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Trapped ions arranged in Coulomb crystals provide us with the elements to study the physics of a single spin
coupled to a boson bath. In this work, we show that optical forces allow us to realize a variety of spin-boson
models, depending on the crystal geometry and the laser configuration. We study in detail the ohmic case,
which can be implemented by illuminating a single ion with a traveling wave. The mesoscopic character of the
phonon bath in trapped ions induces effects such as the appearance of quantum revivals in the spin evolution.
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The problem posed by a two-level system interacting with
a bath of harmonic oscillators, known as the spin-boson
model, appears in condensed matter, atomic physics, and
quantum-information processing. It is of fundamental impor-
tance, since it represents a paradigm for the study of quan-
tum dissipation and the quantum-to-classical transition �1,2�.
The spin-boson model displays nonperturbative features,
such as the inhibition of spin relaxation above a critical dis-
sipation strength, known as the localization transition. De-
spite its fundamental importance, experimental investiga-
tions into anything but the weak-coupling regime of the spin-
boson model are still scarce. The localization transition has
been observed in the related Josephson junction systems �3�,
while typical solid-state two-level systems feature a coupling
strength much below the critical threshold �4�.

Trapped ions provide a clean system ideally suited for the
quantum simulation of condensed-matter problems �5,6�. In
this Rapid Communication, we show that they also offer re-
alizations, with a wide range of tunable parameters, of the
spin-boson model ��x ,�z are Pauli matrices, ��1�,
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�
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��nan
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We consider a Coulomb crystal of identical ions, each having
two hyperfine levels split by internal energy �0. Their vibra-
tional normal modes constitute a phonon bath, HB

=�n�n�an
†an+ 1

2 �, whose eigenfrequencies �n depend on both
the vibrational directions and trapping conditions. By focus-
ing one or more laser beams onto a single ion in the crystal,
henceforth called the “central ion,” several types of cou-
plings between its two hyperfine levels, say ��1� �taken to
be eigenstates of �z�, and the phonon modes can be induced
�7�, leading to several types of realizations of the spin-boson
model �see Fig. 1�. This offers a wide range of possibilities
for observing the phenomenology of the spin-boson model,
with the advantage that well-developed experimental tech-
niques exist for the preparation of both the initial spin and
phonon bath states �8�. Moreover, the vibrational modes, be-
ing finite in number, form a mesoscopic �not macroscopic�
environment. This leads to interesting memory effects such
as quantum revivals in the spin evolution, which are absent
in the customary limit of a macroscopic bath.

Our main results are as follows. �i� One-dimensional �1D�
and 2D Coulomb crystals yield a variety of power-law pho-
non spectral densities, J�����s, ranging from sub ohmic
�s	1� to super ohmic �s
1�, depending on the ion crystal
dimension and the laser configuration. �ii� In particular, by
addressing the central ion by a traveling wave laser field, the
ohmic �s=1� spin-boson model can be realized with tunable
interaction strength, allowing the standard phenomenology
of this model, such as the localization transition, to be real-
ized if the number of ions is large enough. �iii� For time
scales larger than a given revival time, finite-size effects in-
duce the re-excitation of the spin after an initial period of
relaxation �quantum revival�, which can be observed in a
wide range of parameters, including high phonon tempera-
tures.

REALIZATIONS OF SPIN-BOSON COUPLING

Let the central ion’s coordinate relative to its equilibrium
position, in the direction of the optical force �specified be-
low�, be represented by the operator z=�nMnz̄n�an+an

†�.
Here z̄n=1 /	2m�n, m is the ion mass, and Mn is the ampli-
tude of vibrational mode n at the central ion, which is readily
calculated by finding the normal modes of the Coulomb
chain in the harmonic approximation; see �5�. We now con-
sider two different setups, in which the tunneling and spin-
boson coupling terms of Eq. �1� are generated �i� by two
separate laser fields or �ii� by a single laser field, respec-
tively.

(i) State-dependent dipole force from a standing wave.
This setup requires two laser fields. The first couples to the
central ion’s internal states in such a way that its frequency

FIG. 1. �Color online� Scheme for the implementation of spin-
boson couplings in Coulomb chains.
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�L and Rabi frequency �L set the bias �=�0−�L and tun-
neling amplitude �=�L. The second laser field is an off-
resonant standing wave with wave number k and phase �,
which creates a state-dependent dipole potential V�z�
=V0cos2�kz+���z, thus inducing a spin-boson coupling. In
the Lamb-Dicke regime �kz1� we can expand V�z� to ob-
tain

Hsw = V0�cos2� − kz sin 2� − �kz�2 cos 2���z. �2�

The first term just shifts the bias �, and one can choose to
eliminate the second or third term by setting �=0 or � /4,
respectively. The latter choice yields Eq. �1�, with �n

sw=
−2kV0Mnz̄n and �=�0−�L+V0.

(ii) Polaron coupling from a traveling wave. In this setup,
a single laser field produces a traveling wave focused on the
central ion, such that the coupling is given, in a frame rotat-
ing with �L, by

Htw =
�L

2
��+eikz + �−e−ikz� . �3�

This system is unitarily related to that of Eq. �1�, and hence
shows the same quantum dynamics. Indeed, using the ca-
nonical transformation U=e−�i/2�kz�z

, the Hamiltonian U�HB
+Htw+ ��0−�L��z�U† readily reduces to Eq. �1�, with �n

tw

=−ikz̄nMn�n, �=�L, and �=�0−�L.

SPECTRAL DENSITY

The properties of the spin-boson model are determined by
the spectral density, J���=��n=1

N ��n�2���−�n�. A finite
number N of phonon modes have a discrete spectrum leading
to finite-size effects, to be discussed below. However, to gain
qualitative understanding, we first consider the thermody-
namic limit �N→ � � of a continuous spectrum. We focus on
experimental conditions leading to an approximately gapless
bath, namely, 1D and 2D Coulomb crystals: their axial �1D�
or in-plane �2D� modes are approximately gapless, since
their minimum energy, say �z, is the global trapping fre-
quency �corresponding to the center-of-mass frequency�,
which has to be sufficiently small to guarantee the stability
of the crystal. For a 1D Coulomb chain of N ions, the energy
spectrum of axial vibrations with 1nN is �n

1D=��n�1
+ 2

3 log� N
�n ��1/2 �9�, where ��=r�z, r= �� /N�	3e2 / �m�z

2d0
3�,

and d0 is the distance between ions. r is determined by N,
such that for mesoscopic Coulomb chains �N
102� r
1
�10�. Qualitative insights can be gained by retaining the fac-
tor linear in n only �see Fig. 2�a�, solid line�, yielding the
following spectral densities:

Jsw
1D��� =

�

Nr
�2V0kz̄�2�−1, �4�

Jtw
1D��� =

�

Nr
�kz̄�2� = 2��� . �5�

Here we have used that �Mn�2
1 /N, since in the thermody-
namic limit vibrational modes are given by plane waves. For
Jtw

1D��� we introduced the dimensionless dissipation strength

� �1�. Finite-size effects will modify the spectral density of a
Coulomb crystal. Nevertheless, Eqs. �4� and �5� allow us to
determine the character of the phonon bath, as well as the
scaling of its properties with experimental parameters. This
is shown by the comparison with exact numerical calcula-
tions in Fig. 2. Finally, in a 2D Coulomb crystal, ions arrange
themselves in a triangular lattice �11�. There, the lowest-
energy vibrational modes also show a linear dispersion rela-
tion �12�, such that the corresponding spin-boson models
have an algebraic spectral density with exponents s=0 �13�
and s=2, in the cases of interaction with a standing wave or
a traveling wave, respectively.

TRAPPED ION OHMIC MODEL

In the following, we analyze in detail the ohmic case of
Eq. �5�. Assume that at t	0 the coupling is off, the phonon
bath is in thermal equilibrium, and the internal state is pre-
pared in �1� by using standard optical pumping techniques.
We focus on the evolution of the system at time t
0 upon
suddenly switching on Eq. �3�. In particular, we calculate
P�t�= ��z� to determine the evolution of the spin under the
effect of the tunneling � �1�. The theoretical description of
this system can be addressed within the noninteracting blip
approximation �NIBA�,

Ṗ�t� = �
0

t

K�t − t��P�t��dt�,

K��� = − �2Re�eikz���e−ikz�0�� , �6�

where the average is evaluated assuming a thermal state in
the bosonic bath. This expression can be obtained by neglect-
ing spin-bath correlations in an expansion up to second order
in � �15�. It is well established �1� that in the case of a
continuous ohmic model, the NIBA describes correctly the
two limits of weak and strong dissipation, as well as the
high-temperature limit.

FIG. 2. Phonon bath properties of a Coulomb chain with N
=50. �a� Dots: Exact axial vibrational spectrum. Continuous line:
Approximation �n

1D��n. �b� Spectral density of spin-boson cou-
plings induced by a standing wave �with kz̄1=1� or a traveling wave
�with 2V0kz̄ /�z=1�. The continuous lines are obtained with the ex-
act vibrational spectrum, by substituting the � function in J��� by a
constant function in each interval ��n ,�n+1�, of height ��n+1

−�n�−1. The dashed lines are the approximations of Eqs. �4� and
�5�.
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The finite-size properties of the spin-boson model defined
by Eq. �3� can be qualitatively understood by considering the
approximation that vibrational energies are equally spaced
by a given energy �� �14�. Then the kernel K��� defined
by Eqs. �6� is periodic, and can be written as K���
=�nK̄��−�n�, �n=n�rev, where �rev=2� /�� is the vibrational

bath revival time. K̄��� becomes equal to the kernel of the
continuum ohmic model in the limit ��→0. At short times

�t�rev�, the spin evolution is governed by K̄���, and it be-
haves similarly to the case of a continuum spin-boson model.
The periodic structure of K��� manifests itself at long times
����rev� in the form of quantum revivals in P�t�. For the 1D
trapped ion spin-boson model, the level spacings ��n
= ��n+1

1D −�n
1D� deviate from the constant value �� by loga-

rithmic corrections. However, since these deviations scale
like ���n+1−��n���� /n for large n, the fraction of modes
for which they are significant becomes negligible in the limit
of large N. Thus, �rev
2� /�� defines the time scale that
separates the short-time regime, where P�t� evolves as for a
continuous bath, from the long-time regime, displaying
quantum revivals.

NUMERICAL SOLUTION

To verify this conclusion, we obtain the numerical solu-
tion of P�t� within the NIBA, using the exact vibrational
modes of a finite-size ion chain trapped in a harmonic poten-
tial. In order to compare these results with those predicted by
the ohmic spin-boson model with a continuous bath, we fit
the exact low-energy spectral density to the form given by
Eq. �5� and thus extract the dissipation strength �. The NIBA
can be justified for a discrete phonon bath as long as the

decay time of K̄��� is much smaller than �rev. At short times
t�rev, the validity of the NIBA in the continuous case im-
plies that the average in Eq. �6� can be calculated by factor-
izing the total density matrix into spin and phonon reduced
density matrices. Due to the periodic structure of K���,
brought about by the discreteness of the vibrational bath, we
conclude that P�t� is related to the state of the system at
times t−n�rev. In the first revival �t
�rev�, P�t� depends on
the state of the system at short times, where the spin-bath
decoupling scheme, which leads to the NIBA, works. Thus,
the first revival is well described within the NIBA, and the
argument can be easily extended to later revivals. The NIBA
integro-differential equation is solved numerically following
Ref. �16�. We now discuss in detail the results of the unbi-
ased case ��=0� for two different regimes, having high or
low phonon temperatures, respectively.

HIGH-TEMPERATURE REGIME

For sufficiently high temperatures, the kernel K̄��� decays
exponentially with a memory time �m=1 / �2��T� �we set
kB=1�. In the continuum limit one finds two main regimes:
�m�
1 �coherent oscillations�, where P�t� oscillates with �
and decays in a time �m; and �m�	1 �overdamped relax-
ation�, where P�t� decays with a rate �=�2�m. In the case of
a finite Coulomb chain, K��� shows an exponential decay at

short times, and additionally, an approximate periodic struc-
ture at time scales �rev
2� /�� �see Fig. 3�b��. Figure 3�a�
shows that the behavior of P�t� at short times clearly reveals
the transition between the overdamped and underdamped re-
gimes, as well as the quantum revivals at �rev. The revival
effect can be understood in terms of the perturbation of the
Coulomb chain created during the initial spin relaxation,
which propagates along the chain, is reflected at the bound-
aries, and returns to the selected ion, thus inducing its re-
excitation. Interesting geometrical effects on the revivals
may also be expected in 2D setups. Revivals in the high-
temperature regime could be easily observed in experiments
with trapped ions, since they require neither cooling to very
low temperatures nor high values of �.

LOW-TEMPERATURE REGIME

For the ohmic model in the continuum and scaling limits,
the evolution of P�t� at T=0 is determined by the value of �,
in such a way that there are three regimes to be considered
�1�: �	

1
2 �coherent oscillations�, 1

2 	�	1 �overdamped re-
laxation�, and �
1, in which case dissipation impedes the
decay of P�t� and the system becomes localized in the initial
value of the effective spin �17�. This result is related to the
quantum Zeno effect, because the spin relaxation is hindered
by the measurement performed by the phonons �18�. Since
the NIBA is known to reproduce the transition between these
three regimes �19�, we can use it to investigate whether the
mesoscopic ohmic spin-boson model shows the same transi-
tion. Figure 4 shows our results, illustrating that the relax-
ation of P�t� shows the same qualitative features as in the
standard ohmic model, but with the additional appearance of
quantum revivals at long times. The localization of the spin
state is clearly evident at values of �
1, although a residual
relaxation process still persists as a consequence of the dis-
creteness of the bath. To quantify in more detail the transition
to spin localization, we have calculated the initial decay rates
at short times, as a function of �. Our results in Fig. 5�a�
show the slowing down of the spin relaxation with increasing
�, as well as the effect of finite temperatures. Note that Fig.
5�a� corresponds to the finite-size version of the quantum
phase transition to localization, which is found in the ther-
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FIG. 3. �a� Transition from the underdamped �thick line, �
=10�z, �=2�10−3� to the overdamped regime �thin line, �=3�z,
�=4�10−3�, in the high-temperature limit of a spin-boson model
with N=50 ions, T=250�z, �=0. �b� NIBA time kernels corre-
sponding to these two regimes.
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modynamic limit of the phonon bath �where � would vanish
above �=1�.

The strong dissipation regime of the mesoscopic ohmic
spin-boson model requires high values of �, and thus of
�kz̄1�2�1 /�z. In the case of a chain with N=50 ions, the
transition to localization can be observed with �z of a few
kHz. The axial trapping frequency that is required to realize
a model with a given � decreases with N; see Fig. 5�b�. This
condition is difficult to meet in an experiment, due to the
need to cool the Coulomb chain to low temperatures. How-
ever, it must be noted that ground-state cooling is not re-
quired. Our calculations show that up to temperatures of the
order of the axial trapping frequency, the transition to local-
ization can still be observed, whereas at higher temperatures
it is smeared out.

OUTLOOK

Let us comment on the possibility of implementing vari-
ous interesting experimental situations other than the ones
discussed above. In particular, the coupling �2� allows us to
implement a bath with 1 / f noise, a model that is relevant to

the description of decoherence of solid-state qubits �both
normal and superconducting� �20�. Besides that, according to
our discussion for the case of an off-resonant standing wave
addressing the central ion, Eq. �2�, it is possible to tune the
spin-boson coupling in such a way that we implement cou-
plings quadratic in the bath coordinate. Again, these are of
current concern in the description of superconducting solid-
state qubits operating at the “sweet spot” �21�, and could be
studied in much more detail in an ion chain model. Finally,
the simultaneous coupling of several spins to the vibrational
bath, by addressing several ions with lasers, would represent
an implementation of a “many spin-boson” model, where the
interplay between the phonon bath-mediated spin-spin cou-
pling and dissipation could be studied.
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