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Motivated by recent experiments in ultracold atomic gases that
explore the nonequilibrium dynamics of interacting quantum
many-body systems, we investigate the nonequilibrium properties
of a Fermi liquid. We apply an interaction quench within the Fermi
liquid phase of the Hubbard model by switching on a weak inter-
action suddenly; then we follow the real-time dynamics of the
momentum distribution by a systematic expansion in the interac-
tion strength based on the flow equation method [1]. In this paper
we derive our main results, namely the applicability of a quasipar-
ticle description, the observation of a new type of quasi-stationary
nonequilibrium Fermi liquid like state and a delayed thermaliza-
tion of the momentum distribution. We explain the physical origin
of the delayed relaxation as a consequence of phase space
constraints in fermionic many-body systems. This brings about a
close relation to similar behavior of one-particle systems which
we illustrate by a discussion of the squeezed oscillator; we gener-
alize to an extended class of systems with discrete energy spectra
and point out the generic character of the nonequilibrium Fermi
liquid results for weak interaction quenches. Both for discrete
and continuous systems we observe that particular nonequilibrium
expectation values are twice as large as their corresponding
analogues in equilibrium. For a Fermi liquid, this shows up as an
increased correlation-induced reduction of the quasiparticle resi-
due in nonequilibrium.
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1. Introduction

1.1. Experimental approaches

Recent experimental progress has stimulated the investigation of interacting many-particle quan-
tum systems in nonequilibrium. In 1998 ultracold atoms confined by a harmonic trapping potential
have first been loaded [2] onto arrays of standing light waves known as optical lattices [3]. Since that
time the implementation of paradigmatic quantum models of condensed matter physics, foremost the
Hubbard model [4], in such systems with long coherence times and high tunability became a feasible
task. While in solids parameters like the lattice spacing or the interaction strength are fixed constants
predefined by nature, optical lattices provide a technique to experimentally study consequences of
their time-dependent variation [5]. The observation of the equilibrium Mott–Hubbard phase transi-
tion in the 3D bosonic Hubbard model [6] was soon followed by the discovery of collapse and revival
phenomena when the system was quenched between its phases, i.e. when sudden changes were ap-
plied to the particle interaction [7]. Similar nonequilibrium behavior was found for quenched 1D hard-
core bosons [8] which continued to oscillate without relaxation.

Experiments with ultracold fermions had to overcome more technical difficulties. The observation
of a Fermi surface in optical lattices [9], of fermionic correlations [10], of superfluidity [11] and the
study of interaction-controlled transport by a quench in the trapping potential [12] prepared the re-
cent observation of the Mott–Hubbard transition in the repulsive fermionic Hubbard model [13]. This
rapid progress of experimental sophistication gives hope that the predictions presented here will be
subject to experimental observation in the near future.

1.2. Thermalization debate

Such new experimental opportunities and pioneering results have provoked further theoretical inves-
tigations into the nonequilibrium dynamics of well-established many-body model systems, e.g. for spin
models [14–19], BCS systems [20–23], 1D hard-core bosons [24–26], a Luttinger liquid [27,28], the Rich-
ardson model [29], and the Falicov–Kimball model [30]. Excited by a quantum quench, i.e. by a sudden
switch on of the interaction term in the Hamiltonian, each of them exhibits its individual dynamics; how-
ever, they share the common feature that in many cases thermalization, i.e. the relaxation of time-aver-
aged quantities towards a thermal ground state, has not been found. This observation has been linked to
the integrability of these models which restricts a full relaxation due to additional conserved integrals of
motion. Nonetheless, numerical studies report that breaking integrability of strongly correlated fermions
does not lead to relaxation [31,32], and that the 1D Bose–Hubbard model, which is commonly assumed to
be nonintegrable, does not equilibrate for certain sets of initial conditions [33,34]. This behavior has been
recently reexamined and confirmed by studying the time averaged density matrix [35].

This revitalized an ongoing debate about the long-term equilibration behavior of many-body quan-
tum systems. It mimicked a similar discussion in nonlinear classical mechanics [36] which followed a
seminal paper by Fermi et al. [37]. There the question was raised whether an excited system of cou-
pled anharmonic oscillators would finally thermalize, i.e. approach a steady state thermal distribution
of the initial excitation energy onto all oscillator modes. To the surprise of the original authors in 1955
this has not been confirmed by their numerical calculations.

In the classical case, thermalization is regarded as a consequence of nonlinearities in the equations
of motion which generate chaotic behavior. Then, in general, the orbit of the classical motion samples
completely the hypersurface of the phase space that corresponds to all configurations which respect
the conservation of certain extensive conserved quantities; then the system is called ergodic1 and
1 A classical system is called ergodic if two averages of the phase space coordinates coincide: (a) The statistical (thermal) average
over an ensemble of phase space configurations constrained to a hypersurface in phase space by constants of the motion (e.g.
energy) and (b) the time average of their dynamical solutions subjected to the same constants of the motion. This coincidence of a
statistical (i.e. probabilistic) description of a physical system and a dynamical one (governed by deterministic laws of motion) is
assumed by Boltzmann’s hypothesis. Nonergodic cases can be easily found, e.g. systems with closed orbit solutions. It is an
important result of nonlinear classical mechanics that nonlinearity in the equations of motions alone does not imply ergodicity.
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thermalization is expected. Although the FPU problem is still debated [38], the predominant opinion to-
day is that Arnol’d diffusion will finally lead to thermalization of the system.

The time evolution of a quantum system is governed by the linear Schrödinger equation; it can al-
ways be represented by a strictly unitary operation Uðt; t0Þwhich is generated by the Hamiltonian. The
later acts on the Hilbert space, such that an initial state is mapped onto a time-parametrized orbit of
states constrained by constants of the motion like particle number, energy, etc. The time evolution of
states is reflected in the evolution of expectation values of observables; those correspond to measur-
able quantities. Note, for instance, that although the long time average of the dynamics of any quan-
tum state equals its projection onto the zero energy (ground) state(s),2 this does not indicate a long-
time relaxation towards (one of) its equilibrium ground state(s).

Moreover, the strict linearity of quantum mechanical time evolution implies a fundamental dis-
agreement between a quantum mechanical description based on the Schrödinger equation and a
quantum statistical one by means of a statistical operator q̂; it is rooted in the additional coherence
properties of a quantum system. Note that we only consider strictly closed quantum systems for
which no tracing out of degrees of freedom related to an environment takes place. While a thermal
state is constructed as an incoherent mixture of weighted quantum states with Tr½q̂2

M � < 1, a quantum
system, once initialized in a pure state defined by 1 � Tr½q̂2

P � ¼ Tr½Uyðt; t0Þq̂2
PUðt; t0Þ� remains pure at

any later point in time because of the cyclic property of the trace.3 Due to the linearity of the trace,
the same holds for any time average. Hence quantum systems are never ergodic in a classical sense.

This limitation does not apply for the expectation value of a particular observable. Nonetheless, the
equilibration of expectation values in an integrable system is restricted for a different reason: Addi-
tional conserved integrals of motion arise from an exact integration of the equations of motion which
prevent a wipe-out of the influence of the initial conditions such that thermalization with respect to a
conventional Gibbs ensemble should not be expected. In analogy to equilibrium approaches [39], it
was suggested that the long-time behavior can be reproduced by a statistical description based on
a generalized Gibbs ensemble [26]. Many of the mentioned results [27,26,30] explicitly agree with this
approach and its prerequisites and limitations have been discussed [40,24]. A different notion of local
relaxation grounds the examinations of finite subsystems [41,42] which may exhibit thermal signa-
tures even if the full system has not relaxed.

Yet for closed nonintegrable many-body systems the fundamental questions became more obvi-
ous: Which observables exhibit thermal long-time behavior, and for what reason? How does the large
number of degrees of freedom present in a many-body system make up for the unitarity of time evo-
lution such that a thermal long-time limit can appear? Some earlier works which addressed these
questions by introducing an eigenstate thermalization hypothesis [43,44] found new attention re-
cently [45,46]. That hypothesis assumes that the expectation value of a one-particle observable A

in an energy eigenstate of the Hamiltonian HjMi ¼ �M jMi equals the thermal average of the corre-
sponding statistical quantity at the mean energy l ¼ �M : hMjAjMi ¼ hAið�MÞ. Note that this is an
inherently time independent statement; it assumes that each single eigenvector of the Hamiltonian
incorporates statistical signatures and is sufficient to describe thermal behavior. A possible initial non-
statistical behavior appears as the result of a coherent superposition of eigenstates which dephases
with time.

1.3. Examination of quenched quantum systems

In the following we will discuss a translationally invariant closed quantum system from first prin-
ciple. The conservation of static quantities like energy, momentum, particle number constrain its
dynamics; for any initial state it is deterministically determined at any time in the past or in the future
by the Schrödinger equation. However, at zero time and by external influence, the Hamiltonian is
changed abruptly. Additionally to a time independent (noninteracting) part H0 a two-particle interac-
tion term Hint is switched on instantly such that
2 This can be easily seen by applying the time evolution operator in an eigenstate representation of the time-evolved state.
3 Note that the cyclic argument is not applicable for expectation values of observables hOi ¼ tr½Uyðt; t0Þq̂PUðt; t0ÞO�.
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HðtÞ ¼ H0 þHðtÞHint ð1Þ
HðtÞ is the Heaviside step function. To avoid trivialities, we assume that ½H0;Hint� – 0. This implies that
the eigenbasis of the Hamiltonian changes at zero time: From the eigenvectors of H0; fjmigm, to the
eigenbasis fjMigM of the Hamiltonian H. For convenience, we will assume that nondegenerate pertur-
bation theory can be applied; then a weak interaction does not change the noninteracting eigenener-
gies dramatically such that a relation can be established between the corresponding energies �m � �M

for m ¼ M.
In general, a quantum quench implies that the system is open for the intake of energy at the

quenching time t ¼ 0 and for a redefinition of its Hamiltonian ground state. Yet it never
means a sudden reset of its quantum state. Therefore, the quench initializes the interacting system
described by the Hamiltonian Hðt > 0Þ in the ground state of the noninteracting system
jX0i ¼ jm ¼ 0i which typically represents an excited state of the interacting system. Its properties
can be studied by following its nontrivial successive dynamics which is, again, generated by a time
independent Hamiltonian. Hence, effectively, we study an initial value problem for a time
independent Hamiltonian H ¼ H0 þ Hint. This observation determines our technical
approach.

Secondly, we choose a suitable observable to study the resulting dynamics. For translationally
invariant systems the momentum mode number operator N k is a convenient choice. It commutes
with the noninteracting Hamiltonian ½N ;H0� ¼ 0 such that a common eigenbasis of both operators
exists. This justifies the application of perturbation theory to study the dynamics of this observable.
As the momentum mode number operator is a one-particle observable, it only exposes limited infor-
mation on the interacting quantum system. This makes thermalization of its expectation value a
plausible scenario.
1.4. Solution of the Heisenberg equations of motion for an observable

As a final part of the introduction, we construct an appropriate method to study analytically the
effects of a quantum quench on observables.

Working in a Heisenberg picture, states remain time independent while the operators carry the to-
tal time dependence. The dynamics of observables O which do not explicitly depend on time is de-
scribed by the Heisenberg equation of motion [47]
i�h
dOðtÞ

dt
¼ ½OðtÞ;H� ð2Þ
This equation holds as an operator identity independent of any particular choice of a basis represen-
tation. Its solution, however, is best performed in an exact eigenbasis of the Hamiltonian where the
dynamics of different energy scales is decoupled and can be treated separately. There time evolution
leads to a pure dephasing of the Hamiltonian eigenmodes.

In the following, we make this observation useful for approximating the time evolution of arbi-
trary observables in a more sophisticated application of perturbation theory. Applying time depen-
dent perturbation theory directly to an observable typically results in the generation of secular terms
which are both proportional to time and the perturbative expansion parameter. They eventually
spoil the validity of time dependent perturbation theory even for small expansion parameters.
Hence the aim is to separate a perturbative treatment of interaction effects from time evolution.
This can be achieved by mapping the observable into an eigenbasis of the Hamiltonian where an
exact evaluation of time evolution can be achieved. The corresponding transformation is the same
which diagonalizes the Hamiltonian. Yet for many problems it is not known exactly. Implementing
it by means of a perturbative expansion generates an approximate representation of the observable
in an approximate Hamiltonian eigenbasis. Then secular terms arise again but, fortunately, in higher
orders of the expansion only, such that the validity of time dependent perturbation theory has been
improved.

On the other hand, we have understood the quench scenario as an initial value problem and a com-
peting requirement follows from the observance of nonequilibrium initial conditions. Note that the
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later are defined in the eigenbasis of the noninteracting Hamiltonian H0. Particularly in the context of
a many-body initial state, their mapping into a different basis representation may be complicated such
that their evaluation is only convenient in their initial one.

This motivates an approach which combines three unitary transformations: one which diagonal-
izes the interacting Hamiltonian approximately, called the forward transformation, a second one
which represents a solution of (2) in the interacting eigenbasis and a final backward transformation
(which reverts the diagonalization) into the noninteracting eigenbasis. All transformations are ap-
plied sequentially to the observable and implemented in perturbation theory. Note that the inverse
transformation does not reproduce the original structure of the observable since time evolution has
dephased the different contributions present in its forward-transformed representation. This
scheme has been described in [48,49] and is illustrated by Fig. 1. It is motivated by canonical per-
turbation theory in classical mechanics. There the time reliability of a perturbative expansion can
be greatly improved if it is performed after a suitable canonical transformation has been applied
[50].

1.5. Outline

In the following part of this paper we will apply the above approach first to systems with a
discrete energy spectrum. As an introductory example we discuss the exactly solvable model of
a suddenly squeezed harmonic oscillator to illustrate technical aspects and the role of perturbative
arguments. Then we will formulate a more general statement on the relation between equilibrium
and nonequilibrium expectation values for certain observables in discrete systems. We give two
proofs which highlight different aspects of the characteristic nonequilibrium physics: The first
proof stresses the role of perturbative arguments and restrictions imposed on the class of discussed
observables by focussing on the overlap of eigenstates of a noninteracting Hamiltonian and its
weakly perturbed counterpart. The second proof mirrors the operator approach depicted in
Fig. 1. It makes the drop-out of transient and oscillatory behavior under time averaging more
explicit.

In a second part, we give details on the quench of a Fermi liquid as it has been described in [1]. This
constitutes a many-particle problem with a continuous spectrum of eigenenergies and requires more
elaborate diagonalization techniques. Therefore we introduce the flow equation method following
Wegner [51] which is an established approach towards the approximate diagonalization of many-
body Hamiltonians and include it into the forward–backward transformation scheme. Although it is
a nonperturbative technique we will only use it in an approximate form to set up perturbation theory.
This is sufficient to observe the first phase of the dynamics of the quenched Fermi liquid. Studying the
momentum distribution around the Fermi surface mirrors one-particle nonequilibrium physics. In
particular, we observe a characteristic nonequilibrium value for the discontinuity of the momentum
distribution at the Fermi surface which indicates the size of the quasiparticle residue. In equilibrium,
correlation effects lead to a reduction of its value which is one only in the case of the noninteracting
Fermi gas. In nonequilibrium, this reduction is twice as large. This factor of two corresponds to the
Fig. 1. The Heisenberg equation of motion for an observable O is solved by transforming to the B ¼ 1 eigenbasis of the
interacting Hamiltonian H (forward transformation), where the time evolution can be computed easily. Time evolution
introduces phase shifts, and therefore the form of the observable in the initial basis B ¼ 0 (after a backward transformation)
changes as a function of time.
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analogous perturbative results for the one-particle squeezed oscillator and in discrete systems. In a
Fermi liquid, however, its appearance only indicates a transient nonequilibrium state. This transient
behavior exhibits prethermalization [79] since contrary to the nonequilibrium momentum distribu-
tion the kinetic and the interaction energy have already relaxed to their final long time values. The
relaxation of the momentum distribution gives rise to a second phase of the dynamics of a quenched
Fermi liquid. It will be obtained from a quantum Boltzmann equation which describes the effective
evolution of the momentum distribution from the nonequilibrium transient state onwards and leads
to the prediction of its thermalization.

2. Squeezing a one-particle harmonic oscillator

The squeezed oscillator is a well-studied one-particle model system which found appreciation in
many branches of physics. For two decades researchers have discussed squeezed states of the electro-
magnetic field which are interesting because of their characteristic reduced fluctuations in one field
quadrature as compared to coherent states [52,53]. This suppression of quantum fluctuations in one
variable out of a set of non-commuting variables below the threshold obtained for a state of symmet-
rically distributed minimal uncertainty, i.e. a coherent state, has motivated the naming: In this param-
eter the phase space portrait of the squeezed state shows sharp details and appears ‘squeezed’ when
compared to that one of a coherent state while fluctuations are inevitably increased in the others. The
physical relevance of squeezed states in optics is grounded on the fact that some interesting phenom-
ena like gravitational waves generated in astronomical events are characterized by oscillations with
amplitudes close to or below the width of the ground state wave function of an optical light mode
as it is required by Heisenberg’s uncertainty principle. Squeezed states, however, may provide im-
proved signal-to-noise ratios beyond this quantum limit of coherent light and simplify the interfero-
metric detection of the weak signatures of gravitational waves [55].

It has been shown [56] that squeezed states cannot be generated adiabatically from the ground
state of a quantum mechanical oscillator but that sudden changes have to be applied to its parameters,
e.g. its frequency or spring constant. Therefore, squeezed state represent an early example of what is
now, in the context of a many-body system, called a quench of a quantum system.

In many-body theory, the squeezing operation comes under the name of a Bogoliubov transforma-
tion. Recently, it was applied to study the behavior of a quenched Luttinger liquid in terms of bosonic
degrees of freedom [27]. Here we use it to illustrate characteristic nonequilibrium behavior of one-
particle models. Since the bosonic representation of a Luttinger liquid is momentum diagonal it
equally serves as an example of effective one-particle behavior.

2.1. Hamiltonian

On the level of the Hamiltonian, squeezing is inferred by an instantly applied change of the prefac-
tor of the quadratic potential, namely the spring constant. We neglect a linear shift of the potential
minimum and reduce squeezing to a sudden switch in the coupling constant gðtÞ ¼ gHðtÞ of the qua-
dratic particle non-conserving operators. With �h ¼ x0 ¼ m ¼ 1
H ¼ H0 þ Hint; H0 ¼ ayaþ 1
2
; Hint ¼ gðtÞ ðayÞ2 þ a2

� �
ð3Þ
Representing the Hamiltonian in terms of space x ¼ ðay þ aÞ=
ffiffiffi
2
p

and momentum p ¼ ða� ayÞ=
ffiffiffi
2
p

operators
H ¼ 1
2
þ gðtÞ

� �
x2 þ 1

2
� gðtÞ

� �
p2 ð4Þ
shows that it is strictly positive for jgj 6 1=2 and, thus, it is bounded from below. We only discuss the
Hamiltonian for 0 6 g 6 1=2.

In the following we compare a perturbative analysis of this quench with an exact solution based on
the exact diagonalization of H. In both cases we calculate the occupation, i.e. the expectation value of
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the number operator bN ¼ cyc both in the equilibrium ground state of the interacting Hamiltonian H
and as a long-time limit of the dynamics of an initial state. We will show a remarkable relation be-
tween the equilibrium result and the nonequilibrium result which are described by the same func-
tional dependence but variant prefactors. These nontrivial prefactors will later play a key role and
can already be appreciated in this simple system.

2.2. Perturbative study of squeezing

Let us first assume that the coupling g is a small parameter and that nondegenerate perturbation
theory can be applied to the interacting Hamiltonian. We formulate the perturbative approach in an
operator language which corresponds to the formalism of the flow equation method.

2.2.1. Definition of the diagonalizing transformation
The first step is to implement a discrete unitary transformation which diagonalizes the Hamiltonian

to leading order in g. We represent the unitary transformation UðuÞ ¼ e�gu by its generator g, which is
an anti-Hermitian operator, and by a scalar angle variable u. Then the action of the transformation
onto the Hamiltonian can be expanded according to the Baker–Hausdorff–Cambell relation as
4 We
eH � UyHU ¼ eguHe�gu � H0 þ Hint þ ½g;H0� þ ½g;Hint�ð Þuþ 1
2
½g; ½g;H0��u2 þ � � �
Demanding that to leading order the interaction term should vanish leads to an implicit definition
of the generator
u½g;H0� ¼ �Hint ð5Þ
Note that it implies g � OðgÞ. It can be easily checked that the canonical generator defined as the
commutator of the noninteracting and the interacting part of the Hamiltonian fulfills this implicit def-
inition (5) if an angle u ¼ 1=4 is chosen:
g ¼ ½H0;Hint� ¼ 2g ðayÞ2 � a2
� �

ð6Þ
2.2.2. Transformed Hamiltonian
In a second step we consider the corrections beyond leading order in the (approximately) diagonal-

ized Hamiltonian which are, in general, second order in g.
eH ¼H0þ½g;Hint�uþ
1
2
½g; ½g;H0��u2¼H0�16ug2H0þ32u2g2H0þOðg3Þ ¼u¼1=4ð1�2g2ÞH0þOðg3Þ
Thus the transformed Hamiltonian is described by a renormalized frequency x ¼ ð1� 2g2Þ.4 Due to
the particular simplicity of squeezing a harmonic oscillator the second order correction can be fully ab-
sorbed in a renormalization of parameters.

2.2.3. Transformation of quantum mechanical observables
Similarly to its action onto the Hamiltonian the unitary transformation implies a transformation of

all quantum mechanical observables which constitutes the third step of a unitary diagonalization
approach.
eO ¼ O þ ½g;O�uþ 1
2
½g; ½g;O��u2 þ � � � ð7Þ
We make the transformation of creation and annihilation operators explicit up to second order in g
and write
~ay

~a

� �
¼ 1þ g2=2 �g

�g 1þ g2=2

 !
ay

a

� �
¼: TðgÞ

ay

a

� �
ð8Þ
point out that this equation constitutes the discrete analogue of a flow equation for the Hamiltonian (cf. (??).
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The three steps 2.2.1–2.2.3 establish a diagonal representation and are, altogether, referred to as the
forward transformation. We note that the transformation of the observables can be easily inverted. Up
to second order in g the inverse of T, called the backward transformation, is given as T�1ðgÞ ¼ Tð�gÞ.

2.2.4. Spin-off: the equilibrium occupation
We interrupt our calculation of the nonequilibrium occupation for a short detour in order to eval-

uate the equilibrium one. To be more specific, our interest is in the occupation of the interacting
ground state with ‘physical’ particles (i.e. particles which are defined by the eigenmodes of the inter-
action-free Hamiltonian H0). Denoting the interacting ground state by jXi the equilibrium occupation
reads NEQU ¼ hXjayajXi. This is unitarily equivalent to the evaluation of a transformed number opera-
tor with respect to the noninteracting ground state jX0i since NEQU ¼ hXjUyUayaUyUjXi ¼
hX0jUayaUyjXi. Fortunately, the transformation which links both representations is the inverse of
the forward transformation. Hence we evaluate with na � hX0jayajX0i up to second order in g
NEQU ¼ hX0j~ay~ajX0i � 1þ g2

2

� �2

hX0jayajX0i þ g2hX0jaayjX0i � ð1þ 2g2Þna þ g2
We note that the occupation of the oscillator measured in terms of the original ‘particles’ is increased.
In the following we will compare this result with the nonequilibrium occupation obtained after sud-
den squeezing.

2.2.5. Time evolution of transformed observables
We resume the calculation for the nonequilibrium case. The forward transformation has already

been completed in Sections 2.2.1–2.2.3. In a fourth step the transformed observables are time evolved
for all positive times with respect to the transformed Hamiltonian. This, effectively, accounts for the
insertion of time dependent phase factors.
~ayðtÞ
~aðtÞ

� �
¼ eiHt~aye�iHt

eiHt~ae�iHt

 !
¼ eixt~ay

e�ixt~a

 !
¼ð8Þ eixtð1þ g2=2Þ �eixtg

�e�ixtg e�ixtð1þ g2=2Þ

 !
ay

a

� �
2.2.6. Backward transformation
Finally, we map back the time-evolved observables to the eigenbasis of the noninteracting Hamil-

tonian, completing the scheme depicted in Fig. 1. Up to second order in g we obtain
ayðtÞ
aðtÞ

� �
¼ T�1ðgÞ

~ayðtÞ
~aðtÞ

� �
¼ eixt þ 2ig2 sinðxtÞ �2igð1þ g2=2Þ sinðxtÞ

2igð1þ g2=2Þ sinðxtÞ e�ixt � 2ig2 sinðxtÞ

 !
ay

a

� �

This constitutes a consistent perturbative solution of the Heisenberg equations of motion for the oper-
ators ay and a.

2.2.7. Nonequilibrium occupation
In a final step we compose the time dependent number operator from the time dependent creation

and annihilation operator in an obvious way. Since time evolution is unitary, the time evolution of a
product of operators is always the product of the time evolved operators which can be easily checked
by inserting unity 1 ¼ Uðt; t0ÞUyðt; t0Þ. Evaluating the expectation value of the number operator for the
initial state jX0i leads to the nonequilibrium occupation
NNEQ ðtÞ ¼ hX0jayðtÞaðtÞjX0i ¼ na þ 4g2ð2 sin2ðxtÞÞ hX0jayajX0i þ
1
2

� �
ð9Þ
The large time limit is obtained by time averaging which is defined for a time dependent variable AðtÞ
as A :¼ 1

T

R T
0 dtAðtÞ. Then NNEQ ¼ na þ 4g2na þ 2g2. Comparing with (9), we find with DNðtÞ :¼ NðtÞ � na
lim
t!1

DNNEQ ðtÞ ¼ 2DNEQU þOg3 ð10Þ
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The factor of two between the equilibrium and the nonequilibrium occupation constitutes the main
result of this calculation. It states that even in a long-time limit the nonequilibrium occupation does
not approach the equilibrium one. The numerical value of two can be considered as a consequence of
applying two transformations, the forward and the backward one, such that changes to the occupation
due to interaction effects double. In the following we will find that, although the numerical value gets
corrections in order g3, the mismatch of both occupations is retained for all orders of perturbation
theory.

2.3. Nonperturbative (Bogoliubov) treatment of squeezing

In a second approach, we implement a Bogoliubov transformation which exactly diagonalizes the
squeezing Hamiltonian. It can be found in many textbooks, e.g. [53,54]. Our aim is to illustrate that the
chosen perturbative approach exhibits, up to numerical details, the correct nonequilibrium behavior
of the system.

The exact diagonalization of the squeezing Hamiltonian (3) can be constructed from the action of
the (inverse) unitary squeezing operator
SðnÞ ¼ e1=2n�a2�1=2nðayÞ2
where n ¼ reih is an arbitrary complex number which will be specified later. Applying the squeezing
operator to the ground state generates squeezed states in analogy with the displacement operator
which maps the ground state onto coherent states. Here we go the opposite way and apply its inverse
to diagonalize the squeezing Hamiltonian.

2.3.1. Exact transformation of observables
We directly start with writing down the action of SðnÞ onto the creation operator and the annihi-

lation operator. In condensed matter theory it is commonly known as a Bogoliubov transformation
used to treat interactions quadratic in creation or annihilation operators.
~ay

~a

� �
¼ SyðnÞ

ay

a

� �
SðnÞ ¼ coshðrÞ �e�ih sinhðrÞ

�eih sinhðrÞ coshðrÞ

 !
ay

a

� �
¼: TFðnÞ

ay

a

� �
ð11Þ
Note that TFðnÞ is not a unitary matrix despite the fact that detðTFðnÞÞ ¼ 1.

2.3.2. Exact Hamiltonian diagonalization
Inserting this transformation into the interacting Hamiltonian (3) results in a sum of four terms:
eH ¼ ð~ayÞ2 	 eih coshðrÞ sinhðrÞ þ gcosh2ðrÞ þ ge2ihsinh2ðrÞ
h i

þ h:c:þ ~ay~a

	 cosh2ðrÞ þ sinh2ðrÞ þ 4g cosðhÞ coshðrÞ sinhðrÞ
h i

þ 1	 2 cosðhÞ coshðrÞ sinhðrÞ½ �
To achieve a diagonal Hamiltonian we demand that the terms quadratic in ~ay and ~a should vanish. This
fixes the free parameter n :¼ reih ¼ r. For small interactions jgj 6 1=2 real solutions with h ¼ 0 can be
found. With sinhð2rÞ ¼ 2 sinhðrÞ coshðrÞ; coshð2rÞ ¼ sinh2ðrÞ þ cosh2ðrÞ the real parameter r can be
linked to the interaction
tanhð2rÞ ¼ �2g
For small values of g 
 1=2 the expansion arctanhðxÞ � x for x
 1 implies that r � �g. Then the non-
perturbative Bogoliubov transformation coincides with the perturbative approach in Section 2.2, with
SðnðgÞ � �gÞ ¼ egðgÞuju¼1=4. The diagonal Hamiltonian shows a renormalized frequency x ¼ coshð2rÞþ
2g sinhð2rÞ compared to the original frequency x0 ¼ 1 in (3). For all values of g < 1=2 the renormal-
ized frequency is positive and the Hamiltonian is bounded from below. Its dependence on g is plotted
in Fig. 2. In the limit of small g we find for the renormalized frequency its perturbative value
x ¼ ð1� 2g2Þ.



Fig. 2. This plot illustrates the nonperturbative ratio mðrðgÞÞ ¼ sinh2ð2rðgÞÞ
2sinh2ðrðgÞÞ

in (14) between the equilibrium and nonequilibrium

correction to the noninteracting occupation due to interaction effects. The real solution for the diagonalization transformation
nðgÞ ¼ rðgÞ is valid only for g < 1=2. In the limit of small interaction the factor m ¼ 2 is exact. Additionally the renormalized
frequency xðgÞ of the diagonal Hamiltonian is shown.
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2.3.3. Exact equilibrium occupation
Again, we first calculate the expectation value of the equilibrium number operator, using

cosh2ðrÞ � sinh2ðrÞ ¼ 1
NEQU ¼hXjayajXi¼ hX0j~ay~ajX0i¼ cosh2ðrÞhX0jayajX0iþ sinh2ðrÞhX0jaayjX0i¼naþ2sinh2ðrÞ naþ
1
2

� �
ð12Þ
Again, the perturbative limit for small g agrees with (9).

2.3.4. Exact nonequilibrium occupation
For the nonequilibrium occupation we solve the Heisenberg equations of motions for the creation

and annihilation operators in the (now exact) eigenbasis of the Hamiltonian. The forward transforma-
tion of these operators is given by (11). Again, we complete the scheme in Fig. 1 and compute the time
evolution of the transformed operators with respect to the diagonalized Hamiltonian, i.e. with respect
to the renormalized frequency x. The final backward transformation is given by TBðrÞ ¼ TFð�rÞ. These
three steps can be easily denoted as subsequent matrix multiplications:
ayðtÞ
aðtÞ

� �
¼ TBðrÞ e�ixt 0

0 eixt

 !
TFðrÞ ay

a

� �

¼
e�ixtcosh2ðrÞ � eixtsinh2ðrÞ i sinðxtÞe�ih sinhð2rÞ
�i sinðxtÞeih sinhð2rÞ � eixtcosh2ðrÞ � e�ixtsinh2ðrÞ

� �0@ 1A ay

a

� �

¼ cosðxtÞ
1 0
0 �1

� �
� i sinðxtÞ coshð2rÞ �e�ih sinhð2rÞ

eih sinhð2rÞ coshð2rÞ

 !" #
ay

a

� �

Composing the number operator reads
NNEQ ðtÞ ¼ hX0jayðtÞaðtÞjX0i ¼ hX0j e�ixtcosh2ðrÞ � eixtsinh2ðrÞ
� �

ay þ i sinðxtÞe�ih sinhð2rÞa
h i

	 �i sinðxtÞeih sinhð2rÞay � eixtcosh2ðrÞ � e�ixtsinh2ðrÞ
� �

a
h i

jX0i
Only the particle number conserving terms � aya; aay contribute and we arrive at the nonequilibrium
occupation
NNEQ ðtÞ ¼ na þ 2 sin2ðxtÞ
� �

sinh2ð2rÞ na þ
1
2

� �
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Again, the long-time limit is taken as a time average. This implies that the renormalization of the fre-
quency does not affect the occupation at late times and may be neglected.
5 We
6 We
lim
t!1

NNEQ ðtÞ ¼ na þ sinh2ð2rÞ na þ
1
2

� �
ð13Þ
2.3.5. Nonperturbative relation between the equilibrium occupation and the nonequilibrium occupation
Comparing (13) with (12) one observes that for the squeezing Hamiltonian the relation between

the equilibrium and nonequilibrium occupation is given by
mðrðgÞÞ :¼ DNNEQ

DNEQU ¼
sinh2ð2rðgÞÞ
2sinh2ðrðgÞÞ

ð14Þ
The precise numeric value of the ratio depends via r on the coupling strength g and is plotted in Fig. 2.
Expanding sinhðrÞ � r þ r3=3!þOðr5Þ we confirm that in the perturbative limit this relation ap-
proaches a factor of two.

3. More general statements on quenched one-particle systems

As the discussion of the squeezed oscillator has shown a perturbative approach to quenched one-
particle systems captures important signatures of the behavior of their nonequilibrium occupation. In
the following we will show that it can be generalized to a large class of weakly interacting one-particle
systems and to more general observables.

Prerequisites: Let us consider the Hamiltonian of a quantum system with a discrete energy spec-
trum and small interaction g which models a weak quantum quench.
H ¼ H0 þ gHðtÞHint ð15Þ
Its interacting ground state is denoted by jXi. We assume that nondegenerate perturbation theory
with respect to the noninteracting ground state jX0i is applicable and that H0 and Hint do not
commute.

Moreover, we assume a quantum mechanical observable O which does not depend explicitly on
time and obeys the following relations:
OjX0i ¼ 0 ð16Þ
½O;H0� ¼ 0 ð17Þ
For times t > 0 its time evolution OðtÞ is generated by the interacting Hamiltonian H0 þ gHint. Then the
following theorem holds:

Theorem. In second order perturbation theory the long-time limit of the time-averaged expectation value
of the time-evolved observable in the initial state equals two times the equilibrium expectation value of the
observable in the interacting ground state.
O :¼ lim
T!1

1
T

Z T

0
dthX0jOðtÞjX0i ¼ 2hXjOjXi þOðg3Þ ð18Þ
Proof 1. We will give two proofs of this theorem. The first one is intended to motivate the physical
origins of the prerequisites by relating it to the more conventional picture of overlapping eigenstates.
This allows to conclude on its general relevance.

Firstly, we introduce eigenbasis representations for the noninteracting Hamiltonian H0

f:jmijm 2 N0g,5 the interacting Hamiltonian f:jMijM 2 N0g6 and the observable f:jjijj 2 N0g with the
eigenvalues �0

m ¼ �M þOðg2Þ (for m ¼ M) and Oj, respectively. The requirement (17) implies the
label eigenstates of the noninteracting Hamiltonian by lower case variables.
label eigenstates of the interacting Hamiltonian by upper case variables.
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existence of a common eigenbasis of the observable O and the noninteracting Hamiltonian H0 such that
we can assume pairwise coinciding eigenvectors jmi ¼ jji. For clarity, however, we will keep a separate
notation. The equilibrium ground state expectation value is rewritten by inserting unity.
hXjOjXi ¼
X

j

OjjhjjXij2 ð19Þ
An analogous evaluation of the time dependent expectation value by inserting unities, extracting time
dependent phase factors and taking their time average leads to
hX0je�iHtOeiHtjX0i ¼ lim
T!1

1
T

Z T

0
dt
X

MM0 jj0
hX0je�iHtjMihMjjihjjOjj0ihj0jMihM0jeiHtjX0i

¼ lim
T!1

1
T

Z T

0
dt
X

MM0jj0
Oj0e

ið�M0 ��MÞthX0jMihMjjihjjj0ihj0jMihM0jX0i

¼
X

Mj

OjjhMjX0ij2jhjjMij2

ð20Þ
Up to a relative phase, the interacting eigenstates jMi are invariant under time evolution. Therefore,
overlap matrix elements are discussed with respect to these states.

The set of matrix elements fhM:jX0igM describe a decomposition of the initial state in terms of
Hamiltonian eigenstates. This is a statement about the particular initial conditions of the quench
problem. Since we discuss a quench from the noninteracting Hamiltonian this is a decomposition of
the noninteracting ground state in terms of interacting eigenstates.

The second set of matrix elements fhj:jMigM;j encapsulates the overlap between the eigenbasis of
the observable and the eigenbasis of the Hamiltonian. Since (17) holds we can work in the common
eigenbasis of the observable and the noninteracting Hamiltonian. Then the overlap between the
eigenbasis of the interacting and of the noninteracting Hamiltonian is discussed. In both cases the
matrix elements can be evaluated by applying perturbation theory to the Hamiltonian H ¼ H0 þ Hint,
treating Hint as a small perturbation. We make this explicit to leading order:
jhmjMij2¼PT
1 for M ¼ m
hmjHintjMi
ð�0

M��
0
mÞ

��� ���2 for M–m

8<:

As (16) implies O0 ¼ 0 the direct overlap between the interacting and the noninteracting ground state
does not contribute to the sums in both (19) and (20); hence they are at least second order in g. We
compare the right hand side of both equations for any fixed value of j. In the nonequilibrium case, sec-
ond order contributions require a resonance condition for the involved quantum numbers, M ¼ j or
M ¼ 0.
jhMjX0ij2 	 jhjjMij2¼PT jhJjX0ij2 	 1 for M ¼ j ¼: J

1	 jhjjXij2 for M ¼ 0

(

Because of the symmetry jhJ:jX0ij2 ¼ jhj:jXij2 in leading order perturbation theory, both contribute
equally jhj:jXij2 to the sum over M. Then in second order perturbation theory holds
hX0je�iHtOeiHtjX0i ¼ 2
X

j

OjjhjjXij2 ¼ 2hXjOjXi
and the theorem is proven. h

Proof 2. The second proof of the theorem is constructed in analogy to the scheme presented in Fig. 1
and aims at a clearer understanding of the applied method and its particular merits.

(1) Definition of a unitary transformation. We define a single unitary transformation U
y
s ¼ egs by its

anti-Hermitian generator gs ¼ �gys , demanding that its application to the Hamiltonian disposes the
interaction part of the Hamiltonian to first order of g. Expanding its unitary action onto the
Hamiltonian
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eH ¼ egs He�gs ¼ H0 þ Hint þ ½gs;H0�|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
OðgÞ

þ½gs;Hint� þ
1
2
½gs; ½gs;H0 þ Hint�� þOðg3Þ ð21Þ
hence allows to read off an implicit definition of gs by
½gs;H0� ¼ �Hint
which justifies the assumption gs � OðgÞ in (21). Then the transformed Hamiltonian equals the free
Hamiltonian up to second order corrections.

(2) Computation of the interacting ground state expectation value. In the following we exploit a formal
coincidence which holds for all systems with a nondegenerate single ground state: For any such
Hamiltonian, the diagonal representation of the interacting ground state in terms of the diagonal
degrees of freedom can be formally identified with the ground state of the noninteracting
Hamiltonian; thus we can relate them by U

y
s jXi ¼ jX0i or, to leading order, by jXi ¼

ð1� gsÞjX0i þOðg2Þ. As every Hamiltonian can be diagonalized, this does not pose any further
restrictions. Hence with (16)
hXjOjXi ¼ hX0jUysOUsjX0i ¼ �hX0jgsOgsjX0i þOðg3Þ ð22Þ
The simple diagonal representation of the interacting ground state motivates the application of oper-
ator-based transformation schemes like the flow equation method in equilibrium since correlation ef-
fects are, formally, fully transferred from the description of an interacting ground state to the
particular form of transformed observables. Thus one can avoid to discuss the full complexity of the
interacting ground state and restrict to those correlation effects which become actually relevant for
a particular observable. The transformation UysOU s can be performed in the most convenient way.

(3) Real-time dynamics of the observable after the quench. For the evaluation of the nonequilibrium
expectation value O we start with the sequential application of three unitary transformations. Firstly,
at time t ¼ 0 the observable is represented approximately in the energy-diagonal eigenbasis of the
Hamiltonian.
eOð0Þ ¼ Oð0Þ þ ½gs;Oð0Þ� þ
1
2
½gs; ½gs;Oð0Þ�� þOðg3Þ ð23Þ
Now we apply unitary time evolution to the transformed observable with respect to eH ¼ H0 þOðg2Þ.
This is time dependent perturbation theory to first order.
eOðtÞ ¼ e�iH0t eOð0ÞeiH0t ð24Þ
We insert (23) into (24) and attribute the time dependence to the generator gs ! gsðtÞ ¼
e�iH0tgsð0ÞeiH0t . This is possible because of (17) and ensures that (16) holds for all times. Finally, the
backward transformation gB ¼ �gsð0Þ is applied.
OðtÞ ¼ eOðtÞ � ½gsð0Þ; eOðtÞ� þ 1
2
½gsð0Þ; ½gsð0Þ; eOðtÞ�� þOðg3Þ ¼ Oð0Þ þ ½gsðtÞ;O�

þ 1
2
½gsðtÞ; ½gsðtÞ;O�� � ½gsð0Þ;O� � ½gsð0Þ; ½gsðtÞ;O�� þ

1
2
½gsð0Þ; ½gsðtÞ;O�� þOðg3Þ
We evaluate the expectation value of OðtÞ in the initial state jX0i. Due to (16) many contributions
vanish.
hX0jOðtÞjX0i ¼ 2 �1
2

� �
gsðtÞOgsðtÞ þ gsð0ÞOgsðtÞ þ gsðtÞOgsð0Þ � 2

1
2

� �
gsð0ÞOgsð0Þ

	 

X0

ð25Þ
Inserting unity 1 ¼
P

mjmihmj in terms of eigenstates of the noninteracting Hamiltonian H0 shows that
the second and the third term in (25) dephase and do not contribute to the long-time average:
hX0jgsð0ÞOgsðtÞjX0i ¼
X

m

hX0jgsð0ÞOjmihmje�iH0tgsð0ÞeiH0t jX0i ð26Þ

¼
X

m

Omeið�m��0ÞthX0jgsð0Þjmihmjgsð0ÞjX0i ð27Þ
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For m ¼ 0 Eq. (16) implies O0 ¼ 0. As we have assumed a nondegenerate Hamiltonian H0 we obtain
7 The
therma
hX0jgsð0ÞOgsðtÞjX0i ¼ hX0jgsðtÞOgsð0ÞjX0i ¼ 0
On the other hand, making use of (17)
hX0je�iH0tgse
iH0tOe�iH0tgse

iH0tjX0i ¼ hX0jgsð0ÞOgsð0ÞjX0i
Consequently, we arrive at O ¼ �2hX0jgsð0ÞOgsð0ÞjX0i. With (22) the theorem is proven. h

The second proof explains the factor of two as the accumulation of equal second order corrections
both from the forward and from the backward transformation. The drop-out of transient or oscillatory
behavior in (25) due to time averaging is more explicit. This depicts the major merit of the transfor-
mation scheme: Fundamental correlation-induced effects—as it is, for example, the difference be-
tween the interacting and the noninteracting ground state—enter a perturbative study of time
evolution performed in an energy-diagonal representation already as time-independent offsets. That
their influence is stronger in nonequilibrium than in equilibrium can be seen directly.

Corollary. In many systems the noninteracting part H0 of an interacting Hamiltonian H represents the

kinetic energy for which the following relation holds7: ENEQ ;KIN ¼ 2EEQU;KIN.

Proof. Define ENEQ ;KINðtÞ :¼ hX0jH0ðtÞjX0i and apply the theorem for O ¼ H0. h

Discussion. The above theorem explains the factor 2 in the ratio between nonequilibrium and
equilibrium expectation values as a rather general observation in systems with discrete energy spec-
tra. In the following we will see how this factor 2 appears for an interaction quench in a Fermi liquid
with continuous spectrum and what role it plays for the nonequilibrium dynamics. Notice that re-
cently similar observations have been made for a quenched Kondo impurity in the ferromagnetic re-
gime [57].

There the interaction of the impurity spin with a band of metal electrons is switched on suddenly in
time and the subsequent spin dynamics is calculated. The nonequilibrium dynamics of the magneti-
zation has been studied by both analytical (flow equations) and exact numerical (time dependent
NRG) methods [57]. The respective results agree very well on all time scales and again show the above
factor 2 when comparing to the equilibrium value.

4. Real-time evolution of a quenched Fermi liquid

In the last section we have compared the equilibrium and nonequilibrium behavior of a single-par-
ticle anharmonic oscillator. In the following we present an analogous analysis for a many-body non-
interacting Fermi gas for which we compare a sudden switching on of a two-particle interaction with
an adiabatic evolution into an interacting ground state. In more than one dimension the later corre-
sponds to Landau’s theory of a Fermi liquid, which, since its introduction in the late 1950s [58], be-
came a benchmarking effective description for the study of many (normal) interacting Fermi
systems [59,60]. Its main prerequisite (at least from the point of view of this work), is the adiabatic
connection between the noninteracting Fermi gas and the interacting Fermi liquid. It means that there
is a continuous evolution from the low energy states of the gas to those of the liquid as the interaction
is increased. This continuous link allows to formulate the intuitively appealing concept of Landau
quasiparticles since particle properties carry over from the noninteracting physical fermions to the
interacting degrees of freedom: Around the Fermi surface, the interacting degrees of freedom, then
called quasiparticles, differ from the noninteracting ones only by modified parameters, e.g. an effective
mass. In terms of physical fermions Landau quasiparticles are composite many-particle objects
although they are not true eigenstates of the system; this implies both a residual interaction among
increase in the kinetic energy beyond its value for the interacting ground state, however, does not necessarily indicate its
l distribution (i.e. heating effects).
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them and their finite lifetime which roughly measures the departure from interacting eigenstates. As
the lifetime diverges right at the Fermi energy Landau’s approach becomes exact there. Away from the
Fermi energy two incompatible time scales compete with each other, limiting the applicability of Lan-
dau’s approach to low energy excitations: The adiabatic requirement of long ramp-up times and the
limited lifetime of the achieved quasiparticle picture. In this work we will discuss the opposite limit
of the adiabatic increase of the interaction strength by applying a sudden quench. We will find that for
weak quenches within the Fermi liquid regime a quasiparticle picture can be retained.

4.1. Hubbard model

We discuss a generic Fermi liquid by referring to the Fermi liquid phase of the one-band Hubbard
model [4]; its equilibrium properties have been extensively studied using a great variety of different
methods [61–66]. It represents a lattice model which we discuss in the thermodynamic limit, i.e. for
an infinite number of lattice sites N. We assume translation invariance. Firstly, we do not specify a par-
ticular lattice geometry, work with a generic dispersion relation �ðkÞ but assume that no nesting of the
Fermi surface occurs. Each lattice site is capable of carrying up to two spin-1/2 fermions. Due to the
Pauli principle this implies a local state space of dimension four.8 Without interaction, all local states
are degenerate in energy; hence their composition to the state space of a many-site lattice leads to a
single energy band. We discuss the model for finite bandwidth D and in the regime of half filling, i.e.
with—on average—one fermion per lattice site. The Hubbard Hamiltonian
8 Not
configu

9 An
lattice
wavefu
H ¼ �
X
ijr

tijc
y
ircjr þ U

X
j

nj"nj# � l
X

j

nj" þ nj#
� �

ð28Þ
displays two competing physical processes on the lattice: The first term describes coherent9 hopping
processes between two neighboring lattice sites j and i with site-independent strength tij ¼ t ¼ 1 which
we set equal to one for convenience. This defines our energy scale in the sequel. The second term depicts
a site-independent repulsive interaction U. It approximates the influence of a Coulomb repulsion of elec-
trons dwelling on the same lattice site. Due to the Pauli principle, it is effective only between electrons of
different spin and is proportional to the product of their spin densities. It reduces the mobility of fermi-
ons on the lattice as, intuitively speaking, ‘hopping onto singly occupied sites becomes energetically less
favorable’. Hence the Hubbard model depicts the competition between delocalizing and localizing effects
in an interacting Fermi gas. At zero temperature a Fermi liquid phase exists for weak interaction strength
in all dimensions larger than one. The chemical potential l is set to half filling. In a momentum repre-
sentation it merely accounts for a global energy offset of the kinetic energy of the fermions. The allowed
momenta are restricted due to the limited bandwidth K ¼ f~k 2 Rd : �ðkÞ 2 ½�D;D�g. For simplicity, Arabic
numbers are used as generic momentum index labels. Note that the Hubbard interaction, while being
local in real space, is non-diagonal in momentum space.
H ¼
X

k2K;r2f";#g
�kcykrckr þ U

X
1012022K

cy10"c1"c
y
20#c2#d

k10 þk20
k1þk2

ð29Þ
4.2. Quench of a Fermi liquid

We implement a particular interaction quench of a Fermi liquid. It is modeled by substituting
U ! UðtÞ ¼ HðtÞU in (29).

4.2.1. Normal ordering and energy considerations
We decompose the interaction term by applying a normal ordering procedure with respect to the

ground state of the Fermi gas jX0i ¼ jFGi, which equals the noninteracting Fermi gas (FG). Its momen-
e the following configurations of the four-dimensional local state space: zero occupation, the spin up or spin-down
ration of single occupancy and the combination of two antiparallel spins (double occupation).
intuitive but not fully correct imagination depicts these hopping processes as an exchange of fermions between different
sites. Yet the coherent nature of the hopping is better captured by their delocalizing effect on a single fermionic
nction which spreads over more than a single lattice site.
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tum distribution is given by nk :¼ hX0jcykckjX0i and does not depend on spin. Normal ordered operators
are denoted between colons.
10 Thi
(Coulom
can be
correlat
driven

11 At a
phase,
cy10"c1"c
y
20#c2# ¼: cy10"c1"c

y
20#c2# : þn20d

20

2 : cy10"c1" þ n10d
10

1 : cy20#c2# : �n10n20d
10

1 d20

2

Thus one-particle properties hidden in two-particle scattering terms are extracted and a clear separa-
tion of one- and two-particle features in the Hamiltonian is achieved [70]. The one-particle scattering
contributions correspond to a shift of the chemical potential of �U=2 and could be reallocated to the
kinetic energy. However, this additional energy is not dynamically relevant. We stress the point that
the observed dynamics is solely caused by two-particle interaction effects.

Then the sudden switch on of a normal ordered two-particle interaction term does not lead to a
change of the total energy of the system. Yet it lowers the ground state energy of the Hamiltonian10

such that, at zero time, the noninteracting ground state of the initial Fermi gas, jX0i, is promoted to
a highly excited state of an interacting model. The corresponding excitation energy is measured with
respect to the ground state energy of the Hubbard Hamiltonian in equilibrium. It does not vanish in
the thermodynamic limit as a single-particle excitation would do. This is because the correlation-in-
duced reduction of the ground state energy becomes effective at every lattice site. A more detailed dis-
cussion of the involved energies will be resumed in Section 5.4.1.

4.2.2. Observables
To characterize the dynamics of the quenched Fermi liquid we analyze the evolution of particular

quantities, namely the total kinetic energy, the total interaction energy and the momentum distribu-
tion function. They are expectation values with respect to the initial state jX0i of the observables
H0; Hint and the number operator for a fermionic quantum gas
bNk ¼
cykck : k > kF

1� cykck : k 6 kF

(

We work in a Heisenberg picture where the observables carry the time dependence. Notice that the
distribution function exhibits the evolution of the occupation of one-particle momentum modes while
the energies are mode-averaged quantities. As the kinetic energy can be easily calculated from the
momentum distribution function; and as the total energy of a closed system is conserved, it is suffi-
cient to explicitly calculate the momentum distribution.

In equilibrium, the zero-temperature momentum distribution of an interacting many-particle sys-
tem of fermions is characterized by a discontinuity at the Fermi momentum kF . Its size, the so-called
quasiparticle residue or quasiparticle weight 0 6 Z 6 1, reflects the strength of interaction effects: For
an interaction-free Fermi gas it acquires its maximum value one, while it decreases with increasing
interaction strength in a Fermi liquid. For the equilibrium Hubbard model this signature has been
studied numerically throughout and beyond11 the Fermi liquid phase [63,67]. The behavior of the qua-
siparticle residue under nonequilibrium is the main focus of this work. It is, clearly, a zero temperature
analysis as temperature smears out the discontinuity on its own energy scale.

5. Perturbative analysis of a quenched Fermi liquid

Similarly to the perturbative study of the squeezed harmonic oscillator we implement the time
evolution of the number operator following the scheme of Fig. 1 for a Fermi liquid. Again we aim at
a perturbative analysis, expanding all results as a power series in the interaction strength. Contrary
s consequence of an energy conserving quench may seem unphysical, but it highlights a simple fact: While adding a
b) charge to formerly uncharged particles leads to an additional one-particle potential energy which is first order in U and

accounted for by a shift of the chemical potential, the corresponding two-particle repulsion (which causes interparticle
ions and lowers the ground state energy) is a second order effect; the dynamics of the quenched Hubbard model is only

by the later.
critical interaction strength, marking a quantum phase transition from the Fermi liquid to a non-metallic (Mott insulator)

the quasiparticle residue vanishes.
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to the single mode oscillator, the Fermi gas in the thermodynamic limit represents a many-particle
problem with an infinite number of degrees of freedom. This implies that many different energy scales
contribute to the Hamiltonian. It is obvious that the quench generates occupation in many different
excited eigenstates of the interacting Hamiltonian. Therefore we implement the diagonalizing trans-
formation such that a controlled treatment of different energy scales is possible. This can be achieved
by a flow equation transformation following Wegner [51]. Due to the Pauli principle, a fermionic
many-particle problem is characterized by the existence of a filled Fermi sea; the later restricts the
phase space for fermionic scattering processes, in particular at zero temperature. This, effectively, re-
duces the strength of the two-particle Hubbard interaction and allows for the observation of a tran-
sient dynamics of an excited state.

5.1. Flow equation transformation

Since it has been independently introduced by Wegner [51] and Glazek and Wilson [68,69] the flow
equation method became an established tool in the analysis of equilibrium and nonequilibrium many-
body systems and has been applied to a great variety of different systems. An extensive list of model
systems and problems which have been tackled by the flow equation method can be found in [70] and
a comprehensive textbook review is available [71]. Quite recently, it has been successfully applied to
nonequilibrium problems [72,48,1]. For the convenience of the reader we will give a short introduc-
tion here.

5.1.1. Continuous sequence of infinitesimal transformations
In Section 2.2.1 a single unitary transformation was defined to diagonalize the Hamiltonian approx-

imately. The flow equation method, however, decomposes the diagonalization of a many-body Ham-
iltonian into a continuous sequence of infinitesimal unitary transformations. It aims at an approximate
diagonalization of the Hamiltonian in energy space. Applied to the non-diagonal Hamiltonian, it
imposes a continuous evolution of Hamiltonian parameters. This evolution is, in rough analogy to
Wilson’s interpretation of the renormalization group, depicted as a flow of the Hamiltonian
parameters. The flow is parametrized by a scalar, nonnegative and monotonously growing flow
parameter B.

Since only the initial Hamiltonian and, to a lesser degree, the final, approximately energy-diagonal
Hamiltonian are fixed boundary conditions there is a large degree of freedom how the continuous se-
quence of infinitesimal unitary transformations is actually constructed. It allows for the implementa-
tion of other desirable features like energy scale separation such that the flow parameter B can be
related to an energy scale KB ¼ 1=

ffiffiffi
B
p

. But contrary to conventional renormalization schemes which
distinguish between absolute energies of high and low energy degrees of freedom the flow equation
methods separates the treatment of large and small relative energy differences in the Hamiltonian. This
means that those matrix elements of the Hamiltonian which describe deeply inelastic scattering pro-
cesses are eliminated already at an early stage of the flow. Successively, those with lower energy dif-
ferences are treated while elastic scattering processes (‘energy-diagonal ones’) remain unchanged.
Hence, the flow equation method achieves a stable sequence of perturbation theory. As all energy
scales of the Hamiltonian are retained this motivates the application of the flow equation method
to nonequilibrium phenomena.

5.1.2. Definition of the infinitesimal transformations
Wegner showed that energy scale separation can be implemented by defining the canonical gener-

ator of infinitesimal transformations [51], representing a differential form of equation (6).
gðBÞ ¼ ½H0ðBÞ;HintðBÞ� ð30Þ
It depends on the flow parameter B and is anti-Hermitian. The spit-up between the noninteracting and
the interacting part of the Hamiltonian has to be defined throughout the flow. For the Hubbard Ham-
iltonian, this is simply achieved by promoting the parameters in the Hamiltonian to ‘flowing’, B-
dependent variables. Hence we start with the following ansatz for the flowing Hubbard Hamiltonian
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Hðt > 0; B0Þ ¼
X

k2K;r2f";#g
�kðBÞ : cykrckr : þ

X
1012022K

U102012ðBÞ : cy10"c1"c
y
20#c2# : d10þ20

1þ2 ð31Þ
Since the flow of the Hamiltonian is closely related to the net energy difference of scattering processes,
an iterative approach will show that the flowing interaction strength inevitably depends on Hamilto-
nian energies U101202ðBÞ � Uð�10 ; �20 ; �1; �2; BÞ with an initial condition U102012ðB0 ¼ 0Þ ¼ U. Inserting (31)
into (30) makes the canonical generator more explicit. With D�101202ðBÞ ¼ �10 ðBÞ � �1ðBÞ þ �20 ðBÞ � �2ðBÞ
it reads
gðBÞ ¼
X

1012022K

U101202ðBÞD�101202ðBÞcy10"c1"c
y
20#c2# : d10þ20

1þ2 ð32Þ
Still this is an implicit definition of the generator since the functional form of the flowing interaction
strength is not known explicitly. Hence an iterative approach to the correct and consistent definition
of the generator is necessary. It starts with a first parametrization of the flowing coupling constants in
(32). In a second step its explicit action onto the Hamiltonian allows to calculate an improved
parametrization.12

5.1.3. Differential flow equations
Let UðB; dBÞ ¼ egðBÞdB be an infinitesimal unitary transformation promoting the Hamiltonian or any

other quantum mechanical observable OðBÞ to a new representation OðBþ dBÞ. A leading order expan-
sion of its action in dB (which corresponds to the angle u in Section 2.2.1)
OðBþ dBÞ ¼ UðB;dBÞOðBÞU�1ðB;dBÞ � OðBÞ þ ½gðBÞ;OðBÞ�dB
gives rise to a differential flow equation
dOðBÞ
dB

¼ ½gðBÞ;OðBÞ� ð33Þ
As a differential statement this is always exact and corresponds to the generic definition of a ‘gener-
ator’ in the theory of unitary operations. Note that in Section 2.2.1 second order contributions in the
angle u have been considered which have no equivalence in a differential approach. Approximations
enter via the iterative interplay between the generator, the Hamiltonian and other observables. The
flow equation method is exact as long as they are considered as abstract, implicitly defined objects.
Represented in a truncated multiparticle operator basis the commutator on the right hand side of
Eq. (33) may generate new terms which have not been part of the original representation. Although
the later may be extended by these operator terms, this typically runs into an infinite regression
and requires approximate truncations. If such a truncation scheme has been established the differen-
tial flow equation for operators can be decomposed into a set of coupled differential equations for
flowing scalar parameters. We show this first for the transformation of the Hamiltonian which serves
to make the canonical generator explicit. All approximations are made with respect to a perturbative
expansion of the initial interaction strength U � UðB ¼ 0Þ.

5.1.4. Transformation of the Hamiltonian and the generator in leading order
We start with the Hamiltonian (31) and a straightforwardly parametrized generator gð1ÞðBÞ ¼

gð0Þ / U [cf. (32)]. The first order contribution to the flow equation for the Hamiltonian, i.e. with
OðBÞ ¼ HðBÞ, comes from the commutator ½gð0Þ;H0� / U and reads
dU101202ðBÞ
dB

¼ �UðD�101202Þ
2

It can be integrated and gives a leading order parametrization for the dependence of the flowing inter-
action strength on energy and on the flow parameter:
s interplay between the definition of the transformation and its action onto the Hamiltonian is a characteristic trait of the
uation technique. It comes as a consequence both of the demand that the transformation should diagonalize the
nian and of the very generic construction of the canonical generator in (30). The implicit definition allows for a generator

s intrinsically well-adapted to the particular Hamiltonian.
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U101202ðBÞ ¼ Ue�ðD�101202Þ
2B ð34Þ
With this parametrization the first-order approximation of the canonical generator reads
gð1ÞðBÞ ¼ U
X

1012022K

D�101202e�ðD�101202Þ
2Bd

k10 þk20
k1þk2

	 : cy10"c1"c
y
20#c2# : ð35Þ
Its characteristic feature is the exponential cutoff function. It suppresses inelastic scattering processes
which violate energy conservation on an energy scale set by KE � B�1=2.

Higher order contributions to the flow of the Hamiltonian include, for example, the renormaliza-
tion of the one-particle energies or second order contributions to the flow of the interaction. We will
show later that within the accuracy of a second order calculation of the time dependent number oper-
ator a leading order implementation of the diagonalization is sufficient; hence they can be neglected
and we write (without any further calculation) the energy-diagonal Hamiltonian approximately as
Hðt > 0; B ¼ 1Þ ¼
X

k2K;r2f";#g
�k : cykrckr : þU

X
1012022K

dðD�101202Þd
k10 þk20
k1þk2

cy10"c1"c
y
20#c2# : ð36Þ
5.1.5. Flow equations for the creation operator
In a second step we map the creation operator into the approximate energy eigenbasis of the Ham-

iltonian by means of the flow equation transformation (33) and (35). We define it as a basis indepen-
dent observable Cyk" which has different representations depending on the value of the flow parameter.
It symbolizes the creation of a physical fermion. In the initial basis of noninteracting fermions, i.e. for
B ¼ 0, it coincides with the formal creation operator ck" which we treat as the building block of an
invariant many-particle operator basis. Represented in this basis, Cyk" acquires a composite multipar-
ticle structure under the flow. New terms emerge on the right hand side of its flow equation (33) and
mirror the dressing of an original electron by electron–hole excitations due to interaction effects.
Respecting momentum and spin conservation, this motivates the ansatz
Cyk"ðBÞ ¼ hk"ðBÞcyk" ð37aÞ

þ
X
10201

M10201"##ðBÞdkþ1
10þ20 : cy10"c

y
20#c1# : ð37bÞ

þ
X
10201

M10201"""ðBÞdk0þ1
10þ20 : cy10"c

y
20"c1" : ð37cÞ
Here hðBÞ and MðBÞ are flowing parameters of the observable Cyk"ðBÞ. The first can be linked to the qua-

siparticle residue via hkF ðBÞ ¼
ffiffiffiffiffiffiffiffiffiffi
ZðBÞ

p
and depicts the coherent overlap of the physical fermion with the

related interaction-free momentum mode (quasiparticle) of the current representation; the later rep-
resents the incoherent background in the spectral function of an interacting system. Inserting this an-
satz into (33) we calculate the differential flow equations for the flowing parameters hðBÞ and MðBÞ. A
consistent normal ordering of all newly generated terms is essential and causes the emergence of
characteristic fermionic phase space factors like Q1220 ¼ n1n2ð1� n20 Þ þ ð1� n1Þð1� n2Þn20 .
@hk"ðBÞ
@B

¼ U
X
1202

D�k1202e�BðD�k1202Þ
2
Q1220M1220"##ðBÞ ð38Þ

@M50605"""ðBÞ
@B

¼ �U
X
202

½nð20Þ � nð2Þ�D�202505e�BðD�202505Þ
2
M60220"##ðBÞ ð39Þ

@M50605"##ðBÞ
@B

¼ U
X

1

h1"ðBÞD�505601e�BðD�505601Þ
2

þ U
X
120

nð1Þ � nð20Þ

 �

M16020"##ðBÞD�201505e�BðD�201505Þ
2

þ U
X

12

1þ nð2Þ � nð1Þ½ �M125"##ðBÞD�501602e�BðD�501602Þ
2

þ U
X
101

M1~510""" �M~50110"""

h i
nð10Þ � nð1Þ

 �

D�101605e�BðD�101605Þ
2 ð40Þ
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A perturbative expansion in U of the flowing parameters hðBÞ and MðBÞ allows to reduce the complex-
ity of the differential equations but depends on their initial conditions. Since the differential equations
are linear, a solution for general initial conditions can be achieved as a linear superposition of solu-
tions for independent initial configurations. We will discuss two cases:

(A) Fully coherent initialization of one fermion in the momentum mode k: hi"ðB0Þ ¼ dk
i and MðB0Þ ¼ 0

for all possible indices.
(B) Fully incoherent initialization in the dressing state p0q0p "##: hiðB0Þ ¼ 0;M10201"##ðB0Þ ¼ dp0

10d
q0

20d
p
1 and

M"""ðB0Þ ¼ 0 for all possible indices.13

5.1.6. Case A: Perturbative analysis at the onset of the flow
We discuss iteratively the action of the differential flow equations at the onset of the flow. In a first

step, the flowing parameters h and M on the right hand side of the differential equations can be
parametrized by their initial conditions (A). Hence only the first term at the right hand side of (41)
remains influential and is, due to its prefactor, of order U. Consequently, M"##ðB > 0Þ is generated in
first order of U. Re-inserted into (38) it accounts for a second order correction to the flowing parameter
hðBÞ. This describes the leading changes to the quasiparticle residue. Re-inserted into (39) and (41) it
unfolds second order effects on flowing parameters of the M type. Since those do not influence second
order results on the momentum distribution function (which will be shown later), this calculation can
be, fortunately, dropped. Moreover, the initial conditions (A) are the natural ones to study the behavior
of physical fermions. As they do not generate M""" in relevant order, the ansatz for Cyk" can be restricted
to (37a). This is a consequence of the Pauli principle which disadvantages dressing of a fermion with
excitations in the same spin state. Simplified flow equations read
13 To
to U. Pe
ohk"ðBÞ
oB

¼ U
X
1202

D�k1202e�BðD�k1202Þ
2
Q1220M1220"## ð41aÞ

oM50605 "## ðBÞ
oB

¼ U
X

1

h1"D�505601e�BðD�505601Þ
2 ð41bÞ
We stress that this analysis is based on an approximate parametrization of the flowing parameters. It
requires that their magnitude under the flow is still sufficiently described by the magnitude of their
initial conditions. The following study will show that for the initial conditions of a physical electron
at the Fermi energy this remains the case throughout the flow and that, then, nonperturbative effects
do not arise.

5.1.7. Approximate analytical solution of the flow equations
We integrate the simplified flow equations (41b) with respect to the flow parameter B. Similar to

the above analysis we iteratively develop the flowing parameters from their initial conditions (A). We
apply the same parametrization h1" ¼ dk

1 and integrate (41b) from B0 ¼ 0 to Bf ¼ B.
MðAÞ;FT
50605"##ðBÞ ¼ U

1� e�BðD�50560kÞ
2

D�50560k
ð42Þ
This serves as an improved parametrization in (41a) and allows to write down a formal second order
correction of hk".
hðAÞk" ðBÞ ¼ 1� U2
Z 1

�1
dEq
ð1� e�Bð�k�EÞ2 Þ2

2ð�k � EÞ2
IkðEÞ ð43Þ
with a phase space factor
IkðEÞ :¼
X
10201

Q10201dðE� �10 � �20 þ �1Þd10þ20

1þk ð44Þ
avoid confusion we stress that in the full context of our problem, this initial condition comes with a prefactor proportional
rturbative arguments always include it.
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5.1.8. Evaluation of the phase space factor
For a further understanding of the flow of hðAÞk" our focus is on the energy dependence of the phase

space factor IkðEÞ. Momentum conservation allows to eliminate the momentum index 1 ¼ 10 þ 20 � k;
we keep it as a shorthand notation. We evaluate IkðEÞ in energy space assuming a constant density of
states q
14 A s
discuss
IkðEÞ ¼ q2
Z 1

�1
d�10

Z 1

�1
d�20Qð�10 ; �20 ; �1ÞdðE� �10 � �20 þ �1Þ ð45Þ
and observe that, at zero temperature, the phase space factor Qð�1; �20 ; �2Þ vanishes for all but two con-
figurations of its energy arguments [71]:
Case
imilar analys
ion of logarit
�10
is based on scaling
hmic and power-law
�20
out the B-depende
divergences.
�1
nce from the energ
Q

y integral leads t
E ¼ �10 � �1 þ �20
(a)
 >�F
 >�F
 <�F
 1
 E ¼ þj�10 j þ j�20 j þ j�1j > 0

(b)
 <�F
 <�F
 >�F
 1
 E ¼ �j�10 j � j�20 j � j�1j < 0
In both cases the limits of the energy integrations in (45) can be restricted by an approximate evalu-
ation of the delta function. Its argument can be rewritten by considering the signs of the one-particle
energies �i which is done in the last column of the above table. From there one reads off that, since E is
a sum of either solely positive or solely negative summands, E forms an upper or lower bound on both
energy integrations individually. Then both cases (a) and (b) lead to the same approximate expression
for the phase space factor
IkðEÞ ¼ q2
Z E

�F

d�10d�201 ¼ q2ðE� �FÞ2 ð46Þ
We finally remark that the phase space factor Qð�10 ; �20 ; �1Þ mirrors the particle–hole symmetry of the
Hubbard model. It implies that all odd powers of a perturbative expansion vanish [66]. We will see in
Section 5.3.5 that Qð�10 ; �20 ; �1Þ is, in particular, responsible for the suppression of secular terms.

5.1.9. Analysis of the later flow of hk"ðBÞ
The approximation (46) allows to interpret the physical relevance of the formal result (43): At the

Fermi surface, i.e. for k ¼ kF , and at zero temperature its quadratic divergence is cancelled exactly by
the phase space factor. This implies that the corrections to hðAÞkF" remain small in second order of U
throughout the flow. Hence the parametrization hðAÞkF" ¼ 1 used in Sections 5.1.6 and 5.1.7 is justified
even beyond the onset of the flow and the approximate analytical solution gives a correct description
of the changes to the quasiparticle residue for all values of B.

Away from the Fermi surface, however, there is no such cancellation by a phase space factor. Now
the energy denominator indicates nonperturbative effects. Expanding the exponential in (43) shows
that the numerator smoothes the peaked energy structure on a B-dependent scale such that a pole
only emerges in the limit of infinite B. Nonetheless, the contribution of an environment around
�k–kF to the energy integral in (43) grows under the flow until it infers a nonperturbative correction
to hðAÞk–kF". This implies a full decay of a particle into incoherent excitations. The corresponding scales
can be extracted from a first order expansion in B.14 Since this is only justified for Bð�k � EÞ2 < 1 we con-
tinuously restrict the environment ½�k � 1=

ffiffiffi
B
p

; �k þ 1=
ffiffiffi
B
p
� around the later pole. With ek ¼ E� �k and

(46), the correction term in (43) has the following dominant behavior for large values of B
DhðAÞk–kF"ðBÞ � �U2B2 q3

2

Z 1ffiffi
B
p

�1ffiffi
B
p

dek ek þ �k � �Fð Þ2e2
k ¼ �U2q3 2

5
1ffiffiffi
B
p þ 2

3

ffiffiffi
B
p
ð�k � �FÞ2

� �
ð47Þ
The first term can be neglected for large B while the second term exhibits the decay scale
o the same scales but requires a
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B� ¼ 1

U4q6ð�k � �FÞ4
or E� ¼ U2q3ð�k � �FÞ2 ð48Þ
The quadratic energy dependence of E� resembles the characteristic finite lifetime of Landau quasipar-
ticles away from the Fermi surface s � ð�k � �FÞ�2. Here it illustrates the complete decay of a physical
fermion. This implies that on a scale set by B� the parametrization of h1" ¼ dk

1 in Sections 5.1.6 and
5.1.7 becomes unjustified and the analytical solution (43) breaks down. Instead, a better solution of
the differential flow equations would show a complete transfer of the spectral weight from the
one-particle to many-particle representations.

This allows to discuss the reliability of our solution: For particles in a perturbatively small environ-
ment around the Fermi energy, i.e. �k � �kF

� U, the energy scale E� � OðU4Þ is beyond the resolution of
a second order calculation. Hence the particle decay cannot be observed on all accessible times. There-
fore the extension of the approximate solution (Section 5.1.7) to an environment around the Fermi en-
ergy of radius U leads to a consistent second order result. Equilibrium calculations have shown that
the broadening of the momentum distribution due to interaction effects is concentrated in this region
[63,73].

Outside of this environment, particles decay completely into incoherent multiparticle excitations.
This implies that, strictly speaking, the validity of (42) breaks down. Nonetheless, it shows that under
the flow the spectral width CMðBÞ of newly arising incoherent M-terms continuously decreases. This
indicates that at the decay scale spectral weight is transferred from coherent particles (with a sharp
spectral distribution) primarily to excitations with CM � E�. Since even far away from the Fermi energy
this is perturbatively small in U2, the effects of this small widening will not influence the shape of the
momentum distribution function. Therefore the solution (Section 5.1.7) allows for a calculation of the
momentum distribution function on all energies.

5.1.10. Composition of the number operator
Since the transformation for the creation operator of an electron around the Fermi energy has been

established in second order perturbation theory, the number operator N k ¼ CykCk can be easily com-
posed from the ansatz (37a). The momentum distribution is given by its expectation value with re-
spect to the equilibrium ground state or the nonequilibrium initial state. Then only quadratic terms
in hðBÞ and MðBÞ contribute15:
NkðB; tÞ ¼ hFGjN kðB; tÞjFGi ¼ jhkðB; tÞj2nk þ
X
10201

n10n20 ð1� n1ÞjMk
10201"##ðB; tÞj

2d10þ20

1þk ð49Þ
A possible time dependence has already been included for later reference.

5.2. Equilibrium momentum distribution

Similarly to the approach in [74] we observe that the flow equation transformation resembles in
many aspects a unitary implementation of Landau’s theory of a Fermi liquid. Although a strict identi-
fication of the diagonal degrees of freedom obtained from the flow equation approach with Landau
quasiparticles is not possible, they motivate an analogous picture of flow equation quasiparticles; like
their Landau counterparts they are stable only at the Fermi energy and subject to a residual quasipar-
ticle interaction which is carried by the nonvanishing two-particle component of the energy-diagonal
Hamiltonian. Nonetheless, these quasiparticles absorb most of the interaction effects into their defini-
tion such that the quasiparticle representation of the interacting ground state is, in good approxima-
tion, the filled Fermi sea.

Hence the momentum distribution in equilibrium can be calculated in a similar way as the equi-
librium occupation of the squeezed oscillator (12) using (49), (42) and (43).
s simple representation of NkðB; tÞ depends in a subtle way on the chosen normal ordering prescription. Here the reference
the normal ordering procedure is identical with that state for which the expectation value of the number operator is taken.
states disagree, cross-terms proportional to � h	M appear.
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¼ �U2
Z 1

�1
dE

JkðE; nÞ
ðE� �kÞ2

ð50Þ
where the phase space factor
JkðE; nÞ ¼
X
10201

d10þ20

1þk dð�10 þ �20 � �1 � EÞ½nkn1ð1� n10 Þð1� n20 Þ � ð1� nkÞð1� n2Þn10n20 � ð51Þ
resembles the quasiparticle collision integral of a quantum Boltzmann equation [75]. We will compare
(50) with the time dependent momentum distribution after an interaction quench.

5.3. Nonequilibrium momentum distribution

We continue our approach towards the nonequilibrium momentum distribution by evaluating the
time dependence of the creation operator represented in the initial basis ðB ¼ 0ÞCyk"ðB ¼ 0; tÞ ¼
hk"ð0; tÞ cyk" þ

P
10201M10201"##ð0; tÞ dkþ1

10þ20 : cy10"c
y
20#c1# : according to Fig. 1. Our aim is to write these time

dependent coefficients hð0; tÞ and Mð0; tÞ in Section 5.3.3 as functions of analogously defined (but time
independent) parameters of the forward transformation (FT; see Section 5.1.7) and the backward
transformation (BT; see Section 5.3.2) as well as of time dependent phase factors introduced by time
evolution (Section 5.3.1). Fig. 3 illustrates some of the used notation and the power counting of the
perturbative analysis.

5.3.1. Time evolution
We time evolve the creation operator in its energy-diagonal representation Ck"ðB!1Þ with re-

spect to the energy-diagonal Hamiltonian. Its leading part, the noninteracting Hamiltonian, generates
a time evolution according to Uðt; t0 ¼ 0Þ ¼ eiH0t which can be treated exactly. Corrections arise due to
the energy-diagonal interacting part of the Hamiltonian and cause the appearance of secular terms. It
will be shown in Section 5.3.5 that they can be neglected in a second order calculation. Hence the ac-
tion of U onto the ansatz (37a)
Cyk"ðB; tÞ ¼ hðAÞ;FT
k" ðBÞUyðt;0Þcyk"Uðt;0Þ þ

X
10201

MðAÞ;FT
10201"##ðBÞd

kþ1
10þ20U

yðt;0Þ : cy10"c
y
20#c1# : Uðt; 0Þ ð52Þ
In nonequilibrium, a fermionic particle Cyk decays with time. We only consider processes which contribute to the
tum distribution up to second order in U. In this schematic diagram the sequence of transformations applied to Cyk is

ted. The FORWARD transformation starts with the fully coherent initial conditions of a physical particle. TIME arrows
the insertion of phase shifts, the BACKWARD transformation can be decomposed into fully coherent (A) initial

ns and fully incoherent (B) ones. The result of the sequence of transformations is expressed in total coefficients h and M.
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is for B!1 fully described by additional phases accompanying the parameters hðAÞ;FT and MðAÞ;FT .
hk"ðB!1; tÞ ¼ ei�kthðAÞ;FT
k0" ðB!1Þ ð53aÞ

M10201"##ðB!1; tÞ ¼ eið�10 þ�20 ��1ÞtMðAÞ;FT
10201"##ðB!1Þ ð53bÞ
5.3.2. Inverse transformation
The final step depicted in Fig. 1 is the backward mapping of the time-evolved observables into the

original representation of physical fermions. It is implemented by the inverse sequence of differential
unitary transformations and simply achieved by interchanging the limits of the B-integration in the
forward transformation or, intuitively, by ‘running the transformation backwards’ [48]. Yet the decay
of a physical fermion under the forward transformation has generated nonvanishing incoherent con-
tributions in order U; therefore different initial conditions for the backward transformation of
Ck"ðB ¼ 1; t > 0Þ apply. According to Section 5.1.5 a linear combination of the solutions for (A) and
(B) leads to a full solution at arbitrary initial conditions. Case (A) can directly be taken from Section
5.1.7 with MðAÞ;BT ¼ �MðAÞ;FT and invariant hðAÞ. The discussion of case (B) is simplified by noting that
the prefactor of its nonvanishing initial condition is proportional to U because of the generation of this
term under the forward transformation. We will consider this additional power of U in a perturbative
analysis of the relevant contributions but solve the differential equations for the unweighted initial
conditions of case (B).

Case B: Perturbative analysis and approximate solution. At the onset of the backward flow, i.e. for large
values of the flow parameter ðB0 ¼ 1Þ, we insert the weighted initial conditions of case (B) as a con-
stant parametrization into the right hand side of the flow equations (38), (39), (41). With
M"## � OðUÞ;hk"ðBÞ is generated by (38) to second order in U; hence, within a second order calculation,
the parametrization hk" ¼ 0 holds throughout the backward transformation. Consequently, corrections
to M"## are second order in U, as well is the generation of M""". Looking at (55b) and back to (49) shows
that a second order result of the momentum distribution only requires the knowledge of M to first or-
der. This is a priori known by the weighted initial condition. Integrating (38) gives
hðBÞ;BT
k" ðBÞ ¼ UQ p0q0p

e�BðD�p0pq0kÞ
2

D�p0pq0k
ð54aÞ

MðBÞ;BT
10201"##ðBÞ ¼ dp0

10d
q0

20d
p
1 ð54bÞ
5.3.3. Composite transformation
We finish the computation of the time dependent creation operator by composing the forward

transformation (FT), the approximate time evolution and the backward transformation (BT) and rep-
resent the joint result in terms of time dependent parameters hk"ðB ¼ 0; tÞ and M"##ðB ¼ 0; tÞ. Fig. 3
gives a pictorial representation of these expressions.
hk"ðB ¼ 0; tÞ ¼ hðAÞ;BT
k" ei�kthðAÞ;FT

k" þ
X
p0q0p

hðBÞ;BT
k0" eið�p0 þ�q0 ��pÞtMðAÞ;FT

p0q0p"## ð55aÞ

Mk0

10201"##ðB ¼ 0; tÞ ¼ MðAÞ;BT
10201"##e

i�kthðAÞ;FT
k" þ

X
p0q0p

MðBÞ;BT
p0q0p"##e

ið�p0 þ�q0 ��pÞtMðAÞ;FT
p0q0p"## ð55bÞ
5.3.4. Nonequilibrium momentum distribution
Inserting the results (42), (43), (53b) and (54b) via (55b) into (49) yields the nonequilibrium time

dependent momentum distribution function for the initial state jX0i.
NNEQ
k ðtÞ :¼ hX0jN kðB ¼ 0; tÞjX0i ¼ nk � 4U2

Z 1

�1
dE

sin2ððE� �kÞt=2Þ
ðE� �kÞ2

JkðE; nÞ ð56Þ
We define the correlation-induced time-dependent correction to the momentum distribution
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DNNEQ
k ðtÞ ¼ NNEQ

k ðtÞ � nk
and perform a time average of its long-time limit. Note that Eq. (56) resembles the structure of Fermi’s
golden rule. There the same energy kernel consisting of the same sinusoidal time dependence and en-
ergy denominator becomes increasingly localized with time such that, in the limit of infinite time, the
energy integral collapses into a secular term / t [76]. Here, however, the energy dependence of the
phase space factor compensates for the energy denominator at the Fermi energy. This is a particular
feature of a many-body fermionic system at zero temperature. Interchanging time average and energy
integration then results in a factor of 1/2. Around the Fermi energy, the long-time limit of the second
order perturbative correction to the correlated momentum distribution is given by
DNNEQ
k :¼ lim

t!1
DNNEQ

k ðtÞ
D E

t
¼ �2U2

Z 1

�1
dE

JkðE; nÞ
ð�k � EÞ2

¼ð50Þ
2DNEQU

k ð57Þ
Compared with the equilibrium result one observes the key factor two. It represents a similar mis-
match of the quasiparticle residue: Its correlation-induced reduction is doubled in nonequilibrium
compared to the equilibrium result 1� ZNEQ ¼ 2ð1� ZEQUÞ.

5.3.5. Vanishing influence of leading secular terms
The interpretation of a perturbatively calculated long-time limit result must be based on an anal-

ysis of possible secular corrections. Such terms may arise from a simultaneous expansion in both the
interaction and time as it was done naïvely by the zeroth order approximation UB!1ðt; t0 ¼ 0Þ ¼
eiHðB!1Þt � eiH0t in Section 5.3.1; they may render a calculation unreliable on short time scales. We,
firstly, notice that up to second order the decomposition eiHt ¼ eiH0teiHinttet2 ½H0 ;Hint �=2 � eiH0teiHintt is exact
since in the energy-diagonal representation the generator gðBÞ ¼ ½H0;Hint� [cf. (32)] vanishes.

Secondly, we will show that the first order expansion of DUðt; t0 ¼ 0Þ ¼ eiHintðB!1Þt , acting onto the
ansatz (37a) like U in (52), does not influence the momentum distribution. The further analysis is
simplified by the observation that these correction terms (which, of course, solely root in the time
evolution of the creation operator) can be formally written as time-dependent corrections to the for-
ward transformation. This allows to straightforwardly evaluate their contribution to the full time
evolution of the momentum distribution function by inserting the following corrections into (55b)
and (49):
DhFT
k" ¼ �itU

X
p0q0p

MðAÞ;FT
p0q0p Qp0pq0d

pþk
p0þq0dðD�p0pq0kÞ

¼ð42Þ
itU2

Z
dE

IkðEÞ
E� �k

dðE� �kÞ �
ð46Þ

0 ð58aÞ

DMFT
10201 ¼ �itUhðAÞk" dðD�10120kÞd1þk

10þ20 ð58bÞ
(58a) vanishes because of the phase space evaluation presented in Section (5.1.8). The same argument
holds for the influence of (58b) either directly in (55a) or finally in (49). Altogether, there is no leading
correction.

Moreover, there is no second order secular term contributing to the momentum distribution. The
only one conceivable can be an outcome of the following transformation
cykðB ¼ 0Þ !FT

Oð1Þ
cykðB ¼ 1Þ !

Hint

OðUtÞ
: cy10c

y
20c1 : ðB ¼ 1Þ !Hint

OðUtÞ
cykðB ¼ 1Þ !

BT

Oð1Þ
cykðB ¼ 0Þ
The corresponding correction can be constructed from (58a) and (58b) and vanishes similar to (58a).
Here we observe the suppression of secular terms due to the interplay of time evolution with re-

spect to an energy-diagonal Hamiltonian and fermionic phase space factors. It occurs, in most cases,
already on the level of the transformation of the creation operator. This illustrates the advantages
of the chosen transformation scheme. One secular term, however, only vanishes because of the partic-
ular structure of the transformed number operator.

We conclude that the time evaluation with respect to the noninteracting Hamiltonian H0 in Section
5.3.1 is justified and that the second order long-time limit (57) is not modified by secular corrections.
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5.4. Nonequilibrium energy relaxation

Before we discuss the time behavior of the quenched Fermi liquid we establish some results on
momentum mode averaged energies like the kinetic energy or the interaction energy.
16 Not
ENEQ ;INTðtÞ :¼ UhX0jHintðtÞjX0i ð59Þ

ENEQ ;KINðtÞ :¼ UhX0jH0ðtÞjX0i ¼
Z 1

�1
d�k�kNkðtÞ ð60Þ
Although the total energy of a closed system is conserved, its partition onto interaction energy and
kinetic energy after the quench is time dependent.

The energy zero point is defined by the Fermi energy of the noninteracting Fermi gas
�F ¼ hX0jH0jX0i � 0. It agrees with the kinetic energy shortly after the quench ENEQ ;KINðt ¼ 0þÞ ¼ 0 be-
cause the state of the system is not changed by the quench directly and the time evolution of H0 with
respect to H has not been effective. Moreover, as Hint is normal ordered with respect to jX0i, also the
interaction energy shortly after the quench vanishes ENEQ ;INTðt ¼ 0þÞ ¼ 0. This implies that the total
energy before and after the quench remains identically zero ENEQ ¼ hX0jHjX0i :¼ 0. However, since
the ground state of the interacting normal-ordered Hamiltonian is lower that that of the Fermi gas,
the system is initialized in an excited state.

5.4.1. Equilibrium energies
The point of reference of all energy considerations at nonnegative times, however, is the total en-

ergy of the equilibrium ground state of the interacting system. We calculate it in perturbation theory
with respect to the noninteracting Hamiltonian H0; note that its eigenstates jmi (m 2 N0 with
jX0i ¼ j0i) are nondegenerate.
EEQU :¼ hXjHjXi ¼P:T: h0jH0j0i þ h0jHintj0i|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ENEQ¼0

þ
X

m–0

jh0jHintjmij2

�0 � �m|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
��EEXC

þOðU3Þ ð61Þ
This allows to read off the excitation energy of the quenched quantum system above the interacting
ground state EEXC :¼ ENEQ � EEQU ¼ U2qFa P 0. It is positive, second order in U and its precise value de-
pends—due to the summation over all quantum numbers m—on the lattice structure. We hide such
details in a numerical prefactor a.

Further equilibrium energies can be calculated from the Feynman–Hellman theorem [77]16
oEEQUðUÞ
oU

¼ XðUÞ oHðUÞ
oU

���� ����XðUÞ	 

¼ð61Þ � 2

U
EEXC¼H XðUÞ Hint

U

���� ����XðUÞ	 

¼ EEQU;INT

U
ð62Þ
With (61) and (62) we know EEQU;INT ¼ �2EEXC and EEQU;KIN ¼ EEXC.

5.4.2. Nonequilibrium energies
Next we calculate the nonequilibrium energies in the long-time limit of the second order calcula-

tion. As the Fermi energy is set to zero,
ENEQ ;KIN ¼
Z

d�k�kDNNEQ
k ¼ð57Þ

2EEQU;KIN ¼ 2EEXC ð63Þ
and ENEQ ;INT ¼ �2EEXC. All energies are sketched in Fig. 4. Hence a second order calculation shows that
the excitation energy of the quench is fully converted into additional kinetic energy such that
ENEQ ;KIN ¼ EEQU;KIN þ EEXC while ENEQ ;INT ¼ EEQU;INT.

This is a remarkable observation.
e that the norm of the interacting ground state is invariant.



Fig. 4. Sketch of the total energy (full line), kinetic energy (broken line) and interaction energy (dotted line) for the equilibrium
(thin lines) and nonequilibrium (thick lines) case in second order perturbation theory. Nonequilibrium energies are compared at
the quenching time and in the limit of infinite time. The bowed arrows indicate the corresponding energy relaxation, the
straight arrows the gain in kinetic energy (broken filling) which equals the total excitation energy over the equilibrium ground
state (full filling).
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5.4.3. Interpretation
The redistribution of energy between potential and kinetic energy occurs in an early phase of the

evolution of the model. Although the full excitation energy is transferred to the kinetic degrees of free-
dom this does not mean that the model has thermalized. While on average the kinetic energy has ac-
quired its final value the distribution of the energy on the various (momentum) degrees of freedom is
still a nonequilibrium one. This can be seen in the momentum distribution function which will relax to
thermal equilibrium only on a much longer time scale. In between there is a time regime in which a
characteristic nonequilibrium momentum distribution is retained while the energies have already
relaxed.

5.5. Discussion of a multi-step dynamics of the nonequilibrium Hubbard model

In the following we will illustrate the consequences of the above calculations and develop a picture
of the real-time evolution of a Fermi liquid after an interaction quench. We observe three different
time regimes which we illustrate by a numerical evaluation of the time dependent momentum distri-
bution (56).

For computational convenience we use the limit of infinite dimensions where momentum sums
can be evaluated by energy integrals. It is generally assumed that in this limit the generic features
of a Fermi liquid are retained. A Gaussian density of states qð�Þ ¼ expð�ð�=t�Þ2=2Þ=

ffiffiffiffiffiffiffi
2p
p

t� includes
the constraints of a hypercubic lattice. t� is linked to the hopping matrix element by dimensional scal-
ing t ! t�ffiffiffiffi

2d
p to retain a nontrivial relation between the kinetic and the interaction energy in all dimen-

sions [78]. qF ¼ qð� ¼ 0Þ denotes the density of states at the Fermi level. For three time steps explicit
results are depicted in Fig. 5(a).

5.5.1. Short-time quasiparticle build-up and nonequilibrium state
The first time regime is the one covered by the above second order perturbative calculation. The

evolution of the time dependent momentum distribution for physical fermions exhibits the build-up
of multiparticle correlations from a noninteracting Fermi gas which leads to the formation of a qua-
siparticle description. The shrinking of the Fermi surface discontinuity of the momentum distribution
to a finite, nonzero value (Fig. 5(a) mirrors the fast reduction of the quasiparticle residue from one to
ZNEQ < 1 on a time scale is set by second order perturbation theory 0 < t Kq�1

F U�2. 1=t-oscillations
accompany this process.



Fig. 5. In (a) the time evolution of the momentum distribution NNEQ ð�Þ is plotted around the Fermi energy for qF U ¼ 0:6. A fast
reduction of the discontinuity and 1/t-oscillations can be observed. The arrow in the plot for t ¼ 2:5 indicates the size of the
quasiparticle residue in the quasi-steady regime. In (b) the universal curves for the correction to the momentum distribution
DNk ¼ Nk � nk are given for both the equilibrium and for the nonequilibrium quasi-steady state in the weak-coupling limit.
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Afterwards, the momentum distribution functions indicates that a zero temperature Fermi liquid
description holds. Hence, quasiparticles are well-defined quantities around the Fermi surface. However,
the mismatch of the quasiparticle residue by a factor of two (57) when compared to the corresponding
equilibrium distribution displays its continued nonequilibrium nature and a postponed relaxation.

It is helpful to change the point of view from a momentum distribution of physical fermions (PF) to
one of quasiparticles (QP). They agree with each other on the main features. However, since interac-
tion effects are absorbed into the definition of the quasiparticles, the quasiparticle distribution exhib-
its less pronounced correlation-induced signatures. In equilibrium they vanish completely and a zero
temperature quasiparticle distribution always equals a filled Fermi sea with a Fermi surface disconti-
nuity of size one NEQU;QP

k ¼ Hð�F � �kÞ.
In nonequilibrium, this absorption of interaction effects is incomplete. Due to the increased corre-

lation-dependent reduction of the quasiparticle residue by a factor of two a mapping of the nonequi-
librium momentum distribution for physical fermions into a quasiparticle representation will
generate a distribution with a reduced Fermi surface discontinuity. In second order perturbation the-

ory NNEQ ;QP
k ¼ NEQU;PF

k . The reduced discontinuity of the quasiparticle distribution now describes the
deviation from equilibrium. We will discuss its further relaxation.

While, so far, we have only observed a partial relaxation of the momentum distribution, the second
order calculation shows a complete transfer of the excitation energy from interaction energy to kinetic
energy [cf. Fig. 4]. However, since the momentum distribution still exhibits zero-temperature features,
this is not related to heating. The simultaneous relaxation of average energies and non-relaxation of
other, mode-specific expectation values is known as prethermalization. It has been described in non-
equilibrium quantum field theories modeling, for instance, the early universe [79] and underlines
the nonequilibrium nature of the final state depicted by Fig. 5(a).

5.5.2. Intermediate quasi-steady regime
So far we have observed the build-up of a characteristic nonequilibrium state which we have char-

acterized by its energies and momentum distribution. A study of corrections to the second order per-
turbative result shows that it extends throughout a second time regime: As the Hubbard model is
particle–hole symmetric [66] the next nonvanishing contributions are expected in fourth order. Their
relevance for the further dynamics will be discussed later. Here we note that there are no immediate
changes to the state of the system for times t Jq�1

F U�2. Hence the nonequilibrium Fermi liquid state
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represents an intermediate quasi-steady regime of the dynamics; for small values of the interaction U
it holds for q�1

F U�2 K t Kq�3
F U�4. This should simplify the observation of this nonequilibrium state in

prospective experiments.

5.5.3. Long-time behavior—thermalization
The mentioned fourth order corrections to the flow equations calculation describe the characteris-

tic dynamics of a third time regime on a scale t � q�3
F U�4. It originates both from higher order terms of

the diagonalizing transformation and from the full time evolution generated by the energy-diagonal
interaction Hamiltonian. Their full calculation is beyond the scope of this work. Fortunately, an effec-
tive treatment of elastic scattering processes in a quasiparticle representation is provided by the quan-
tum Boltzmann equation (QBE) [75]
oNQP
k ðtÞ
ot

¼ �qFU2JkðE ¼ �k;N
QPðtÞÞ ð64Þ
Based on its main prerequisite, a well-established quasiparticle picture, it models phenomenologically
the relaxation of a nonequilibrium quasiparticle distribution to a thermal one. One generally expects
that it describes the correct long-time behavior although its proper derivation remains an unsolved
but well-discussed problem of mathematical physics; this contains the delicate question how the
transition from a deterministic quantum dynamics to a irreversible statistical description can be rig-
orously achieved [80]. Here we only motivate its application.

The characteristic features of the quantum Boltzmann equation can be read off its right hand side
which is commonly referred to as the scattering integral [81]. Since JkðE ¼ �k;nÞ is energy conserving it
describes similar elastic two-particle scattering processes as the energy-diagonal interacting part of
the Hamiltonian. Thus a (QBE) description appears as a natural extension of a flow equation analysis
which only addresses energy non-diagonal processes. This motivation is backed by the observation of
a related coincidence: a perturbative expansion of the scattering integral for the intermediate steady
state leads to an analogous fourth order correction as it is expected in the flow equation approach.
Therefore we link the QBE to the previous dynamics by taking the quasiparticle momentum distribu-
tion of the intermediate nonequilibrium Fermi liquid state NNEQ ;QP

k as its initial condition. Because
NQP:NEQ

k allows nonzero phase space for scattering processes in the vicinity of the Fermi surface, line-
arizing the phase space factor in the scattering integral shows that the initial quasiparticle distribution
function starts to evolve on the time scale t / q�3

F U�4. This implies that the quasi-steady fermionic dis-
tribution function depicted in the last panel of Fig. 5(a) starts to decay on the same time scale.

The further dynamics of the quasiparticle momentum distribution function follows, again, from the
scattering integral. Since JkðE ¼ �k; nÞ vanishes for Fermi–Dirac distributions ðn ¼ nFDÞ these are the sta-
ble fixed points of (64). Moreover, the scattering integral conserves the kinetic energy such that the evo-
lution towards a fixed point is constrained to an energy hypersurface in phase space. Hence, if the
quantum Boltzmann dynamics continues until it reaches its stable fixed point, thermalization of the
momentum distribution can be expected. This implies that the excitation energy, which has relaxed into
an excess of kinetic energy already at an earlier stage, is redistributed among the momentum modes until
a thermal distribution is achieved. The corresponding temperature Tth � U of the thermal momentum
distribution follows directly from fitting its Sommerfeld expansion [82] to the excitation energy.

Notice that fourth order corrections to the diagonalizing transformation may cause an obliteration
of the Fermi surface discontinuity even for short times. However, after the quench, the momentum
distribution will still show a steep descent; therefore its widening can be safely neglected. We want
to mention that the assumption of a quasiparticle picture for all later times is nontrivial. This is a gen-
eral question of a QBE approach and is usually accepted.

5.6. Consequences of the Hubbard dynamics

In the past section we have observed the separation of two time scales of the Hubbard dynamics.
While interaction effects lead to a rapid establishment of a quasiparticle picture, the equilibration of
the momentum distribution, i.e. heating, is deferred to a much later time. This delayed relaxation is a
consequence of two fundamental properties: Firstly, the Pauli principle imposes characteristic phase
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space restrictions on a multiparticle fermionic system. Those suppress two-particle scattering processes
and, thereby, reduce the efficiency of an interaction-driven momentum relaxation; they are responsible
for the generic appearance of particle-like low energy excitation physics in a Fermi liquid such that a
meaningful analogy between the behavior of the squeezed one-particle oscillator and the many-body
Hubbard model can be justified. Secondly, translational invariance implies the conservation of lattice
momenta. Hence there is no other way of momentum relaxation than by momentum transfer in two-par-
ticle (or higher) scattering processes. In combination, these two properties form a restrictive bottleneck
for the relaxation dynamics. The particular form of the interaction, however, is less important. For the
above calculations we have assumed the applicability of perturbation theory in the interaction strength.
Since only second order and fourth order terms describe the evolution of the momentum distribution,
there is no difference between attractive and repulsive interactions; moreover, a generalization to non-
local interactions is easily possible by introducing momentum dependent interaction matrix elements.
The main observation of a characteristic mismatch between the—interaction dependent—zero temper-
ature correlated equilibrium ground state of the momentum distribution and a similarly shaped distri-
bution in the intermediate regime of the nonequilibrium case persists. Hence we expect similar
nonequilibrium behavior for a large class of weakly interacting and perturbatively approachable model
systems independent of the exact nature and the particular form of the interaction. This reflects the
rather generic applicability of Fermi liquid theory for not too strongly interacting systems in equilibrium.

Moreover, our findings are relevant for studies focussing on the nonequilibrium physics of models
with a Fermi liquid instability (FLI). Let us consider a quench from a noninteracting Fermi gas into a
phase which exhibits such an instability. In the subsequent dynamics on a build-up time tFLI�B one ex-
pects both the build-up of the Fermi liquid instability and characteristic nonequilibrium physics re-
lated to it. Since nonperturbative weak interaction instabilities are typically linked to exponentially
small energy scales, tFLI�B will be large such that characteristic features of the instability are not ob-
servable for short times after the quench. In this regime, our perturbative calculation for the nonequi-
librium Fermi liquid applies approximately even in the presence of a nonperturbative instability.
Quenching into a FLI-phase then requires us to compare the timescales of the dynamics of the non-
equilibrium Fermi liquid with that of the instability.

If the FLI-phase is nonperturbative and distinguished by a gap in the energy spectrum, as it is, for
example, the superconducting phase of a Hubbard model with an attractive interaction, an excitation be-
yond the energy gap is essential to observe any characteristic nonequilibrium behavior. This excitation
can be induced by a sudden interaction quench. As we have seen the inserted energy causes heating ef-
fects which may wipe-out all signatures of the FLI. Still the delayed onset of heating in a Fermi liquid can
open a time window for the observation of the nonequilibrium dynamics even in the FLI regime.

A popular example for such behavior is the BCS instability. Recently the study of its nonequilibrium
dynamics following a sudden quench in the BCS interaction has attracted a lot of attention; depending
on the precise conditions of the quench, for instance oscillatory behavior in the order parameter
DBCSðtÞ has been found [83,84,22]. These studies only focus on the behavior of the (nonlocal) BCS Ham-
iltonian which is an effective low energy description of a superfluid. Since its dynamics is integrable a
complete topological classification of the behavior of all excited states could be given [22] and no
heating is observed. The actual experimental realization in optical lattices, however, only allows for
a quench of the local two-particle Hubbard interaction. Aside from the emergence of an effective
BCS interaction, the persistent influence of ordinary Fermi liquid behavior can be expected in such sys-
tems. Then a quench simultaneously initializes the nonequilibrium dynamics of the instability and
heating effects. For a sudden quench heating dominates in agreement with [84] (since
Teff � DBCS ¼ expð�1=jqUjÞ) and makes the nonequilibrium BCS dynamics unobservable. Hence a fur-
ther analysis of the crossover between instantaneous and adiabatic switching is required to study the
visibility of such nonequilibrium dynamics.

6. Conclusions

In this paper we have presented the real-time dynamics following an interaction quench for sys-
tems with a discrete energy spectrum and for a Fermi liquid. In all cases we have discussed our key
observation which is a discrepancy between the equilibrium and the long-time averaged nonequilib-
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rium occupation by a factor of two. This factor appears precisely in the modification of the noninter-
acting occupation due to interaction effects and illustrates a simple example for the interplay of inter-
actions and nonequilibrium conditions.

In a first analysis this factor was calculated for the squeezed oscillator. Since this is an exactly solv-
able one-particle model, a comparison between the perturbative and the exact result showed that this
discrepancy is not an artifact of perturbation theory. The precise value of two, however, is only
reached in the limit of weak interaction. Afterwards, this observation was formulated as a theorem
applicable to a larger class of discrete systems and observables. We have given two proofs which point
out aspects of the origin of the factor two. One of them reconstructs and illustrates the applied trans-
formation scheme which we used to calculate the nonequilibrium dynamics.

These observations for discrete systems are paralleled by analogous behavior for the zero-temper-
ature momentum distribution function of a quenched Fermi liquid. In the second part of this paper we
presented details on a weak interaction quench within the Fermi liquid phase of the Hubbard model in
more than one dimension [1]. To cope with the continuous energy spectrum of this Hamiltonian we
based our calculation on the flow equation method following Wegner to achieve an approximate diag-
onalization in energy space. Since the Hubbard model in more than one dimension is nonintegrable,
the expectation is that the expectation values of simple observables should thermalize. Hence the
characteristic mismatch of the nonequilibrium momentum distribution function when compared with
the equilibrium one can only be a transient phase of a longer relaxation dynamics. Accordingly, we
have found a three step dynamics of the quenched Fermi liquid: During the first phase a nonequilib-
rium quasiparticle description builds up which is characterized by an untypical value for the nonequi-
librium quasiparticle residue. Again, the factor of two appears in the correlation-induced reduction of
the quasiparticle residue and mimics one-particle behavior. The momentum distribution of this tran-
sient nonequilibrium state remains frozen throughout a second phase which can be large for weak
interaction. This has been explained by referring to the restricted phase space for two-particle scatter-
ing in a zero-temperature fermionic many-body system and corresponds to the collisionless regime. It
delays momentum relaxation but does not prevent prethermalization of the kinetic energy. A third
phase of the dynamics of the momentum distribution follows from the nonequilibrium nature of
the transient state. Its nonequilibrium momentum distribution opens phase space for further scatter-
ing events. Upholding a quasiparticle picture their backaction onto the momentum distribution is de-
scribed by a quantum Boltzmann equation which is an effective kinetic equation for the momentum
distribution function in terms of a scattering integral. Since the later vanishes for equilibrium distri-
bution functions and nonequilibrium derivations are small in U2 it predicts the thermalization of the
momentum distribution on a longer timescale set by tth � q3U�4.

This is a major difference to a similar analysis for fermions in one dimension [27]. There a quench
in the forward scattering leads to an integrable dynamics which equals, after bosonization, that one of
the squeezed oscillator for each of the momentum modes. In consequence, a similar mismatch be-
tween critical exponents of equilibrium and nonequilibrium correlation functions has been found
which approaches the factor two in a perturbative limit. However, as no residual quasiparticle inter-
action occurs, thermalization is impossible: from our point of view our quasi-steady regime extends to
all times in this one-dimensional model. Comparing the results for the one-dimensional case with our
observations for higher dimensions elucidates how thermalization occurs or is inhibited in these two
translationally invariant systems.

Another perspective for further research lies in the examination of the crossover from instanta-
neous to adiabatic switching.
Note added in proof

The transient prethermalized state in the relaxation dynamics of the weakly quenched Hubbard
model which has been predicted in [1] and whose origin is explained in this paper has most recently
been confirmed in numerical simulations within dynamical mean field theory [85]. In particular, the
well-separated prethermalization regime can be seen up to surprisingly large values of the interaction
U / 2.5.
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