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Abstract.
In this work we investigate the quench dynamics in the Kondo model on the

Toulouse line in presence of a local magnetic field. It is shown that this setup can
be realized by either applying the local magnetic field directly or by preparing the
system in a macroscopically spin-polarized initial state. In the latter case, the magnetic
field results from a subtlety in applying the bosonization technique where terms that
are usually referred to as finite-size corrections become important in the present non-
equilibrium setting. The transient dynamics is studied by analyzing exact analytical
results for the local spin dynamics. The time scale for the relaxation of the local
dynamical quantities turns out to be exclusively determined by the Kondo scale. In
the transient regime, one observes damped oscillations in the local correlation functions
with a frequency set by the magnetic field.
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1. Introduction

In recent years the possibility to experimentally study non-equilibrium dynamics in

quantum many-body systems stimulated theoretical investigations of various model

systems out of equilibrium. Of particular interest for this work is the observation

that quantum dots can act as magnetic impurities displaying Kondo physics.[1] Due

to the flexibility to vary system parameters in time by applying unscreened electrical or

magnetic fields, quantum dots offer the framework for the experimental investigation of

non-equilibrium dynamics in quantum impurity systems.

The Kondo model describes the physics of a localized spin 1/2 coupled to a fermionic

bath via an exchange interaction. At low temperatures, the sea of conduction band

electrons develops a spin polarization cloud, the so-called Kondo cloud, providing a

mechanism to screen the local magnetic moment. In the zero temperature limit, the

screening becomes dominant leading to the emergence of the Kondo singlet such that

the spin-polarization cloud is bound to the local spin with an associated binding energy

TK , the Kondo temperature. The Kondo effect manifests itself most prominently in the

Kondo resonance, a sharp peak in the local density of states that is pinned at the Fermi

energy.

As the Kondo model is the paradigm model for strongly correlated impurity

systems, it is of particular interest that for a certain line in parameter space, the Toulouse

limit, the Kondo model becomes exactly solvable by a mapping onto a quadratic resonant

level model. [2, 3] In equilibrium as well as for an interaction quench, the Toulouse limit

describes correctly many generic and universal properties of the Kondo model [3, 4, 5]

such as the local spin dynamics that is also investigated in this work. Due to the

complexity of time-evolution for systems out of equilibrium it is instructive to investigate

those particular examples where exact and nonperturbative solutions are accessible.

Most of the work on time-dependent non-equilibrium systems has been

concentrating on interaction quenches. [4, 5, 6, 7, 8, 9, 10, 11, 12] Due to its paradigmatic

importance, the non-equilibrium quench dynamics in the Kondo model or the related

Anderson impurity model in the local moment regime has been analyzed in a number

of works. [4, 5, 6, 7, 8, 9, 10] Here, the transient dynamics in the Kondo model will

be investigated for an interaction quench in presence of a local magnetic field. It will

be shown that this scenario may be realized by either applying a local magnetic field

directly or by preparing the system in a state in which the conduction band carries

a macroscopic spin polarization. As the Kondo effect is sensitive to spin degeneracy,

the local magnetic field is expected to influence the properties in the Kondo model

considerably. The analysis of the transient dynamics and the emergence of the steady

state will focus on the local spin dynamics as it is directly affected by the local magnetic

field.

In the non-equilibrium setting where the lead carries a macroscopic initial spin

polarization a subtlety in the application of the bosonization technique arises. Under

certain circumstances as in this setting, terms that are usually referred to as finite-size
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corrections may turn out to be relevant in the non-equilibrium case. As a consequence

of the “finite size contributions” the spin-polarized initial state effectively acts as a local

magnetic field applied to the local spin.

This paper is organized as follows. In Sec. II, the effective Hamiltonian for the

dynamics in presence of a local magnetic field is derived. Afterwards, the magnetization

of the impurity spin is investigated in Sec. III. Sec. IV is devoted to an analysis of the

spin-spin correlation function and the results for the dynamical spin susceptibility are

presented in Sec. V.

2. Effective Hamiltonian

The dynamics of a spin-1/2 coupled to a sea of electrons via an exchange interaction is

described by the Kondo model:

H =
�

kη

k:c†kηckη: +
�

i

Ji

2

�

η,η�

:Ψ†
η(0)σ

η,η�

i SiΨη�(0):. (1)

The operator c
†
kη creates an electron with wave vector k and spin η =↑, ↓ in the

reservoir. Here, we allow for an anisotropy in the exchange interaction resulting in

different couplings in z-direction, Jz = J�, and in the xy plane, Jx = Jy = J⊥. In the

following, the couplings are all given in units of the noninteracting density of states.

The colons : . . . : denote normal ordering with respect to the Fermi sea. The local

spin operator �S with components Si, i = x, y, z, is coupled to the local spin density of

the conduction band electrons whose components are determined by the Pauli matrices

σi. The electron’s dispersion relation has been linearized around the Fermi level and

energies are measured in units of vF relative to the Fermi energy, i.e. vF = 1 and εF = 0.

As the local scatterer is assumed to be pointlike, only s-wave scattering occurs reducing

the problem to a one-dimensional one. [3] For an additional magnetic field h∗ applied

to the local spin, the Hamiltonian in Eq. (1) acquires an extra contribution −h∗Sz.

In the following, we will work in the Toulouse limit of the Kondo model where the

parallel coupling takes a special value J� = 2−
√
2. The relevance of the Toulouse point

in the single channel Kondo model is twofold. First, it allows for exact analytical results

in a strongly correlated system. Secondly, the Toulouse point governs many generic

and universal properties for the whole parameter regime including the experimentally

relevant isotropic case. Especially, it has been shown that the local spin dynamics, that

is also investigated in this work, shows the generic behavior in equilibrium as well as out

of equilibrium. Other universal quantities, however, such as the Wilson ratio explicitly

depend on the anisotropy.

In the following, two non-equilibrium scenarios will be investigated that turn out

to induce the same dynamics. The first is an interaction quench in the Kondo model in

presence of a magnetic field, i.e. the coupling J in the Kondo Hamiltonian is suddenly

switched on while a local magnetic field is acting on the local spin. The second scenario

investigates the dynamics in the Kondo model if the system is initially prepared in a

state with a macroscopic spin polarization.



Interaction quench dynamics in the Kondo model with local magnetic field 4

In equilibrium, the anisotropic Kondo Hamiltonian in the Toulouse limit can

be mapped onto an exactly solvable resonant level model using bosonization and

refermionization. [3] As has been shown by Lobaskin and Kehrein, such a mapping

also exists in the case of an interaction quench where an additional local potential

scattering term emerges. [4] Below, the implementation of the bosonization technique

for the Kondo Hamiltonian with an applied local magnetic field will be presented. The

bosonization technique is based on the bosonization identity

ψη(x) =
1√
a
Fηe

−i 2πL Nηxe
−iφη(x), η =↑↓, (2)

that establishes a connection between fermionic fields ψη(x) and bosonic fields φη(x) as

an elementary operator identity in Fock space, see Ref. [13] for a recent review. Here,

φη(x) = −
�

q>0[e
−iqx

bqη + e
iqx

b
†
qη]e

−aq/2
/
√
nq, bqη = −i/

√
nq

�
k c

†
k−qηckη, q = 2πnq/L

with nq ∈ N, L is the system size and a
−1

> 0 is an ultraviolet cutoff. The Klein factor

Fη accounts for the annihilation of one electron as this cannot be accomplished by the

bosonic field φη(x).

As usual, the bosonized Hamiltonian in the Toulouse limit can be simplified

tremendously by applying a sequence of unitary transformations. First, the

charge and spin (c,s) degrees of freedom are separated by introducing φc/s(x) =
1√
2
[φ↑(x)± φ↓(x)] , N̂c/s =

1
2

�
N̂↑ ± N̂↓

�
. The charge sector decouples from the impurity

problem and will be neglected in the following.

In the Toulouse limit where J� = 2 −
√
2, the Emery-Kivelson transformation

U = e
i[
√
2−1]φs(0)[Sz−1/2] eliminates the many-body interaction term in the Kondo

Hamiltonian that couples to the Sz operator. Refermionization of the transformed

Hamiltonian reduces the problem to a quadratic and therefore exactly solvable one.

For that purpose, another unitary transformation U2 = e
iπN̂sSz has to be imposed. [14]

This allows to define the fermionized spin operator d = e
−iπ[N̂s−Sz ]S− and its hermitian

conjugate d
† as well as new spinless fermionic fields

ψ(x) =
1√
a
Fs e

−i 2πL N̂sx e
−iφs(x), Fs = F

†
↓F↑, (3)

with modes ck = (2πL)−1/2
�
dx e

ikx
ψ(x). In the case of an applied local magnetic

field h∗, an additional contribution −h∗Sz appears in the Hamiltonian. The Sz operator

commutes with the unitary transformations U and U2 and can be related to the fermionic

d operators in the following way:

Sz = d
†
d− 1

2
. (4)

Thus, a local magnetic field induces a shift of the energy of the d fermion. After the

mapping, the effective Hamiltonian reduces to a noninteracting resonant level model

with an additional local scatterer:

Heff =
�

k

k:c†kck:− ε0d
†
d+ g

�

kk�

:c†kck� :

+ V

�

k

�
c
†
kd+ d

†
ck

�
+∆E (5)
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where V = J⊥
�
π/(2aL), g = [

√
2− 1]π/L, ε0 = h∗ and ∆E denotes a constant energy

shift. The magnetic field solely enters the Hamiltonian by shifting the local d level ε0
away from the Fermi level.

The Kondo scale can be related to parameters of the resonant level model

Hamiltonian by the impurity contribution to the Sommerfeld coefficient in the specific

heat: [4] Cimp = γimpT with γimp = wπ
2
/3TK . Here, w = 0.4128 is the Wilson number.

In this way the Kondo temperature is determined by TK = πw∆ where ∆ = V
2
L/2.

As will be shown in the following, a Hamiltonian of the same structure as in Eq. (5)

is induced by preparing the system in a state with a macroscopic spin polarization:

|ψ0� =
�

0<k<k∗

c
†
k↑|0� ⊗ |χ�. (6)

Here, |0� is the filled Fermi sea and |χ� a wave function for the local spin. For simplicity,

we set the initial spin wave function |χ� = | ↑� in the following. The wave vector k∗

denotes the electronic state up to which the spin up electrons are filled. Indeed, the

state |ψ0� carries a macroscopic spin polarization:

N̂s|ψ0� =
L

4π
k∗|ψ0�. (7)

The operator N̂s = [N̂↑−N̂↓]/2 measures the total spin of the conduction band electrons.

Note, that Kondo impurities attached to ferromagnetic leads [15] describe a different

setup, as there the chemical potentials for the up and down spin electron species are

identical, whereas the corresponding densities of states are different. Here, the chemical

potentials differ in the initial state and it is assumed that the densities of states are

identical by choosing the same Fermi velocities for the up and down spin electrons.

This is reasonable as long as the wave vector k∗ is small enough in order to neglect the

influence of curvature on the dispersion relation.

Using the bosonization technique for the mapping onto a quadratic effective

Hamiltonian, it is important to recognize that expressions like

lim
L→∞

2π

L
N̂s �= 0 (8)

do not vanish in the thermodynamic limit due to the macroscopic initial spin

polarization. Those terms usually appear as finite-size corrections when expressing the

fermionic density in terms of the bosonic fields and the number operators and cannot

be neglected in the present study. As has been shown recently, the application of the

bosonization technique requires additional effort in non-equilibrium scenarios. [16, 17]

The implications of Eq. (8) will be studied in the following for the kinetic energy of the

spin sector H0s that equals in terms of the bosonic field φs and the number operator N̂s:

H0s =

�
dx

1

2
: (φs(x))

2 : +
2π

L
N̂

2
s . (9)

Due to the spin-conservation condition [14]

ST = N̂s + Sz = const. =
L

4π
k∗ +

1

2
L→∞−→ L

4π
k∗ (10)
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one can express the latter term of the right-hand side in Eq. (9) in terms of the total

spin ST and the Sz operator such that:

2π

L
N̂

2
s =

2π

L
S
2
T − k∗Sz +

π

2L
= −k∗Sz + const. (11)

Here, the identity S
2
z = 1/4 has been used. Only in the case of a macroscopic spin-

polarized initial state, one therefore obtains an additional non-vanishing contribution

that is equivalent to a magnetic field of strength k∗ applied to the local spin. As in this

example, the operator N̂s can always be converted into a constant and the local spin

operator Sz generating new terms in the Hamiltonian compared to the equilibrium or

interaction quench case without magnetic field. In the end one arrives at an effective

Hamiltonian that is equal to Eq. (5) with ε0 =
2π
L [1− J�]ST = [

√
2− 1]k∗/2

As shown in Appendix A, the occupation distribution fk = �ψ0|c†kck|ψ0� of the

spinless fermionic operators in the initial state equals:

fk = θ

�
k∗

2
− k

�
. (12)

The chemical potential k∗/2 in the initial state can be compensated by defining new

operators ak = ck−k∗/2 in terms of which the structure of the effective Hamiltonian does

not change. All ck operators are replaced by ak’s, only the energy of the local level gets

modified to ε̃0 = k∗/
√
2. Therefore, the initial state effectively acts as a magnetic field

of strength:

h∗ =
k∗√
2
. (13)

Notice that the magnetic field seen by the impurity spin depends on J�, that

characterizes the strength of the coupling between the z component of the local spin

and the z component of the spin-polarization cloud generated by the itinerant electrons.

In the Toulouse limit, the parallel coupling is fixed to a comparatively large value

J� = 2 −
√
2. We expect, however, that independent of the actual coupling strength

and away from the Toulouse limit the spin-polarized initial state always acts as a local

magnetic field. Moreover, even in the limit J� → 0, there is an effective magnetic field

stemming from the kinetic energy of the spin sector, see. Eq. (11). The only relevant

quantity is the total effective magnetic field h∗ seen by the impurity spin.

Concluding, it has been shown that the dynamics in the Kondo model for an initially

spin-polarized state of the type in Eq. (6) is equivalent to an interaction quench in

presence of a magnetic field, see Eq. (5).

3. Magnetization

The local spin dynamics for an interaction quench in the Kondo model without

magnetic field is well studied in the literature. In such a scenario, the magnetization

Ph∗=0(t) = �Sz(t)�h∗=0 of the impurity spin [4, 3, 10, 18]

Ph∗=0(t) = P (0) e−2∆t (14)
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decays to zero exponentially fast on a time scale 1/2∆ that is set by the Kondo time

scale tK = 1/TK = 1/(πw∆).

As the local spin is sensitive to a local magnetic field, one expects that the

magnetization dynamics differs considerably compared to the interaction quench case.

Due to Eq. (4), the magnetization P (t) is equivalent to the local d level occupation

n̂d = d
†
d up to a constant:

P (t) = �n̂d(t)� −
1

2
. (15)

As the effective Hamiltonian in Eq. (5) is quadratic, the time evolution of the single-

particle operators ck and d is entirely determined by the Green’s functions Gll�(t) =

θ(t)�{cl(t), cl�}:

cl(t) =
�

l�

Gll�(t)cl� , l, l
� = k, d (16)

where G is a unitary matrix. The Green’s functions Gll�(t) can be obtained by using

the equations of motion approach, for example. As a result, one obtains for the

magnetization of the impurity spin:

P (t) =
1

2
[1 + Λ(0)] e−2∆t − e

−∆tΛ(t) +
1

2
Λ(0) (17)

where Λ(t) = (2/π)
� h∗/∆

0 dω cos(ω∆t)/(1 + ω
2) and Λ(0) = (2/π) atan(h∗/∆). Notice

that this agrees with the result in Eq. (14) in the limit h∗ → 0 as expected. Plots

of the magnetization for different values of the magnetic field h∗ are shown in Fig. 1.

As one can see, the time scale for relaxation of the magnetization is exclusively set by

the Kondo scale tK independent of the magnetic field. For the local level occupation

in an interaction quench in a Majorana resonant level model, the equivalent relaxation

behavior has been observed in a recent work by Komnik. [12] The time scale t∗ = 1/h∗

associated with the magnetic field dominates the transient dynamics as long as t∗ < tK ,

i.e. the magnetic field h∗ > TK is sufficiently large.

As the curves in Fig. 1 indicate, the initial decay of the magnetization is universal

in the sense that it is independent of the magnetic field or equivalently the initial spin

polarization and exactly equals the interaction quench case:

�Sz(t)�
t�t∗,tK≈ 1

2
−∆t+O(t2). (18)

The impurity spin is flipped without recognizing the presence of the magnetic field or

the spin-polarized lead at short times. Approaching the time scale t∗, one observes

a deviation from this universal initial decay and P (t) reaches its minimum leading to

overshooting. For sufficiently large magnetic fields h∗ > TK and for times t > t∗,

damped oscillations appear and the magnetization finally saturates at a value P (t =

∞) = π
−1atan(h∗/∆), that is the equilibrium value of the magnetization in the Kondo

model with an applied magnetic field h∗.

In terms of the initial spin polarization, the finite asymptotic value of the

magnetization indicates that the impurity is not able to depolarize the system although
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0.2

0.3

0.4

0.5

0 1 2 3 4 5

〈S
z
(t

)〉

t/tK

Figure 1. Magnetization P (t) = �Sz(t)� for different values of the local magnetic field
h∗/TK = 9, 7, 5, 3, 1 from top to bottom.

it can flip spins. Due to spin conservation, compare Eq. (10), the subspace of the total

Hilbert space Hdyn that is accessible by the dynamics can be restricted to:[14]

Hdyn = H+ ⊕H− (19)

where the subspaces H±

H+ = span

�����ST +
1

2
,⇓

��
,

H− = span

�����ST − 1

2
,⇑

��
(20)

contain those states that have a sea of conduction band electrons with spin ST ± 1
2 and

a local spin on the impurity with spin ⇓,⇑. The impurity is therefore able to flip spins,

the spin conservation condition, however, limits the maximally possible induced change

of spin in the conduction band to one spin flip process from spin-up to spin-down such

that the impurity is not able to compensate for the macroscopic initial spin polarization.

For large magnetic fields, h∗ � TK , the magnetization for times t � t∗ = 1/h∗

δP (t)
h∗�TK−→

�
Λ(0)− 1

2

�
e
−2∆t − 2∆

πh∗

sin(h∗t)

h∗t
e
−∆t (21)

reveals the frequency Ω∗ = h∗ of the oscillations in the magnetization that can be

clearly seen in Fig. (1). Here δP (t) = P (t)− P (t = ∞) denotes the deviation from the

asymptotic equilibrium value P (t = ∞).

For arbitrary fields h∗ �= 0, the asymptotic long-time behavior of the magnetization

δP (t)
t�t∗,tK−→ − 2

π

∆2

∆2 + h2
∗

sin(h∗t)

∆t
e
−∆t (22)

changes significantly compared to the interaction quench case without magnetic field,

see Eq. (14), where it is exponential with rate 2∆. Even a small magnetic field slows
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down the decay. It becomes exponential at a rate ∆ times an algebraic contribution

proportional to (∆t)−1. Recently, a similar slow asymptotic decay for the magnetization

in presence of a magnetic field was found in the work by Ratiani and Mitra [9] where the

transient dynamics in a quench from a single to a two-channel Kondo model has been

studied. Regarding Eq. (22), in the limit h∗ → 0 the asymptotic long-time behavior of

the magnetization crosses over into the interaction quench dynamics without magnetic

field, compare Eq. (14), since the prefactor vanishes. The decay becomes proportional

to e
−2∆t as one can see from Eq. (17) with Λ(t) = 0 for h∗ = 0.

In equilibrium as well as for an interaction quench, it has been shown that the

Toulouse limit of the Kondo model describes qualitatively correct the dynamics of the

local spin observables. [3, 4, 5] One may raise the question whether this extends to the

present case with an additional magnetic field. In a recent work, Anders and Schiller [7]

determined the magnetization for the same setup in the experimentally relevant case

of an isotropic Kondo model at small couplings using the time-dependent numerical

renormalization group technique. Comparing their numerically exact results with the

analytical treatment shown here one finds very good qualitative agreement. As in the

present Toulouse limit analysis, they observe an initial universal decay. Approaching

t ∼ t∗, the magnetization develops a minimum and damped oscillations appear for

t > t∗ as long as the magnetic field is sufficiently large. The magnetization relaxes

on the time scale tK to a finite asymptotic value. Those main features all appear

in the present analysis such that one can expect that the behavior of the other local

dynamical quantities such as the spin-spin correlation function and the dynamical spin

susceptibility obtained on the Toulouse line are describing qualitatively the correct

behavior for the isotropic Kondo model at small couplings.

4. Spin-spin correlation function

Additional information about the local dynamical properties of the system is contained

in the spin-spin correlation function

�Sz(t)Sz(tw)� = C(t, tw)−
i

2
χ(t, tw) (23)

that probes the correlation between two spin measurements at different times. Its

real part C(t, tw) = 1
2�{Sz(t), Sz(tw)}� is connected to the strength of the spin

fluctuations and its imaginary part determines the response function χ(t, tw) = iθ(t −
tw)�[Sz(t), Sz(tw)]� for times t bigger than the waiting time tw.

Due to Eq. (4), the spin-spin correlation function can be related directly to operators

of the effective Hamiltonian:

�Sz(t)Sz(tw)� = �n̂d(t)n̂d(tw)� −
1

2
[P (t) + P (tw)]−

1

4
. (24)

From the evaluation of �n̂d(t)n̂d(tw)� one obtains for the cumulant �Sz(t)Sz(tw)�C =

�Sz(t)Sz(tw)� − �Sz(t)��Sz(tw)� of the spin-spin correlation function:

�Sz(t)Sz(tw)�C = Ω(t, tw)
�
Λ(t− tw)− e

−∆tΛ(tw)−
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−e
−∆twΛ(t) + e

−∆(t+tw)(1 + Λ(0)) + Ω(t, tw)
�

(25)

where the function Ω is given by:

Ω(t, tw) =
1

π

� ∞

h∗/∆

dω

�
e
−iω∆t − e

−∆t
� �

e
iω∆tw − e

−∆tw
�

1 + ω2
. (26)

One fundamental question connected to non-equilibrium quench dynamics concerns the

thermalization behavior of observables. [4, 5, 11, 6, 7, 8, 9] As for the magnetization,

the relaxation of the spin-spin correlation function happens exponentially fast on a time

scale 1/∆ ∝ tK set by the Kondo scale with a further suppression by an additional

algebraic contribution (∆tw)−1:

δ�Sz(t+ tw)Sz(tw)�
tw�t∗,tK−→ F (t, tw)

e
−∆tw

∆tw
. (27)

Here, δ�Sz(t + tw)Sz(tw)� = �Sz(t + tw)Sz(tw)� − �Sz(t)Sz�h∗
eq denotes the deviation

of the spin-spin correlation function from its asymptotic relaxed form which is just

the equilibrium spin-spin correlation function �Sz(t)Sz�h∗
eq with applied magnetic field

h∗. The function F (t, tw) is an oscillating function of tw with period 2π/h∗ and does

not contribute to the relaxation dynamics. Comparing Eq. (27) with the result for

an interaction quench obtained by Lobaskin and Kehrein [4], one observes that the

relaxation behavior of the spin-spin correlation function does not change considerably.

The magnetic field only leads to a modification of the function F (t, tw). As already

observed for the magnetization, the time scale for thermalization of the spin-spin

correlation function is exclusively set by the Kondo scale tK .

In equilibrium at zero temperature without magnetic field, the spin-spin correlation

function shows a universal algebraic long-time behavior [3]

�Sz(t)Sz�eq
t�tK−→ − 1

[π∆t]2
. (28)

In the present non-equilibrium setting, the universal long-time behavior remains

unchanged:

�Sz(t)Sz(tw)�C
t�tK ,t∗,tw−→ −

�
∆2

h2
∗ +∆2

�2
×

×1− 2 cos(h∗tw)e−∆tw + e
−2∆tw

[π∆(t− tw)]2
(29)

with only a different prefactor. This universality originates from the property of the

spin-spin correlation function that its asymptotic long-time behavior is solely dependent

on the low-energy excitations in the vicinity of the Fermi level as one can show by a

simple Fermi liquid argument. In equilibrium, one can expand the d operator in the

energy representation of operators aε that diagonalize the Hamiltonian in Eq. (5), such

that one obtains:

d = ρ
−1/2
0

�

ε

fεaε. (30)
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Here, |fε|2 is the local single-particle density of states ρd(ε) of the effective Hamiltonian

at energy ε and ρ0 = L/(2π) is the noninteracting density of states of the lead. In the

energy representation, the spin-spin correlation function then reduces to:

�Sz(t)Sz�eq =
�
ρ
−1
0

�

ε>0

|fε|2e−iεt

�2

. (31)

Performing a Wick rotation t → −iτ , one observes that for large τ only the low energy

states contribute. Assuming that |fε|2 is well behaved near the Fermi level ε = 0 such

that it may be expanded around ε = 0 and replacing τ by it, the long-time behavior of

the spin-spin correlation function is given by:

�Sz(t)Sz�eq t→∞−→
�
ρd

it

�2
. (32)

In equilibrium at zero magnetic field, the local level ε0 = 0 exactly lies at the Fermi

energy such that the local density of states ρd at the Fermi level equals ρd = 1/(π∆)

and the exact result of Eq. (28) is reproduced. In case of an applied magnetic field h∗,

the local d level is shifted away from the Fermi energy leading to a reduction of the local

density of states ρd = (∆/π)/(∆2 + h
2
∗). Comparing with the result in Eq. (29), one

observes that the prefactor in the long-time behavior of the relaxed spin-spin correlation

function for tw → ∞ exactly equals the square of the local density of states as expected

from the Fermi liquid argument above.

For intermediate waiting times 0 < tw < ∞, the long-time behavior acquires a

modification by damped oscillations with period 2π/h∗ as a function of the waiting time

tw. This is a consequence of the transient non-equilibrium state where the Fermi liquid

argument is not valid. At zero waiting time tw = 0, the decay becomes exponential

as the initial state is an eigenstate of the Sz operator and the spin-spin correlation

function reduces to the magnetization of Sec. III as has been observed for the case of

an interaction quench without magnetic field. [4]

5. Dynamical spin susceptibility

The imaginary part of the spin-spin correlation function determines the response of the

system to a small external magnetic field h(t) applied to the local spin. In the linear

response regime, the magnetization in presence of h(t) equals:

�Sz(t)�h = �Sz(t)�+
� ∞

−∞
dt

�
χ(t, t�)h(t�). (33)

Expectation values without an index h are to be evaluated with the unperturbed

Hamiltonian. In equilibrium, the response function depends only on the time difference

thereby establishing a spectral representation in terms of one frequency. Its imaginary

part χ��(ω), the dynamical spin susceptibility, shows a peak near the Kondo temperature

representing the Kondo singlet. In the non-equilibrium setting considered in this work,
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h∗/TK = 1 χ
��(tw, ω)× h∗
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Figure 2. False color plots of the dynamical spin susceptibility χ��(tw, ω) for different
values of the magnetic field h∗.

the suitable generalization of the spectral representation of the response function is the

following: [4]

χ(tw, ω) = 2

� ∞

0

dt

2π
e
iωt

χ(t+ tw, tw). (34)

The integration is only taken over the positive real axis as a consequence of causality

such that an additional prefactor of 2 is required in order to reproduce the equilibrium

case. The function χ(tw, ω) may be interpreted as the spectral decomposition of the

response function at a given point tw in time. Accordingly, χ
��(tw, ω) = Imχ(tw, ω)

determines the dynamical spin susceptibility at a given point tw in this non-equilibrium

setup. False color plots of χ��(tw, ω) are shown in Fig. 2 for different degrees of initial

spin polarization.

As one can see from Fig. 2, the time scale for relaxation of the dynamical spin

susceptibility is solely determined by the Kondo scale tK as already found for the

magnetization and the spin-spin correlation function.

For small magnetic fields h∗ < TK , the behavior of the dynamical spin susceptibility

resembles the interaction quench case without magnetic field. In the transient regime

up to times t ∼ tK , the dynamical spin susceptibility approaches its equilibrium shape

exponentially fast with a peak located at ω ≈ TK associated with the Kondo singlet as

one observes in the case without magnetic field. [6, 4]
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For magnetic fields h∗ � TK , as can be seen in the plots of Fig. 2, a maximum builds

up on a time scale t∗ whose position roughly scales proportional to the magnetic field.

Importantly, the peak associated with the Kondo singlet near TK is not visible any more

indicating that the large magnetic field avoids the buildup of Kondo correlations. The

spin fluctuations that are the basis for the emergence of the Kondo effect are suppressed

as the impurity spin is pinned by the strong magnetic field. After a fast initial buildup on

a time scale t∗ associated with the initial spin polarization, damped oscillations appear

in the dynamical spin susceptibility with frequency h∗ decaying on a scale tK .

6. Conclusions

In this work, the quench dynamics of the Kondo model in the Toulouse limit has been

analyzed in presence of a local magnetic field. It has been shown that this setup can be

realized either by applying the magnetic field directly or by preparing the system in a

macroscopically spin-polarized state. The effective magnetic field caused by the initial

state results from a subtlety in applying the bosonization technique. Terms that are

usually referred to as finite-size corrections become important in this non-equilibrium

setting. The transient dynamics has been investigated by analyzing exact analytical

results for the local spin dynamics such as the magnetization, the spin-spin correlation

function and the dynamical spin susceptibility.

The analysis revealed that the time scale for relaxation of all the investigated local

dynamical quantities is exclusively set by the Kondo scale tK and is independent of the

magnetic field h∗, compare Eqs. (14), (27) and Fig. (1), (2).

The magnetization shows damped oscillations with a frequency h∗ set by the

magnetic field for h∗ > TK . Compared to the interaction quench case without magnetic

field, the asymptotic long-time decay of the magnetization becomes slower in the present

setup with a different scaling behavior, compare Eq. (22). Overall, the analysis of

the magnetization on the Toulouse line shows very good qualitative agreement with a

recent numerically exact analysis for the isotropic Kondo model obtained from a time-

dependent numerical renormalization group study. [7] Therefore, one can expect that the

other local dynamical quantities analyzed in this work such as the spin-spin correlation

function and the dynamical spin susceptibility also display the main features and that

the results presented in this work are qualitatively valid also away from the Toulouse

limit.

The relaxation behavior of the spin-spin correlation function, see Eq. (27), is not

altered considerably compared to the interaction quench case without magnetic field.

Remarkably, the asymptotic long-time behavior of the spin-spin correlation function

is universal and its scaling behavior equals the equilibrium case. This universality

originates in the property that the asymptotic long-time behavior of the spin-spin

correlation function is solely dependent on the low-energy excitations in the vicinity

of the Fermi level. By using a simple Fermi liquid argument, it was shown that the only

relevant quantity for the prefactor is the local density of states of the quadratic effective
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Hamiltonian at the Fermi level.

The dynamical spin susceptibility is not influenced substantially for magnetic

fields h∗ < TK smaller than the Kondo temperature and behaves as in an interaction

quench scenario without magnetic field. For h∗ > TK , one observes a rapid buildup

of correlations on a time scale t∗ = 1/h∗ and damped oscillations appear for times

t > t∗ that decay on a time scale tK . The dynamical spin susceptibility shows a

maximum whose position roughly scales proportional to the applied magnetic field. Most

importantly, the Kondo peak near TK disappears for sufficiently large h∗ indicating that

the magnetic field seen by the impurity spin avoids the buildup of Kondo correlations

by pinning the local spin thereby suppressing the local spin fluctuations.

In summary we have obtained exact results for the interaction quench dynamics

of the Kondo model on the Toulouse line and studied its thermalization behavior.

This is a rare case where rigorous results can be found even in non-equilibrium and

provides another benchmark in the growing field of non-equilibrium quantum impurity

physics. [4, 5, 6, 7, 8, 9, 10, 12]
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Appendix A.

For the evaluation of correlation functions in the macroscopically spin-polarized initial

state, it is essential to determine the initial occupation distribution of the spinless

fermions

fkk� = �ψ�
0|c†kck� |ψ�

0� (A.1)

where the state |ψ�
0� is given by:

|ψ�
0� = e

iπN̂sSze
i[
√
2−1]φs(0)[Sz− 1

2 ]|ψ0� = e
iLk∗/8|ψ0� (A.2)

as the initial state |ψ0� is an eigenstate of both Sz and Ns. Expressing the modes ck in

terms of the fields ψ(x) and by using the bosonization identity for ψ(x) one obtains:

fkk� =
1

2πaL

�
dx

2π

�
dx

�

2π
e
−ikx

e
ik�x� ×

× �ψ�
0|eiφs(x)e

i 2πL N̂sxe
−i 2πL N̂sx�

e
−iφs(x�)|ψ�

0� (A.3)

Due to Eq. (7), e−i 2πL N̂sx|ψ0� = e
−ik∗x/2|ψ0� such that:

fkk� = δkk�θ

�
k∗

2
− k

�
. (A.4)

Therefore, the initial spin polarized state induces a shift of the chemical potential of the

spinless fermionic operators.
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