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Abstract
This text is an introductory review about graphene, a two dimensional layer of
graphite crystals. The stability of two dimensional crystals is addressed by the
Mermin-Wagner theorem which excludes long range order for two dimensional
systems. However, experiments, simulations and the theory of polymerized
membranes hold the formation of ripples responsible for the stability. From the
tight binding model the dispersion relation is derived, describing massless,
ultra-relativistic particles in the low energy limit. Furthermore, the low energy
expansion is driven to a real QED like description, which is compared to
massless neutrinos. Finally, the integer quantum Hall effect, appearing at a
half-integer sequence and at room temperature shows that the underlying
relativistic structure of the quasi particles is responsible for the unconventional
Hall quantization. Hence, knowledge and methods from high-energy physics like
the Atiyah-Singer index theorem are applicable, showing that graphene is really
a condensed matter realisation of ultra-relativistic particles.
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1 Introduction

Graphene, one layer of graphite is a hot topic in solid state physics which extends
the diversity of two dimensional electron systems. Long time before A. Geim and
K. Novoselov obtained the first graphene flakes at Manchester University with
micro mechanical cleavage it was an object of research. Nevertheless, since its
discovery, graphene invaded the solid state and material science community and
let to some unexpected physics. In conceptual respect, graphene is the start-
ing point of other carbon allotrops like nanotubes and fullerens. Furthermore,
graphene connects high energy particle physics with low energy condensed matter
physics, allowing table top observation of relativistic particles. Electrons at low
energies behave like ultra relativistic massless particles moving with an effective
speed of light vF ≈ 106m/s. Moreover it exhibits a quantum phenomenon which
is still present at room temperatures, namely the quantum Hall effect. Besides
these features graphene may be a possible candidate for a ballistic field effect
transistor which would give perspectives for electronics beyond silicon. Finally,
carbon shows once more that it is possibly the most fascinating element of nature
dominating large parts of science.

1.1 How to get graphene?

Graphene and other two dimensional materials like BN , MoS2, NBSe2 and
Bi2Sr2CaCu2Ox are produced by micromechanical cleavage [21], a process of
such a conceptual simplicity, that it almost seems absurd that two dimensional
crystals still were undiscovered until recently. Naivily spoken, micromechanical
cleavage is compareable to “drawing by chalk on a blackboard“ and then seeking
for monolayer flakes. Most of the efforts to gain two dimensional structures, that
were done before Andre Geim and Kostya Novoselov from Manchester University
in the UK discovered graphene in 2004, used chemical exfoliation of strongly lay-
ered materials. For instance graphite, where the in plane bonds are very strong
compared to the weak van der Waal-like coupling between those layers. This type
of a three dimensional crystal, arranged in layers, is necessary as a raw material
for the micromechanical claevage process.
The two dimensional (2D) crystallites (graphene) are extracted by rubbing of
a 3D layered crystal (graphite) onto another surface. There are no bizarre re-
quirements on that surface, it could be any solid surface. The rubbing process
produces thin flakes and we just have to look for monolayers. But the identifica-
tion of single layered structures is exactly the crucial step, that was responsible
for the rather late discovery of graphene [21]. One should mention that monolayer
crystals are a small minority of the flakes gained by cleavage. Secondly, besides
the edges of the flakes, there is no significant structure visible in transmission
electron microscope (TEM) images fig.(3) and hence no difference between single
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and few layer crystals. Furthermore, on most of the common substrates used like
glass or metal, it is not possible to observe monolayer structures. The atomic
force microscope (AFM) is the only tool to detect monolayer films on a substrate
directly, but in practice, it would be impossible to search for graphene by scan-
ning the whole surface.
The trick is to put the flakes on an oxidized Si waver, where they become visible
in an conventional optical microscope. Figure(1) shows several graphitic flakes on
SiO2 viewed by optical microscopy. The SiO2 surface reflects the whole “rainbow-
spectrum“ of coulors. In addition, even a monolayer adds up sufficiently to the
optical path of reflected light. Hence, similar to oil films, the interference colour
changes if light is reflected by a flake compered to the colour of light reflected
by the substrate. In this way single layers have an observable contrast on the
surface. Moreover, there are high requirements on the SiO2 wavers. If for ex-
ample the thickness varies within 5% 1 then single layer graphene is completely
invisible [4].
After a graphene flake has been found one can start further observations with
TEM or AFM.

Figure 1: graphite flakes of different thickness rubbed from graphit onto a SiO2

surface where it is visible for an optical microscope(Physics Today, August 2007,
A. Geim, A.H. MacDonald

To sum up the fabrication of graphene so far, we have seen that two dimensional
crystals are gained by micromechanical cleavage and found on a SiO2 substrate
with optical microscopy. This is actually the starting point of every experiment.
Moreover, the two dimensional crystals produced in that way are stable under
ambient conditions and exhibit high crystal quality [21], so they can be used to
study the quantum Hall effect (QHE) and transport properties. Since march 2007,
graphene samples can be bought from a company called graphene industries2 at
rather high prices compared with their size. A big flake of 5500µm2 (±10% de-

1for the standard 300nm thickness this is equivalent to a deviation within 15nm
2http://www.grapheneindustries.com
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viation) costs 2500£! Although micromechanical cleavage is a successful method
to obtain graphene, there should be a more effective way of manufacturing large
amounts of graphitic sheets, if one day micro electronics will be made of carbon.

2 Stability of graphene

The honeycomb structure of single graphite layer comes from the strong covalent
binding. Carbon is in the fourth column of the periodic table of the elements
and has six electrons in the groundstate configuration 1s22s22p2. Plugged in
the lattice, the 2s, 2p electrons form an sp2 hybrid orbital, where three electrons
are localised. As one can see in figure(2), these electron clouds are in a plane,
including angles of 120◦. By overlapping those sp2 orbitals of neighbouring atoms
one gets the strong binding σ-orbitals. These orbitals do not contribute to the
conductivity. The last electron becomes the free charge carrier by forming a π-
orbital which is delocalized and perpendicular to the lattice plane.

Furthermore, graphene can be described by a two dimensional Bravais lattice

Figure 2: sp2 - hybrid orbitals of carbon, origin of the honeycomb structure.
Their overlapp with orbitals of other carbon atoms form the strong σ bonds,
including an angle of 120◦

with a two atomic basis, but we will pick up that discussion later on, when we
derivate the electronic dispersion relation.

2.1 Instability of Two dimensional Crystals in General

As we have already noted, it can be shown that two dimensional crystals are in
general unstable. This was done in different ways by Landau, Peierls and Mer-
min, just to mention a few, and in the following Mermin’s argument [15] will be
briefly scatched.
The background of all these arguments is the absence of phase transitions in
certain low dimensional systems. For instance, Mermin and Wagner [16] showed
that there is no spontaneous magnetisation in an isotropic Heisenberg model with
finite range interaction. Moreover, for classical systems in one dimension it can
be proven that there are no phase transitions, if only finite range interactions are
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considered. Nevertheless, Thouless and Kosterlitz [13] showed that phase transi-
tions in two-dimensional systems where no long-range order of the conventional
type exists are still possible. In that sense, we have to give up long range trans-
lational order and define an other so called topological order.
This formal discussion is of some importance because we will use Bloch’s Theo-
rem later on to calculate the electronic band-structure. That means we assume
long-range translational order. As we will see, this is not obvious. In any case
these arguments appeared on most of the recent publications about graphene,
hence one should have a closer look to them.
The aim of Mermin’s argument is to show that there is no long-range order in
true two dimensional systems. Physically spoken, with increasing number of par-
ticles N , certain criteria or properties defining a crystals are no longer fulfiled.
In addition, the argument includes only crystals with short-range pair potentials
Φ(~r1 − ~r2) like the Lennard-Jones potential3, but it excludes for example the
hard-sphere potential and the Coulomb potential. So, the first task is to choose
an appropriate criterion for the presence of order.
Our Bravais lattice is spanned by the lattice vectors ~a1 and ~a2 for example the
lattice vectors of the honeycomblattice. Then a point of the Bravais lattice is
discribed by ~r = N1~a1 +N2~a2, where N = nN1N2 is the number of particles, n is
the number of particles of the basis.
For the density of our crystal particles we write

ρ̂(~r) =
N∑
i=1

δ(~r − ~ri) (1)

ρ̂~k =

∫
d~re−i

~k·~rρ̂(~r) =
N∑
i=1

e−i
~k·~ri (2)

In equation(2) we have introduced the k-th Fourier component of the density.
Furthermore, we need the thermodynamical average of equation(2).

ρ~k = N−1〈ρ̂~k〉 (3)

Following from these definitions, we are able to construct our criterion for crys-
tallinity:

• limN→∞ ρ~k = 0, if ~k is not a reciprocal-lattice vector

• limN→∞ ρ~k 6= 0, for at least one nonzero reciprocal lattice vector

One may varify this by using the definition of reciprocal lattice vectors4 ~K. This
is exactly the statement of long-range translational order.

3Lennard-Jones potential: ∼ σ
r12 −

τ
r6

4~r is a lattice vector if ~K · ~r = 2π

9



The next step is to estimate ρ ~K ( ~K reciprocal lattice vector) from above with the
help of an inequality following from the well-known Schwartz inequality:

〈|A|2〉 ≥ |〈A ·B〉/〈|B|2〉

The inequality of Mermin’s theorem is:

〈|
∑

ψi|2〉 ≥
kBT |

∑
〈ϕi∇ψi〉|2

〈1
2

∑
∇2φ(~ri − ~rj)|ϕi − ϕj|2 + kBT

∑
|∇ϕi|2〉

(4)

Now we have to assign functions to ψi and ϕi, so that the potential Φ and the
Fourier component of the density ρ~k comes in. Furthermore we introduce the
free energy in the inequality. For further estimations, we need the free energy
per particles for the pair potential φ to be intensive. This is equivalent to the
condition that the potential has to be integrabel at infinity, repulsive and nonin-
tegrable at the origin, like the Lennard Jones Potential.

Φ(~r)→ 1/r2+|ε| as r →∞
Φ(~r)→ const./r2+|ε| as r → 0

(5)

In the end we get an estimate for ρ ~K , where ~K is a vector of the reciprocal lattice.

ρ ~K ≤
const.

(lnN)1/2
(6)

ρ ~K → 0 as N → ∞. That means in the thermodynamic limit, there is no
positional long-range order. However directional long-range order is still present.
The constant in eq.(6) is proportional to a characteristic energy ε devided by the
Temperature:

const. ∝ ε

kBT
(7)

Now the length of the biggest graphene samples5 is about L = 100µm. Typical
experiments are done at very low temperatures. So let us assume that T = 1K
in equation(7). With L = N · a0,equation (6) and (7) one can estimate a lower
bound for the characteristic energy ε. The result is ε > 1meV , a value much
lower than typical bond energies. This would guarantee the stability, long-range
order, of graphene for a finite size of the samples.
It can be shown [20] that the condition 〈|u|2〉 < a0 < ∞ for the displacement
implies our condition for cristallinity above, but not vice versa.
Now in which way does this theorem address graphene?

5One can by graphene samples at www.grapheneindustries.com. For example a sample of
about 75µm× 75µm is sold for 2500 pounds.
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On the one hand interactions are less short ranged than in metals because screen-
ing effects are not so strong due to the smaller charge carrier concentration.
Moreover graphene could be metastable [4], but with such a long lifetime that it
is irrelevant to observe this in an experiment.
On the otherhand, in order to exist, graphene is randomly rippled. We will see
in the next section why corrugations of graphene sheets are related to stability
of graphene.

2.2 Why does Graphene exist?

First attempts to answer the question why graphene exists are surprisingly not
given by solid state theory, but there is a qualitative answer from Soft-Condensed
Matter Theory. With a continuous model of polymerized membranes embedded
in three dimensions P. Le Doussal and Leo Radzihovsky [14] showed by using a
self-consistent screening approximation that flat membranes exist. As a result,
these membranes are not perfectly flat, but they have intrinsic ripples. Indeed,
corrugations of graphene flakes have been observed [17] and they are influenc-
ing some electronic properties like weak localisation6 [18]. However, the results
of these theories cannot quantitatively describe the ripples, and only agree with
the simulations [3] within a certain frame. Corrugations are a typical feature of
monolayer graphene while they become smaller in bilayer and vanish in multilayer
graphene.

At first we will have a short look at an experiment [17] which examined freely
suspended graphene flakes for the first time. Graphene becomes visible on a SiO2

surface with an optical microscope and in most of the other experiments done so
far, graphene has always been a part of a three dimensional structure.
The observations done here prove, that freely suspended graphene can exist with-
out a substrate and has random elastic deformations into the third dimension.
After a monolayer of graphene was identified on the SiO2 substrate, a metal grid
was deposited on top of the flake by using electron beam lithography. Secondly,
the SiO2 support was etched away. Figure(3) shows a bright-field transmission
electron microscope (TEM) image of the suspended graphene flake attached to
the metal grid. The scale bar shows that there is a more than 500nm spacing
between the grid, which is magnitudes larger then the lattice constant. Hence we
are really observing freely suspended graphene.

Furthermore TEM electron diffraction experiments have been done. At first
this may seem useless because a two dimensional crystal only acts as a plane

6weak localisation (wl) is responsible for quantum interference correction to the conductivity
due to interference between time reversed paths
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Figure 3: A freely suspended graphene flake attached to a micrometer-sized
metallic scaffold. The regions indicated by the arrows are monolayer graphene.
On the righthand side there is a folded part of the sheet visible. The scale bar is
500nm large.

reflecting the electron beam at the position of the atoms7. Therefore only the
direct reflection, the zeroth order diffraction peak is visible independent from the
incident angle. Nevertheless electron diffraction experiments are very useful to
distinguish monolayer from bilayergraphene. Due to the second layer in bilayer-
graphene, one observes a diffraction pattern with maxima and minima at certain
tilt angles in contrast to the monolayer case. This is visualised in figure(4).
This experiment would be less spectacular, if the diffraction pattern of the sin-

glelayer graphene wouldn’t contain some unexpected features.
The first two pictures 1 of figure(4) show a broadening of the diffraction peaks
of singlelayer graphene with increasing tilt angle. This behaviour vanishes for an
increasing number of layers. It is well-known in X-ray diffraction that only the
intensity of the diffraction peaks will be affected by thermal vibrations, not their
extent. The reason for the blurred diffraction spots are random corrugations on
the submicrometer level in graphene.

Diffraction patterns are given by a two-dimensional slice through the three
dimensional Fourier transform of the crystal. For a perfectly flat crystal this
Fourier transform is a set of rods perpendicular to the reciprocal lattice. These
rods wander around their average direction, forming cones when the sheet is
slightly corrugated. Regarding figure(5) the cross-section of the diffraction peaks
under different incident angles is given by the intersection of the cones with the
tilted plane. The tilted planes are related to the incident angles.
Comparisons with simulations of the diffraction patterns give some quantitative

7Actually the graphene sheet acts like a grid, but without another layer, there is no incident
angle dependend interference. Hence, an interference pattern is still visible, but it has no
information about incident angles.
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Figure 4: (1) TEM diffraction pattern of monolayer graphene for two different
incidence angles, 26◦ (right) 0◦ (left). The diffraction peaks of the right image
are broadend compered with those from the left. (2) Total intensity as a function
of tilt angle of the two peaks (0 − 110) and (1 − 210) of monolayer (right) and
bilayer (left) graphene.

estimates about the ripples in graphene. The ripples are about 1nm high and
have a spatial extent of 2 − 20nm. In atomic-resolution TEM imaging ripples
have been observed directly in two and more layer graphene8. These observa-
tions support the estimates above. Moreover the fact, that corrugations can be
observed directly with TEM means that it is a static phenomenon.
Of course, the term freely suspended means spanned on a scaffold. And all
the other experiments done so far used supproted graphene. The support gives
boundary condition and may induce stability and translational order. But then
the ripples have to carry some signatures from the boundaries. To my knowledge,
no experiment so far has refered to the observation that ripples have a significant
dependence on the boundaries.
We have already heard that the theory of polymerized membranes gives a partly
explanation of the formation of ripples in flexible membranes [14]. Membranes
of internal dimensionality D with linear size L, embedded in a d dimensional
space, are characterized by a roughness exponent ζ. In this way transverse dis-

8For monolayer graphene there is not enough contrast to make ripples directly visible. Be-
cause diffraction intensities vary only little with tilt angle
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Figure 5: (1) origin of the peak broadening with increasing tilt angles in the
diffraction images. The continuous rods represent the intensities in reciprocal
space. Intersections with the tilted plain (dotted line) give a peak in the diffrac-
tion pattern. In the case of a corrugated surface the rods become cones. (2)
FWHM of diffraction peaks versus tilt angles

placements scale as Lζ , and for flat physical membranes (D = 2, d = 3) they
predict a roughness exponent of ζ = 0.590. Furthermore critical parameters for
a transition from the flat to the crumbled phase were analysed.
We will have a brief look at this theory:
A D dimensional membrane with internal coordinates ~x exhibits both a D com-
ponent in-plane phonon field uα(~x), α = 1 . . . D, and out-of-plane displacements
~h(~x) 9.
The free energy is a sum of bending and in-plane elastic energy.

F =

∫
dDx

[
κ

2
(∇2~h)2 + µU2

αβ +
λ

2
U2
αα

]
(8)

The coefficient κ is the bending rigidity, µ is the shear modulus and λ is the first
Lamé parameter which is also related to linear elasticity. Uαβ is the strain tensor

Uαβ =
1

2

(
∂uβ
∂xα

+
∂uα
∂uβ

+
∂~h

∂xα
· ∂

~h

∂xβ

)
(9)

Here it is important to note that the in-plane stresses and out-of-plane displace-
ments are non-linear coupled, because the strain tensor (9) contributes quadrat-
ically to the free energy (8). By neglecting the last term in the strain tensor

9for physical membranes ~h = h and uα, α = 1, 2 has two components
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(9) the bending h and stretching modes uα become decoupled and one is in the
harmonic approximation regime.
In the harmonic approximation, where the last term in eq.(9) is neglected, the
mean square angle between the normals of the membrane 〈|~n|2〉 diverges with the
sample size L→∞ and for long wavelength phonons, which indicates a tendency
to crumple.
If the anharmonic coupling term is taken into account, the flat phase remains
stable but is corrugated. The curvature fluctuations soften elastic constants and
screen the phonon mediated interaction. As a result the long wavelength fluctua-
tions are suppressed, which eliminates the divergency from above. The roughness
of the membranes is given by Lζ where ζ ≈ 0.6. However, one should deal with
that result carefully. Because it still predicts that these height fluctuations grow
with the sample size and can be anomalously large. Moreover there are other
predictions from Soft-Condensed Matter Theory like spontaneous creation of dis-
locations [3] which are neither observed in experiments [17] nor in simulations [3].

Recently there has been an attempt to explain the origin of ripples [3] by A.
Fasolino, J.H. Los and M.I. Katsnelson. They did atomistic Monte Carlo simula-
tions using an effective many body potential LCBOPII (Long-range Carbon Bond
Order Potential 2) which is said to provide a unified description of the energetics
and elastic constants of all carbon phases with an accuracy compareable to the
experiment. Because of being a long-range potential, we can not apply Mermin’s
Theorem in that case- It requires short-range potentials. Moreover, they used
the normal-normal correlation function and the temperature dependence of the
bending rigidity κ as observables to oncompare the simulations with the Theory
of polymerized membranes. They conclude that the ability of carbon to form dif-
ferent types of bonding (fig.(6)) is responsible for the difference between graphen
sheets and a generic two-dimensional crystal. In addition, one has to take atomic
properties in onto account because there are properties in graphene which are
not common to a continuum model of flexible membranes.
So far, the problem of the stability of graphene and the origin of its corrugations
has not been solved completely.

3 Electronic properties of Graphene

3.1 The Dispersionrelation of Graphene

The dispersion relation ε(~k) is a very important quantity in Solid State Theory.
We can not only extract a lot of information about the charge carriers from it,
but all semi-classical calculations are also based on its knowledge. Moreover, one
of the most important properties of graphene is the massless dirac fermion-like
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Figure 6: Variation of bond length as an explanation of the ripple formation in
graphene.

spectrum, i.e. the linear energy-momentum dependence with zero energy states.
This is also a result of the dispersion relation.
We use the compact and elegant formalism of second quantization and the tight-
binding approximation to derivate ε(~k). The tight-binding approximation (TBA)
is a model for charge carriers, i.e. electrons, in a periodic lattice. The following
will be a short introduction to the TBA. Electrons are tightly binded to the
Ions at each lattice site, that means their wave functions |ψn〉 must be somewhat
similar to wavefunctions in the vicinity of the ions. Moreover the periodic lattice
contribution tells us, that an electron state has to fulfil Bloch’s Theorem:

Ψ~k,n(~r) = ei
~k·~ru~k,n(~r); u~k,n(~r + a0~ei) = u~k,n(~r)

Ψ~k,n(~r + ~R) = ei
~k·~RΨ~k,n(~r) (10)

The full Hamiltonian of that problem is the sum of the atomic Hamiltonian Hat

with eigenvalue En plus a correction ∆U(~r) which takes into account all the
contributions coming from the periodicity of the lattice.

H = Hat + ∆U(~r) (11)

{ψm} is the set of atomic wavefunctions with eigenvalues Em. They become small
in the middle between two lattice sites where ∆U(~r) becomes appreciable.

||∆U(~r)ψm|| � 1 (12)

Although, it would be tempting to expand the eigenstates Ψ~k,n(~r) of (11) directly

into atomic wavefunctions {ψm}, it would give eigenvalues εn(~k) ∼ Em propor-

tional to the atomic eigenenergies which are obviously not depending on ~k. To
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avoid this deficiency we expand Ψ~k,n, our eigenstates of the crystal Hamiltonian
(11), in yet unknown functions φ(~r). These functions φ can be expanded in a
small number of atomic wavefunctions ψm.

Ψ~k,n(~r) =
∑
~R

ei
~k·~Rφ(~r − ~R) =

∑
~R

ei
~k·~R
∑
n

bnψm(~r) (13)

With HΨ~k,n = εn(~k)Ψ~k,n we get after some calculations the following eigenvalue:

εn(~k) = ε0n −
∑
n.n.

t(~R) (14)

The sum on the righthand side goes over all nearest neighbours (n.n.) of an ion

and over all N ions. t(~R) is the overlapp integral and it depends on the distance
between two lattice sites. Thus, only the nearest neighbour contributions are
relevant because t(~R) becomes small if the ions are increasingly far from each

other away. In the limit we have just isolated ions, t(~R) vanishes and we are
left with the atomic eigenenergies. This is a fact, we would have expected for
self-consitency.
For the sake of simplicity we are only interested in one single band, so we will
drop the bandindex in our formulas.
The eigenenergy ε(~k) defined above in eq.(14) gives rise to a model Hamiltonian,

H =
∑
~r,σ

ε0â
†
σ(~r)âσ(~r)︸ ︷︷ ︸
H0

− t
∑

<~r,~r′>n.n.

(
â†σ(~r)âσ(~r′) + h.c.

)
︸ ︷︷ ︸

HHop

(15)

where h.c. in the second part of the righthand side means hermitian conjugate,
σ accounts for the spin. This part is the so-called hopping Hamiltonian. It de-
scribes the contribution coming from the exchange of an electron from lattice site
at ~r to lattice site at ~r′. Due to the dependence on t it is clear that we restrict
ourselves only to nearest neighbours (n.n.).

So far we have just briefly reviewed the tight-binding approximation. To become
more concrete, we apply this methode to an infinite or sufficiently large graphene
layer10.

Figure(7) shows the honeycomb of graphene with the lattice vectors and the two
atomic basis. Once more the lattice vectors are:

~a1 =
a0

2

( √
3

1

)
; ~a2 =

a0

2

( √
3
−1

)
(16)

10we are not interested in effects comming from the edges
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Figure 7: Honeycomb structure of graphene (lower right), and the corresponding
Bravais lattice (upper left). In the middle, the lattice vectors ~a1, ~a2 are shown
together with the two atomic basis. Bond length of carbon atoms 1.42 Angstrőm

The vectors ~Gi of the reciprocal lattice are defined by: ~Gi · ~aj = 2πδi,j.

~G1 =
2π

a0

√
3

(
1√
3

)
; ~G2 =

2π

a0

√
3

(
1

−
√

3

)
(17)

The hole system’s spatial extent is in ~a1 direction L1 = N1a0 and in ~a2 direction
L2 = N2a0. Furthermore we assume periodic boundary conditions. Plane waves

ei
~k·~r have to fulfil ki · Li = 2πni, hence the wavevectors are in the intervall[
0, . . . , 2π

a0

]
, i.e. ~k = 2π

N2a0
n, n ∈ N.

The hopping Hamiltonian HHop of equation(15) looks slightly different, because
of the two atomic basis of graphene crystals. That means we have to distinguish
between operators acting on the first atom of a site at ~r or on the second one. We
denote this by another index. Which one is the first and which one is the second
atom is shown in figure(7). Below, we consider only the hopping part because
H0 is just an energy shift.

HHop =
∑

<~r,~r′>n.n.

t
(
â†σ(~r)b̂σ(~r′) + b̂†σ(~r′)âσ(~r)

)
(18)

â†σ(~r) creates a state in the site of the sublattice A at vector ~r

b̂†σ(~r′) creates a state in the site of the sublattice B at vector ~r′

These operators have the following Fourier representation, N is the total number
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of lattice sites.

â†σ(~r) =
1√
N

1.B.Z.∑
~k

e−
~k·~râ†~k,σ (19)

b̂†σ(~r) =
1√
N

1.B.Z.∑
~k

e−i
~k·~rb̂†~k,σ (20)

The sum is restricted to the first Brillouin zone, hence the components of ~k are
in the set ki ∈ {0, . . . , 2π

a0
}. Moreover, the vectors ~Gi span the reciprocal lattice.

At this point, it is convenient, as a specification of our lattice, to express the
wavevectors ~k = b1

~G1 + b2
~G2 in terms of the reciprocal-lattice vectors. Then, the

coefficients bi = n/Ni run from 0 . . . to . . . 1.

~k = b1
~G1 + b2

~G2 =
a0

2π

(
k1
~G1 + k2

~G2

)
(21)

In (21) we have gained a representation of the wavevector ~k, where ~k depends on

its coefficients ~ki = 2π
Nia0

n and on the reciprocal lattice vectors.
Thus the two types of annihilation and creation operators respectively can be
written as

â†σ(~r) =
1√
N

∑
k1,k2

e−i
a0
2π (k1 ~G1+k2 ~G2)·~râ†~k,σ

b̂†σ(~r) =
1√
N

∑
k1,k2

e−i
a0
2π (k1 ~G1+k2 ~G2)·~rb̂†~k,σ

(22)

Finally, we plug the operators(19) and (20) into the hopping Hamiltonian equation(18).
The Spin index has no influence on the result and will be omitted.

H =
∑

<~r,~r′>n.n.

t
(
â†(~r)b̂(~r′) + b†(~r′)â(~r)

)
= t

1

N

∑
<~r,~r′>n.n.

∑
~k

(
e−i

~k(~r′−~r)â†~kb̂~k + e−i
~k(~r−~r′)b̂†~ka~k

)
= t
∑
~k

((
ei
~k~δ1 + ei

~k~δ2 + ei
~k~δ3
)
â†~kb̂~k +

(
e−i

~k~δ1 + e−i
~k~δ2 + e−i

~k~δ3
)
b̂†~kâ~k

)
(23)

In the last step we carried out the nearest neighbour (n.n.) summation in the

way shown in figure(8). The k-sum runs over all wavevectors ~k from the first
Brillouin zone.
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Figure 8: Description of graphene lattice. The two atoms of the Basis are denoted
by 1 and 2. An electron of atom 1 (middle Basis) can hop to the atom 2 at the

same lattice site (~δ1 and to atom 2 of the lower right (~δ2), lower left site (~δ3)
respectively. The yellow lines indicate the hopping of this lattice site

The full Hamiltonian (15) now has the simplified form (24), but the diagonaliza-
tion procedure is still left.

H = H0 −HHop =
∑

~k∈1.B.Z.

(
â†~k, b̂

†
~k

)( ε0 φ(~k)

φ∗(~k) ε0

)(
â~k
b̂~k

)
(24)

φ(~k) = −tei~k~δ1
(

1 + ei
~k(~δ2−~δ1) + ei

~k(~δ3−~δ1)
)

(25)

In figure(8) one can easily see that ~δ1 − ~δ2 = ~a1 and ~δ1 − ~δ3 = ~a2. Diagonalizing

the matrix yields the dispersionrelation ε(~k)

ε(~k) = ε0 ±
√
φ(~k)φ∗(~k)

ε(~k) = ε0 ± t
√

3 + 2 cos(k1a0) + 2 cos(k2a0) + 2 cos((k1 − k2)a0) (26)

The constant energy shift ε0 is not important for the properties discussed later,
and will be omitted. Figure(9) shows the dispersion relation of graphene. At this
point one should state that the coefficients k1 and k2 are not given with respect to
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Figure 9: Dispersionrelation of graphene. In the vicinity of the points where the
two bands meet each other the charge carriers behave like massless dirac fermions
in 2 dimensions.

an orthogonal basis, but to a basis spanned by ~G1 and ~G2. The reciprocal lattice
vectors which are taken as basis vectors in equation(21) are neither orthogonal
nor normalized fig.(10), but they are linearly independent. We will straighten
this deficiency in section(3.3) out when it is necessary.

In the literature, the zeros of equation(26), with ε0 = 0, are often referred to as
the Dirac points or K-points.

Figure 10: The hexagonal Brillouin zone of the honeycomb lattice and the disper-
sion relation (shaded, corrugated region). The first one (l) is represented in the
non orthogonal basis used in equation(26). The corner points are called K-points.
There is always a pair of neighbouring points K+ and K− which are inequivalent,
i.e. can not be connected by a reciprocal vector.

Figure(10) shows a Brillouin zone with K-points. Some of them can be connected
by a vector of the reciprocal lattice, but not all of them. Therefore, the neigh-
bouring K-points are not equivalent and must be both taken into account, in the
reduced zone scheme.
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Equation(24) already suggested a more compact notation:

H =
∑
~k,σ

(
â†~k,σ, b̂

†
~k,σ

)( 0 φ(~k)

φ∗(~k) 0

)
︸ ︷︷ ︸

H0

(
â~k,σ
b̂~k,σ

)
=
∑
~k,σ

Υ†σ(~k)H0Υσ(~k) (27)

In (27) above, we introduced the two component Spinor notation with the sub-
lattice annihilation operators as its entries. Furthermore we reintroduced the
spin σ and we omitted ε0. This form will help us a little bit in our symmetry
considerations, moreover it is essential in deriving the Dirac like form of the low
energy regime.

3.2 Stability of the K-point

The tight-binding approximation with nearest neighbour hopping used above
may be an oversimplified method to calculate the bandstructure of graphene. As
we will see, this point of view is not totally right. One of the most fascinating
properties of graphene is that the quasi particles exhibit a Dirac like spectrum
of ultra relativistic massless particles in the vicinity of the K points. In the
following, it will be shown that eigenstates with zero energy are robust against
next and third neighbour hopping.

Figure 11: nearest neighbours include a distance of δi, next neighbours are con-
nected by a lattice vector and third neighbour hopping

To begin with the next neighbour hopping, we introduce a new term in equation(27).
We denote the distance of neighbouring lattice sites again by δi.

H = H<n.n.> − tnext
∑
~n,σ

(
â†~n,σa~n+~a1−~a2,σ + b̂†~n,σb~n+~a1−~a2,σ + . . .

)
(28)
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Figure(11) shows that next neighbours are connected by a lattice vector. Hence
next neighbours give diagonal contributions which can be absorbed in ε0 and do
not change our spectrum qualitatively.

The third neighbour hopping mixes again creation and annihilation operators of
different sublattices.

H = H<n.n.> − t′
∑
~n,σ

(
â†~n,σ b̂~n−2δ1,σ + â†~n,σ b̂~n−δ1−δ2+δ3,σ + â†~n,σ b̂~n−δ1+δ2−δ3,σ + c.c

)
(29)

Now we use the Fourier decomposition of our operators, equation(22). In the
same way as it was done in equation(27) we write the Hamiltonian above as a
sum of a matrix product of two spinors Υσ, Υ†σ with a matrix H0. This matrix

H0 contains again only off-diagonal terms φ(~k), φ∗(~k).
In order to show that the K-points are stable against other hopping terms, we
demonstrate in the following that for certain values of the third neighbour hopping
amplitude t′, φ(~k) can still be zero. The modulus of φ(~k) enters the dispersion
relation as shown in section(3.1) and is responsible for the Dirac points. Next we
evaluate the nearest and third neighbour terms in the Fourier decomposition.

φ(~k) = −t
(
ei
~k~δ1 + ei

~k~δ2 + ei
~k~δ3
)

︸ ︷︷ ︸
n.n.

−t′
(
e−i2

~k~δ1 + ei
~k(~δ1−~δ2+~δ3) + ei

~k(~δ1+~δ2−~δ3)
)

︸ ︷︷ ︸
next−neigh.

(30)

As indicated, the first term comes from nearest neighbour hopping and the second
is due to third neighbour hopping.

For simplicity, we will proof the claim only for the ei2
~k~δ1 third neighbour hopping

term in eq.(30) and only give a short statement why it works as well with the
others.

φ(~k) = −tei~k~δ1
[
1 + e−i

~k~a2 + e−i
~k~a1 +

t′

t
e−i3

~k~δ1

]
Figure(11) shows that lattice vectors and vectors between sites are connected by
~δ1 − ~δ2 = ~a1 and ~δ1 − ~δ3 = ~a2.

φ(~k) = −tei~k~δ1
[
1 + e−i

~k~a2 + e−i
~k~a2

(
1 +

t′

t
ei
~k~a2

)]
= −tei~k~δ1φ̃(~k) (31)

For a certain proportion of t′/t there should be ~k with φ̃(~k) = 0 in order to have

K-points. We rewrite φ̃(~k).

φ̃(~k) = 1 + e−i
~k~a2 + r

(
t′

t

)
ei
~k~a2+iϕe−i

~k~a1 (32)

with r(t′/t) =
√

1 + 2
(
t′

t

)
cos(~k~a2) +

(
t′

t

)2

If we fix ~k~a2 and let ~k~a1 vary, then equation(32) has a geometrical interpretation
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Figure 12: shows equation(32) in geometrical way. We get Dirac points when the

energy is zero, i.e. when |φ(~k)| = 0.

as a circle of radius r
(
t′

t

)
with center 1+e−i

~k~a2 (figure(12)). When the circle hits

the origin then Dirac points are possible, i.e. the modulus of φ̃(~k) can be zero.
This is guaranteed for

t′

t
= −cos(~k~a2)±

√
cos2(~k~a2) + 1 + 2cos(~k~a2) (33)

Therefore t′/t is either 1 or −1− 2cos(~k~a2). For ~k~a2 ∈ (−π, π) the latter yields

−3 ≤ t′

t
< 1 (34)

In the case of the remaining two hopping possibilities in equation(30) one gets
similar terms leading to the same condition on t′/t. If we would have taken the
last term of the third neighbours part in equation(30) instead of the first, we
would have gotten

φ(~k) = −tei~k~δ1
(

1 + e−i
~k~a2 + e−i

~k~a1 +
t′

t
ei
~k(~a2−~a1)

)
Just to complete the discussion we give the result with the second term:

φ(~k) = −tei~k~δ1
(

1 + e−i
~k~a2 + e−i

~k~a1 +
t′

t
ei
~k(~a1−~a2)

)
Obviously these equations lead to the same constrain(34) for t′/t. As a conclu-
sion of this discussion we found that the Dirac point is stable against additional
hopping terms. The hopping amplitude is proportional to the overlapp of wave-
functions between two lattice sites, hence we showed that Dirac points are robust
with respect to slight deformations of the lattice. Finally, this part showed, that
the honeycomb lattice itself is not solely responsible for massless Dirac fermions
but rather a generic class of two dimensional lattices with two atomic basis [8].
Besides hopping terms with certain amplitudes t′, vanishing Dirac points come
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along with generation of a finite Dirac mass. For instance, a differnce of the
sublattices A and B is represented by an additional diagonal term:

H = H0 +
∑
~k,σ

Υ†σ(~k)H1Υσ(~k)

︸ ︷︷ ︸
H1

, H1 =

(
mA 0
0 mB

)
(35)

H1 can be rewritten in terms of Pauli matrices11 τ0, τ3 and the masses
m+ = (mA +mB)/2 and m− = (mA −mB)/2.

H1 =
∑
~k,σ

Υ†σ(~k) (m+τ0 −m−τ3) Υσ(~k) (36)

The m+ term can be absorbed in ε0 and does not change anything, the second
term m− has a different sign for A and B sublattice and changes the spectrum
from massless particles to particles with finite masses: ε(~k) = ±

√
m2
− + |φ|2.

The two dimensional crystal boron nitride exhibits such a sublattice difference
because of the distinguishable atoms in the basis B and N . Hence the dispersion
relation of BN has no Dirac point and no massless quasiparticles. But the low
energy regime of BN is still governed by ultra relativistic quasi particles, in this
case, with finite masses.

3.3 QED2+1 - Massless Dirac Particles in Graphene

Starting from the tight-binding Hamiltonian in equation(24) we will develop the
low-energy approximation in the following part. One might have already noticed
that in figure(9) the dispersion relation is linear near the points where the two
bands touch each other and momenta are small.

At first, it is important to express the coefficients k1 and k2 in an orthonormal
basis

e1 =

(
1
0

)
, e2 =

(
1
0

)
In this basis the coefficients become

k1 =

√
3κ1 + κ2

2
, k2 =

√
3κ1 − κ2

2
(37)

According to eq.(37) our dispersion relation changes and gains the full hexagonal
symmetry as shown in figure)10:

ε(~k) =

√√√√3 + 2 cos

(
a0

√
3κ1 + κ2

2

)
+ 2 cos

(
a0

√
3κ1 − κ2

2

)
+ 2 cos(κ2a0) (38)

11τ0 =
(

1 0
0 1

)
, τ1 =

(
0 1
1 0

)
, τ2 =

(
0 −i
i 0

)
and τ3 =

(
1 0
0 −1

)
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The K-points where (38) is zero are the six points:

K− =
4π

3a0

(
0
1

)
,

4π

3a0

( √
3/2
−1/2

)
,

4π

3a0

(
−
√

3/2
−1/2

)
(39)

K+ =
4π

3a0

(
0
−1

)
,

4π

3a0

( √
3/2

1/2

)
,

4π

3a0

(
−
√

3/2
1/2

)
We take two neighbouring inequivalent K-points and denote them with K+ and
K− in the following (figure(13)). Furthermore we expand the tight-binding
Hamiltonian eq.(27) to the first order in ~κ or shrink the lattice spacing a0 → 0
which is a continuum approximation. The k - dependence of the tight-binding
Hamiltonian is represented by the 2x2-matrix H0 which depends in turn on φ(~k).

φ(~k) = −t
(
ei
a0
3
κ2 + eia0(5/6κ2−

√
3/2κ1) + e−ia0(

√
3/2κ1−1/6κ2)

)
(40)

φ(~k) = φ( ~K± + ~p) ≈ φ(K±) +

(
∂1φ(~k)

∂2φ(~k)

)
·
(
p1

p2

)
⇒ φK±(~p) = ±~vF (p1 ∓ ip2)

In the last line of equation(41) we introduced the Fermi velocity vF ∼ ta0/~ ≈
106m

s
[?] [19]. According to [?] the hopping amplitude is t = 2.3eV and the lattice

spacing a0 = 2.46 Angstroem.

Figure 13: Two equivalent first Brillouin zones (upper right+left), both contain-
ing the same area. The left has two K-points K+ and K− lying in the interior.
(lower right) linearized dispersion relation in the first Brillouine Zone.
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Due to the small momenta expansion we replace the sum over wavevectors in
eq.(27) of the first Brillouine zone (1.BZ) by an integral over the Dirac cone
(DC). ∑

~k∈1.BZ

→ (2π)2

S

∫
DC

d2p

(2π)2

S =
√

3
a2
0

2
is the area of a unit cell.

At this step there are two crucial points. The first one is that in contrast to
the real dispersionrelation the effective one grows up to infinity. Hence we need
a proper energy cutoff which preserves the number of states, that is according
to [8]:

~vF

√
(2π)2/S

2π
=

~vF
a0

√
4π√

3
≈ 2.33t

Moreover we have to take both K-points into account. Figure(13) shows the two
cones in the first Brillouine zone. A low energy expansion hits of course both.
Finally we are able to build the low energy Hamiltonian of graphene

H0 =
(2π)2

S

∑
σ

∫
1.BZ

d2k

(2π)2
Υ†σ(~k)H0Υσ(~k)

≈
∑
σ

∫
DC

d2p

(2π)2

Υ†σ( ~K+ + ~p)

(
0 ~vF (p1 − ip2)

~vF (p1 + ip2) 0

)
︸ ︷︷ ︸

HK+(~p)

Υσ( ~K+ + ~p)

(41)

+
∑
σ

∫
DC

d2p

(2π)2

Υ†σ( ~K− + ~p)

(
0 −~vF (p1 + ip2)

−~vF (p1 − ip2) 0

)
︸ ︷︷ ︸

HK−(~p)

Υσ( ~K− + ~p)


In view of a QED like description we introduce the four component spinor Ψσ(~p).

Ψσ(~p) =

(
ψK+,σ(~p)
ψK−,σ(~p)

)
=


âσ( ~K+ + ~p)

b̂σ( ~K+ + ~p)

b̂σ( ~K− + ~p)

âσ( ~K− + ~p)

 (42)

In (42), the sublattice dependence of the 2-spinor ΨK−,σ of the K− point is
swapped, compared to that of ΨK+,σ at K+. But this is a small price compared to
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the easier notation that we gain for the 2×2 matrices in equation(42): HK±(~p) =
±~vF (τ 1p1 + τ 2p2). The τ i denote the Pauli matrices. Moreover the fact that
the two distinguishable K-points give another quantum number additional to the
sublattice. Now we rewrite H0 with equation(42)

H0 = ~vF
∑
σ

∫
DC

d2p

(2π)2
Ψ†σ(~p)


0 p1 − ip2 0 0

p1 + ip2 0 0 0
0 0 0 −p1 + ip2

0 0 −p1 − ip2 0


︸ ︷︷ ︸

H0(~p)

Ψσ(~p)

(43)
The matrix H0(~p) in equation(43) almost looks like one of the α matrices which
we define as12

αi = τ̃ 3 ⊗ τ i =

(
τi 0
0 −τ i

)
(44)

The tilde τ̃ 3 indicates the action upon the K-point degree of freedom whereas τ i

are responsible for the sublattice pseudospin. The αi matrices fulfil the Clifford
algebra

{αi, αj} = 2δij1 (45)

The introduction of α matrices allows a real compact notation for H0(~p) (43):
H0(~p) = α1p1 + α2p2

However we have not yet reached our goal of a QED description of graphene.
Thus we will spend more time in changing our notation for Hamiltonians. The
reader should not be confused, everything is just for the purpose of getting as
near as possible to relativistic quantum theory.
Hence, we introduce once more new matrices, the so called γ-matrices.

γ0 = β = τ̃ 1 ⊗ 12 =

(
0 12

12 0

)
, γα = βαα =

(
0 τα

−τα 0

)

γ5 = iγ0γ1γ2γ3 =

(
12 0
0 −12

)
(46)

This is also known as the Weyl or chiral representation13 of γ matrices. The
γ5-matrix will be important for us because spinors with a definite chirality in
relativistic quantum mechanics are eigenstates of γ5. In the next section we will
discuss similarities and differences between the low energy threoy of graphene

12These are not the α matrices from the usual Dirac operator. In books on relativistic

quantum mechanics one would find α =
(

0 σ
σ 0

)
and β =

(
1 0
0 −1

)
13This is a commonly used representation in the case of massless fermions. It differs with the

usual definition: γ0 =
(

1 0
0 −1

)
, γi =

(
0 σi

−σi 0

)
and γ5 =

(
0 1
1 0

)
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and the high energy description of neutrinos.
The γ matrices fulfil the usual anti-commutation relations

{γµ, γν} = 2gµν14, gµν = diag(1,−1,−1,−1), µ, ν = 0, 1, 2, 3 (47)

The Dirac equation exhibits not adjoint spinors ψ† but slashed spinors Ψ̄sigma =
Ψ†σ(~p)γ0

Finally, the Hamiltonian has the form:

H0 = −
∑
σ

∫
DC

d2p

(2π)2
Ψ̄σ(~p) ~vF (γ1p1 + γ2p2)︸ ︷︷ ︸

HD
0 (~p)=γ0H(~p)

Ψσ(~p) = −
∑
σ

∫
DC

d2p

(2π)2
Ψ̄σ(~p)E(~p)Ψσ(~p)

(48)

H0 = −~vF
∑
σ

∫
DC

d2p

(2π)2
Ψ̄σ(~p)


0 0 0 −p1 + ip2

0 0 −p1 − ip2 0
0 p1 − ip2 0 0

p1 + ip2 0 0 0

Ψσ(~p)

To complete our journey from condensed matter to relativistic quantum mechan-
ics we will couple our quasi particles to electromagnetic fields and derive the
Lagrangian L. Furthermore we transform equation(48) back to ~r-space and use
the canonical representation of wavevectors pk → −i∂k and energy E → i∂t:

H0 =
∑
σ

Ψ̄σ(t, ~r)
[
−i~vF (γ1∂1 + γ2∂2)

]
Ψσ(t, ~r) = i~

∑
σ

Ψ̄σγ
0∂tΨ (49)

Where the Fourier transform of spinors was used:∫
d2p

(2π)2
FΨ(~p)F−1 =

∫
d2r′

(2π)2

∫
d2p

(2π)2
Ψe~p(~r−~r

′) = Ψ(~r) (50)

The electromagnetic field can be introduced by minimal coupling to the momen-
tum:

~p→ ~p− e

c
~A = −i~

(
∂~r +

ie

~c
~A

)
= −i~ ~D

Here and through out the whole text, the convention is used where e = −1.6 ·
10−19As, ~A is the vector potential. In the last step we defined the covariant
derivativ.

From quantum electrodynamics, we know how to get from the Lagrangian L to
the Hamiltonian H [25]. Starting from L, the conjugated momenta to Ψα are
πα = ∂L

∂Ψ̇α
= iΨ†α. By applying a Legendre transform to L one gets H. We do it

here the other way round. The Langrangian of quasi-particles in graphene which
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do not interact with each other but do interact with the electromagnetic field has
the form:

L =
∑
σ

Ψ̄σ(t, ~r)
[
iγ0(~∂t − iµσ)− i~vFγαDα

]
Ψσ(t, ~r) (51)

Because we are still in the non-relativistic regime, only the description looks like
a relativistic one, the Zeeman term µσ must be included in (51). Apart from the
Zeeman term equation(51) looks like the QED Lagrangian for massless fermions
in an electromagnetic field:

L = Ψ̄(i~γµDµ)Ψ (52)

Besides graphene, there is another condensed matter system with a QED2+1

description, a d-wave superconductor. But that model has a different coupling
to the magnetic field due to supercurrents [8].

3.4 QED2+1 quasi-particles versus QED3+1 neutrinos

So far we have tried to work out similarities to quantum electrodynamics(QED),
now we will see what differences there are.
At first, we introduce the helicity operator

h(k̂) =
Σ · ~k
|~k|

; Σ =

(
~σ 0
0 ~σ

)
(53)

Σ acts on the spin degrees of freedom, ~σ is an array of Pauli matrices and ~k is the
wavevector. Helicity is the projection of the spin onto the direction of motion.
Because of (σi)2 = 1, h(~k)2 = 1 and the eigenvalues of the helicity operator are
±1. One distinguishes the eigenstates by:

• +1 right handed particles, spin is parallel to the momentum ~k

• −1 left handed particles, spin points in the opposite direction of ~k

Secondly, we will derivate a proper form of the Dirac equation with zero restmass,
where helicity directly appears.

γ̃µkµΨ = 0 (54)

The tilde above the Dirac matrices γ̃µ indicates, that we are using the standard
notation of the gamma matrices.

γ̃0 =

(
1 0
0 −1

)
, γ̃i =

(
0 σi

σi 0

)
(55)

30



Later we will introduce the chiral representation to compare it to the low energy
theory of graphene. We multiply (54) with γ5γ0 = −iγ1γ2γ3 from the right. By
using the anti commutation properties of the Dirac matrices {γµ, γν} = 2gµν1 we
get

(γ5k0 − kiΣi)Ψ = 0 (56)

⇒ Σ · ~kΨ = k0γ̃
5Ψ

Next we plug in plane waves for positive and negative energies respectively in
eq.(57):

ΨE+(xα) = e−ik
αxαΨ(kα) = e−i(k

0x0−~k~x)Ψ(kα) (57)

ΨE−(xα) = eik
αxαΨ(kα) = ei(k

0x0−~k~x)Ψ(kα) (58)

Because of equation(54) and γ̃νkν γ̃
µkµΨ = 0, kαkα = 0. Hence k0 = E = |~k| and

in equation(57) the helicity operator appears

Σ · ~k
|~k|

Ψ(kα) = h(~k)Ψ(kα) = ±γ̃5Ψ(kα) (59)

The γ̃5 operator is called chirality operator. The last equation shows that eigen-
states of the helicity operator are states with a definite chirality. Instead of solving
equation(59) we switch our Dirac matrices from the standard representation to
the chiral representation.

U =
1

2
(1 + γ̃5) (60)

U defines a unitary transformation to the chiral representation:

Ψ→ Ψch = U †Ψ; γµ = U †γµU (61)

γ0,ch = −γ̃ =

(
0 −1
−1 0

)
, γk = γ̃k =

(
0 −σk
σk 0

)
(62)

γ5 = γ̃5 =

(
1 0
0 −1

)
The γ5 matrix is diagonal in this representation, this suggests itself the name,
chiral representation. Therefore we can split the spinor Ψ into two subspinors of
definite chirality.

Ψch =

(
ψ1

ψ2

)
(63)

We use these relations to transform the Dirac equation into the chiral represen-
tation:

(−i~γ̃µ∂µ +m)Ψ = 0 (64)

U †(−i~γ̃µ∂µ +m)UU †Ψ = 0

(i~γ0,ch∂0 − i~γk∂k)Ψch −m14Ψch = 0
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If the mass term in the last line of (65) is zero, then the Dirac equation decays
into two decoupled equations.

(−i∂0 + iσk∂k)ψ2 = 0 (65)

(−i∂0 − iσk∂k)ψ1 = 0 (66)

These two equations are known as the Weyl equations for neutrinos. Only one
of the two equations on its own is not parity invariant [24]. To the common
knowledge, there are no right handed neutrinos in nature and only eigenstates
with negative chirality exist, hence the first equation(65) is the relevant one.
We plug in the first equation plane wave solutions of positive and negative energy
ψ2 = e∓k

αxαφ(kα):

Σ · ~kφ(~k) = ∓Eφ(~k) (67)

This equation tells us that states of positive energy, i.e. neutrinos ν, exhibit
negative chirality and states of negative energy, anti-neutrinos µ̄, have positive
helicity. Because massless particles move with the speed of light, we cannot go
to a rest frame and change the spin direction as it would be possible for massive
particles like electrons. A parity transformation P changes the direction of mo-
mentum ~k → −~k leaving the spin unchanged. In this way we can transform a
neutrino with negative helicity into one with positive helicity which does not fulfil
equation(65) but the, in nature, absent equation(66). Therefore we have no par-
ity invariance for neutrinos. Charge conjugation C operation connects states with
positive and negative chirality [24] and changes the sign of the charge e → −e.
Because states with positive chirality are absent in nature, equation(65) on its
own violates charge conjugation symmetry. It is known that the combined CP
transformation is preserved.
Until now we have not talked about graphene so we need to catch up that topic.
One should not be confused with the fact that we used the second quantized pic-
ture in the graphene part and the first quantized picture in the neutrino part. We
compare only the structure of the equations. Second and first quantization are
just two ways of describing the same thing. HD

0 (~p) = ~vF (γ1p1 + γ2p2) = E(~p)
in equation(49) is similar to the last line in (65), but without the mass term.
Above it was mentioned that for general honeycomb 2D-crystals like BN and
even for graphene there are mass generating mechanisms like differences of the
two sublattices.
We have seen that without the mass term, the Dirac equation in the chiral repre-
sentation decays into two equation that are formulated in the subspace of definite
chirality. This is nothing new for us because we constructed the hamiltonian in
equation(49) by unifying two 2-component spinors in the subspace of definite
valley index to a 4-component spinor:

Ψσ(~p) =

(
ψK+,σ(~p)
ψK−,σ(~p)

)
(68)
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In that sense, we can introduce chirality to low energy graphene by talking about
the valley index. Positive chirality refers to the K+-valley and negative chirality
to the K− valley.
The real difference is that we have no τ 3 Pauli matrix in the case of graphene14.
Therefore ~p lies in a plane and ~τ = (τ 1, τ 2) does not have the meaning of the usual
spin operator. Moreover, since τ 3 is the only generator of angular momentum
there is no non-abelian Lie algebra that can restrict its possible eigenvalues [8].
All in all we can not construct a helicity operator in the sense of, massless ultra
relativistic particles. Of course we can define a pseudo helicity operator

h2D(~p) =
Σ · ~p
|~p|

, Σ =

(
~τ 0
0 ~τ

)
(69)

Furthermore for graphene both Weyl equations (65) and (66) are present. States
with positive energy ~vF |~p| are electrons and states with negative energy are
holes. Hence equation(67) describes electrons(e) and holes(h) at the K− valley.

~vFΣ · ~pψe,hK−(~p) = ∓~vF |~p|ψe,hK−(~p) (70)

⇒ h2D(~p)ψeK−(~p) = −ψeK−(~p)

⇒ h2D(~p)ψhK−(~p) = ψhK−(~p)

At the K+ - point these relations are just inverted for electron and holes. In total
these relations tell us that at a given K± point, the direction of momentum for
electrons and holes with the same energy is opposite.
Finally, the conservation of chirality exhibits a nice physical meaning. If transfer
of quasiparticles between valleys is suppressed then backward scattering is absent
in our system [8]. This is visualised in figure(14). It depends on the type of
impurities in the sample [7] whether valley mixing is present or not.

14τ and σ both are Pauli matrices but the former refers to pseudo spin, i.e. sublattice index,
whereas the latter refers to real spin
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Figure 14: The two Dirac cones at the K− point (left) and the K+ point (right).
The arrows indicate the direction of motion of electrons and holes respectively.
Electrons and holes at each valley have opposite helicity. Conservation of chirality
means that states have a definite valley index.

4 The Quantum Hall Effect in Graphene

The rise of micro electronics in the 70ies and 80ies led to a great interest in ex-
aminig the two dimension like structures of field effect transistors. In 1980 Klaus
von Klitzing and collaborators [12] investigated two dimensional structures in
high magnetic fields and discovered a quantized Hall resistance. The quantiza-
tion of the Hall conductivity in integer multiples of the squared electron charge
divided by Planck’s constant

σxy =
e2

h
· n (71)

is an absolutely extraordinary phenomenon and from the common sense’s point of
view, an unexpected feature. Usually, one has to take several material dependent
parameters into account in order to calculate transport properties. For instance
the effective mass, the density of charge carriers, the dispersion relation, electron
interactions or the concentration of impurities heavily influence the conductivity.
On the one hand some of these are less relevant for a real two dimensional gas of
free fermions appearing in quantum wells or on top of MOSFETs (Metal-oxidized
Silicon Field Effect Transistors), but on the other hand it is still amazing in which
way these effects play together and reduce just to two fundamental constants, the
electroncharge e = −1.6 · 10−19As and Planck’s constant h = 6.626 · 10−34Js.
There are various types of phenomena referred to as the quantum Hall effect
(QHE). They exhibit the common observation of Hall conductance quantization
σxy = e2

h
p
q

where p, q are integers. From the theoretical point of view there are two

different quantum Hall effects. Namely, the integer (IQHE) and the fractional
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Figure 15: Quantum Hall effect measurements of Klaus von Klitzing,G. Dorda
and M. Pepper, PRL Vol.45 No.6 (1980) [12]. (on the left) Hall voltage UH
and longitudinal Voltage UPP as a function of the backgate potential Vg. Vg
is proportional to the charge carrier concentration. Inset on the left shows the
device with length L = 400µm and width W = 50µm. The two diagramms on
the right show the longitudinal resistance (upper right) and the Hall resistance
RH (lower right) at B = 13T . One can see the Hall plateau of RH and the
vanishing longitudinal resistance.

quantum Hall effect. The prior can be explained within a framework of non
interacting particles whereas the latter can not be explained without electron-
electron interactions, in a single particle framework. In the following part only the
IQHE will be discussed. First of all, this restriction is because QHE experiments
with graphene have not yet advanced to the region where fractional effects become
visible and secondly because the fractional quantum Hall effect requires much
more advanced methods and tools which would lie clearly out of the scope of
this text. Nevertheless, the fractional quantum Hall effect had great influence
on theoretical solid state physics and led for example to the theory of composite
fermions [9].

4.1 The Hall Effect and Electrons in magnetic Fields

To begin with, we consider the experimental setup given in figure(16). To reca-
pitulate the classical Hall effect, imagine a current density ~j = ene~v injected from
the right, e is the charge, ne the charge carrier density and ~v the velocity. There
is a potential difference V between 1 and 2 in figure(16) and a perpendicular
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Figure 16: Geometry of a typical ”Hall Crocodile” used to investigate the QHE.
The current flows in the positive x-direction from one lead to the other, a constant
magnetic field points in the z-direction. The longitudinal resistance/conductivity
is obtained by V12 the Hall resistance/conductivity by V13

magnetic field of strength B applied on the sample. Due to the Lorentz force

FL = e

(
E +

1

c
· [~v ×B]

)
(72)

the current will be forced in the y-direction until there is a counter voltage V13

between point 1 and 3 in (16), strong enough to compensate the force of the
magnetic field.

E13 =
V13

L
= −v

c
·B

Hence, with Ohm’s law ~j = σ ~E the Hall resistivity ρxy is

ρxy =
E13

j
=

vB

enev
=

B

enec
(73)

This is the classical Hall effect, the Hall resistivity depends on the magnetic field,
the carrier density and on the sign of the charge. Therefore it can be used to
determine the type of charge carrier, electrons or holes.

To prepare a quantum mechanical description of the Hall effect, we will have a
look at the electon motion in a magnetic field at first.
We consider a two dimensional problem, we will see later how two dimensional
systems are realized. In the case of graphene it is already known, but the materials
used here have a purely non-relativistic description.
The Hamiltonian of an electron confined in a plane with a magnetic field has the
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following form ( [27]p.20).

H =
1

2m

(
~p− e/c ~A(~r)

)2

︸ ︷︷ ︸
~π2

+gµBsB (74)

The last term in equation(74) is the Zeeman term, s = ±1
2

is the Spin quantum
number, g ≈ 2 is the Landé factor and µB = e~

2mc
is the Bohr magneton. This

term induces only a spin dependent splitting and will be omitted in the following
discussion.
We have a certain freedom to choose the vector potential and there are two
convenient ways. The first is the symmetric gauge ~A(~r) = B

2
(−y, x, 0) which

is appropriate in an isometric problem. The second one is helpful in a, in one
direction, translation invariant system, ~A(~r) = B(0, x, 0), it is called the Landau

gauge. One may check that both choices give the same magnetic field ~B = ∇× ~A.
In our case of an infinite plane the symmetric gauge will be used due to rotational
invariance. Due to the vector potential ~A(~r), the canonical momentum operator
~p does not commute with the Hamiltonian although the system is translational
invariant. From the Heisenberg equation of motion we get for the velocity oper-
ator.

~v =~̇r =
i

~
[H, ~r] =

1

m
(~p− e/c ~A(~r)) (75)

So we can define a dynamical momentum operator ~π = (~p− e/c ~A(~r)). The y and
x component of ~π do not commute with each other:

[πx, πy] = i~e/c(∂xAy − ∂yAx) = i~e/cB = −i~
2

l2
(76)

l2 = ~c
|e|B is called magnetic length or Larmor radius. As we will see later, this

quantity is related to the radius of the cyclotron orbit of the lowest Landau level.
Thus, we can treat the two dynamical momenta πx and πy as conjugated variables.
The Hamiltonian eq.(74) is similar to the well-known harmonic oscillator

H =
1

m
(π2

x + π2
y) (77)

We can define creation and annihilation operators

â† =
l√
2~

(πx + iπy) (78)

â =
l√
2~

(πx − iπy)

and plug them into the Hamiltonian (77). The result is the famous harmonic
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oscillator, which allows us to write down all necessary properties immediately.

H = ~ωc
(
â†a+

1

2

)
, ωc =

|e|B
mc

(79)

En = ~ωc
(
n+

1

2

)
, n ∈ {0, 1, 2, . . .}

Next we will write out the whole hamiltonian in the symmetric gauge to derive
the total set of eigenstates.

H =
1

2m

[(
−i~∂x +

eB

c

y

2

)2

+

(
−i~∂y −

eB

c

x

2

)2
]

(80)

We introduce dimensionless quantities

x, y → x̃ =
x

l
, E → Ẽ =

E

~ωc
(81)

Rewriting equation(80) gives

H =
1

2

[(
−i∂x̃ −

ỹ

2

)2

+

(
−i∂ỹ +

x̃

2

)2
]

(82)

We make use of the rotational symmetry and represent the variables x,y in the
complex plane:

z = x̃− iỹ = re−iθ, z̄ = x̃+ iỹ = reiθ (83)

z and z̄ are as independent as x and y, so the Hamiltonian becomes:

H =
1

2

(
−4∂z∂z̄ +

1

4
zz̄ + z̄∂z̄ − z∂z

)
(84)

In this way the creation and annihilation operators defined in equation(79) be-
come

â† =
1√
2

(
−i∂x̃ −

ỹ

2
+ ∂ỹ + i

x̃

2

)
=

i√
2

( z̄
2
− 2∂z

)
(85)

â =
1√
2i

(z
2

+ 2∂z̄

)
b̂ =

1√
2

( z̄
2

+ 2∂z

)
, b̂† =

1√
2

(z
2
− 2∂z̄

)
In the last line we defined another possible linear combination of coordinates and
derivatives. This new linear combination does not appear in the Hamiltonian(80).
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The additional operators b, b† will be necessary to express the angular momentum
operator in creation and annihilation operators.

Lz = (~r × ~p)z = −i~(x∂y − y∂x) (86)

= ~(z̄∂z̄ − z∂z) = ~(â†â− b̂†b̂)

â and b̂ operators commute with each other. For â and b̂, the following commu-
tation relations are valid

[â, â†] = 1, [b̂, b̂†] = 1 (87)

Because of [H,L] = 0 the angular momentum and the Hamiltonoperator have
the same eigenstates

H|n,m〉 = ~ωc
(
n+

1

2

)
|n,m〉 (88)

L|n,m〉 = ~(n−m)|n,m〉 (89)

|n,m〉 =
(b̂†)n+m√
(m+ n)!

(â†)n√
n!
|0, 0〉 (90)

The eigenvalue n of â†â is called the Landau level. From â|0, 0〉 = 0 and b̂|0, 0〉 = 0
the lowest Landau level can be constructed.

â|0, 0〉 =
i√
2

(z
2

+ 2∂z̄

)
|0, 0〉 = 0 (91)

|0, 0〉 =
1

2π
e−

1
4
zz̄ (92)

By raising the m quantum number with b̂† we can successively create further
lowest Landau levels.

|0,m〉 =
(b̂†)m√
m!
|0, 0〉 =

zme−
1
4
zz̄

√
2π2mm!

(93)

In the same way higher Landau levels n > 0 can be produced by applying â†. In
figure(17) a lowest Landau level in the x-y plane is shown.

Now, since we have calculated the quantum mechanical motion of electrons in a
magnetic field we apply an additional homogeneous electric field E in x-direction.
In order to obtain some nice demonstrative parallels with the classical electron
motion, we transform our coordinates back to x = x̃l.

|0,m〉 =
(x+ iy)m√

2π2mm!l
e−

1
4l2

r2 (94)

Here r2 is the radial distance in the plane. One can easily see that the ring
in figure(17) and in equation(94) has a width of ∆r = l. In the classical case
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Figure 17: Interpretation of the quantum mechanical Landau state(right) in terms
of a classical picture (left). The Landau state is a superposition of cyclotron orbits
of radius l with centers around the ”ring” of radius

√
2ml of maximal probability

of the Landau level

an electron in a magnetic field moves on a circle with cyclotron frequency ωc =
|e|B/mc

~r = ~R0 + r0(cos(ωct), sin(ωct), 0) (95)

~v = r0ωc(− sin(ωct), cos(ωct), 0)

The kinetic energy of a moving electron is Ekin = m
2
v2 = 1

2
mω2

cr
2
0. Comparing

this with the quantum mechanical energy of the lowest Landau level E0 = 1
2
~ωc

we obtain an estimate for the average radius of a cyclotron orbit of a lowest Lan-
dau level: r0 = l.
Hence not the ring in figure(17) itself depicts the cyclotron motion, it is rather a
superposition of orbits as shown on the left-hand side of figure(17). The expec-
tation value of

〈0,m|r2|0,m〉 = 2(m+ 1)l2 (96)

gives the radius of the maximum of the ring: rmax =
√

2ml.
At the beginning of this section we discussed the Hall effect. A typical hallbar
like that in figure(16) is of course only of a finite size. Equation(96) tells us that
the radius of the ring increases as the quantum number m is increased. There is
a maximal size of the ring, and therfore a maximal m, due to the finite geometry.
Let’s assume that the hallbar has a rotational symmetry and a size of S = πR2.
The largest value for m is m = R2

2l2
, and this is also the degeneracy in our system.

Related to a unit area, the degeneracy is 1
2πl2

. That means there is one electron
state for each area 2πl2. The magnetic flux which is penetrating the area of an
electron is given by

Φ = 2πl2B =
hc

|e|
= Φ0 (97)

which says that there is one electronstate per flux quantum Φ0. These considera-
tions are also valid for higher Landau levels [27]. It can happen that an electron
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shares more than one single flux quantum, and this goes in the direction of the
fractional quantum Hall effect.
Furthermore, there is an important quantity in the theory of the quantum Hall
effect called the filling factor ν. It relates the two dimensional density of electrons
to the degeneracy per unit area.

ν =
ne

1/(2πl2)
=

ne
B/Φ0

(98)

The filling factor is equal to the number of occupied Landau levels at a given
magnetic field. When the magnetic field is increased, more and more electrons can
be accumulated in one Landau level, hence fewer Landau levels will be occupied.
At last, we will apply an electric field in the x-direction in addition to the magnetic
field in the z-direction. This corresponds to the situation in a Hall experiment.
Now, that the rotational symmetry is broken by the electric field, the symmetric
gauge is no longer useful. Instead of the symmetric, we will use the Landau gauge
for the vector potential ~A.

~A(~r) = (0, Bx, 0) (99)

The Hamiltonian of this problem is

H =
1

2m

(
p2
x +

(
py −

e

c
Bx
)2
)
− eEx (100)

The mass m in the denominator in front of the momentum should not be confused
with the radial quantum number from above. In the following this quantum
number does not appear so there is no source for mistakes. Obviously, we have
translational symmetry in the y-direction, so we state the following ansatz:

ϕ(~r) =
1√
W
eikyyψ(x) (101)

W is the length of the system in y direction, i.e. the width of the Hall bar in
fig(16). We plug (101) into equation(100) and get the Schrödinger equation for
ψ(x). (

1

2m

[
p2
x + (~ky −

e

c
Bx)2

]
− eEx

)
ψ(x) = εψx (102)

Moreover, we introduce the center coordinate X

X = −kyl2 +
eEml4

~2
(103)

This allows us to write the Schrödinger equation in the harmonic oscillator form.(
1

2m
p2
x +

mω2
c

2
(x−X)2

)
ψ(x) =

[
εn + eEX − m

2

(
c
E

B

)2
]
ψ(x) (104)
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This time we will give the solution in terms of Hermite polynomials
Hn(x) = (−1)nex

2 dn

dxn
e−x

2

ϕ(~r) =
1√
W
eikyy

(
1

π

)1/4(
1

2nn!l

)1/2

exp

(
−(x−X)2

2l2

)
Hn

(
x−X
l

)
(105)

Furthermore, the eigenenergies are given by equation(104):

εn =

(
n+

1

2

)
~ωc︸ ︷︷ ︸

Ecyclotron

− eEX︸ ︷︷ ︸
Epot

+
m

2

(
c
E

B

)2

︸ ︷︷ ︸
Ekin

(106)

The first part of the eigenenergy(106) Ecyclotron is the cyclotron energy, the second
one, Epot is the potinetial energy in the electric field and the last one Ekin is the
kinetic energy of the drift motion in y-direction with velocity v = cE

B
. Because

the crossed fields B, in the z-direction and E, in the x-direction force the electron
in the y-direction, just like in the classical case.
From equation(105) we are able to calculate the expectation value of the velocity
in x- and y-direction( [27]p.29) < ϕ(~r)|vx|ϕ(~r) >= 0 and < ϕ(~r)|vy|ϕ(~r) >=
−E/B.

Combining these results, ~j = enev and ohm’s law ~j = σ ~E, we evaluate the
coefficients of the conductivity tensor σ.

jx = enevx = 0 (107)

jy = enevy = −enecE/B

⇒ σxy = −σyx = − jy
Ex

=
enec

B

All other coefficients of the two dimensional conductivity tensor are zero. This
Hall conductivity, equation (108), does not show any tendency to quantization.
If we assume that all Landau levels εn from n = 0, ...., n− 1 are completely filled
up to the (n-1)th level, then the electron density is ne = n/(2πl2). The Hall
conductivity (108) now becomes

σxy =
enc

2πl2B
=
e2

h
n n ∈ {0, 1, 2, . . .} (108)

Although this is exactly the observed value for the Hall conductivity, up to this
point we are still far away from understanding the Hall quantization. This is no
explanation because important questions remain open, in particular those which
will be summerised in the beginning of the next subsection:

• Why are Landau levels always completely filled?
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• Why is there ballistic transport in x-direction in the plateau regime whereas
there is Joule heating and a finite resistance at the transition of two Hall
plateaus?

• What kind of role do the always present impurities play?

4.2 The Hall Effect and Electrons in electric and magnetic
Fields

To begin with, we consider the experimental setup given in figure(16). To reca-
pitulate the classical Hall effect, imagine a current density ~j = ene~v injected from
the right, e is the charge, ne the charge carrier density and ~v the velocity. There
is a potential difference V between 1 and 2 in figure(16) and a perpendicular
magnetic field of strength B applied on the sample, due to the Lorentz force

4.3 The Integer Quantum Hall Effect

To start with an explanation of the quantum Hall effect, we first summerize some
experimental facts whose explanation will be the aim of this subsection.
In figure(15) the first experimental Hall measurements can be seen. One can
clearly see the plateaus of σxy appearing at integer multiples of the conductance
quantum e2/h. Throughout the Hall plateaus the longitudinal resistivity ρxx
remains zero, whereas at the transition there is a finite Joule heating and therefore
a finite resistivity. At this point one should point out that the resistivity is a
tensorial quantity.

~j = σ ~E σ = ρ−1 (109)

In this sense, it should be explicitly said that zero resistivity by no means implies
a perfect conductance σ =∞. This follows from a simple calculation. σxx = σyy
and σxy = −σyx.

σ =

(
σxx σxy
−σxy σxx

)
ρ = σ−1 =

(
σxx

σ2
xx+σ2

xy
− σxy
σ2
xx+σ2

xy
σxy

σ2
xx+σ2

xy

σxx
σ2
xx+σ2

xy

)
(110)

The longitudinal resistance vanishes if the diagonal conductance σxx is zero. In
the case of our Hall plateaus both the longitudinal resistivity and conductivity
are zero. By the way, the conductance and the conductivity have the same phys-
ical units in real two dimensional systems.

Two dimensional structures for an observation of the quantum Hall effect are
usually given by heterostructures or quantum wells. We will not get deep into
the certain realisations because in the case of graphene we already know how two
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dimensional structures are produced. So far, all usual systems are semi-conductor
sandwich structures where electrons live in a small layer at an interface. The de-
gree of freedom in the z direction is frozen because the excitation gap is too large
to become overwhelmed. Just think of an infinite potential well with very tiny
extent in the z direction. Furthermore the electrons do not feel the lattice of the
semi-conductor which makes them really a free two dimensional electron gas.

So far we considered the fundament of the quantum Hall effect. In particular the
motion of a single electron in constant magnetic and electric fields. This suffices
already because the quantum Hall effect can be explained in a single particle
framework. We do not need to take into account interactions between electrons,
although they are present. They might alter quantitatively some features but not
qualitatively.
Now the more important question is what kind of role do the edge and impuri-
ties in the bulk of the sample play in an explanation of the quantum Hall effect.
Because of the fundamental quantities e and h appearing in the quantized conduc-
tivity one might tend to say that impurities and edges play the role of corrections.
But surprisingly, they lie at the heart of the quantum Hall effect.

4.3.1 The Effect of weak Disorder and magnetic Fields in the Bulk

We consider a Hall bar of a finite size spangled with impurities creating a whole
mountain range on the sample. This influence on the Landau level structure is
given in equation(111), below:

εn =

(
n+

1

2

)
~ωc + V (~R) (111)

Thus, the degeneracy of the Landau levels is lifted. There are eigenstates with
energies between the Landau level, blurring up the sharp lines, fig.(18). The
mountains and valleys in the sample are visualized on the lower right and left in
figure(19).
Without any magnetic field electrons and holes in two dimensions experience
Anderson localization. That means although the charge carriers seem to be free
on atomic scales, they are localized on a greater scale due to interference effects
of the wave function. As the size of the system becomes macroscopic the wave
function of a charge carrier does not extent from one end to the other. Hence in
two dimensions the conductance should be zero.
What changes in the case where a large magnetic field is switched on?
In the last subsection we introduced the magnetic length l2 = ~c

|e|B . The magnetic
length l resambles the radius of cyclotron motion of a classical particle in a
magnetic field. As the magnetic field increases, l becomes smaller and smaller.
Thus, at a certain field strength B, the magnetic length becomes small compared
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to the disordered impurity potential. Consequently, this random potential has
a smooth behaviour on the scale of l. From a semi-classical point of view, the
electron experiences a crossed magnetic field B and electric field E = ∂V (~r)

∂~r
, V (~r)

is the random potential. As a result the electron moves on an equipotential line.
In view of figure(19), if an electron has an energy which falls into the region of
valleys or hills respectively, then the motion is closed and the state belonging to
this energy is localized.
Intuitively we can compare the filling of levels denoted by the energy(111) with
filling of a landscape with water15. This is visualised in figure(19). At first,
there is only a formation of small unconnected lakes due to the filling of valleys.
These states are localized and do not contribute to the current. After a while the
lakes become connected and small rivers carrier water from one end to the other.
This is the percolation threshold, at which the states contribute to the current.
A further filling just occupies the states on the hill which do not contribute as
stated above. This procedure repeats with the next Landau level.
A more sophisticated investigation is given by numerical calculations ( [9] p.97)
and ( [27] p.34). From these calculations the localization length ξ, i.e. the extent
of the electronic wave function in such a random potential, as a function of the
energy ε can be obtained and compared with the size of the sample L. The
localization length of the lowest Landau level is given by:

ξ(ε) ∝ |ε− εc|−α, α = 2.3± 0.1 (112)

εc denotes the energy at the center of a Landau level. As long as L < ξ(ε), the
electronic wave function extents over the whole sample and connects both ends.
So far we obtained an arrangement of two kinds of states, localized states and a
very narrow region of extended states. The energy gap created by the formation
of Landau levels vanished, leaving behind a mobility gap, fig.(18). This model
explains somewhat the formation of Hall plateaus in an intuitive way but it fails
to explain Hall conductivity. Because of the very narrow energy band of localized
states, there are only very few electrons nextend contributing to the current. The
Hall conductance behaves like σxy = ecnextend/B and the density of extended
states nextand is quite far away from the total number of occupied Landau levels
per sample size n/(2πl2). This model would only work if we introduce a certain
mechanism that tells the hallbar to behave like a disorder free sample in the
mobility gap. Hence, the electrons occupying the Landau levels crossed so far
contribute to the current. Whereas it puts all additional electrons in localized
states, which do not contribute to the current σ = const., until the next Landau
level is crossed and all the states below that energy begin to behave like disorder
free extended one.
The next part treats the effect of edges. It is known as the Landauer-type expla-
nation( [9]p.83) or Büttiker’s Theory( [27]p.41) and will give us a more satisfying

15Here we consider the magnetic field B to be constant and we vary the electron density with
the back gate voltage
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Figure 18: (right) Structure of Landau levels in a system with weak disorder.
Extended states at ~ωc(n + 1/2) and localized states between. (left) Landau
levels of a sample with edges. Due to the confining potential of the sample, edge
current states can be occupied between the energies of the bulk. The dotted line
indicate the different occupation of states of the left and the right edge due to a
difference in chemical potential ∆µ at the leads

explanation. That does not mean that this part was unnecessary, because parts
of this disscussion are also implemented in other explanations.

4.3.2 The Effect of the Edges

The electrons inside the Hall bar are confined in the y-direction because the sam-
ple has finite size. Thus the potential raises at the edges, just as indicated in
figure(18).
Once more we go back to classical physics to get an idea of what happens at the
edges. We have seen that in a magnetic field, an electron denotes a circle when
it moves in the bulk. If it comes too near to the edges, the strong ascent of the
confining potential acts like an infinitely high wall and the electron bounces off,
doing another half circle till it touches the wall again. This can be seen in fig-
ure(19) on the top. In this way we get two currents moving in opposite directions
at the two edges. Furthermore, this effect suppresses backscattering at the edges
giving rise to ballistic transport.

Going back to quantum mechanics, we see in figure(19) schematically that the
weak disorder heavily effects the bulk but has no effect on the edges because of
the much higher confining potential. The equipotential lines are hardly altered
by the random potential and still connect one end of the sample with the other.
Namely, edge states are extended states.
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Figure 19: (top) classical motion of edge state and bulk state electrons in a
magnetic field. (lower r,l) potential energy landscape of a weakly disordered
sample with edges. The z-axis is the energy

However, we are now able to explain the origin of the ballistic transport at the
plateaus of σxy and the finite resistivity at the transitions.
For symplicity we consider here a constant magnetic field, strong enough to ob-
serve the quantum Hall effect and vary rather the electron density. In this sense
we just raise and lower the Fermi energy bar in figure(18) on the energy axis,
and effect the occupation of energy eigenstates. We start in the middle of two
Landau levels. The bulk states of (n-1)th Landau level are fully occupied. That
means due to the Pauli principle, which excludes fermions to be in the same state,
scattering is not possible and the resistivity is zero in this regime. Due to the
difference in the chemical potential ∆µ, i.e. the applied voltage in x-direction,
one edge current is favoured and an edge current is flowing in one direction. As
we said in the beginning of this subsection, edge currents are a ballistic transport
phenomena and feel no backward scattering. We can calculate this current:
The current density is expressed as

~j = ene(~r)~v(~r) (113)

where ~v(~r) is the velocity and ne(~r) =
∑

k δ
(2)(~r− ~rk) is the density of electrons.

The current density is uniform in the x direction due to translational symmetry16.

16We consider only the edges where disorder has small effects
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The current in the x direction is

Ix =

∫
~j(~r) · ~x

|x|
dy (114)

=
1

L

∫ ∫
~jx(y)dydx

= − e
L

∫
d2rne(~r)vx(~r)

= − e
L

∑
k

vx(~rk)

In this way we define our current operator as

Îx = − e
L

∑
k

v̂kx (115)

Later, we will replace the sum by an integal:
∑

k →
∫

dpx
2π~

In order to obtain an expression for the current we recall equation(100) where we
calculated the motion of an electron in electric and magnetic fields. This time we
consider the confining edge potential U(y) which is uniform in the x direction.
The magnetic field is introduced by the vector potential in the Landau gauge
~A = (−By, 0, 0).
The Hamiltonian with the confining potential is given by

H =
1

2m

[(
px +

e

c
By
)2

+ p2
y

]
+ U(y) (116)

From this Hamiltonian we can immediately extract an expression for the velocity
operator:

mv̂x = px +
e

c
By (117)

Moreover we replace the summation in eq.(115) by an integral over the momen-
tum in x-direction px. This kind of counting states is valid, because the center
coordinate of the wavefunction depends on px, see eq.(105). Consequantly, the
current in x direction is given by

Ix = −e
∫

dpx
2π~
〈v̂x〉 (118)

= − e
h

∫
dpx

1

m
〈px +

e

c
By〉

= − e
h

∫
dpx〈

∂H
∂px
〉

Instead of evaluating the expectation value of the derivative of the Hamiltonian
with respect to the momentum we take the derivative of the expectation value.

Ix = − e
h

∂E

∂px
= − e

h

∫
dE =

e

h
∆µ (119)
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The difference in the chemical potential ∆µ can be expressed by the Hall voltage
∆µ = eVH = eEyW . Then, the current density is:

jx =
e

h
Ey (120)

σxy =
e2

h

Finally we obtained the current density and conductivity if we settle our fermi
energy above the lowest Landau level but still below the next Landau level.
Now imagine, that we raise the fermi energy bar to the point where half of the
states of the next Landau level are occupied. Because there are empty states
available without any gap, scattering is possible and we have a finite resistivity
and Joule heating. We lift the bar further all states become occupied and scat-
tering is not possible because the gap to the next Landau level is too large to be
overcome by thermal excitation. Moreover in figure(18) we can see that now the
edge states of this next Landau level also contribute to the current. If we have
n-1 Landau levels17 below the Fermi energy then we have n times the current of
equation(121) and n times its conductivity

σxy =
e2

h
n (121)

This is the observed Hall conductivity, and we have finished a somehow intuitive
explanation of the interger qunatum Hall effect. However the quantum Hall effect
is, except for graphene, only observable at rather low temperatures. when the
temperature becomes compareable with the distance of Landau levels kBT ∼ ~ωc,
the QHE will be destroyed.
In the next section we will treat the integer quantum Hall effect in graphene,
which behaves similar but has some strange unexpected or so to speak uncon-
ventional features.

4.4 The unconventional Quantum Hall Effect in Graphene

In the last section we discussed the behaviour of charge carriers confined on a two
dimensional plane under the influence of a crossed electric and magnetic field. The
quantum Hall effect appears in the strong magnetic field limit. Since graphene
is a real two dimensional electron system, it certainly shows the quantum Hall
effect. Therefore the explanation, which was based on semi-conductor devices
should hold here, too.
The charge carriers in graphene exhibit a four fold degeneracy. Since the Zeeman
splitting is low compared to the energy between two adjacent Landau level18 all

17The Landau levels start at zero 0, 1, 2, . . .
18For B = 30T the Zeeman splitting energy is 2µBB ∼ 1meV , whereas the difference between

the lowest Landau level E0 = 0 and the first is E1 =
√

2~v2
F |e|B ≈ 1eV .
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states are two fold degenerate. Secondly, we have another factor of two emerging
from the equal contributions of the K-valleys K+ and K−. Consequently, we
expect the Hall conductivity quantized in multiples of

σxy = 4
e2

h
· n n ∈ {. . . ,−1, 0, 1, . . .} (122)

Figure 20: (left) Measurements of the Hall conductivity σxy in graphene recorded
by K.S. Novoselov, A.K. Geim, et al. [19]. The Hall conductivity and the lon-
gitudinal resistivity are plotted against the charge carrier density which can be
tuned by the back gate voltage. One can clearly see that the stair like Hall
conductivity exhibits plateaus at half-integer multiples of the degenerated con-
ductance quantum 4e2/h. The Inset on the upper left shows the same graphs
for a bilayer sample, where σxy increases in integer steps. The right picture was
measured by [5]. The Hall conductivity as a function of the magnetic field at
4.2K (solid line) and at room temperature(RT) (dotted line). The step at filling
factor ν = −2 is present even at room temperature.

Nevertheless, in experiments fig.(20), a Hall conductivity of

σxy = 4
e2

h

(
n+

1

2

)
= ν

e2

h
, ν = 4

(
n+

1

2

)
(123)

is observed and not eq.(122). Namely, the integer quantum Hall effect (IQHE)
appears at half-integers.
Like most of the usual qunatum phenomena, the IQHE appears at very low tem-
peratures. In conventional semi-conductor heterostructures, no QHE has ever
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been observed above T = 30K since localisation will be fully destroyed if the
temperature is further increased. Unlike those materials the IQHE in graphene
appears at room temperature. This is demonstrated in the diagramm on the
right hand side of figure(20), where the Hall conductivity has a still visible step
at room temperature.
Beside this half-integer QHE regime [10] reported Hall plateaus at filling factors
ν = 0,±1 in addition to the ν = 4(n + 1/2). These new quantum Hall(QH)
states are observalble at very high magnetic fields (B > 20T ) and appear only in
samples of the highest quality with mobilities larger than 15000cm2/V s.
All these observations which deviate from the QHE in semi-conductors have orig-
inate from the ultra relativistic massless charge carriers. In order to explain the
phenomena listed above, we will derivate an expression for the energy of Landau
levels.
In section(3) we obtained an expression for the Langrangian, equation(51), of the
low energy quasi particles. In the following we will omit the spin dependance,
keeping in mind the spin degeneracy in the Hall conductivity. Hence the Zeeman
term in eq.(51) will be neglected. Furthermore, from the Langrangian(51) we
derivate the equation of motion for the field operators. In the following we will
work in the first quantized picture and deal with wavefunctions and not with field
operators. However, this procedure gives us two equation for the wavefunction
at K+ and K− points.[

iτ 0~∂t + i~vF τ 1D1 + i~vF τ 2D2

]
ΨK+(t, ~r) = 0 (124)[

iτ 0~∂t − i~vF τ 1D1 − i~vF τ 2D2

]
ΨK−(t, ~r) = 0 (125)

Here, we used the covariant derivative Dα = ∂α + ie
~cAα. Next, we multiply the

first equation(124) by τ3 and the second equation(125) by −τ3 and get almost
the same equation for both K-points:[

±iγ̂0~∂t + i~vF γ̂1D1 + i~vF γ̂2D2

]
ΨK±(t, ~r) (126)

The γ̂ matrices in (126) are:

γ̂0 =

(
1 0
0 −1

)
γ̂1 =

(
0 1
−1 0

)
γ̂0 =

(
0 −i
−i 0

)
(127)

Now we will solve the equation for the K+ point, the solution of K− will differ
by a sign. We split the 2-spinor into its sublattice parts:

ΨK+ =

(
ϕ
ψ

)
(128)

We plug this 2-spinor into equation(126) and obtain the following system of
equations: (

ϕ̇

ψ̇

)
=

(
0 W
Z 0

)(
ϕ
ψ

)
(129)
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with

W = −vF
(
∂x +

ie

~c
Ax

)
+ ivF

(
∂y +

ie

~c
Ay

)
(130)

Z = vF

(
∂x +

ie

~c
Ax

)
+ ivF

(
∂y +

ie

~c
Ay

)

Instead of first order differential equations we solve a second order differential
equation for ϕ and ψ:

ϕ̈ = WZφ (131)

ψ̈ = ZWψ

We make an ansatz for the time dependance of psi:

ψ(t, ~r) = e−iEt/~ψ(~r) (132)

If we plug this ansatz into the differential equation for ψ eq.(132) and use the

symmetric gauge for the vector potential ~A = B/2(−y, x, 0):

ψ̈ = −E
2

~2
ψ(~r) = v2

F

[
−
(
∂x +

i

l2
y

2

)2

−
(
∂y −

i

l2
x

2

)2

− 1

l2

]
ψ(~r) (133)

In equation(133) we introduced the magnetic length l2 = ~c/(|e|B). We multiply
equation(133) by ~2, introduce dimensionless coordinates x → x/l and play a
little bit with the righthand side:

~2v
2
F

l2

[(
−i∂x −

y

2

)2

+
(
−i∂y +

x

2

)2

− 1

]
(134)

= ~2v
2
F

l2

[(
−4∂z∂z̄ +

1

4
zz̄ − z∂z + z̄∂z̄

)
− 1

]
= ~2v

2
F

l2

[
2 ·
(
n̂+

1

2

)
− 1

]
= ~2v

2
F

l2
[2n]

In the second line of equation(135) we introduced a complex notation z = y −
ix, similar to the last section. In the same sense we introduced creation and
annihilation operators and the occupation number operator n̂. All in all, we gain
an expression for the energy of the Landau levels of relativistic massless particles.

En = sgn(n)
√
v2
F~|e|B2n/c (135)
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Moreover, we can easily obtain the energy for ϕ: En = sgn(n)
√
v2
F~|e|B2(n+ 1)/c.

At the K− points these relations are inverted because the different definition of
the 2-spinor ΨK− where the sublattice entries are swapped (eq.(42)). Suppose
n is positiv, then we are in the electron regime and En is positiv. Now we can
use the energy of Landau levels for an explanation of the half-integer QHE. The
lowest Landau level E0 is zero for equation(135) but for ϕ, E0 =

√
v2
F~|e|B2/c

is nonzero. Hence the lowest Landau level exhibits half the degeneracy of the
other levels and gives only half of the contribution of the other Landau levels.
One can also say that the lowest Landau level is equally shared by electrons and
holes. Calculations of the Hall conductivity, using the linear response theory and
the Kubo formular [6] also show that the unusual Hall conductivity pattern is
caused by the lowest landau level which exhibits half the degeneracy of the higher
Landau levels.
The high-temperature QHE can be explained by the large energy gap between
the lowest and the first Landau level:√

2~v2
F eB ≈ 0.2eV (136)

The electrons in a typical GaAs sample have an effective mass of m∗ = 0.067me.
The difference between two Landau level is constant: ~ωc ≈ 1meV . The QHE
is destroyed when the tempeature becomes compareable to this value. At room
temperature we have an energy of about 20meV which explains the vanishing
QHE in semiconductors.

The zero energy Landau level E0 = 0 can also be examined by the Atiyah-
Singer index theorem [23]. This theorem is used in quantum field theory to relate
functional integrals with the difference between right- and left-handed zero modes
of an operator, namely the index of that operator. In this way calculations depend
only on topological properties and can often be simplified. In our case the gauge
field is the vector potential ~A(~r) and the operator is the Dirac operator D from
section(3) (for example eq.(48)). D is an elliptic operator over a two dimensional
manifold M, where M is the graphene sheet. For even dimensional manifolds,
the spinor space is reducible and can be splitted in two irreducible ones. Namely,
the two K± contributions in equation(42). The kernel kern(D) of an operator is
the set of states with zero energy. The index ind(D is the difference between the
number of zero states at K− and K+ valleys. The Atiyah-Singer index theorem
says:

ind(D) = dim(kern(D |K+))−dim(kern(D |K−)) =
1

2π

∫ ∫
B(x, y)dxdy (137)

B(x, y) is the magnetic field, pointing in the z-direction. We can easily carry out
the integration on the right hand side (Φ = hc

e
is the flux quantum):∫ ∫

dxdyB(x, y) =
hc

e
(N + ε) 0 < ε < 1 (138)
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In [1] there two nice theorems derivated from (137) and (138).

• If N + ε > 1, then there are exactly N-1 zero-energy states whose spin has
the same sign as the flux.

• All nonzero energy eigenstates are degenerate with respect to spin flip

Consequently, the zero-energy states in graphene are protected by topological
arguments. The narrow E0 = 0 Landau level, staying sharp even at high tem-
peratures, which was observed in [5] can be seen as a direct manifestation of
the Atiyah-Singer index theorem. Moreover, these results are important in the
case of corrugated graphene layers because it guarantees the robustness of the
zero-energy Landau states. The analysis of weak localization measurements [18]
have shown that the ripples cause a random gauge field and that graphene should
behave as if it were exposed to a random magnetic field from approximately 0.1T
to 1T .
Further analysis of the integer quantum Hall effect with more sophisticated meth-
ods like the nonlinear sigma model, as done by [22], relate the non-standard
quantization to some special symmetry that is preserved by the disorder. For
example, they found out that a smooth random potential does not lead to cou-
pled K-valleys, thus suppressing inter-valley scattering. Mechanisms, like electron
scattering due to charged impurities lead to inter valley scattering and to the or-
dinary QHE. However, the theory of the IQHE in graphene is said to be not
established yet [22].
Finally, this shows that results from section(2) and (3), ripples and chirality
become important in an explanation of the quantum Hall effect.

5 Conclusion

To conclude, we have seen why graphene was found so late, although the cleavage
technic at first may seem rather simple. The discussion about the stability of
graphene pointed out that the material is corrugated, and that even the stability
of graphene can be a tricky question. Furthermore, the low energy expansion
of the dispersion relation has shown that the quasi-particles form a real two
dimensional gas of massless, ultra-relativistic particles with the same structure
as massless neutrinos. Finally, the analysis of the unconventional quantum Hall
effect in graphene combined parts from all previous sections showing that effective
ultra-relativistic systems exhibit a clearly distinct behaviour compared to the
well known two dimensional electron gas in semi-conductors. Although most of
these problems are still not completely solved, studying graphene is certainly
rewarding.
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