitude for
a photon to enter the cavity from the left at time t ′ and to
be found in the right cavity mode later at time t . Technically,
G(t, t ′) is found by setting κ = 0 in Eq. (3) and solving for
aR(t) with the initial conditions aL(t ′) = 1, aR(t ′) = 0.

Figure 2(a) displays the time-averaged transmission de-
pending on x̄0 and �L without mechanical drive (Ā = 0). The
spectrum displays the two hyperbola branches ω± [Fig. 1(b)].
Transmission is largest at the avoided crossing where photons
can most easily tunnel from the left into the right mode.
For modest drive Ā < �, Fig. 2(b) shows an Autler-Townes
splitting [22,25] of the two hyperbola branches ω±. Indeed,
if resonant, the mechanical drive induces Rabi oscillations
between the two photon branches, at a Rabi frequency g1 �
gĀ/� [see Eq. (9)], leading to a corresponding splitting
in the spectroscopic picture. Furthermore, the mechanically
assisted process enables high transmission even farther away
from the anti-crossing. For larger drive amplitudes [see
Fig. 2(c)], the dynamics becomes more involved as mechanical
sidebands arise and interact with each other. In the follow-
ing, we will focus on the dynamics of the strong driving
regime.

Figure 3 shows numerical results for Ā � �, g and
experimentally accessible parameters (for g/2π = 1 MHz,
l = 1 cm, ω0/2π = 3 × 1014 Hz; Ā = 60g corresponds to an
oscillation amplitude A = 2 nm). We first give an intuitive
description of why finite transmission T can be observed
only if x̄0 is a multiple of �, and we comment later on
the modulation as a function of Ā. T is determined by
two subsequent processes: first, the laser has to excite the
left mode; second, the internal dynamics must be able to
transfer photons into the right one. In general, both processes
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FIG. 2. (Color online) Density plot for the time-averaged trans-
mission depending on mean position x̄0 and laser detuning �L for
cavity decay rate κ = 0.1 g. (a) Without mechanical drive Ā = 0, the
spectrum is given by ω± [see Fig. 1(b)]. (b) Autler-Townes splitting
of the cavity frequency ω± due to mechanical motion, Ā = 0.2 �.
For every position x̄0 the mechanical drive frequency is set to be
� = 2

√
g2 + x̄2

0 such that it is always resonant with the difference
between the two optical mode frequencies ω±. The splitting is set
by the Rabi frequency g1 � gĀ/� [see Eq. (9)]. (c) Plot as in panel
(b) but for stronger drive Ā = 1.6 �. Mechanical sidebands, dis-
placed by ±�, become visible and interact.

are inelastic and therefore require energy to be exchanged
between the light field and the mechanics. The left mode’s
frequency is oscillating around the time-averaged value −x̄0.

Hence, the resonance condition to excite the left mode
reads

�L + m� = −x̄0, (5)

[see Fig. 4(a)]. Here, m� is an adequate multiphonon tran-
sition. The width of the individual resonances is determined
by κ . The subsequent process displays the physics of LZS
dynamics: in general, if a parameter in a two-state system is
swept sufficiently fast through an avoided crossing, the system
may undergo an LZ transition into the other eigenstate [12,13].
Here, for periodic sweep, we face iterated transitions. The
first LZ transition splits the photon state into a coherent
superposition; the two amplitudes gather different phases and
interfere the next time the system transverses the avoided
crossing. For two-state systems the resulting interference
patterns in the state population are known as Stueckelberg
oscillations [14]. The condition for constructive interference
can also be phrased in terms of an additional multiphonon
transition that transfers a photon from the left mode with
average frequency −x̄0 to the right one at +x̄0,

n� = 2x̄0. (6)

We find transmission only if both conditions are met. We note
that the coupling g between modes does not enter here. We
will come back to this point later.

To derive these resonance conditions as well as to under-
stand the dependence on Ā, in the following, we calculate
an approximate, analytic expression for the transmission.
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FIG. 3. (Color online) Density plot for the time-averaged trans-
mission as function of average displacement x̄0 and mechanical drive
amplitude Ā � �, g. Further parameters are laser detuning �L = 0,
mechanical frequency �/2π = 0.2g, and cavity decay κ = 0.2g.
Finite transmission is observed when the resonance conditions
Eqs. (5) and (6) for multiphonon transitions are met. The transmission
is modulated according to the product of two Bessel functions. For
the case x̄0 = −�, both are depicted in the plot’s plane. Red (longer
period): ∼ J 2

m(Ā/�), due to the excitation process. Yellow (shorter
period): ∼ J 2

n (2Ā/�), due to LZS dynamics.

From Eq. (3), the Green’s function G(t, t ′), required for the
transmission (4), is found to be

G(t, t ′) = ãR(t, t ′)e−iφ(t ′), (7)

where we have split off a phase φ(t ′) = (Ā/�) sin(�t ′), and
ãR(t, t ′) is a solution to

i
d

dt

(
ãR

ãL

)
=

(
x̄0 ge+2iφ(t)

ge−2iφ(t) −x̄0

) (
ãR

ãL

)
, (8)

with t � t ′ and initial condition ãR(t ′, t ′) = 0, ãL(t ′, t ′) = 1.
We now show that the two multiphonon processes introduced
above correspond to the two factors in Eq. (7). The term
e−iφ(t ′) = ∑

m Jm(Ā/�)e−im�t ′ describes the initial excita-
tion, where the amplitude for a transfer of m phonons is
set by the Bessel function Jm(Ā/�). Second, the internal
dynamics described by ãR(t, t ′) is expressed in terms of
a two-level system with time-dependent coupling ge2iφ(t) =
g

∑
n Jn(2Ā/�)ein�t . Thus, the strength of the second multi-

phonon transition n� in Fig. 4(a) is determined by a Bessel
function Jn(2Ā/�). As a special case, this also describes
the Autler-Townes splitting at small drive. This can be
calculated from (8) using an interaction picture representation
and considering the time-dependent coupling only up to J1,
yielding an effective transition frequency 2

√
g2

0 + x̄2
0 , with

g0 = gJ0(2Ā/�), and a Rabi frequency g1 = gJ1(2Ā/�).

In the case of LZS dynamics (i.e., strong drive), for
sufficiently large amplitudes only one of the harmonics of
g

∑
n Jn(2Ā/�)ein�t will be in resonance with the sys-

tem. This corresponds to leading-order perturbation theory
within the Floquet approach [26] applied to Eq. (8). In
this case, Eq. (8) simplifies to the problem of a two-state
system with harmonic drive at n� and effective coupling
constant

gn = gJn(2Ā/�). (9)

To estimate when this approximation becomes appropriate,
we note that for a driven undamped two-state system the
width of the power-broadened resonance is set by the Rabi
frequency. Thus, Eq. (8) yields a series of resonance peaks
at x̄0 = n�/2, and they become separated if 4gn < �. Using
the asymptotic form for large arguments Ā/� � 1, Jn(y) �√

2
πy

cos(y − nπ
2 − π

4 ), we find the resonance approximation

to hold whenever g2 < (π/16)Ā�. This is clearly fulfilled for
the parameters in Fig. 3. Note the resemblance to the criterion
for nonadiabatic transitions that can be derived from the
standard LZ formula P1→1 = exp(−πg2/2v), where v = Ā�

is the sweep velocity.
Given the resonance approximation, we find for the Green’s

function

G(t, t ′) = −i
gn

ωn

sin[ωn(t − t ′)]e−in�(t+t ′)/2e−iφ(t ′), (10)

with ωn =
√

(gn)2 + (x̄0 − n�/2)2. Note that ωn contains gn,
which is much smaller than the bare splitting g for Ā � �.
This explains why the resonance conditions (5) and (6) involve
the bare optical mode frequencies ±x̄0 instead of the adiabatic
eigenfrequencies ω±.

We insert (10) into (4), taking into account the sum over
independent contributions with n quanta. In the resolved
sideband regime (� > κ), the integration of (4) selects a
specific m for the excitation process [see Eq. (5)]. We find
an approximate expression (displayed here for the special case
�L = 0, where n = 2m),

T =
(

κ

g

)2 ∑
m

⎧⎨
⎩Jm

(
Ā

�

)

× J2m

(
2 Ā

�

)
1
g2

[(
κ
2

)2 + (x0 − m�)2
] + [

J2m

(
2 Ā

�

)]2

⎫⎬
⎭

2

, (11)

that fully captures the numerical results shown in Fig. 3. In
contrast to Jm(Ā/�), the LZS dynamics, characterized by
Jn(2Ā/�), involves 2Ā as it is determined by the phase
difference gathered between LZ transitions. If we were to
increase �L in Fig. 3, we would tune out of resonance and the
transmission would vanish everywhere. For �L = �/2, (5)
and (6) can be met for x̄0 being an odd multiple of �/2.
For �L = �, we recover the resonances of Fig. 3; however,
the entire plot would be shifted in Ā by π�/2 due to the
changed index of the Bessel function Jm. The qualitative
result at �L = 2� finally resembles the one shown in Fig. 3.
Finally, Fig. 4(b) shows numerical results for smaller values
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FIG. 4. (Color online) (a) Multiphonon transition picture. To see
transmission, two processes are involved: First (magenta, labeled
m�), excitation of the left cavity mode by the laser drive at �L,
supported by m phonons. Second (red, labeled n�), a suitable
n-quanta multiphonon transition to transfer a photon from the left
into the right mode. (b) Density plot for time-averaged transmission
as a function of x̄0 and Ā � g. Further parameters as in Fig. 3.

of Ā/g (while keeping � as in Fig. 3). As before, we see
resonances of width κ for x̄0 being a multiple of � and regions
of excitation determined by Jm(Ā/�). Within these regions,
we note the already familiar substructure that is due to LZS
dynamics.

To conclude, we have introduced mechanically driven
coherent photon dynamics for multimode optomechanical
systems. For a specific setup we predicted Autler-Townes
splittings and features of LZS dynamics whose observation
is within reach of current experiments. We note that the
same photon dynamics will enter when describing self-induced
nonlinear optomechanical oscillations in these systems. Future
optomechanical circuits [8–10] that integrate multiple optical
and vibrational modes on a chip will thus allow one to transfer
the whole realm of strongly driven multilevel dynamics from
atomic physics into the world of optomechanics. The tunability
and custom design of optomechanical systems, as well as their
ability to couple to each other, will offer a new regime in which
to explore these phenomena.
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