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Wilson’s numerical renormalization group !NRG" method for solving quantum impurity models yields a set
of energy eigenstates that have the form of matrix product states !MPS". White’s density-matrix renormaliza-
tion group !DMRG" for treating quantum lattice problems can likewise be reformulated in terms of MPS. Thus,
the latter constitute a common algebraic structure for both approaches. We exploit this fact to compare the
NRG approach for the single-impurity Anderson model with a variational matrix product state approach
!VMPS", equivalent to single-site DMRG. For the latter, we use an “unfolded” Wilson chain, which brings
about a significant reduction in numerical costs compared to those of NRG. We show that all NRG eigenstates
!kept and discarded" can be reproduced using VMPS, and compare the difference in truncation criteria, sharp
vs smooth in energy space, of the two approaches. Finally, we demonstrate that NRG results can be improved
upon systematically by performing a variational optimization in the space of variational matrix product states,
using the states produced by NRG as input.
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I. INTRODUCTION

Wilson’s numerical renormalization group !NRG" is a
highly successful method for solving quantum impurity mod-
els which allows the nonperturbative calculation of static and
dynamic properties for a variety of impurity models.1–6 NRG
is formulated on a “Wilson chain,” i.e., a tight-binding fer-
mionic quantum chain with hopping matrix elements that
decrease exponentially along the chain as "−n/2, where "
#1 is a discretization parameter defined below and n$0 is
the chain’s site index. It is thus not applicable to real-space
quantum lattice problems featuring constant hopping matrix
elements. For these, White’s density-matrix renormalization
group !DMRG" is the method of choice.7–9 It has been
known for some time10,11 that the approximate ground states
produced by DMRG have the form of matrix product states
!MPS" #see Eq. !7" below$ that had previously arisen in cer-
tain stochastic models12 and quantum information
processing.13 This fact can be exploited to reinterpret the
DMRG algorithm !more precisely, its one-site finite-size ver-
sion" as a variational optimization scheme, in which the
ground-state energy is minimized in the space of all matrix
product states with specified dimensions.11,14,15 To emphasize
this fact, we shall refer to DMRG as “variational matrix
product state” !VMPS" approach throughout this paper.

Quite recently it was understood16 that NRG, too, in a
natural way produces matrix product states. In other words,
when applied to the same Wilson chain, NRG and VMPS
produce approximate ground states of essentially the same
MPS structure. The two approximate ground states are not
identical, though, since the two methods use different trun-
cation schemes to keep the size of the matrices involved
manageable even for very long Wilson chains: NRG trunca-
tion relies on energy scale separation, which amounts to dis-
carding the highest-energy eigenstates of a sequence of ef-
fective Hamiltonians, say Hn, describing Wilson chains of
increasing length n and yielding spectral information associ-

ated with the energy scale "−n/2. This truncation procedure
relies on the exponential decrease of hopping matrix ele-
ments along the Wilson chain, which ensures that adding a
new site to the Wilson chain perturbs it only weakly. In con-
trast, VMPS truncation relies on singular value decomposi-
tion of the matrices constituting the MPS, which amounts to
discarding the lowest-weight eigenstates of a sequence of
reduced density matrices.8 This procedure makes no special
demands on the hopping matrix elements, and indeed works
also if they are all equal, as is the case of standard quantum
chain models for which DMRG was designed.

The fact that a Wilson chain model can be treated by two
related but nonequivalent methods immediately raises an in-
teresting and fundamental methodological question: How do
the two methods compare? More precisely, to what extent
and under which circumstances do their results agree or dis-
agree? How do the differences in truncation schemes mani-
fest themselves? VMPS, being a variational method operat-
ing in the same space of states as NRG, will yield a lower-
energy ground state than NRG. However, it variationally
targets only the ground state for the full Wilson chain, of
length N, for example. In contrast, NRG produces a set of
eigenenergies %E%

n& and eigenstates %'E%
n(& for each of the se-

quence of effective Hamiltonians Hn, with n&N, mentioned
above. From these, a wealth of information about the RG
flow, fixed points, relevant and irrelevant operators, their
scaling dimensions, as well as static and dynamic physical
properties can be extracted. Are these accessible to VMPS,
too?

The goal of this paper is to explore such questions. We
shall exploit the common matrix product state structure of
the NRG and VMPS approaches to perform a systematic
comparison of these two methods, as applied to the single-
impurity Anderson model. It should be emphasized that our
purpose is not to advocate using one method instead of the
other. Instead, we hope to arrive at a balanced assessment of
the respective strengths and weaknesses of each method.
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In a nutshell, the main conclusion !which confirms and
extends the results of Ref. 16" is the following: When ap-
plied to a Wilson chain with exponentially decreasing hop-
ping, the VMPS approach is able to fully reproduce all in-
formation obtainable from NRG, despite being variationally
optimized with respect to the ground state only. The reason is
that the VMPS ground state is characterized by products of
matrices of the form )n=0

N B#'n$ !details will be explained be-
low", where the matrices with the same index n contain in-
formation about the energy scale "−n/2. As will be shown
below, this information can be used to construct eigenener-
gies %E%

n& and eigenstates %'E%
n(& for a sequence of effective

Hamiltonians Hn in complete analogy with !but not identical
to" those of NRG. The agreement between NRG and VMPS
results for these eigenenergies and eigenstates is excellent
quantitatively, provided sufficient memory resources are
used for both !and " is not too close to 1, see below". In this
sense, NRG and VMPS can be viewed as yielding essentially
equivalent results when applied to Wilson chains amenable
to NRG treatment. In particular, all physical properties ob-
tainable from the eigenspectra and eigenstates of NRG can
likewise be obtained from those of VMPS.

Nevertheless, NRG and VMPS do differ in performance,
flexibility, and numerical cost. First, since NRG truncation
relies on energy scale separation, it works well only if the
discretization parameter " is not too close to 1 !although the
continuum limit of the model is recovered only in the limit
"→1". This restriction does not apply to VMPS. Indeed, we
shall find that NRG and VMPS agree well for "=2.5, but
less well for "=1.5. This in itself is not surprising. However
it does illustrate the power of VMPS to get by without en-
ergy scale separation. This very useful feature can be ex-
ploited, for example, to obtain well-resolved sharp spectral
features at high energies in dynamical correlation
functions,16 using projection operator techniques. However,
the latter results go beyond the scope of the present paper
and will be published separately.

Second, since VMPS does not rely on energy scale sepa-
ration, it does not need to treat all terms in the Hamiltonian
characterized by the same scale "−n/2 at the same time, as is
required for NRG. This allows VMPS to achieve a signifi-
cant reduction in memory cost compared to NRG for repre-
senting the ground state. To be specific: For NRG, we use the
standard “folded” representation of the Wilson chain, in
which each site represents both spin-down and spin-up elec-
trons, with the impurity site at one end #see Fig. 1!a"$. How-
ever, it turns out that apart from the first few sites of the
folded chain, the spin-down and -up degrees of freedom of
each site are effectively not entangled with each other at all
!see Fig. 3 below". For VMPS, we exploit this fact by using
an “unfolded” representation of the Wilson chain instead,16,17

in which the spin-up and spin-down sites lie on opposite
sides of the impurity site, which sits at the center of the chain
#see Fig. 1!b"$. This unfolded representation greatly reduces
the memory cost, as characterized by the dimensions, D for
NRG or D! for VMPS, of the effective Hilbert spaces needed
to capture the low energy properties with the same precision:
We find that with the choice D!=2m*D, VMPS can repro-
duce the results of NRG in the following manner: !i" if m
=0, the NRG ground state is reproduced qualitatively; !ii" if

m=1, all the “kept” states of NRG are reproduced quantita-
tively; and !iii" if m=2 all the “kept” and “discarded” states
of NRG are reproduced quantitatively. However, in cases !ii"
and !iii" the reduction in memory costs of VMPS is some-
what offset by the fact that the calculation of the excited
eigenstates needed for the sake of direct comparison with
NRG requires diagonalizing matrices of effective dimension
D!2. Note, nevertheless, that all information needed for this
comparison is already fully contained within the VMPS
ground state characterized by dimension D!, since its con-
stituent matrices contain information from all energy scales
represented by the Wilson chain.

The paper is organized as follows: Sec. II sets the scene
by introducing a folded and an unfolded version of the Wil-
son chain. In Secs. III and IV we review the NRG and VMPS
approaches for finding the ground state of a folded or un-
folded Wilson chain, respectively, emphasizing their com-
mon matrix product state structure. We also explain how an
unfolded MPS state may be “refolded,” allowing it to be
compared directly to folded NRG states. In Sec. V we com-
pare the results of NRG and VMPS, for ground-state ener-
gies and overlaps !Sec. V A", excited-state eigenenergies and
density of states !Sec. V B", and the corresponding energy
eigenstates themselves !Sec. V C". This allows us, in particu-
lar, to obtain very vivid insights into the differences in the
truncation criteria used by the NRG and VMPS approaches,
being sharp or smooth in energy space, respectively !Figs.
8–10". In Sec. VI we demonstrate that NRG results for the
ground state can be improved upon systematically by first
producing an unfolded “clone” of a given NRG ground state,
and subsequently lowering its energy by performing varia-
tional energy minimization sweeps in the space of variational
matrix product states. Finally, Sec. VII contains our conclu-
sions and an assessment of the relative pros and cons of
NRG and VMPS in relation to each other.

II. FOLDED AND UNFOLDED REPRESENTATIONS OF
WILSON CHAIN

For definiteness, we consider the single-impurity Ander-
son model. It describes a spinful fermionic impurity level
with energy (d and double occupancy cost U !with associated
creation operators f0)

† , where )= ↓ ,↑ denotes spin", which
acquires a level width * due to being coupled to a spinful
fermionic bath with bandwidth W=1. Since the questions
studied in this paper are of a generic nature and do not de-
pend much on the specific parameter values used, we con-
sider only the symmetric Anderson model and take U= 1

2 ,
U /+*=1.013 and (d=− 1

2U throughout this paper. To achieve
a separation of energy scales, following Wilson,1,2 the bath is
represented by a set of discrete energy levels with logarith-
mically spaced energies "−n !with associated creation opera-
tors fn)

† ", where n$1, "#1 is a “discretization parameter,”
and the limit "→1 reproduces a continuous bath spectrum.
The discretized Anderson model Hamiltonian can then be
represented as

HAM = lim
N→,

HN, !1"

where HN describes a Wilson chain of “length N” !i.e., up to
and including site N":
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HN = HN↓ + HN↑ + U! f0↑
† f0↑f0↓

† f0↓ + 1
2" , !2a"

HN) = (df0)
† f0) + +

n=0

N−1

tn!fn)
† f !n+1") + H.c." , !2b"

with hopping coefficients given by

tn ,-*2*

+
for n = 0,

1
2

!1 + "−1""−!n−1"/2-n for n $ 1,.
-n = !1 − "−n"!1 − "−2n+1"−1/2!1 − "−2n−1"−1/2. !3"

In passing, we note that for our numerics we have found it
convenient !following Refs. 17 and 16" to keep track of fer-
mionic minus signs by making a Jordan-Wigner
transformation18 of the Wilson chain to a spin chain, using
fn)

† = Pn)sn)
+ and fn)= Pn)sn)

− . Here sn)
. are a set of spin-1

2
raising and lowering operators, that for equal indices satisfy
%sn)

− ,sn)
+ &=1, !sn)

− "2= !sn)
+ "2=0, but commute if their indices

are unequal. The fermionic anticommutation relations for the
fn) are ensured by the operators Pn)= !−1"+!n̄)̄"/!n)"sn̄)̄

+ sn̄)̄
−

,
where / refers to some implicitly specified ordering for the
composite index !n)". The Pn) need to be kept track of
when calculating certain correlation functions, but do not
arise explicitly in the construction of the matrix product
states that are the focus of this paper. This transformation
will implicitly be assumed to have been implemented
throughout the ensuing discussion.

For the Anderson model, site n of the Wilson chain rep-
resents the set of four states ''n(, with 'n= !'n↓ ,'n↑"
! %!00" , !10" , !01" , !11"&, where 'n)! %0,1&, to be viewed as
eigenvalue of sn)

+ sn)
− , gives the occupancy on site n of elec-

trons with spin ). Thus, the dimension of the spinful index
'n is d=4, and that of the spin-resolved index 'n) is d!=2.
As a general rule, we shall use the absence or presence of
primes, d vs d! !and D vs D! below", to distinguish dimen-
sions referring to spinful or spin-resolved indices, respec-
tively, and correspondingly to folded or unfolded representa-
tions of the Wilson chain. For other quantum impurity
models, such as the Kondo model or multilevel Anderson
models, the dimension of the local impurity site, say d0, dif-
fers from that of the bath sites, d0!d. It is straightforward to
generalize the discussion below accordingly.

The Hamiltonian HN of a Wilson chain of length N is
defined on a Hilbert space of dimension dN+1. It is spanned
by an orthonormal set of states that, writing ''n(
= ''n↓(''n↑(, can be written in either spinful or spin-resolved
form,

'!N( = ''0(''1( . . . ''N( , !4a"

= ''0↓(''0↑(''1↓(''1↑( . . . ''N↓(''N↑( , !4b"

corresponding to a “folded” or “unfolded” representation of
the Wilson chain, illustrated by Figs. 1!a" or 1!b", respec-
tively. The unfolded representation of Fig. 1!b" makes ex-
plicit that the Anderson Hamiltonian of Eqs. !2a" and !2b"

has the form of two separate Wilson chains of specified spin,
described by HN↓ and HN↑, which interact only at site zero.
This fact will be exploited extensively below. Note that the
ordering chosen for the ''n)( states in Eqs. !4a" and !4b"
fixes the structure of the many-body Hilbert space once and
for all. The fact that the sites of the unfolded chain in Fig. 1
are connected in a different order than that specified in Eqs.
!4a" and !4b" is a statement about the dynamics of the model
and of no consequence at this stage, where we simply fix a
basis.

III. NUMERICAL RENORMALIZATION GROUP
TREATMENT OF FOLDED WILSON CHAIN

A. Numerical renormalization group matrix product state
arises by iteration

Wilson proposed to diagonalize the folded Wilson chain
numerically using an iterative procedure, starting from a
short chain and adding one site at a time. Consider a chain of
length n, sufficiently short that Hn can be diagonalized ex-
actly numerically. Denote its eigenstates by 'E0

n( f, ordered by
increasing energy !E0

n" f, with 0=1, . . . ,Dn and Dn=dn+1.
!We use subscripts f and u to distinguish quantities obtained
from a folded or unfolded Wilson chain, respectively; simi-
larly, in later parts of the paper we will use the subscripts r
and c for “refolded” and “cloned.”" E.g., for a chain consist-
ing of only the impurity site, n=0, the d eigenstates can be
written as linear combinations of the form 'E0

0( f
=+'0

''0(A10
#'0$, where the coefficients have been arranged

into d matrices A#'0$ of dimensions 11d !i.e., d-dimensional
vectors", with matrix elements A10

#'0$. Then add to the chain

FIG. 1. !Color online" !a" The standard spinful or “folded” rep-
resentation of the Wilson chain of the single-impurity Anderson
model, and !b" its spin-resolved or “unfolded” representation. The
latter makes explicit that spin-down and -up states are coupled only
at the impurity sites and not at any of the bath sites. The dashed
boxes indicate the chains described by H1 and Hn, respectively.
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the site n+1 and diagonalize Hn+1 in the enlarged Hilbert
space spanned by the !Dnd" states 'E0

n( f''n+1(. The new or-
thonormal set of eigenstates, with energies !E%

n+1" f, can be
written as linear combinations of the form

'E%
n+1( f = +

'n+1=1

d

+
0=1

Dn

'E0
n( f''n+1(A0%

#'n+1$, !5"

with %=1, . . . , !Dnd". Here the coefficients specifying the
linear combination have been arranged into a set of d matri-
ces A#'n+1$ of dimension Dn1Dn+1, with matrix elements
A0%

#'n+1$. The orthonormality of the eigenstates at each stage of
the iteration, f/E%

n 'E%!
n ( f =2%%!, implies that the A-matrices

automatically satisfy the orthonormality condition

+
'n

A#'n$†A#'n$ = 1 . !6"

We remark that it is possible to exploit symmetries of Hn
!e.g., under particle-hole transformation" to cast A in block-
diagonal form to make the calculation more time- and
memory-efficient. However, for the purposes of the present
paper, this was not required.

Iterating the above procedure by adding site after site and
repeatedly using Eq. !5", we readily find that the NRG eigen-
states of HN on the folded Wilson chain can be written in the
form of a so-called matrix product state,16

'E%
N( f = +

%!N&

'!N(!A#'0$A#'1$ . . . A#'N$"1%, !7"

illustrated in Fig. 2!a". Here matrix multiplication is implied
in the product, !A#'n$A#'n+1$"0%=+3A03

#'n$A3%
#'n+1$, and %!N& de-

notes the set of all sequences '0 ,'1 , . . . ,'N. This matrix
multiplication generates entanglement between neighboring
sites, with the capacity for entanglement increasing with the
dimension Dn of the index being summed over.

B. Numerical renormalization group truncation

In practice, it is of course not possible to carry out the
above iteration strategy explicitly for chains longer than a
few sites, because the size of the A-matrices grows exponen-
tially with N. Hence Wilson proposed the following NRG
truncation procedure: Once Dn becomes larger than a speci-
fied value, say D, only the lowest D eigenstates 'E0

n( f, with
0=1, . . . ,D, are retained or kept at each iteration, and all
higher-lying ones are discarded.19 Explicitly, the upper limit
for the sum over 0 in Eq. !5" is redefined to be

Dn = min!dn+1,D" . !8"

As a result, the dimensions of the A#'n$ matrices occurring in
the matrix product state !7" start from 11d at n=0 and grow
by a factor of d for each new site until they saturate at D
1D after truncation has set in. The structure of the resulting
states 'E%

N( f is schematically depicted in Figs. 2!a" and 2!b",
in which the site index is viewed as a single or composite
index, 'n or !'n↓ ,'n↑", respectively.

Wilson showed that this truncation procedure works well
in practice, because the hopping parameters tn of Eq. !3"

decrease exponentially with n: The resulting separation of
energy scales along the chain ensures that high-lying eigen-
states from iteration n make only a small contribution to the
low-lying eigenstates of iteration n+1, so that discarding the
former hardly affects the latter. The output of the NRG algo-
rithm is a set of eigenstates 'E%

n( f and eigenenergies !E%
n" f for

each iteration, describing the physics at energy scale "−n/2.
The NRG eigenenergies are usually plotted in rescaled form,

!(%
n" f = !E%

n − E1
n" f/"−n/2, !9"

as functions of n, to obtain a so-called NRG flow diagram; it
converges to a set of fixed-point values as n→,. Figure 7 in

FIG. 2. !Color online" !a" and !b" show the matrix product struc-
ture of the state 'E%

N( f of Eq. !7", depicting the site index as a single
or composite index, 'n or !'n↓ ,'n↑", respectively. !c" shows the
matrix product structure of the state '4N(u of Eq. !15". #For the sake
of illustrating Eq. !A9" of Appendix A2, the labels !Bn↓"55! in the
bottom row are purposefully typeset “upside down,” so that they
would be right-side up if the chain of boxes were all drawn in one
row in the order indicated by Eq. !15". Thus, the latter contains the
factors . . .!Bn↓"55! . . . !Bn↑"6!6. . ., in that order, compare Eq. !A9".$
Each matrix A or B is represented by a box, summed-over indices
by links, free indices by terminals, and dummy indices having just
a single value, namely 1, by ending in a triangle. The dimensions
!d, D, d!, D!, etc." next to each link or terminal give the number of
possible values taken on by the corresponding index, assuming Wil-
sonian truncation for !a" and !b", and VMPS truncation for !c". Note
the similarity in structure between !c" and !b": the dashed boxes in
the former, containing B55!

#'n↓$
! B6!6

#'n↑$, play the role of the A0!0
#!'n↓,'n↑"$

matrices in the latter. Their capacity for entangling neighboring
sites is comparable if one chooses D!27D #cf. Eq. !23"$, since
neighboring dashed boxes in !c" are connected by two links of
combined dimension D!2, whereas neighboring A-matrices in !b"
are connected by only a single link of dimension D.
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Sec. V B below shows some examples. The ground-state en-
ergy of the entire chain is given by the lowest energy of the
last iteration, !EG

N" f = !E1
N" f.

Despite the great success of NRG, Wilsonian truncation
does have some drawbacks. First, its errors grow systemati-
cally as " tends to 1, because then the separation of energy
scales on which it relies becomes less efficient. Second, it is
not variational, and hence it is not guaranteed to produce the
best possible approximation for the ground state within the
space of all matrix product states of similar form and size.
We shall return to this point later in Sec. VI and study quan-
titatively to what extent the NRG ground-state wave function
can be improved upon by further variational optimization.

C. Mutual information of opposite spins on site n

A crucial feature of the folded Wilson chain is that all
degrees of freedom associated with the same energy scale,
"−n/2, are represented by one and the same site and hence are
all added during the same iteration step. Since the spin-down
and -up degrees of freedom associated with each site are thus
treated on an equal footing, the resulting matrix product state
provides comparable amounts of resources for encoding en-
tanglement between local states of the same spin, involving
''n)(''n+1)(, or between states of opposite spin !indicated by
the bar", involving ''n)(''n)̄( or ''n)(''n+1)̄(. However, it
turns out that for the Anderson model this feature, though a
priori attractive, is in fact an unnecessary !and memory-
costly" luxury: Since the Anderson model Hamiltonian !2a"
and !2b" couples spin-down and -up electrons only at the
impurity site, the amount of entanglement between states of
opposite spin rapidly decreases with n.

To illustrate and quantify this claim, it is instructive to
calculate the so-called mutual information Mn

↓↑ of the spin-
down and -up degrees of freedom of a given site n. This
quantity is defined via the following general construction:20

Let C denote an arbitrary set of degrees of freedom of the
Wilson chain, represented by the states ''C(. Let 8C be the
reduced density matrix obtained from the ground-state den-
sity matrix by tracing out all degrees of freedom except those
of C, denoted by N \C:

8C = +
%'N\C&

/'N\C'EG
N( f f/EG

N''N\C( . !10"

For example, if C represents the spin-down and -up degrees
of freedom of site n, its matrix elements are

8'n'n!
C = +

%!N\n&

!A#'N$† . . . A#'n$† . . . A#'0$†"G1

1 !A#'0$ . . . A#'n!$ . . . A#'N$"1G. !11"

If C represents only the spin-) degree of freedom of site n, a
similar expression holds, with n replaced by n). The entropy
associated with such a density matrix is given by

SC = − +
i

wi
C ln wi

C, !12"

where wi
C are the eigenvalues of 8C, with +iwi

C=1. Now,
consider the case that C=AB is a combination of the degrees

of freedom of two distinct subsets A and B, represented by
states of the form ''C(= ''A(''B(. Then the mutual informa-
tion of A and B, defined by

MAB = SA + SB − SAB, !13"

characterizes the information contained in 8AB beyond that
contained in 8A ! 8B. The mutual information MAB=0 if there
is no entanglement between the degrees of freedom of A and
B, since then 8AB=8A ! 8B and its eigenvalues have a product
structure, wij

AB=wi
Awj

B.
We define the mutual information between spin-down and

-up degrees of freedom of site n of the folded chain, Mn
↓↑, by

Eq. !13", taking A=n↓ and B=n↑. Figure 3 shows this quan-
tity as function of n for the symmetric Anderson model. Evi-
dently Mn

↓↑ is very small for all but the first few sites, and
decreases exponentially with n. This implies that for most of
the folded chain, there is practically no entanglement be-
tween the spin-down and -up degrees of freedom. Conse-
quently, the corresponding matrices occurring in Eq. !7" for
'EG

N( f in effect have a direct product structure: loosely speak-
ing, we may write A#'n$0B#'n↓$ ! B#'n↑$. In Sec. IV A, we
will exploit this fact to achieve a significant reduction in
memory cost, by implementing the effective factorization in
an alternative matrix product ansatz #see Eq. !15" below$,
defined on an unfolded Wilson chain which represents n↓
and n↑ of freedom by two separate sites.

IV. DENSITY-MATRIX RENORMALIZATION GROUP
TREATMENT OF UNFOLDED WILSON CHAIN

A. Variational matrix product state ansatz

As pointed out by Verstraete et al.,16 an alternative ap-
proach for finding a numerical approximation for the ground
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FIG. 3. !Color online" NRG result for the mutual information
Mn

↓↑ between spin-down and -up degrees of freedom of site n of a
folded Wilson chain of lenght N=50. The Anderson model param-
eters are fixed at U= 1

2 , U /+*=1.013, (d=− 1
2U throughout this pa-

per. Lines connecting data points are guides for the eye. The slight
differences in behavior observed for even or odd n are reminiscent
of the well-known fact !Ref. 1" that the ground-state degeneracy of
a Wilson chain is different for even or odd N.
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state can be obtained by variationally minimizing the
ground-state energy in the space of all VMPS of fixed norm.
Implementing the latter constraint via a Lagrange multiplier
9, one thus considers the following minimization problem,

min
'4(!%'4N(u&

#/4'HN'4( − 9!/4'4( − 1"$ . !14"

The minimization is to be performed over the space of all
variational matrix product states '4N(u having a specified
structure !see below", with specified dimensions Dn! for the
matrices, whose matrix elements are now treated as varia-
tional parameters. This minimization can be performed by a
“sweeping procedure,” which optimizes one matrix at a time
while keeping all others fixed, then optimizing the neighbor-
ing matrix, and so forth, until convergence is achieved. The
resulting algorithm is equivalent to a single-site DMRG
treatment of the Wilson chain. Our main goal is to analyze
how the energies and eigenstates so obtained compare to
those produced by NRG.

Having decided to use a variational approach, it becomes
possible to explore matrix product states having different,
possibly more memory-efficient structures than those of Eq.
!7" and Fig. 2!a". In particular, we can exploit17 the fact that
the Anderson model Hamiltonian !2a" and !2b" couples spin-
down and -up electrons only at the impurity site, as empha-
sized in Eq. !2a" and !2b" and Fig. 1!b". For such a geometry,
it is natural to consider matrix product states defined on the
unfolded Wilson chain !subscript u" and having the following
form, depicted schematically in Fig. 2!c":

'4N(u = +
%!N&

'!N(!B#'N↓$ . . . B#'0↓$B#'0↑$ . . . B#'N↑$"11.

!15"

The order in which the B#'n)$ matrices occur in the product
mimics the order in which the sites are connected in the
unfolded Wilson chain. !The fact that this order differs from
the order in which the basis states ''n)( for each site are
arranged in the many-body basis state '!N( #see Eq. !4b"$
does not cause minus signs complications, because we work
with Jordan-Wigner-transformed effective spin chains." Each
B#'n)$ stands for a set of d!=2 matrices with matrix elements
B56

#'n)$, with dimensions Dn!1Dn−1! for B#'n↓$ and Dn−1! 1Dn!
for B#'n↑$, where

Dn! = min!d!N−n,D!" , !16"

as indicated on the links connecting the squares in Fig. 2!c".
This choice of matrix dimension allows the outermost few
sites at both ends of the unfolded chain to be described ex-
actly !similarly to the first few sites of the folded Wilson
chain for NRG", while introducing truncation, governed by
D!, for the matrices in the central part of the chain. The first
index on B15

#'N↓$ and the second index on B51
#'N↑$ are dummy

indices taking on just a single value, namely 1, since they
represent the ends of the chain. The triangles in Fig. 2!c" are
meant to represent this fact. As a result, Eq. !15" represents
just a single state, namely the ground state, in contrast to Eq.
!7", which represents a set of states, labeled by the index %.
Moving inward from the end points by decreasing n, the

matrix dimension parameter Dn! increases by one factor of d!
for each site, in such a way that the resulting matrices are of
just the right size to describe the outside ends of the chain
!from n to N" exactly, i.e., without truncation. After a few
sites, however, truncation sets in and the matrix dimensions
saturate at D!1D! for the central part of the chain.

To initialize the variational search for optimal B-matrices,
it turns out to be sufficient to start with a set of random
matrices with normally distributed random matrix elements.
Next, singular value decomposition is used to orthonormal-
ize the B-matrices in such a way #see Eq. !A1"$ that the
matrix product state Eq. !15" has norm 1 !see Appendix A1
for details". Thereafter, variational optimization sweeps are
performed to minimize Eq. !14" one B-matrix at a time.16,21

After a sweeping back and forth through the entire chain a
few times, the variational state typically converges !as illus-
trated by Fig. 13 in Sec. IV B", provided that D! is suffi-
ciently large. We shall denote the resulting converged varia-
tional ground state by 'EG

N(u. Its variational energy, !EG
N"u,

turns out to be essentially independent of the random choice
of initial matrices.

B. Variational matrix product state truncation

Since D!1D! is the maximal dimension of B-matrices,
D! is the truncation parameter determining the effective size
of the variational space to be searched and hence the accu-
racy of the results. Its role can be understood more explicitly
using a technique that is exceedingly useful in the VMPS
approach, namely singular value decomposition: Any rectan-
gular matrix B of dimension m1m! can be written as

B = USV†, with U†U = V†V = 1 , !17"

where S is a diagonal matrix of dimension min!m ,m!",
whose diagonal elements, the so-called “singular values,”
can always be chosen to be real and non-negative, and U and
V† are column- and row-unitary matrices !with dimensions
m1min!m ,m!" and min!m ,m!"1m!, respectively". Due to
the latter fact, the matrix norm of B is governed by the mag-
nitude of the singular values.

For any given site of the unfolded Wilson chain, this de-
composition can be applied in one of two ways !depending
on the context, see Appendix A" to the set of matrices with
elements B56

#'n)$: Introduce a composite index 5̄= !'n) ,5" #or
6̄= !'n) ,6"$ to arrange their matrix elements into a rectan-
gular matrix carrying only two labels, with matrix elements
B5̄6=B56

#'n)$ !or B̃56̄=B56
#'n)$", and decompose this new matrix

as B=USV†.
Now, if this is done for any site for which the set of

matrices B#'n)$ have maximal dimensions D!1D!, the cor-
responding matrix S will likewise have dimensions D!
1D!. Let its diagonal elements, the singular values s5 !with
5=1, . . . ,D!", be labeled in order of decreasing size. !Their
squares, s5

2, correspond to the eigenvalues of the density ma-
trix constructed in the course of the single-site DMRG
algorithm.8" If D! is sufficiently large, the s5 are typically
found to decrease with increasing 5 roughly as some nega-
tive power of 5, as illustrated in Fig. 4!a". The last and small-
est of the singular values, sD!

2 !squared, following Ref. 8",
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thus indicates the weight of the information that is lost at that
site due to the given !finite" choice of D!: By choosing D!
larger, less information would be lost since more singular
values !though of smaller size" would be retained. Repeating
such an analysis for all sites of the unfolded Wilson chain,
one may define the largest of the sD!

2 parameters of the entire
chain,

:!D!" = max
%n)&

!sD!
2 " , !18"

as “truncation error” characterizing the maximal information
loss for a given value of D!. Typically, :!D!" decreases as
some negative power of D!, as illustrated in Fig. 4!b". In this
way, D! assumes the role of a cutoff parameter that directly
governs the accuracy of the VMPS approach, in a way analo-
gous to the parameter D of NRG.

C. Refolding

The VMPS approach purposefully focuses on finding an
optimal description of the variational ground state 'EG

N(u.
Nevertheless, the B-matrices from which the latter is con-
structed contain information about all energy scales of the
model, due to the logarithmic discretization of the Wilson
chain. In particular, information about the scale "−n/2 is en-
coded in the set of matrices B#'n)$ associated with the two
site n↓ and n↑. From these, it is possible to extract excited-
state eigenspectra and energy flow diagrams in complete
analogy to those produced by NRG. In this section we ex-
plain how this can be accomplished by a technique to be
called “refolding,” which combines the two matrices B#'n↓$

and B#'n↑$ into a single matrix, say B#'n$, and thereby recasts
unfolded matrix product states into folded ones. It should be
emphasized that this procedure simply amounts to an internal
reorganization of the representation of the VMPS ground
state.

Consider a given matrix product state '4N(u of the form
!15", defined on an unfolded Wilson chain of length N !e.g.,
the converged ground state 'EG

N(u". To refold it !subscript r",
it is expressed as a state of the following form #same as Eq.
!7"$,

'4N(r = +
%!N&

'!N(!B#'0$B#'1$ . . . B#'N$"11, !19"

defined on a folded Wilson chain of length N and normalized
to unity, r/4n '4n(r=1. Graphically speaking, this corre-
sponds to rewriting a state of the form shown in Fig. 2!c" in
terms of states of the form of Fig. 2!a". To obtain the matri-
ces needed for Eq. !19", one constructs, for every site n of
the refolded chain, a set of d matrices B#'n$ from a combina-
tion of the two sets of spin-resolved matrices B#'n↓$ and B#'n↑$

of the unfolded chain !Appendix A2 gives the details of this
construction". This is done in such a way, using singular
value decomposition, that !i" the resulting matrices B#'n$ sat-
isfy the orthonormality conditions !6" !with A→B", thereby
guaranteeing the unit normalization of the refolded state
'4N(r; and !ii" the B#'n$ matrices have a structure similar to
that of the matrices A#'n$ generated by NRG, except that their
dimensions, Dn

r 1Dn+1
r , are governed by

Dn
r = min!dn,dN+1−n,D!2" !20"

#instead of Eq. !8"$, for reasons explained in Appendix A2.
Thus, their dimensions have the maximal value Dr1Dr, with
Dr=D!2, in the central part of the refolded chain, while de-
creasing at its ends toward 11d or d11 for n=0 or N,
respectively.

Now, suppose that a converged variational ground state
'EG

N(u has been obtained and refolded into the form '4N(r, so
that the corresponding orthonormalized matrices B#'n$ for the
refolded Wilson chain of length N are the building blocks of
the ground state of the system. Then it is possible to extract
from them information about the many-body excitation spec-
trum at energy scale "−n/2 that is analogous to the informa-
tion produced by NRG. To this end, consider a subchain of
length n of the full refolded Wilson chain, and use the defi-
nition

'4%
n(r = +

%!n&

'!n(!B#'0$B#'1$ . . . B#'n$"1%, !21"

#as in Eq. !19", but with N replaced by n$ to construct a set of
states '4%

n(r on this subchain. These states, shown schemati-
cally by sites 0 to n of Fig. 2!a", form an orthonormal set,
r/40

n '4%
n(r=20%, due to the orthonormality #Eq. !6"$ of their

constituent matrices. They can thus be viewed as a basis for
that subspace of the many-body Hilbert space for the
length-n Wilson chain, i.e., of that subspace of span%'!n(&,
which VMPS sweeping has singled out to be most relevant
for describing the ground state 'EG

N(u of the full chain of
length N. Therefore we shall henceforth call the '4%

n(r “!re-
folded" VMPS basis states” for this subchain.

This basis can be used to define an effective “refolded
Hamiltonian” Hr

n for this subchain, with matrix elements

!Hr
n"0% = r/40

n 'Hn'4%
n(r. !22"

Its eigenvalues and eigenstates, say !E%
n"r and 'E%

n(r, are the
VMPS analogs of the NRG eigenvalues and eigenstates,
!E%

n" f and 'E%
n( f, respectively. They differ, in general, because

VMPS and NRG use different truncation criteria, but are
expected to agree well for sufficiently large choices of D!
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FIG. 4. !a" Typical singular value spectrum for site 5↓ of the
unfolded Wilson chain, obtained by singular value decomposition
of B#'5↓$. It shows, roughly, power-law decrease for large enough %,
modulo steps due to degeneracies in the singular value spectrum.
!b" D!-dependence of the truncation error :!D!" #Eq. !18"$.

MATRIX-PRODUCT-STATE COMPARISON OF THE… PHYSICAL REVIEW B 78, 035124 !2008"

035124-7



and D. This is indeed found to be the case, as will be shown
in detail in the next section.

V. COMPARISON OF NUMERICAL RENORMALIZATION
GROUP AND VARIATIONAL MATRIX PRODUCT

STATE RESULTS

Having outlined the NRG and VMPS strategies in Sec. III
and IV, we now turn to a comparison of their results. This
will be done, in successive sections, by comparing their
ground-state energies and the overlaps of the corresponding
ground states; the eigenspectra and density of states obtained
from both approaches; and finally, the energy eigenstates
used in the two approaches. We will thereby gain more in-
sights into the differences between NRG and VMPS trunca-
tion criteria. Before embarking on a detailed comparison,
though, some remarks on the choices to be made for D and
D! are in order.

Since the structure of the matrix products occurring in
Eqs. !7" and !15" differ, the spaces consisting of all states of
the type 'E%

n( f or 'E%
n(r, to be called the “NRG-subspace” or

“VMPS-subspace” for a length-n chain, respectively, consti-
tute nonidentical subspaces of the dn+1-dimensional Hilbert
space spanned by the basis states '!n(. The extent to which
they describe the energy eigenstates of HN with comparable
accuracy will depend very strongly on the choices made for
D and D!. It turns out !numerical evidence will be presented
below" that with the choice

D! = d!m*D , !23"

the VMPS-subspace is sufficiently large to give highly accu-
rate representations of all kept states of NRG !including, in
particular, the ground state" for the choice m=1, or of all
kept and discarded states of NRG for the choice m=2. The
fact that D! should be proportional to *D can be made plau-
sible by considering the following question: Given a folded
Wilson subchain of length n !i.e., consisting of sites 0 to n"
and its equivalent unfolded version, what are the smallest
values for the dimensions D and D! for which both ap-
proaches describe the ground state exactly, i.e., without any
truncation? Answer: On the one hand, the folded subchain
has n+1 sites of dimension d, and hence a total dimension
dn+1; to ensure that the ground state in this space is described
exactly, the kept space of the previous iteration must not
involve any truncation, implying D=dn. On the other hand,
for the equivalent unfolded subchain, the spin ↓ and ↑ parts
each have n+1 sites of dimension d!, hence each have a
Hilbert space of total dimension d!!n+1"; to ensure that this
space is described without truncation, its dimension should
equal the maximal dimension of the B-matrices at sites 0),
implying D!=d!!n+1". Using d!=*d we readily find D!
=d!*D, establishing the proportionality between D! and *D
and suggesting the choice m=1 to achieve an accurate
VMPS-representation of the ground state. Actually, we find
numerically that already m=0 yields good qualitative agree-
ment between the VMPS and NRG ground states, while m
=1 yields a quantitatively accurate VMPS-representation of
the NRG ground state also for larger chain lengths, that do
involve truncation. Since such ground states are built from

the kept spaces of previous iterations, this implies that for
m=1, all kept states in NRG !not only the ground state" are
likewise well represented by VMPS. Indeed, we will find this
to be the case. Moreover, it turns out numerically that with
m=2, it is also possible to achieve an accurate VMPS-
representation of all kept and discarded NRG-type states, as
will be extensively illustrated below.

For the results reported below, we show data only for
even iteration number n, to avoid even/odd oscillation effects
that are typical and well understood for Wilsonian logarith-
mic discretization, but not of particular interest here. We set
D!=d!m*D throughout and specify the choices made for m.
All VMPS results shown in this section are extracted from
randomly initialized, fully converged variational ground
states 'EG

N(u of the form !15".

A. Ground-state energies and overlaps

Figures 5!a" and 5!b" compare the NRG and VMPS
ground-state energies, !EG

N" f and !EG
N"u, for three values of "

and, in Fig. 5!a", two values of m. They illustrate three
points. First, for a given " the VMPS ground-state energies
are smaller than those of NRG, !EG

N"u/ !EG
N" f, as expected,

since VMPS is a variational method and NRG is not. Second,
Fig. 5!a" shows that larger values of m yield lower VMPS
ground-state energies, as expected, since their variational
space is larger. Third, the improvement of VMPS over NRG,
as measured by the energy difference !EG

N" f − !EG
N"u shown in

Fig. 5!b", becomes more significant for smaller ", as ex-
pected, since the truncation scheme of NRG relies heavily on
energy scale separation, and hence becomes less efficient for
smaller ".

Figure 5!c" compares the overlap between NRG and
VMPS ground states, characterized by the deviation from 1
of the overlap ' f/EG

N 'EG
N(u'. The latter can be calculated

straightforwardly from

f/EG
N'EG

N(u = +
%!N&

!A#'N$† . . . A#'0$†"G1

1 !B#'N↓$ . . . B#'0↓$B#'0↑$ . . . B#'N↑$"11, !24"

where the index contractions associated with the summation
over repeated indices are illustrated in Fig. 6!a". Figure 5!c"
shows that the deviation of the overlap from 1 becomes
larger the smaller ", again illustrating that then the NRG
truncation scheme becomes less reliable.

B. Comparison of eigenspectra and density of states

Figure 7 compares the energy flow diagrams obtained
from NRG and refolded VMPS data, the latter obtained by
diagonalizing the effective Hamiltonian of Eq. !22". It shows
the rescaled energies !;%

n" f ,r of Eq. !9" as functions of n, for
four combinations of m and ", and illustrates the same
trends as found in the previous subsection: First, the NRG
and VMPS flow diagrams clearly agree not only for the
ground state but also for a significant number of excited
states. Evidently, the variational space searched by VMPS is
large enough to capture considerable information about ex-
cited states, too, although the VMPS method was designed to
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optimize only the ground state. Moreover, for a given choice
of ", NRG and VMPS eigenenergies coincide for a larger
number of states for m=2 than for m=0 #compare !b" to !a"
and !d" to !c"$, because the variational space is larger. Sec-
ond, for a given choice of m, NRG and VMPS eigenenergies
agree better for "=2.5 than for "=1.5 #compare !c" to !a"
and !d" to !b"$, as expected, because larger " leads to better
energy scale separation and reduces the inaccuracies inherent
in NRG’s Wilsonian truncation scheme.

As a complementary way of analyzing spectral informa-
tion we also consider the “density of states,” for a given
iteration number n,

8n!;" = +
0=1

Dmax

2'!; − ;0
n" , !25"

using the rescaled eigenenergies ;%
n of Eq. !9". Here 2'!;"

=e−;2/'2
/ !'*+" is a Gaussian peak of width ' and unit

weight, used to broaden the discrete spectrum in order to be
able to plot it, and the number of states included in the sum
is taken as Dmax=dD or dmD for NRG or VMPS results,
respectively. Figure 8 shows such a density of states for sev-
eral choices of m and iteration number n. It illustrates three
points:

First, although for small energies 8n!;" grows rapidly with
;, as expected for a many-body density of states, it does not
continue to do so for larger ; !the exact density of states
would", due to the truncation inherent in both NRG and
VMPS strategies. For NRG, 8n!;" drops to 0 very abruptly,
because by construction Wilsonian truncation is sharp in en-
ergy space !at each iteration only the lowest dD eigenstates
are calculated". In contrast, for VMPS 8n!;" decreases more
gradually for large ;, because VMPS truncation for states at
site n is based not on their energy, but on the variationally
determined weight of their contribution to the ground state of
the full Wilson chain of length N. Evidently, these weights
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FIG. 5. !Color online" Comparison of NRG and VMPS results
for !a,b" the ground-state energies and !c" the ground-state overlaps,
plotted as functions of D with D!=d!m*D, for three values of "
and, in !a", for two values of m. In !a" the reference energies Eref

N for
each " were obtained by extrapolating the VMPS data points for
m=2 to D!→,, which represents the best estimate of the true
ground-state energy available within the present set of methods.
The power law fits to the numerical data in !b" and !c", shown as
dashed lines, were made for the three data points with largest D, for
which the dimensions are large enough to have reliable NRG data.

FIG. 6. !Color online" Contraction patterns used to calculate !a"
the overlap f/EG

N 'EG
N(u #Eqs. !24"$ between folded NRG and un-

folded VMPS ground states, and !b" the overlap matrix S̃0%
n

= r/40
n 'E%

n( f #Eq. !27a" and !27b"$ between refolded VMPS basis
states and folded NRG eigenstates. The boxes represent A or B
matrices in the graphical representation of Figs. 2!a" and 2!c", re-
spectively !including the labeling conventions used there", and links
connecting them represent indices that are being summed over.
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decrease with increasing ; less rapidly than assumed by
NRG.

Second, the agreement of the VMPS curve for 8n!;" with
that of NRG is rather poor for m=0 !disagreement sets in
already within the range of kept states of NRG, indicated by
the shaded region", better for m=1 !the range of kept states is
fully reproduced", and very good for m=2 !disagreement sets
in only close to the upper end of range of discarded states".

Third, for large n, 8n!;" becomes increasingly spiky. This
reflects the fact that the spectrum approaches a fixed point
with regularly-spaced eigenenergies, as is evident in the en-
ergy flow diagrams of Fig. 7.

C. Comparison of energy eigenstates

To compare the energy eigenstates produced by NRG and
refolded VMPS for a chain of length n, we analyze the over-
lap matrix

S0%
n = r/E0

n 'E%
n( f . !26"

It can be conveniently calculated from Sn=UnS̃n, where
U0%

n = r/E0
n '4%

n(r is the matrix that diagonalizes the effective
Hamiltonian matrix H0%

n of Eq. !22", and the matrix

S̃0%
n = r/40

n 'E%
n( f , !27a"

= +
%!N&

!B#'n$† . . . B#'0$†"01!A#'0$ . . . A#'n$"1% !27b"

characterizes how much weight the NRG eigenstates have in
the space spanned by the refolded VMPS basis states, and
vice versa. The contractions implicit in Eq. !27b" are illus-
trated in Fig. 6!b".

Figure 9 shows the overlap matrix S0%
n on a color scale

ranging from 0 to 1, for m=1 and several values of n. For the
region of low excitation energies !about the first hundred or
so states" its structure is evidently close to block-diagonal,
indicating that both sets of states from which it is built are
reasonably good energy eigenstates. Had both sets been per-
fect energy eigenstates, as would be the case for D! and D
large enough to avoid all truncation, the blocks would be
completely sharp, with sizes determined by the degeneracies
of the corresponding energies. Sharp blocks are indeed ob-
served for n=2 #Fig. 9!a"$, because no truncation has oc-
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FIG. 7. !Color" Comparison of
energy flow diagrams from NRG
!dashed red lines" and refolded
VMPS data !solid black lines",
showing the rescaled energies
!;%

n" f ,r #Eq. !9"$ versus n, calcu-
lated for even iteration numbers
and four combinations of m !=0 or
2" and " !=1.5 or 2.5". The num-
ber of NRG states shown !kept
and discarded" is Dd; the number
of refolded VMPS states shown is
Dr=D!2=dmD, this being the
maximal dimension of refolded
matrices B#'n$. For m=2 and "
=2.5, the NRG and DMRG flow
diagrams agree very well, see !d".
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curred yet. The “fuzziness” shown by the blocks in Figs.
9!b"–9!d" for larger n implies that truncation is beginning to
make itself felt, causing NRG and VMPS to increasingly
disagree on how to construct the eigenstates corresponding
to a given range of eigenenergies. Note that the fuzziness
becomes markedly more pronounced for 0 ,%#256. The rea-
son is that whenever S0%

n is nonzero for %#D, the associated
VMPS states have weight among the discarded states of
NRG, implying that NRG discards some states relevant for
building the VMPS ground state. Thus, S0%

n quite literally
measures to what extent the truncation criteria of NRG and
VMPS are compatible. Near the end of the chain, for n=18
#Fig. 9!d"$, the off-diagonal spread is significantly reduced
compared to the middle of the chain !n=6,12" #Figs. 9!b"
and 9!c"$, for two reasons. First, the dimensions of the re-
folded B-matrices become small for n near N #see Eq. !20"$
so that the amount of truncation is much less severe near the
end of the chain than in its middle. Second, the eigenspectra
have converged to their fixed-point values, so that the num-
ber of different eigenenergies in a given energy interval is
reduced, thus reducing the fuzziness in Fig. 9!d".

Next consider the total weight which a given NRG state
'E%

n( f has within the refolded VMPS-subspace for that n,

w%
!n" = +

0=1

Dn
r

'S0%'2 = +
0=1

Dn
r

'S̃0%'2. !28"

It satisfies 0&w%
!n"&1. Weights less than 1 imply that the

VMPS-subspace is too small to adequately represent the cor-
responding NRG state. The second equality in Eq. !28",
which follows from the unitarity of U, is useful since it im-

plies that these weights can also be calculated directly from
the refolded states '4%

n(r #Eq. !21"$, without the need for
diagonalizing the large !D!21D!2-dimensional" effective re-
folded Hamiltonian Hr

n #Eq. !22"$.
Figure 10 shows such weights w%

!n" for various choices of
n, ", and m. Their dependence on m reinforces the conclu-
sions of the previous subsection: For m=0 !blue+symbols",
the weights are equal to 1 for the lowest state of each itera-
tion, but less than 1 for many of the kept states. This shows
that the VMPS-subspace is large enough to accurately repre-
sent the NRG ground state, but significantly too small to
accurately represent all kept states. For m=1 !green
1symbols", the weights are close to 1 only for the kept
states, while smoothly decreasing toward 0 for higher-lying
discarded states. Finally, for m=2 !orange"symbols", the
weights of both kept and discarded NRG states are all close
to 1, implying that the VMPS-subspace is large enough to
accurately represent essentially all states kept track of by

FIG. 9. !Color" Plot of the overlap matrix S0%
n = r/E0

n 'E%
n( f #Eq.

!26"$ between refolded VMPS and NRG energy eigenstates, with a
color scale ranging between 0 and 1. In !a", with n=2, no truncation
occurs at all, and both state labels 0 and % run from 1 to dn+1

=64. In !b" to !d", truncation does occur: For the folded NRG eigen-
states 'E%

n( f, the label 0 runs from 1 to Dd=1024, i.e., it includes all
kept and discarded NRG states, while for the refolded VMPS eigen-
states 'E%

n(r, the label % runs from 1 to Dn
r =D!2=1024 #Eq. !20"$.
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FIG. 10. !Color" For several NRG iteration numbers n and two
values of " !different panels", this figure shows the weights w%

!n"

#Eq. !28"$ with which NRG states 'E%
n( f with rescaled NRG eigenen-

ergies !;%
n" f #Eq. !9"$ are found to lie in the VMPS-subspace of

dimension D!=d!m*D, with m=0, 1 or 2 !indicated by +, 1 or #,
respectively". In each panel, the red vertical dashed and solid lines
indicate the energies of the highest-lying kept and discarded NRG
states of that iteration. For n=3, both of these lines are missing,
since truncation has not yet set in. The choices for n in the left and
right panels of each row are related by "1

−n1/2="2
−n2/2, to ensure that

both panels show a comparable energy scale.
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NRG. Note that for m=0 and 1, the decrease of the weights
w%

!n" with increasing energy occurs in a smooth and gradual
fashion, illustrating yet again the smooth nature of VMPS
truncation when viewed in energy space. When a smaller
value of " is used #compare panels !a"—!d" to !e"-!h"$ the
weights of the higher-lying states of a given iteration tend to
spread out over a larger range of values, since NRG has a
weaker energy scale separation for smaller ". Finally, the
increasing spikiness of the eigenspectrum with increasing n
#see Figs. 10!d" and 10!h"$ is due to the approach to a fixed-
point spectrum with regularly-spaced eigenenergies, as men-
tioned above.

The results just discussed may be represented more com-
pactly by considering, for a given iteration n, the integrated
weights obtained by summing up the weights of all NRG
states of type X,

WX
!n" =

1
dD +

%!X
w%

!n", !29"

where X=K,D,A stands for kept, discarded or all, respec-
tively. All three types of integrated weights are normalized to
the total number dD of all NRG states calculated at a given
iteration !with d=4 here", and reach their maximal values !1

4 ,
3
4 and 1, respectively" when all the individual weights for
that iteration equal 1. Figure 11 shows such integrated
weights for several values of m and ". Upon increasing m

from 0 to 2, the integrated weights tend toward their maxi-
mal values, doing so more rapidly for larger ". For m=2,
they essentially saturate their maximal values, indicating yet
again that the VMPS variational space is now large enough
to fully retain all information kept track of by NRG.

To summarize the result of this section: The VMPS ap-
proach reproduces NRG ground-state properties much more
cheaply, requiring only D!=*D for qualitative agreement,
and D!=d!*D for quantitative agreement. Moreover, it can
also reproduce all kept and discarded NRG eigenstates if
D!=d!2*D is used. However, to obtain excited energy eigen-
states, we have to refold, requiring the diagonalization of
matrices of dimension D!21D!2. The numerical cost of do-
ing so is comparable to that of NRG.

The fact that VMPS gives access to the same information
on eigenstates and eigenvalues as NRG has a very significant
and reassuring consequence: all physical properties of the
model that can be calculated by NRG can also be calculated
by VMPS, in combination with refolding.

VI. CLONING AND VARIATIONAL IMPROVEMENT OF
NUMERICAL RENORMALIZATION GROUP

GROUND STATE

Viewed in MPS language, the NRG method constructs the
ground state in a single sweep along the chain: Each A is
calculated only once, without allowing for possible feedback
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FIG. 11. !Color online" Integrated weights
WX

!n" #see Eq. !29"$ for two different " and three
values of m. The dashed lines depict the maxi-
mum possible values of the kept and discarded
weights, 1
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of information from A’s describing lower energies to those of
higher energies calculated earlier. Thus, the resulting NRG
ground state 'EG

N( f, to be denoted simply by 'G( f below, is not
optimal in a variational sense. In this section we investigate
to what extent the ground-state energy can be lowered fur-
ther by performing variational energy optimization sweeps
on 'G( f that serve to account for feedback of information
from low to high energy scales. This feedback turns out to be
small in practice, as will be seen below, but it is not strictly
zero and its importance increases as the logarithmic discreti-
zation is refined by taking "→1.

A. Mapping folded to unfolded states by cloning

Our first step is to rewrite a given NRG ground state 'G( f
in a form amenable to subsequent energy minimization
sweeps. To this end, we use a variational cloning procedure
!subscript c",

'G( f →
cloning

'G(c ! %'4N(u& , !30"

which maps 'G( f of the form of Eq. !7" #Fig. 2!a"$ onto an
unfolded state 'G(c of the form '4N(u of Eq. !15" #Fig. 2!c"$.
Since their matrix product structures differ, this mapping
will, for general values of D and D!, not be exact, though its
accuracy should improve systematically with increasing D!
and hence increasing dimensions of the variational space. To
be explicit, we seek the best possible approximation to 'G( f
in the space of all unfolded states of the form !15", by solv-
ing the minimization problem

min
'G(c!%'4N(u&

#1'G( f − 'G(c12 + 9!1'G(c12 − 1"$ , !31"

which minimizes the “distance” between 'G(c and 'G( f under
the constraint, implemented using a Lagrange multiplier 9,
that the norm c/G 'G(c=1 remains constant. Varying Eq. !31"
with respect to the matrices defining 'G(c leads to a set of
equations, one for each k), of the form

"

"B#'k)$ #!1 + 9"c/G'G(c − 2 Re! f/G'G(c"$ = 0, !32"

which determine the B-matrices of the desired “cloned” state
'G(c. These equations can be solved in a fashion entirely
analogous to energy optimization: Pick a particular site of
the unfolded chain, say k), and solve the corresponding Eq.
!32" for the matrix B#'k)$ while regarding the matrices of all
other sites as fixed. Then move on to the neighboring site and
in this fashion sweep back and forth through the chain until
convergence is achieved. Appendix A3 describes some de-
tails of this procedure.

A figure of merit for the success of cloning is the devia-
tion of the overlap 'c/G 'G( f' from 1. This deviation de-
creases monotonically with successive cloning sweeps and
converges to a small but finite !D!-dependent" value when
the cloning process converges, as illustrated in the inset of
Fig. 12. The main part of Fig. 12 shows that when the num-
ber D! of VMPS states is increased, the converged value of
the overlap deviation approaches 0 as a power law in D! !red
circles". It also shows that the corresponding VMPS trunca-

tion error :!D!" incurred during cloning !blue squares", cal-
culated according to Eq. !18", likewise decreases in power-
law fashion with D!. All in all, Fig. 12 confirms that cloning
works very well if D! is sufficiently large.

B. Variational energy minimization of 2G‹c

Having used cloning to find the optimal unfolded repre-
sentation 'G(c of the NRG ground state 'G( f, we now varia-
tionally minimize its energy by sweeping. We thereby obtain
a sequence of states 'G(c

kem of ever lower energy, Ekem
, where

the index kem=0,1 ,2 , . . . gives the number of energy mini-
mization sweeps that have been performed. The procedure is
precisely analogous to that described in Sec. IV A, the only
difference being that the random initial state used there is
here replaced by the cloned state 'G(c

0= 'G(c as initial state.
Figure 13!a" shows the evolution of the ground-state en-

ergy Ekem
as function of the number kem of energy minimiza-

tion sweeps, for both random !squares" and cloned !circles"
initial states. Ekem

is displayed with respect to the energy Eref

of a reference state 'G(ref, defined in the figure caption,
which represents our best approximation to the true ground
state. Figure 13!b" shows how 1− 'ref/G 'G(c' decreases as
sweeping proceeds, converging to a small but finite value.
For a given value of " !1.5, shown in green, open symbols
connected by dashed lines, or 2.5, shown in blue, filled sym-
bols connected by solid lines", the energies for random and
cloned initialization shown in Fig. 13!a" converge to the
same value within just a few sweeps. However, the conver-
gence is quicker for the cloned !circles" than the random
!squares" input state, since the former represents an already
rather good initial approximation !namely that of NRG" to
the true ground state, whereas the latter is simply a random
state. Nevertheless, the circles show strikingly that the NRG
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ground energy is not optimal, in that the energy can be low-
ered still further by sweeping. Moreover, this improvement is
more significant for small than large " !for circled data
points, compare dashed green to solid blue lines for "=1.5
or 2.5, respectively. The reason is that the NRG truncation
scheme becomes less accurate the smaller " is, implying that
the NRG result can be improved more significantly by fur-
ther sweeping. This is again a reminder that the systematic
error of NRG increases as " approaches 1, as already ob-
served in Fig. 5.

VII. CONCLUSIONS

In this paper we presented a systematic comparison be-
tween NRG and DMRG, which we mainly referred to as

VMPS, for the single-impurity Anderson model within the
framework of matrix product states. We first reformulated
both NRG and DMRG in the language of MPS, using a
folded Wilson chain for NRG and an unfolded one for
DMRG. Then we quantitatively compared the results of
NRG and the VMPS approach for energy eigenvalues and
eigenstates and explicitly analyzed the difference in their
truncation criteria, which are sharp or smooth in energy
space, respectively.

The most important conclusion of our study is this: For
the purpose of obtaining the ground state of this model, the
VMPS approach applied to the unfolded Wilson chain yields
a very significant increase in numerical efficiency compared
to NRG !D!=d!*D", essentially without loss of relevant in-
formation. The physical reason is that the spin-down and -up
chains are only weakly entangled for this model, so that the
NRG matrices A#'n$ of dimension D that describe site n of
the Wilson chain, can, in effect, be factorized as a direct
product B#'n↓$ ! B#'n↑$ of two matrices, each having dimen-
sion d!*D. It should be emphasized, though, that this prop-
erty relies on the physics of the model, namely the weak
entanglement of the spin-down and -up chains. To what ex-
tent this property survives for other impurity models should
be a subject for further research, the two-channel Kondo
model being a particularly interesting candidate in this re-
spect.

Nevertheless, the possibility of using unfolded Wilson
chains to reduce numerical costs for ground-state calcula-
tions is very attractive for possible applications of the VMPS
method to more complicated models involving more than
one conduction band.22 For example, the conductance
through a quantum dot coupled to two leads can under cer-
tain conditions !linear response, zero temperature, Fermi liq-
uid behavior, etc." be expressed in terms of a set of phase
shifts that are uniquely determined by the ground-state occu-
pation of the dot energy levels.23 Thus, in such situations
reliable knowledge of the ground state is sufficient to calcu-
late transport properties.

Going beyond ground-state properties, we showed that the
entire excited-state eigenspectrum of both kept and discarded
NRG states can be recovered within the VMPS approach
with at least the same accuracy as NRG, by using D!=d!2

1*D and refolding. However, the latter step requires a sub-
sequent additional diagonalization of matrices of dimensions
D!2, giving rise to a significant increase in numerical re-
sources compared to the case that only ground-state informa-
tion is required. A quantitative comparison between NRG
and VMPS for the eigenspectrum’s energies and eigenstates
showed better agreement for "=2.5 than 1.5, due to the fact
that the NRG truncation scheme becomes increasingly less
accurate the closer " approaches 1.

Finally, we used a cloning procedure to recast a given
folded NRG ground state into an unfolded form, and showed
that its energy could be lowered further by subsequent en-
ergy minimization sweeps. As expected, we found that
sweeping improves the relative accuracy with which the
ground-state energy can be determined, the more so the
smaller the value of ". For example, for "=1.5 the accuracy
changed from O!10−4" before sweeping to O!10−7" thereafter
#see Fig. 13!a"$. The fact that such a further variational im-
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variational energy minimization sweeps. Results are shown for "
=1.5 !green, open symbols, dashed lines" and "=2.5, !blue, filled
symbols, solid lines". The energies in !a" and overlaps in !b" are
calculated with respect to a reference ground state 'G(ref with D!
=64, obtained by performing 50 energy minimization sweeps start-
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ergy difference ENRG−Eref, where ENRG is the energy of the NRG
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provement of the NRG ground state is possible, however, is
of significance mainly as a matter of principle, not of prac-
tice: For the numerous situations where NRG works well !in
particular, for " not too close to 1", we expect that such
further variational improvement of the NRG ground state
will not noticeably affect any physical observables.

Let us conclude with some comments about the pros and
cons of NRG and VMPS. For quantum impurity models with
a comparatively low degree of complexity, such as the
single-lead Anderson and Kondo models, NRG works ex-
ceedingly well and for practical purposes nothing is to be
gained from switching to the VMPS approach. The latter is a
potentially attractive alternative to NRG only for two types
of situations, namely !i" more complex quantum impurity
models, and !ii" nonlogarithmic discretization of the leads.
We briefly discuss these in turn.

!i" For complex quantum impurity models, in particular
ones involving several leads, VMPS achieves a very signifi-
cant reduction in memory cost, relative to NRG, for describ-
ing ground-state properties via unfolding the Wilson chain.
There are several caveats, though. First, this reduction in
memory cost applies only when only ground-state properties
are of interest. To obtain excited-state eigenspectra, the
memory costs of NRG and VMPS are comparable. Second,
unfolding is expected to work well only for models for
which the subchains that are being unfolded are only weakly
entangled, which will not be the case for all impurity models.
For example, the two-channel model might be an example
where unfolding works less well. In general, one needs to
check the extent to which degrees of freedom on different
subchains are entangled with each other, by calculating the
mutual information of two sites on different subchains. If this
does not decrease rather rapidly with their separation from
the impurity site, then unfolding will be a poor strategy. Ap-
pealingly, though, such a check can be done purely using
NRG data, as illustrated in Sec. III C. Third, the fact that
VMPS relies on variationally optimizing the ground state
might cause convergence problems for models which have
degenerate ground states. Conceivably this problem can be
reduced by systematically exploiting all relevant symmetries
of the Hamiltonian, including nonAbelian symmetries.11,24,25

However, if states in the local state space of a folded Wilson
chain are related by a nonAbelian symmetry, then this sym-
metry would not be manifest in the unfolded representation.
Thus, the two possible strategies for achieving significant
memory reduction, namely unfolding and exploitation of
symmetries, might not always be mutually compatible;
which one is more favorable will depend on the details of the
model, and is an interesting subject for further study.

!ii" The VMPS approach offers clear advantages over
NRG in situations where Wilson’s logarithmic discretization
of the conduction band cannot be applied. In the present
paper, we found clear indications for this fact in the obser-
vation that the improvement of VMPS relative to NRG be-
comes more significant as " is chosen closer to 1. More
importantly, VMPS offers the possibility, inaccessible to
NRG, to improve the frequency resolution of spectral func-
tions at high frequencies, by using a flexible !nonlogarith-
mic" discretization scheme which reduces the level spacing
of effective lead states in the energy regimes where higher

frequency resolution is desired. For such a discretization
scheme Wilsonian energy scale separation is lost and NRG
truncation cannot be applied. However, the ground state can
still be found variationally, and spectral functions can be
computed using projection operator techniques. In this fash-
ion, it has recently been possible to calculate the spectral
function for the Anderson model at large magnetic fields,
B#TK, and to resolve the split Kondo resonance with suffi-
cient accuracy to reproduce the widths expected from pertur-
bation theory in this regime. These developments, though, go
beyond the scope of the present paper and will be published
separately.16
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APPENDIX: TECHNICAL DETAILS

In this Appendix, we collect some technical details on
various manipulations involving matrix product states.

1. Orthonormalization of B-matrices of unfolded Wilson chain

To keep the notation simple, in this section we shall imag-
ine the sites of the unfolded Wilson chain to be stretched
along a line running from left to right, enumerated by an
index k running from 1 for site N↓ to K=2!N+1" for site N↑.
Correspondingly, matrix product states will generically be
written as '4(=+%!K&'!K(!)k=1

K B#'k$", with matrix elements
B56

#'k$.
It is convenient to ensure that every B-matrix in a matrix

product state satisfies one of the following two orthonormal-
ity conditions:

+
'k

B#'k$†B#'k$ = 1 , !A1a"

+
'k

B#'k$B#'k$† = 1 . !A1b"

In particular, if all B-matrices satisfy either the first or the
second of these conditions, the corresponding matrix product
state is automatically normalized:

/4'4( = +
%!K&

!B15!
#'K$† . . . B6!1

#'1$†"!B16
#'1$ . . . B51

#'K$" = 1.

!A2"

This follows by iteratively applying Eq. !A1". To start the
iteration, note that for matrices at the beginning or end of the
chain, where one of the matrix indices is a dummy index
with only a single value, Eq. !A1a" or Eq. !A1b" imply
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+'1
B6!1

#'1$†B16
#'1$=26!6 or +'K

B51
#'K$B15!

#'K$†=255!, respectively. In
the NRG approach, all A-matrices naturally satisfy Eq. !A1a"
#cf. Eq. !6"$.

In the VMPS approach, it is convenient to ensure that
during variational optimization sweeps, Eq. !A1a" holds for
all matrices to the left of the site, say k, currently being
updated, and Eq. !A1b" for all matrices to its right. Thus,
after optimizing the set of matrices B#'k$ at site k, this set
should be orthonormalized before moving on to the next site,
such that it satisfies Eq. !A1a" when sweeping from left to
right #or Eq. !A1b" when sweeping from right to left$. This
can be achieved using singular value decomposition #cf. Eq.
!17"$: Arrange the matrix elements of the set of matrices
B#'k$ into a rectangular matrix carrying only two labels, with
matrix elements B5̄6=B56

#'k$ #or B56̄=B56
#'k$$, by introducing a

composite index 5̄= !'k ,5" !or 6̄= !'k ,6"". Using singular
value decomposition #Eq. !17"$, write this new matrix as B
=USV†. Then rewrite the matrix product of two neighboring
B-matrices as B#'k$B#'k+1$= B̃#'k$B̃#'k+1$ !or B#'k−1$B#'k$

= B̃#'k−1$B̃#'k$", where the new matrices B̃ are defined by

B̃53
#'k$ = U5̄3, B̃32

#'k+1$ = !SV†B#'k+1$"32, !A3"

#or B̃26
#'k$ = V26̄

† ,B̃32
#'k−1$ = !B#'k−1$US"32$ . !A4"

The property U†U=1 !or V†V=1" ensures that the new set of
matrices B̃#'k$ at site k is orthonormal according to Eq. !A1a"
#or Eq. !A1b"$, as desired. Now proceed to the next site to
the right !or left" and orthonormalize B̃#'k+1$ !or B̃#'k−1$" in the
same manner, etc.

The above procedure can be used to orthonormalize the
matrices of a randomly generated matrix product state before
starting VMPS sweeping. Likewise, during VMPS sweeping,
each newly optimized matrix can be orthonormalized in the
above fashion before moving on to optimize the matrix of
the next site.

2. Refolding

This section describes how to refold an unfolded matrix
product state of the form

'456
n (u = +

%!N&

'!n(!B#'n↓$ . . . B#'0↓$B#'0↑$ . . . B#'n↑$"56,

!A5"

shown schematically by sites n↓ to n↑ of Fig. 2!c". Its two
indices will be treated as a composite index %= !5 ,6" below.
The variational matrix product state '4N(u of Eq. !15" dis-
cussed in the main text is a special case of Eq. !A5", with
n=N and 5=6=1. The goal is to express Eq. !A5" as a linear
combination,

'456
n (u = +

0

'40
n(rC0%

n , !A6"

#%= !5 ,6" is a composite index$ of an orthonormal set of
“refolded basis states” of the form of Eq. !21",

'40
n(r = +

%!n&

'!n(!B#'0$B#'1$ . . . B#'n$"10, !A7"

shown schematically by sites 0 to n of Fig. 2!a". To this end,
we proceed iteratively in n. We use singular value decompo-
sition to iteratively merge, for every pair of sites n↓ and n↑
of the unfolded chain, the matrices B55!

#'n↓$ and B6!6
#'n↑$ into a

new set of matrices B0!0
#'n$ for site n of the refolded chain,

thereby trading the indices 'n↓ ,'n↑ and 56 of Fig. 2!c" for
the indices 'n and 0 of Fig. 2!a". This is to be done in such
a way that the matrices B#'n$ are orthonormal in the sense of
Eq. !6", and that for the first few sites their dimensions in-
crease in a way analogous to those of the A#'n$ matrices of
NRG, starting from 11d at site n=0.

For the first iteration step, start with n=0, make a singular
value decomposition of the matrix product

!B#'0↓$B#'0↑$"5!6! = !U0S0V0†"'0%!, !A8"

with %!= !5! ,6!", and use U0 to define a new set of d matri-
ces B#'0$ for site 0 of the refolded chain, with matrix ele-
ments B10!

#'0$=U'00!
0 . The B#'0$ have dimensions 11d !the

dummy first index has just one value", and are by construc-
tion orthonormal in the sense of Eq. !6", since U0†U0=1.
Upon inserting Eq. !A8" into Eq. !A5", the factor U0 pro-
duces the first matrix factor B#'0$ in the refolded state !A7",
thus completing the first iteration step. For the second itera-
tion step, contract the factors S0V0† with the factors B#'1↓$

and B#'1↑$ in Eq. !A5", factorize the result as U1S1V1† and use
U1 to construct new matrices B#'1$ for site 1 of the refolded
chain, etc. To be explicit, for general n, make a singular
value decomposition of the matrix product

+
5!6!

B55!
#'n↓$!S!n−1"V!n−1"†"0!%!B6!6

#'n↑$ = !UnSnVn†"0̄%, !A9"

with composite indices 0̄= !'n ,0!", 'n= !'n↓ ,'n↑", %
= !5 ,6" and %!= !5! ,6!". Then use Un to define a new set of
orthonormal matrices B#'n$ for site n of the refolded chain,
with matrix elements B0!0

#'n$=U0̄0
n . In this way one readily es-

tablishes that '456
n (u can be written in the form of Eq. !A6",

with C0%
n = !SnVn†"0%.

The dimensions of the matrices B#'n$ initially grow by a
factor of d with each iteration step, until their dimensions are
restricted by the number of possible values of the composite
index %, namely Dn!

2, with Dn! given by Eq. !16". Thus, the
B#'n$ have dimensions Dn

r 1Dn+1
r , with Dn

r =min!dn ,Dn−1!2 ",
which leads to Eq. !20".

3. Cloning

This section gives some details of the cloning procedure
of Sec. VIA. The goal is to solve the variational Eq. !32",
which determines the B-matrices of the cloned state 'G(c. As
described in the main text, this can be done by sweeping
back and forth along the unfolded Wilson chain, and updat-
ing one matrix at a time.

Let k) label the site to be updated and write the cloned
state, which is assumed to be of the form !15", as
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'G(c = !Xl
k)"15B55!

#'k)$!Xr
k)"5!1. !A10"

Here we introduced the shorthands

!Xl
k)"15 = !B#'N↓$ . . . B#'kl)l

$"15, !A11a"

!Xr
k)"51 = !B#'kr)r

$ . . . B#'N↑$"51, !A11b"

for the products of matrices standing before or after the one
of present interest in the unfolded Wilson chain, and the
labels kl)l or kr)r label the sites just before or after this site.
Moreover, assume that all the B-matrices in Xl and Xr have
been orthonormalized according to Eq. !A1a" or Eq. !A1b",
respectively. !This can always be ensured by suitably or-
thonormalizing each B-matrix after updating it, see below."
These orthonormality relations immediately imply similar
ones for the matrix products just introduced:

+
'N↓,. . .,'kl)l

!Xl
k)"51

† !Xl
k)"15! = 255!, !A12a"

+
'kr)r

,. . .,'N↑

!Xr
k)"51!Xr

k)"15!
† = 255!. !A12b"

Thus, the norm of 'G(c can be written as

c/G'G(c =
1
N+

55!

B5!5
#'k)$†B55!

#'k)$, !A13"

where N is a normalization constant ensuring that the norm
equals unity.

Using Eq. !A13", the variational Eq. !32" readily reduces
to

B55!
#'k)$ = +

%!!N&

!A#'N$† . . . A#'0$†"G1

1 + 9
!Xl

k)"15!Xr
k)"5!1,

!A14"

where %!!N& denotes the local indices of all sites except the
index 'k) of site k), and we have assumed all A- and
B-matrices to be purely real !exploiting the time-reversal in-
variance of the present model". This equation !graphically
represented in Fig. 14" completely determines the new ma-
trix B#'k)$ in terms of the A-matrices specifying the NRG
input state 'G( f and the B-matrices of sites other than the
present one, which had been kept fixed during this varia-
tional step.

Having calculated B#'k)$, it should be properly orthonor-
malized, following the procedure of Eq. !A3" or Eq. !A4",
depending on whether we are sweeping from left to right or
vice versa. In other words, use the singular value decompo-
sition USV† of the newfound matrix B#'k)$, to transfer a fac-
tor SV† or US onto its right or left neighbor, respectively, and
rescale this neighbor by an overall constant to ensure that the
new state 'G(c is still normalized to unity. This concludes the
update of site k). Now move on to its neighbor, etc., and
thus sweep back and forth through the unfolded Wilson
chain, until convergence is reached.
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