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Abstract

Circuit quantum electrodynamics (Circuit QED) is a novel field combining quantum-optical
cavity QED concepts with solid-state devices, where superconducting qubits are coupled to
microwave resonators. The fundamental dynamics in Circuit QED is associated with the
Jaynes-Cummings model, well known in quantum optics, describing the interaction between
a two-level system with a single mode of a cavity field. While current experiments focus on
single-qubit single-resonator devices, recently a two-dimensional cavity architecture has been
proposed for standard quantum computing, where qubits are placed at the crossings of a
two-dimensional cavity array.

Taking into account the constraints and advantages of the newly suggested Circuit QED
setup, we will study the implementation of universal one- and two-qubit operations such as
Hadamard, CPHASE, and iSWAP gates, based exclusively on resonant interactions. The
latter can be obtained due to a suitable utilization of three-level physics in our extended Cir-
cuit QED approach. Though two-qubit gates working in the off-resonant regime are widely
considered, they are slow when compared to the proposed resonant ones. Exploiting these
engineered fast operations, we will also present an optimized protocol for the implementation
of a two-dimensional cluster state, a key requirement for one-way quantum computing. Fi-
nally, we will use similar tools to discuss possible simulations of strongly correlated systems,
such as the XX and Ising models in Circuit QED.
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Zusammenfassung

Schaltkreis-Quantenelektrodynamik (Circuit QED) ist ein neues Feld, welches bekannte Konzepte
der Cavity QED mit Aufbauten aus der Festkörperphysik kombiniert: supraleitende Qubits
sind an Mikrowellenresonatoren gekoppelt. Die fundamentale Dynamik der Wechselwirkung
wird durch das Jaynes-Cummings Model beschrieben. Dieses ist ein bekanntes Modell aus der
Quantenoptik, um die Wechselwirkung von einem Zwei-Niveau-System mit einem Laserfeld
zu beschreiben. Während momentan der experimentelle Fokus noch auf Systemen bestehend
aus einem Resonator und einem Qubit liegt, gibt es theoretische Vorschläge für zweidimen-
sionale Architekturen, in denen die Resonatoren in Gitterstrukturen angeordnet sind, und die
Qubits an den Kreuzungspunkten plaziert werden. In dieser Diplomarbeit werden wir mit
diesem Gitter arbeiten und die Vor- und Nachteile dieser Struktur für die Ausführung von
Operationen berücksichtigen.

Im ersten Teil werden wir die Implementierung von universellen ein und zwei Qubits Oper-
ationen, wie die Hadamard, CPHASE und iSWAP Transformation behandeln. Unter Zuhilfe-
nahme des Resonators als Mediator und einem dritten Anregungszustand des Qubits können
wir diese Operationen auschliesslich durch resonante (d.h. schnelle) Prozesse verwirklichen.
In einem zweiten Teil werden wir diese neuen schnellen Operationen für die Entwicklung des
quantum computing ansetzen. Zuerst präsentieren wir ein Protokoll zur Konstruktion eines
Clusterzustandes. Dieser spezielle verschränkte Mehrteilchenzustand findet Anwendung im
One-way Quantencomputer. Als zweite und letzte Anwendung werden wir die Ausführung von
Operationen im resonanten Regime in Circuit QED vorstellen, die stark korrelierte Modelle
wie das XX- oder Ising-Modell simulieren können.
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Résumé

L’électrodynamique quantique en circuit (Circuit QED) est un domaine de recherche récent
où des concepts de l’électrodynamique quantique en cavité sont appliqués à des systèmes de la
physique du solide: des bits quantiques superconducteurs (superconducting qubits) couplés à
des résonateurs micro-ondes. La dynamique fondamentale de cette interaction peut être com-
prise grâce au modèle de Jaynes-Cummings qui décrit l’interaction entre un système atomique
à deux niveaux avec un mode du champ de cavité en optique quantique.
Les expériences actuelles en électrodynamique quantique des circuits se font généralement avec
des systèmes composés d’un bit quantique superconducteur et d’un résonateur. Néanmoins
des propositions théoriques concernant la fabrication des qubits et l’architecture des résonateurs
émergent afin d’améliorer la cohérence des systèmes et de pouvoir mettre en oeuvre des al-
gorithmes, dans le but du calcul quantique conventionnel par exemple. Une des nouvelles
architectures proposées est une grille de résonateurs à deux dimensions où les qubits super-
conducteurs sont placés à l’intersection de deux cavités. Par exemple, nous utiliserons ce
cadre pour réaliser des états intriqués à plusieurs qubits, ce qui mettra en évidence les avan-
tages et inconvénients de cette architecture plus complexe.

Dans une première partie, nous étudierons la mise en oeuvre d’opérations à un et deux
qubits superconducteurs telles que les portes Hadamard, CPHASE et ISWAP, toutes étudiées
exclusivement dans le régime résonant. Elles constituent les briques des ensembles de portes
”universelles”. Le régime permet de réaliser des interactions à une vitesse rapide comparée à
celle obtenue dans un régime non-résonant ou dispersif. Néanmoins la réalisation de toutes
les portes dans ce régime nécessite l’utilisation de la cavité comme médiateur ainsi qu’un
qubit superconducteur à trois niveaux. Cette dernière condition n’est pas triviale et nous
discuterons de sa justification. Dans une seconde partie nous nous appliquerons à utiliser ces
nouveaux outils pour le développement du calcul quantique en électrodynamique en circuit.
Nous proposerons un protocole optimisé dans le temps pour mettre en oeuvre un cluster en
un temps optimisé. Ce cluster est un état intriqué requis lors de la réalisation d’un ordinateur
quantique particulier (a one-way quantum computer). Enfin nous présenterons la réalisation
d’opérations non-triviales en régime résonant permettant de simuler en électrodynamique
quantique des circuits des systèmes fortement corrélés tels que le modèle XX ou le modèle
d’Ising dans un champ magnétique transverse.
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Chapter 1

Circuit Quantum Electrodynamics

Circuit quantum electrodynamics (Circuit QED) is a novel subject of interest in the field of
solid-state quantum computation. It appeared from the association of quantum optical cavity
QED with macroscopic quantum mechanics. On the one hand quantum mechanics is com-
monly associated with microscopic particles like atoms or photons. Thermal motion masks
quantum fluctuations and thus quantum behaviors can usually not be observed in macroscopic
objects. However there exist several physical systems where a large number of microscopic
particles is described by a macroscopic wave function described with the tools of classical
mechanics. However one can observe behaviours only interpretable with quantum mechanics.
This is the case for instance in the Bose-Einstein condensation or in superconductivity where
a macroscopic fraction of the electrons are in the superconducting state and can be described
by a macroscopic wave function Ψ [1].
On the other hand Cavity QED with concepts of quantum optics is a large research field
where people study the interaction between few atoms and few photons [2]. In the case of
one atom and a discrete electromagnetic mode of a cavity field, the interaction is modeled
by the Jaynes-Cummings Hamiltonian. For instance, the strong coupling regime required
to observe the exchange of energy described in the Jaynes-Cummings Hamiltonian has been
reached [3, 4] and could be exploited in quantum information or quantum communication.
Solid-state quantum computation and more specifically Circuit QED can be considered as
a new approach to Cavity QED. The idea is to simulate the fundamental interaction of an
atom and a mode of the cavity field at a microscopic scale and not anymore at an atomic
scale. The system is composed of superconducting qubits (SCqubits) built with the physics of
Josephson junctions, in which quantum macroscopic effects can be observed, and microwave
resonators ([5] - [7]) . Some others subjects of interest like trapped ions ([8], [9]), quantum
dots [10] or semiconductor spin qubits [11] aim at observing this interaction at microscopic
and mesoscopic scales.

Circuit QED is an efficient architecture for solid-state quantum computing in which super-
conducting qubits considered as artificial atoms interact with modes of microwave resonators
playing the role of cavities. It has been shown, and we will derive it in a more general frame
in this chapter, that the fundamental Hamiltonian describing the dynamics of Circuit QED
is equivalent to the Jaynes-Cummings model [12].
Circuit QED has some advantages over previous proposals such as ions in atomic physics and
spins in mesoscopic physics because superconducting qubits are macroscopic systems and thus
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easier to construct and to couple. Nevertheless, their readout is difficult and they are hard
to isolate due to their size, they interact more with the environment. The decoherence of the
system is therefore a major issue of circuit QED and the new devices and implementation of
quantum circuits have to deal with this important constraint.

In this chapter we will also present a description of the actual realized devices by the
leading experimental groups in Yale, Delft and Santa Barbara. Moreover, we will detail the
steps to make the analogy between Circuit QED and Cavity QED by deriving the Jaynes-
Cummings Hamiltonian describing the interaction between a two-level system and a cavity.

1.1 Elements of Circuit QED

The physical system used in Circuit QED is composed of a superconducting two-level system
playing the role of an artificial atom and an on-chip cavity-resonator, usually a superconduct-
ing transmission line resonator. There exists several kinds of SCqubits as well as different
proposals for the architecture of the cavity. We will now expose briefly possibilities to repro-
duce in a solid-state system the model of Cavity QED. Some of them exist already and others
are still theoretical proposals. We will explain the main characteristics of each of them, a
general idea of their functioning and disadavantages [13].

1.1.1 Superconducting qubits

All superconducting qubits are built with one or several Josephson junctions. Therefore
their basic physics belongs to the field of superconductivity. The Josephson junctions act
as nonlinear inductors in a circuit and thus provide an anharmonicity between the energy
levels. They are characterized by two key parameters which determine their behaviour, the
charging energy EC and the Josephson or coupling energy EJ . Their expression will be
given later when we will derive the Hamiltonian of Circuit QED. The phase difference of a
Josephson junction φ in the macroscopic wavefunction of all Cooper pairs and the number N of
Cooper pairs on the island are conjugate variables in analogy to the position and momentum
in quantum mechanics. They satisfy a relation of the form of the Heisenberg uncertainty
relation, ∆N∆φ ≥ 1.
There are four different ways of making a qubit with Josephson junctions. They depend in
which regime they are realized, which can be distinguished by the different values of the ratio
EJ/EC . The charge qubit works in the charge regime EC À EJ where the number N of
Cooper pairs on the island is well defined and the phase φ has strong fluctuations. The flux,
phase and transmon qubits operate in the flux regime EC ¿ EJ in which the phase φ is
well defined and the charge N fluctuates strongly. Another key point of all qubits is their
characteristic times T1 and T2. T1 stands for the relaxation time of the qubit from its excited
level to its ground level and T2 corresponds to the coherence time, it denotes the time after
which the qubit is not anymore isolated from its environment. The coherence time T2 is a
crucial issue for each qubit and we will give its value in addition to the description of each
SCqubit.

1) The charge qubit
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This qubit is experimentally built and tested in the groups of Yale, Saclay, Chalmers and at
the Nippon Electronics Corporation (NEC). It is characterized by:

• EJ ≈ EC

• Size: 0.01µm2

• Energy-level difference between the two lowest states: 10 GHz

• Coherence time: T2 = 0.1− 1µs

Figure 1.1: The charge qubit. A Cooper pair box (CPB) or island is driven by a voltage
source Vg through a gate capacitance Cg. Cooper pairs with charge −2e in the island can
then tunnel from the CPB to the wire through a Josephson junction. Under some assumptions
on the different parameters, the CPB is equivalent to a two-level system with states |0〉 and
|1〉 corresponding to 0 or 1 charge in the CPB. Illustration taken from [13].

Although the charge qubit works theoretically in the charge regime defined by EC À EJ ,
the actual experimental charge qubits work with EJ ≈ EC . But the predicted physics of its
functioning is the same. The charge qubit is constituted of a small superconducting island,
the Cooper pair box (CPB) coupled to the environment by a weak Josephson junction and
driven by a voltage source Vg through a gate capacitance Cg. When the box’s offset charge
induced by the gate voltage is about the same as the charge of a single electron, only two
charge states matter: |0〉 and |1〉, which have either zero or one extra Cooper pair in the box
and are a possibility for the basis states for a qubit. The Cooper pair box is thus described
by a two-level quantum system. Regarding the decoherence feature, the main disadvantage
of the charge qubit is its big sensitivity to the charge noise. This reduces strongly T2 and
thus the performance of this qubit.

2) The flux qubit

This qubit is experimentally built and tested in the groups of Delft, Berkeley, at the IBM
laboratory and the Walter-Meissner Institute (WMI) [14]. It is characterized by:

• EJ ≈ 102EC

• size: 0.1− 1µm2

• Energy-level difference between the two lowest states: 10 GHz

• Coherence time: T2 = 1− 10µs
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Figure 1.2: The flux qubit. Through mutual inductance M, a magnetic field created by
an external current Iext is applied and generates clockwise and counterclockwise currents.
Because of the quantization of the enclosed flux φ, flux quantum Φ0 can tunnel through the
Josephson junction and the currents become the quantized states which are the basis for the
flux qubit. Illustration taken from [13].

The flux qubit is made of three Josephson junctions all in the flux regime with a super-
conducting loop. When a magnetic field is applied through it, a clockwise or counterclockwise
supercurrent is induced to decrease or increase the enclosed flux. These circulating super-
currents can form the basis states for the qubit. Regarding the decoherence properties, flux
qubits are mostly sensitive to flux noise and fluctuations of the critical current as can be
intuitively thought.

3) The phase qubit

It is studied and improved in the universities of Santa Barbara (UCSB) [15], Maryland and
at the National Institute of Standards and Technologies (NIST) [16]. It is characterized by:

• EJ ≈ 104EC

• size: 10− 100µm2

• Energy-level difference between the two lowest states: 10 GHz

• Coherence time: T2 = 0.1 − 1µs (this can actually be improved by the design of the
dielectrics)

The principle of the phase qubit is a Josephson junction biased by a large current. This
bias induces a tilt in the potential of the Josephson junction (tilted-washboard potential).
This reduces the number of bound states in the potential-energy well. Phase qubits manage
to avoid the sensitivity to charge noise in increasing a little the critical-current noise.

4) The transmon qubit

It has been recently developed by the group in Yale [17] and the values given here are just
referential. It is characterized by:

• EJ ≈ 102EC

• Energy-level difference between the two lowest states: 10 GHz
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Figure 1.3: The phase qubit. The Josephson junction is driven by a current bias. This reduces
the number of quantized states in the energy-potential and leads thus to a two-level-system.
Illustration taken from [13].

Figure 1.4: The transmon qubit. The circuit is very similar to the charge qubit. The states
of the CPB will be those for the qubit and Cooper pairs can tunnel through a Josephson
junction. However to reduce the sensitivity to the charge noise, a capacitance CB is added to
reduce the charge dispersion responsible for this noise. Illustration taken from [17].

• Coherence time (predicted): T2 ≈ 35µs

The design of the transmon qubit is closely related to the Cooper pair box of the charge
qubit but there is an additional shunting connection of the two superconductors via a large
capacitance CB which which reduces the charging energy EC . The main features of this new
qubit is that the charge dispersion which determines the sensitivity of the Cooper pair box
to charge noise reduces exponentially in EJ/EC whereas the anharmonicity has an algebraic
decay with a slow power law in EJ/EC . So they manage to keep the advantage of the charge
qubit, while increasing the average decoherence time T2 drastically.

1.1.2 The one-dimensional microwave resonator

The resonator plays the role of the cavity. Two capacitances Cin and Cout at both ends of the
centre narrow conductor play the role of the mirrors of an optical cavity. The field is sent inside
the resonator through one of them and then stays in the resonator. The centre conductor
and the ground planes at each side are usually made by patterning a thin superconducting
film deposited on a silicon chip. The resonator behaves as a harmonic oscillator and can
be modelled by a capacitor C and an inductance L in parallel near its resonance frequency
which is thus ωr = 1/

√
LC. The resonator can contain one or more qubits. Their placement
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depends on how many qubits we want to put inside and on which kind of resonator is used.

Figure 1.5: Left: Resonator with one SCqubit at the centre. The qubit is coupled to the
resonator via a capacitance Cg. Two other capacitances Cin and Cout are placed at the
end of the resonator. They play the role of the mirrors of an optical cavity. The resonator
can be modeled by a capacitance C and inductance L near its resonance frequency. Right:
Corresponding microwave circuit. Illustrations taken from [12] and [3] respectively.

This circuit behaves as a harmonic oscillator described by the Hamiltonian:

Hr = ~ωr(a†a + 1/2), (1.1)

where
〈
a†a

〉
= n is the average photon number. The loss of photons of the resonator is due to

the ports Cin and Cout, by which it is connected to the input and output transmission lines.
The rate of dissipation is κ = ωr/Q where Q is the quality factor of the resonator. Experi-
mentally, the Yale group has n < 0.06 photon in the microwave resonator at a temperature
T < 100 mK, and typical resonance frequencies are between 2 and 10 GHz.
Let us notice that in order to implement one or two-qubit gates, they have to send external
driving fields on the resonator to drive the qubit inside it. The group of Yale, which has
performed several experiments and proposals to implement gates, send these driving fields
through the axis of the cavity according to Fig.1.5. Because of the high-quality factor Q of the
resonator, the external fields are detuned from the resonator frequency. As a consequence, a
lot of photons are reflected and the intensity of the driving fields has to be large to compensate
this loss.

1.1.3 The two-dimensional cavity grid

This one-dimensional resonator is widely used cavity in Circuit QED experiments. However
there are new proposed complex architectures which use this resonator as elementary building
blocks. One of this proposition is the two-dimensional cavity grid [18]. We present here its
main features and how it is possible to tune on resonance a chosen qubit with an external
field or with a mode of the cavity.

The cavity array is formed of N horizontal and N vertical one-dimensional resonators.
Each SCqubit is situated at the crossing point between two cavities. The external fields are
sent in the axis of the resonator, far detuned from its frequency but they can be tuned on
resonance with the transition frequency of the desired qubit. This allows the possibility to
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realize logical operations in the resonant regime. As we will see this specific regime enables a
fast realization of gates compared to the off-resonant regime.

From a technical point of view, to tune on resonance a SCqubit with the resonator field
or with an external field, one has to change its transition frequency to the frequency of the
desired field. It can be done with an external controlled current loop producing an additional
magnetic field. This field will change the flux Φ of the qubit which is related with the
Josephson coupling energy EJ . Using the fact that in SCqubits the level-spacing depends on
this Josephson coupling energy, it is possible to control exactly the transition frequency of
the qubit and thus to tune it on or off resonance with a field when we wish. Moreover this
architecture allow to control each qubit independently or for instance all qubits in the same
cavity at the same time.

Figure 1.6: a) Architecture of a 2D cavity grid. Each line represents a one-dimensional
resonator presented before and qubits which are denoted with circles are situated at the
crossing point of two cavities. In a given cavity each qubit has a different transition frequency
which can be changed by changing the parameters of the qubit. b) Two qubits can be tuned
into mutual resonance by changing their transition frequencies. Illustration taken from [18].

Summary

In this section we presented the main devices of Circuit QED. In the next chapter we will
focus on the realization of gates in the resonant regime and on the realization of multiqubit
entangled states in Circuit QED. We will see that the implementation of resonant one- and
two-qubit gates relies on the use of circuit cavity QED like the one-dimensional resonator
presented here. Later when we will discuss the applications of these fast operations and we
will work in the two-dimensional cavity grid and take advantage of this new architecture,
especially for getting cluster states.

1.2 The qubit-resonator interaction

We will derive in this part the Hamiltonian which describes the interaction between a charge
qubit and a resonator [12]. We choose this particular SCqubit for simplicity and because it
was one of the first SCqubit developped. . However all kinds of SCqubits can be described as
quantized two-level systems as exposed above and thus lead to the Jaynes-Cummings Hamil-
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tonian too.

First we will show that the Hamiltonian describing the charge qubit without any interac-
tion with another system is equivalent to that of a pseudo spin 1/2. If we suppose that the
temperature is small enough, T ¿ TC , and that the voltage source is smaller than the gap
of the Josephson junction, |V | <

∣∣2∆
e

∣∣, neither the thermal energy nor the external voltage
source V are sufficient to break up Cooper pairs. Only the Cooper pairs are still able to
tunnel through the junction (there is no more normal current nor a displacement current)
and the only relevant degree of freedom is the number N of Cooper pairs on the island.

The Hamiltonian which describes this situation is:

H = 4EC(N −Ng)2 − EJ cosφ, (1.2)

where

• EC = e2

2CΣ
is the charging energy where CΣ = CJ + Cg is the total capacitance of the

island,

• EJ is the coupling energy or Josephson energy,

• N is the charge operator which corresponds to the number of Cooper pairs on the island,

• Ng = CgVg

2e is the dc gate charge (see Fig. 1.1 for the definition of Cg and the dc gate
voltage Vg),

• φ is the phase-difference operator of the Josephson junction.

If we write the Hamiltonian in the eigenbasis of the charge operator N, we get:

HQ = 4EC

∑

N

(N −Ng)2|N〉〈N | − EJ

2

∑

N

(|N + 1〉〈N |+ H.c). (1.3)

The first term desribes the charging energy of the Cooper pair box which is necessary to
put one Cooper pair on the island. It can be derived from the classical laws of electrostatics.
The second term corresponds to one Cooper pair tunneling through the Josephson junction.

We now go into the interaction picture to concentrate on the evolution due to the inter-
action of the different parts of the system. For this we apply the unitary operation to our
Hamiltonian U(t) = e−

i
~Hfreet where Hfree = 4EC

∑
N (N −Ng)2|N〉〈N |. We obtain:

HQint =
EJ

2

∑

N

(
e

i
~4EC [2(Ng−N)−1]t|N〉〈N + 1|+ e−

i
~4EC [2(Ng−N)−1]t|N + 1〉〈N |

)
. (1.4)

All steps until now are valid for all kinds of SCqubits. Now we will have to consider the
assumption of being in the charge regime where EC À EJ . Indeed under this assumption,
the tunneling perturbation is only effective between charge states that are almost resonant
with each other. An alternative interpretation is that all the states off resonance with each
other will be fast rotating terms and can be neglected in the rotating wave approximation.
These almost resonant states appear at the degeneracy point Ng = 1/2 and are |0〉 and |1〉.
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They will be the only relevant states in the Hamiltonian. If we go back into the Schrödinger
picture, we get for the Hamiltonian:

H = 4EC

∑

N=0,1

(N −Ng)2|N〉〈N | − EJ

2
(|1〉〈0|+ |0〉〈1|) (1.5)

= −2EC(1− 2Ng)σz − EJ

2
σx, (1.6)

where σz = |0〉〈0| − |1〉〈1| and σx = |1〉〈0|+ |0〉〈1|.

This shows that the Cooper Pair Box is equivalent to a pseudo spin-1/2 particle with
effective fields in the z and x directions.

Now we will consider the interaction of the Cooper pair box with the resonator which
behaves as a harmonic oscillator to obtain the full dynamics [12]. It has been shown that
this interaction arises due to an additional term in the gate voltage. It is now composed of
the previously dc part and a new quantum part due to the quantized micowave field in the
resonator:

Vg = V dc
g +

√
~ωr

Lc
V (a + a†), (1.7)

where a and a† are the operators of annihilation and creation for a quantum of the resonator
field. In consequence the gate charge will have an additional term

Ng = Ndc
g +

√
~ωr

Lc
(a + a†). (1.8)

We insert this full expression in the Hamiltonian and we obtain the interaction between the
Cooper pair box and the resonator. One of the terms corresponds to a renormalization of
the resonator frequency and another can be neglected when considering the rotating wave
approximation. The Hamiltonian after these two approximations is:

HQR = −2EC(1− 2Ndc
g )σz − EJ

2
σx − e

Cg

CΣ

√
~ωr

Lc
(a + a†)× (1− 2Ng − σz). (1.9)

We have disregarded the term (2a†a + 1) corresponding to the renormalization of the
cavity frequency, and we have neglected the term ((a†)2 + a2) considering the rotating wave
approximation.

If we take into account the energy of the resonator, we finally get the Hamiltonian of
Circuit QED with a Cooper pair box:

HcQED = ~ωra
†a− 2EC(1− 2Ndc

g )σz − EJ

2
σx − e

Cg

CΣ

√
~ωr

Lc
(a + a†)× (1− 2Ng − σz). (1.10)

We now want to make the analogy between the Hamiltonians of Circuit QED and of the
Jaynes-Cummings model. For this we look for the eigenvectors of the Hamiltonian of the
SCqubit

HQ = −2EC(1− 2Ndc
g )σz − EJ

2
σx, (1.11)



10 1. Circuit Quantum Electrodynamics

which are:

| ↑〉 = cos(θ/2)|1〉+ sin(θ/2)|0〉 (1.12)
| ↓〉 = − sin(θ/2)|1〉+ cos(θ/2)|0〉, (1.13)

where θ = arctan
[

EJ

4EC(1−2Ndc
g )

]
is the mixing angle.

Expressing the Circuit QED Hamiltonian in this new basis (σz = | ↑〉〈↑ | − | ↓〉〈↓ |), it
leads to:

H = ~ωra
†a +

~ωa

2
σz − e

Cg

CΣ

√
~ωr

Lc
(a + a†)× (1− 2Ng − cos θσz + sin θσx)

= ~ωra
†a +

~ωa

2
σz − ~g(a + a†)× (1− 2Ng − cos θσz + sin θσx), (1.14)

where

• g = eCg

~CΣ

√
~ωr
cL is the coupling constant,

• ωa =

√
E2

J+
(
4EC(1−2Ndc

g )
)2

~ is the splitting energy of the qubit.

We now go again into the interaction picture to see which terms are really relevant during
the interaction. This time, the unitary operation we have to apply takes the form:

U(t) = e−i(ωra†a+ωa
2

σz)t. (1.15)

We obtain:

Hint = ~g
(
ae−iωrt + a†eiωrt

)(
1− 2Ng − cos θσz + sin θ(σ+eiωat + σ−e−iωat)

)
. (1.16)

If we suppose that the cavity frequency is close to the transition frequency of the SCqubit,
we can neglect the fast oscillating terms which is the rotating wave approximation (RWA).
This yields finally the interaction Hamiltonian:

Hint = ~g sin θ
(
aσ+e−i(ωr−ωa)t + a†σ−e+i(ωr−ωa)t

)
. (1.17)

To bring to light the analogy with the Jaynes-Cummings model, we go back to the
Schrödinger picture and get:

HJC = ~ωra
†a +

~ωa

2
σz + ~g sin θ(aσ+ + a†σ−). (1.18)

This corresponds exactly to the Jaynes-Cummings Hamiltonian with a coupling constant
g sin θ. In the optimal case of θ = π/2, this coupling is maximal. The point where this case
occurs is called the degeneracy point, where Ng = 1/2, θ = π/2 and ω0 = EJ/2.
Nevertheless the particularity of this demonstration is that we did not use the hypothesis of
being at this degeneracy point. This shows that the analogy with Jaynes-Cummings is still
valid even if we do not consider the SCqubit at this particular point. This will be useful in
the following because it will not be always possible to stay at the degeneracy point for the
purposes of this work.
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Summary

We motivated the field of Circuit QED and showed that it corresponds to the realization
of Cavity QED in solid-state systems, the full dynamics being described by the Jaynes-
Cummings model. Then we presented the principal devices which are studied at the moment,
with their characteristics. We have now the fundamental knowledge to go into the field of
standard quantum computation.
In the next chapter we will study the basic tools to implement quantum circuits and maybe
quantum algorithms. These tools are the universal one- and two-qubit gates which allow to
build any circuit in combining them. Because we saw that the decoherence of all qubits is
a major problem even if improvements have been made, the aim of all the work will be to
implement all the operations in a faster way.
Fast operations mean that they are performed in the resonant regime to be compared to the
off-resonant or dispersive regime which will be explained later. As we will see, lots of gates
are still realized in the dispersive regime where they are slow. The next chapter will thus
constitute a possible improvement in the speed of the experimental realizations of gates and
circuits.
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Chapter 2

Toolbox of resonant operations

Quantum circuits are composed of wires transmitting the information and quantum gates
manipulating the state of quantum physical systems, the qubits. In order to build a quantum
circuit useful for implementing algorithms or error correction codes, there exist different set
of gates which form the ”universal gates”. They permit the construction of any operation
between an arbitrary number of qubits. The universal gates are composed of two main types
of operations: the one-qubit gates performing local operations and the two-qubit gates which
operate on two qubits. We will present four one-qubit gates, the rotations around the three
axis of the Bloch sphere with an arbitrary angle and the Hadamard gate, and three two-qubit
gates, the CPHASE, the iSWAP and the

√
iSWAP. The goal will be to implement them in a

fast way in Circuit QED in order to satisfy the constraint of decoherence of the SCqubits as
mentioned before. It constitutes one of the crucial conditions for implementing useful quan-
tum computing schemes.

First of all we have to explain what is a fast operation and to what it can be compared.
In quantum information an operation can be implemented by using the interaction between
a two-level system and either an external driving field or modes of the cavity field. The
interaction corresponds to an exchange of energy between the two systems and is characterized
by the Rabi frequency. By convention it is usually denoted ΩR in the case of an external
driving field and g in the case of a mode of the cavity field. This coupling constant corresponds
to the time needed for the two-level system to undergo a full Rabi oscillation between its
ground level and excited level. More generally the speed of an operation is given by the
effective coupling constant in the interaction Hamiltonian.
Two main regimes are important for the further work: the resonant regime and the off-
resonant regime. They can be distinguished by comparing the Rabi frequency to ∆, where ∆
is the detuning between the transition frequency of the two-level system and the frequency of
the field. The resonant regime occurs when ∆ = 0 and in this particular case, the coupling
strength is ΩR. The off-resonant regime is reached when ΩR ¿ ∆ and the corresponding
coupling rate is Ω2

R
∆ . When we compare these two rates, the condition of large detuning

implies that Ω2
R

∆ ¿ ΩR in any case and as a consequence, an operation in the off-resonant
regime is always slower than an operation in the resonant regime.

In the next section we will concentrate on the realization of the universal one-qubit gates
which are the rotations around the x̂, ŷ, and ẑ axis of the Bloch sphere and the Hadamard
gate, which can be obtained by combining these three rotations. As we will see, the rotations
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around the x̂ and ŷ axis are naturally performed in the resonant regime by sending an external
field on the qubit with a different phase for each rotation. Concerning the z rotation, it is
more delicate. Indeed the effect of this rotation on a state is to add a phase to this state
in addition to the free evolution. There are two ways to do it. As a first possibility we can
change the transition frequency of the qubit in a controlled way which will lead directly to the
desired z rotation. This corresponds to a dc-Stark shift and it is a very fast operation. Let us
notice that experimentally it is possible to change the transition frequency of the qubit in a
very precise way as explained in chapter 1 when we have to tune on resonance a qubit with the
frequency of one cavity of the two-dimensional cavity grid. There is an alternative possibility
if we do not want to play with the qubit-transition frequency to implement operations. As for
the x and y rotations, we can send an external field on the qubit to drive it. However in this
case we need to go in the off-resonant regime to get the σz Pauli matrix. This corresponds to
an ac-Stark shift and implies that in this case the z rotation is much slower than the x and y
rotations.

In this work we will suppose that we will change the transition frequency of the qubit only
to put it in resonance with the desired systems or transitions we want but not to implement
operations. Therefore we will consider the z rotation as an ac-Stark shift and we will see if
it is possible to avoid the use of the ac-Stark shift in other universal operations such as the
Hadamard gate.

2.1 Universal one-qubit operations

2.1.1 Rotations in the Bloch sphere around the x̂, ŷ and ẑ axis

Figure 2.1: The Bloch sphere. Representation of the states |0〉, |1〉 and superposition state
(|0〉+ |1〉)/√2.

We will expose now in more detail the three rotations and derive the interaction Hamilto-
nian that leads to the correct rotation. We will use the general language of quantum optics to
describe the operations but this is rigorously valid for Circuit QED because the Hamiltonian
of Circuit QED follows the Jaynes-Cummings model. For instance, the two-level system can
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correspond to one of the SCqubits presented before and the cavity can be the one-dimensional
microwave resonator.

The σx-rotation and its evolution operator

The physical system is composed of a quantized two-level system driven by a classical field. We
will present now the Hamiltonians describing these elements and then derive the interaction
Hamiltonian [19, 20]. This will lead to the σx Pauli matrix and thus to the rotation around
the x̂ axis in the Bloch sphere.

Figure 2.2: Physical system. An external field with frequency ν is sent to the qubit which
transition frequency is ω0. The detuning between both frequencies is denoted ∆. The Rabi
frequency or coupling strength is ΩR.

We will describe the two-level system in its eigenbasis {|a〉, |b〉}. The Hamiltonian can be
written as:

H0 = ~ωa|a〉〈a|+ ~ωb|b〉〈b|. (2.1)

We shift the energies by the average of the energies of the system, 1
2~(ωa + ωb). We can now

write the unperturbed Hamiltonian as:

H0 =
~ω0

2
σz, (2.2)

where ω0 = ωa − ωb.
We suppose that the classical driving field is a monochromatic planar wave field polarized

along the x̂ axis. Let us notice that in Circuit QED the polarization is fixed by the resonator
geometry. The expression of the field is:

−→
E (t) =

(
E0e

−i(νt+φ) + E∗
0ei(νt+φ)

) · x̂, (2.3)

where

• E0 is the complex amplitude of the field,

• ν is the frequency of our electric field,

• φ is an arbitrary phase.

To obtain the corresponding interaction Hamiltonian, we will follow the further steps. We
will first consider the dipolar approximation, then we will go into the interaction picture and
we will finally apply the rotating wave approximation.

The dipolar approximation is valid when
−→
k · −→r ¿ 1 where

−→
k = (kx, ky, ky) is the wave

vector of the field and −→r is the distance between the two charges of the dipole. This means
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that the wavelength of the field must be larger than the characteristic size of the atomic
system. In the case of Circuit QED the wavelength is of the order of millimeter while the
artificial atom’s size is around micrometer. The condition is thus satisfied.

The general expression of the interaction Hamiltonian in this approximation takes the
usual form:

Hdip = −−→d · −→E (−→r , t), (2.4)

where
−→
d is the dipole moment of the artificial atom. We want to express this interaction in

the eigenbasis of the two-level atom. Using the closure relation |a〉〈a|+ |b〉〈b| = 1, we get:

Hdip = −(|a〉〈a|+ |b〉〈b|)dx

(|a〉〈a|+ |b〉〈b|)E(t)
= −(ρab|a〉〈b|) + ρba|b〉〈a|)E(t)
= −(ρabσ+ + ρbaσ−)E(t), (2.5)

where ρab = ρ∗ba = 〈a|dx|b〉 is the matrix element of the electric dipole moment and dx is the
x component of the dipole.

Using the Euler decomposition ρab = |ρab|eiφab and E0 = |E0|eiφE0 , we redefine the op-
erators to take into account the additional phase. We are so able to factorize the global
expression taking into account the expression of the classical field. We get:

Hdip = −(ρabσ+ + ρbaσ−)(E0e
−i(νt+φ) + E∗

0ei(νt+φ))

= −ΩR~(σ+ + σ−)(e−i(νt+φ) + ei(νt+φ)), (2.6)

where ΩR = |ρab||E0|
~ is the classical Rabi frequency that characterizes the exchange of energy

between the two-level system and one mode of the field. Therefore it depends only on pa-
rameters of these systems, ρab and the amplitude of the field E0 and on the Planck constant ~.

We now go into the interaction picture to concentrate strictly on the evolution due to
the interacting systems. We do not care about the free evolution anymore. We apply the
evolution unitary operator U(t) = e−iH0t/~ where H0 = ~ω0

2 σz on the Hamiltonian HI(t) =
U †(t)HdipU(t). We obtain the interaction Hamiltonian in the interaction picture:

HI(t) = −~ΩR(σ+eiω0t + σ−e−iω0t)(e−i(νt+φ) + ei(νt+φ)), (2.7)

where we have used the relations:

• σz = 2σ+σ− − 1

• ei
ω0
2

σztσ+e−i
ω0
2

σzt = eiω0σ+σ−tσ+e−iω0σ+σ−t = σ+eiω0t

• ei
ω0
2

σztσ−e−i
ω0
2

σzt = eiω0σ+σ−tσ−e−iω0σ+σ−t = σ−e−iω0t

The additional phase φ is important because the x and y rotations differ by a phase-factor
of π/2. For the x rotation, we set φ = π to simplify the expression 2.7 and this will be the
reference for the y rotation in the next section. We get:
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HI(t) = ~ΩR(σ+eiω0t + σ−e−iω0t)(e−iνt + eiνt)
= ~ΩR(σ+ei(ω0−ν)t + σ+ei(ω0+ν)t + σ−e−i(ω0+ν)t + σ−e−i(ω0−ν)t). (2.8)

We consider that we send the field with a frequency near the transition frequency of the
two-level system such that the fast oscillating terms of the form e±i(ω0+ν)t can be neglected.
This is the rotating wave approximation (RWA) and we obtain:

HI(t) = ~ΩR(σ+ei(ω0−ν)t + σ−e−i(ω0−ν)t). (2.9)

A particular case is the resonant regime for which ω0 = ν:

Hσx = ~ΩR(σ+ + σ−) = ~ΩRσx. (2.10)

We observe that we obtain exactly the Hamiltonian corresponding to a x rotation in the
Bloch sphere.
The corresponding evolution operator is defined as:

U(t) = e−iHσx t/~ = e−iΩRσxt. (2.11)

To get the known expression of Rx(θ) [21], we use the Taylor expansion for the exponential
and the following relations:

• σ2k
x = 1, k = 0, 1, 2, ...

• σ2k+1
x = σx, k = 0, 1, 2, ...

• (−i)2k = (−1)k, k = 0, 1, 2, ...

• (−i)2k+1 = −i(−1)k, k = 0, 1, 2, ...

We get:

e−iΩRσxt =
∞∑

k=0

(−iσxΩRt)k

k!
= cos(ΩRt)I− iσx sin(ΩRt). (2.12)

Uσx =
(

cos(ΩRt) −i sin(ΩRt)
−i sin(ΩRt) cos(ΩRt)

)
.

It is usually written as:

Rx(θ) =
(

cos(θ/2) −i sin(θ/2)
−i sin(θ/2) cos(θ/2)

)
,

where the rotation angle θ = 2ΩRt can be set by choosing specific values for the time during
which the microwave pulse is switched on and for the Rabi frequency which depends on the
amplitude E0 of the external classical driving field.
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The σy-rotation and its evolution operator

The rotation around the ŷ axis in the Bloch sphere corresponds to the x rotation with a
phase-difference of π/2. So, compared to the phase reference φ, we chose φ = π/2 in Eq.(2.7)
and it leads to the following interaction Hamiltonian:

Hσy = ~ΩR(iσ− − iσ+) = ~ΩRσy. (2.13)

Again the corresponding evolution operator is given by:

U(t) = e−iΩRσyt, (2.14)

which can be written in the form of:

Uσy = cos(ΩRt)I− iσy sin(ΩRt). (2.15)

Uσy =
(

cos(ΩRt) − sin(ΩRt)
sin(ΩRt) cos(ΩRt)

)
,

equivalent to the usual expression:

Ry(θ) =
(

cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

)
.

So sending an external field in resonance with the qubit allows to produce the x and y
rotations. The axis depends on which additional phase we choose for the field.

The σz- rotation

As explained at the beginning of the section, we consider only the z rotation as an ac-Stark
shift in this work. In this paragraph, we will try to give some intuitive idea concerning the
off-resonant or dispersive regime and the speed of an operation in this particular regime.

When we send an external driving field, it is not possible to get the z-Pauli matrix in the
interaction Hamiltonian directly by changing the phase for instance. It is necessary to go
into the off-resonant regime which is reached when ∆ À ΩR. A large detuning means that
the photons of the field will not have the correct energy to excite the atom directly. This
corresponds to the first order process in the coupling strength ΩR. At the second order the
photon will leave a trace of its attempt to excite the atom. It corresponds to an ac-Stark
shift (virtual excitation of the atom by the photon), and the corresponding rate is Ω2

R/∆. To
go into the dispersive regime, we have to perform a unitary transformation up to the second
order in ΩR which eliminates the direct coupling of the first order. This leads to the following
interaction Hamiltonian:

Hσz = ~
Ω2

R

∆
σz. (2.16)

The corresponding evolution operator is:

Uσz(t) = e−
i
~Hσz t

= cos(
Ω2

R

∆
t)I− iσz sin(

Ω2
R

∆
t), (2.17)

which leads to:
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Uσz(t) =


 e−i

Ω2
R

∆
t 0

0 ei
Ω2

R
∆

t


 .

We find again the well-known expression for a rotation around the ẑ axis:

Rz(θ) =
(

e−iθ/2 0
0 eiθ/2

)
,

where θ/2 = Ω2
R

∆ t.

Summary

By sending an external classical driving field on a two-level atom, we know how to perform
the rotations about the x̂ and ŷ axis in the Bloch sphere. They are naturally in the resonant
regime and therefore faster. To perform the z rotation, we have to go in the dispersive regime
where the speed of the operation is smaller due to the lower rate at which the coupling works.
We have to avoid this kind of operations in quantum computation because this reduces the
number of gates which can be implemented in the finite coherence time of SCqubits. In the
next section, we will present the Hadamard gate and study how to realize it in a fast way.

2.1.2 The Hadamard gate

Current definition and experimental implementation

The Hadamard gate is an essential one-qubit gate because it is part of different sets of universal
gates required to realize every two-qubit gate [21]. Its matrix form is:

H =
1√
2

(
1 1
1 −1

)
.

In the Bloch sphere, this matrix corresponds to a rotation of an angle π around the axis
defined by the vector n̂ =

(
1/
√

2, 0, 1/
√

2
)

with a global phase φ = π/2.
Usually the way to write the Hadamard gate is as a function of the rotations around the

x̂, ŷ and ẑ axis of the Bloch sphere [21]. The well-known expression is:

H = eiπ/2Rx(
π

2
)Rz(

π

2
)Rx(

π

2
), (2.18)

where

Rx(θ) =
(

cos(θ/2) −i sin(θ/2)
−i sin(θ/2) cos(θ/2)

)

and

Rz(θ) =
(

e−iθ/2 0
0 eiθ/2

)
.

This gate is characterized by:

• 3 pulses

• 2 changes in the frequency.
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Figure 2.3: Representation of the Hadamard gate’s effect on the states |0〉 and |1〉. The state
|0〉 is put in the superposition state (|0〉 + |1〉)/√2 shown in blue and the state |1〉 is put in
the superposition state (|0〉+ |1〉)/√2 shown in green.

The Yale group has already proposed a method to perform it [12]. With their experimental
setup they can perform a rotation around any axis in the Bloch sphere and thus in particular
around the axis defined by

(
1/
√

2, 0, 1/
√

2
)

corresponding to the Hadamard gate for an angle
π.

Figure 2.4: Experimental setup for Circuit QED from the group of Yale. Illustration taken
from [12].

The physical system is composed of a charge qubit placed inside a one-dimensional res-
onator which is driven by an external field. The corresponding Hamiltonian in the rotating
frame of the driving field is:

H = ∆ra
†a +

∆a

2
σz − g(a†σ− + σ+a) +

ΩR

2
σx, (2.19)

where

• ΩR = 2Eg
∆r

is the Rabi frequency,

• E is the amplitude of the driving field,
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• ∆r = ωr − ωd is the detuning between the resonator and the classical driving field (we
work in a frame rotating at ωd),

• ∆a = ωa − ωd is the detuning between the SCqubit and the classical driving field,

• ∆ = ωa − ωr is the detuning between the SCqubit and the resonator.

As explained in the first chapter, they send the driving field in the axis of the cavity
far detuned from the resonator frequency. As a consequence they work in the off resonant
regime: there is no direct coupling between the driving field and the qubit. Mathematically
it is equivalent to apply a unitary transformation on the Hamiltonian to drop off this direct
coupling. It yields the following expression:

H̃ = ∆ra
†a +

∆̃a

2
σz +

ΩR

2
σx, (2.20)

where ∆̃a = ωa − ωd + g2

∆ . They can thus implement rotations in the x-z plane playing with
the parameters ∆̃a and ΩR.

Our improvement

One manner to increase the speed of the operations is to avoid the ac-Stark shift equivalent to
the z rotation. Our enhancement will consist in demonstrating that the Hadamard gate can
be realized with another combination of rotations in the Bloch sphere, in fact only around
the x̂ and ŷ axis which are resonant operations.

We were inspired for the alternative expression of the Hadamard gate by the book ”Quan-
tum computation and Quantum information” [21]. The key point is that any rotation in the
Bloch sphere which is a unitary operation can be decomposed using only the x and y rotations
with four parameters according to the following expression:

U = eiαRx(β)Ry(γ)Rx(δ), (2.21)

where α is a global phase and β, γ, δ are the angles of the different rotations.

As it has been derived in the last section, the matrix expressions of each rotation are:

Rx(θ) =
(

cos(θ/2) −i sin(θ/2)
−i sin(θ/2) cos(θ/2)

)
,

Ry(θ) =
(

cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

)
.

We find for U:

U = eiα ×
(

cos γ/2 cos χ+ − i sin γ/2 sin χ− − sin γ/2 cos χ− − i cos γ/2 sin χ+

sin γ/2 cos χ− − i cos γ/2 sin χ+ cos γ/2 cos χ+ + i sin γ/2 sin χ−

)
,

where χ+ = (β/2 + δ/2) and χ− = (β/2− δ/2).
To ensure that this expression is indeed a unitary operation in the Bloch sphere, we

checked that:
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• det U = ±1.

• UU † = U †U = 1 ⇔ Rows and columns are orthonormals.

This enables us to write the z rotation as a function of the x and y rotations. The required
values of parameters α, β, γ, δ are:





α = 0
β = π/2
γ = γ
δ = −π/2

The z rotation corresponds to:

Rz(θ) = Rx(π/2)Ry(θ)Rx(−π/2) (2.22)

Finally, substituting Eq. (2.22) in the expression of the Hadamard gate Eq. (2.18), it
gives:

H = eiπ/2Rx(π/2)Rz(π/2)Rx(π/2)
= eiπ/2Rx(π/2)Rx(π/2)Ry(π/2)Rx(−π/2)Rx(π/2)

= eiπ/2Rx(π)Ry(π/2). (2.23)

This new expression has several advantages in comparison with the initial one (Eq. (2.18)).
First only rotations around the x̂ and ŷ axis are used, which was the main goal. These
operations are fast. Second it is composed of only two pulses instead of three. Finally
experimentally, due to the fact that the y rotation can be obtained from the x one adding a
π/2-phase, this expression will require one change in phase to pass from the x pulse to the y
pulse. This can be done directly with a microwave generator. It has to be compared to two
changes in the frequency to perform the x, z and x rotations.

Experimental realizations

To be more concrete and justify our claim that it is a new efficient way to realize the Hadamard
gate, we propose in this section two possibilities to produce the required pulses for the fast
Hadamard gate:

H = eiπ/2Rx(π)Ry(π/2). (2.24)

One possibility to implement this operation is to send two pulses that have the same
amplitude (the coupling which is the Rabi frequency will be the same) and we have thus to
define two times so that:

• ΩRt1 = π
2 corresponds to Rx(π)

• ΩRt2 = π
4 corresponds to Ry(π/2)

Another possibility is to take two different amplitudes for the two subsequent pulses and
to use the same time duration. Because the rotation around the x̂ axis is defined by an angle
twice the angle for the y rotation, the amplitude of the x pulse has to be the double of the
amplitude of the y pulse:
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• ΩR1t = π
2 corresponds to Rx(π)

• ΩR2t = π
4 corresponds to Ry(π/2)

where ΩR1 = 2ΩR2 .

We will now present two experimental setups which permit the realization of the Hadamard
gate. The first setup is composed of two microwave generators. One produces the x pulse with
the correct amplitude and time, then the second produces the y pulse. They are subsequently
sent to the qubit. This is schematized in Fig. 2.5.

Figure 2.5: Experimental setup for the generation of the pulses required for the fast Hadamard
gate using two microwave generators A and B. B produces a pulse with an amplitude half
the one of A. In order to produce the y rotation, a phase-shifter adds a phase π/2 to the
sinusoidal B compared to the sinusoidal A. Finally, the two pulses arrive in a power combiner
which sends them one after the other to the qubit.

The second setup is an improved one. Instead of using two microwave generators, it uses
an I/Q mixer which is an electronic device allowing the generation of the two pulses with only
one microwave generator The scheme is shown in Fig. 2.6.

Summary

We proved an alternative expression for the Hadamard gate using only the resonant oper-
ations corresponding to rotations around the x̂ and ŷ axis. We showed that it has several
advantages such as a smaller number of pulses and only resonant operations. We then briefly
exposed how to realize it experimentally.

A next step in getting all the tools for quantum computing is to deal with two-qubit
operations. This is the subject of the next section.
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Figure 2.6: Experimental setup for the generation of two subsequent pulses with one mi-
crowave generator via an I/Q mixer (In-phase/Quadrature). The I/Q mixer produces the
two pulses with a phase-difference of π/2 to get the x and y rotations. The angle of each
rotation is set by choosing the time of the pulse. The x pulse (π rotation) is twice longer than
the y pulse (π/2 rotation).

2.2 Universal two-qubit gates

In this section, we will go deeper inside the idea of the fast realization of paradigmatic
operations for quantum computing. We will focus now on two-qubit operations and especially
on the controlled-phase (CPHASE), the iSWAP and the

√
iSWAP gates. For each of them,

we will present an implementation protocol exclusively in the resonant regime. Because it
is not possible to implement these gates in a fast way directly between two SCqubits, the
resonator will play the role of a mediator for the operation. The idea is to map the state
of one of the qubits into the cavity-qubit (i.e the first two states of the cavity mode), then
to implement the required operation between the cavity and the SCqubit and finally to map
back the state of the cavity qubit into the second SCqubit. Another key tool to implement
these operations is the use of an auxiliary excited level for one of the SCqubits. The use of
three-level physics is inspired by quantum optics and trapped ions where it has already been
widely used. We will present some beautiful examples in order to illustrate our motivation.
However, in a SCqubit, having a third useful excited level is not obvious. We have to engineer
it, that means that we have to find values for the parameters EJ , EC and Ng different for each
type of SCqubit that provide a sufficient anharmonicity between the first four excited levels.
This will guarantee us that we do not reach other transitions when we tune on resonance a
specific transition among the first three levels of the qubit.

2.2.1 Three-level physics

Three-level physics is a tool widely used in trapped atoms and trapped ions. Some phenom-
ena cannot be observed without using a third level in the atomic system instead of the usual
two.

As a first motivation, we will mention the Raman excitations or schemes observed in
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trapped ions [22, 23]. A scheme of the system is shown in Fig. 2.7.

Figure 2.7: Raman excitations. One laser Ω1 tries to excite the level |a〉 from the level |g〉
whereas another laser Ω2 tries to do it from the level |e〉. Finally, this aims at rotating the
qubit {|g〉, |e〉} with a coupling rate Ω1Ω2/∆. This would not have been possible without the
auxiliary level |a〉. A direct transition from |g〉 to |e〉 is not possible at optical frequencies.

The physical system consists of two metastable multiplets of hyperfine levels of ions.
Thanks to the auxiliary level |a〉 which is a hyperfine level of the upper metastable state,
one manages to get a qubit made of two states from the lower metastable state. Because the
qubit belongs to this metastable state, it has huge decoherence times which can go from few
hours to one day!
The third level is essential because it is not possible to excite |e〉 from |g〉 directly because
they belong to the same metastable multiplet. And it is not possible to take for the qubit the
levels |g〉 and |a〉 because it is possible to pass from one to the other by an optical transition
which has a fast decay, about 10−8s. Thus it can not be used as a two-level system.

A second example is the adiabatic passage observed in neutral trapped atoms [24, 25].
They succeeded in rotating a qubit formed of two levels from trapped atoms with the help of
a third level. The sytem is composed of three states |g〉, |e〉, |c〉 as drawn in Fig. 2.8. They
use two lasers with different coupling strengths Ω1 and Ω2.

Figure 2.8: Adiabatic passage. They rotate the qubit {|g〉, |e〉} by exciting adiabatically the
auxiliary level |a〉 with laser Ω1 from level |g〉 whereas the laser Ω2 excites it continuously
from the level |e〉.

At the beginning, the strength Ω2 of the second laser is fixed and the strength of the first
laser is small: Ω1 ¿ Ω2. The initial state of the system is |g〉. Then they increase slowly
(adiabatically) the first laser. The effect will be to get a superposition of states |g〉 and |e〉
which would not have been possible without the auxiliary level. The expression of the qubit
state becomes Ω2√

Ω2
1+Ω2

2

|g〉+ Ω1√
Ω2

1+Ω2
2

|e〉.
These applications illustrate how powerful can be the use of a third level. However one

has to be careful because it is not so obvious that it can be done experimentally in Circuit
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QED. However some groups have already worked on Raman excitations and adiabtic passage
[26, 27]. One has to be sure that the anharmonicity of the first four excited levels is strong
enough in order to prevent qubit operations from exciting other transitions in the system.

This can be done with a numerical simulation that will give us the regions where the
typical parameters of a SCqubit, the ratio EJ/EC and the gate charge Ng, have values for
which all levelspacings are different enough. The program is explained in the appendix A. It
is only valid for the charge and transmon SCqubits and displays qualitative results. The plots
we got confirm that it should be in fact possible to reach experimentally parameters where
the use of a third level is allowed.

Figure 2.9: Plots of the energies for the first three excited levels of the Hamiltonian valid for
the charge and transmon qubits. For each value of EJ/EC and for each value of Ng, the energy
has been renormalized to the ground state’s energy. These plots show the anharmonicity of
the levels in function of two parameters: the charge gate Ng and the ratio EJ/EC that defines
the type of SCqubit. The red line is drawn at EJ/EC = 30 corresponding to the transmon
qubit and the green line is drawn at EJ/EC = 3 corresponding to the charge qubit. The goal
is to find a value near Ng = 0, 5 for which the anharmonicty is strong enough for both types
of SCqubits. In this case the use of an auxiliary level will be allowed.

We will now present three universal two-qubit gates and the engineered protocols to
implement them fast.

2.2.2 The controlled-phase (CPHASE) gate

The controlled-phase (CPHASE) gate is a two-qubit gate defined as:

|a, b〉 CPHASE−→ eiπδa1δb1 |a, b〉, (2.25)

where the states |a〉 and |b〉 are one of the eigenstates {|0〉, |1〉} and δa1 and δb1 are the
Kronecker deltas.
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In the basis {|00〉, |01〉, |10〉, |11〉}, its matrix is:

CPHASE =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1




It means that the state |11〉 where the two qubits are in their excited level will be phase-
shifted by an angle π and the other states do not change.

The CPHASE gate is interesting because it can be used with other one-qubit gates to form
a set of universal gates. Historically, the CPHASE gate was first implemeted in Cavity QED
by the group of S. Haroche in ENS Paris between a cavity-qubit (electromagnetic field with
one or zero photon) and an atom-qubit which was a single Rydberg atom [28]. They used an
auxiliary level to implement the operation and this result motivated our present proposal.

In our context of Circuit QED we are interested in performing a CPHASE gate between
two SCqubits in a resonator. One possible experimental realization is that of [29] shown in
Fig. 2.10.

Figure 2.10: Experimental setup with two SCqubits inside a 1D-resonator. Illustration taken
from [29].

The system is composed of:

• one cavity-qubit {|0〉, |1〉}, which corresponds to a resonator field with 1 or 0 photons.

• two SCqubits {|g1〉, |e1〉} and {|g2〉, |e2〉} with an auxiliary excited level for each qubit
|a1〉 and |a2〉. Let us note that for one operation between two qubits, we will use only
one auxiliary level.

The interaction between each qubit and the cavity is possible by tuning on resonance the
transition frequencies we need with the cavity-qubit. Supposing that each transition frequency
in each qubit is different, the corresponding coupling constants are different too. A scheme of
the experimental setup with the transition frequencies we need for this gate is shown in Fig.
2.11.

In the initial state both SCqubits are in a superposition state and the cavity has 0 photons.
The general state is:

|Ψi〉 =
(
α |g1g2〉+ β |g1e2〉+ γ |e1g2〉+ δ |e1e2〉

)
⊗ |0〉. (2.26)
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Figure 2.11: Scheme for the implementation of the CPHASE gate.

As explained before, the two main ideas to implement this gate in Circuit QED in a fast
way are to use the cavity as a mediator [30] and to use an auxiliary excited level for one of
the SCqubit. Therefore we will first map the second SCqubit into the cavity qubit, then we
will implement the CPHASE gate between the first SCqubit and the cavity using an auxiliary
level for the SCqubit, and finally we will map back the cavity qubit into the second SCqubit
to get the operation between both SCqubits. The exact manipulations between the SCqubits
and cavity are described in Fig. 2.12 and the detailed protocol can be found below.

Figure 2.12: Protocol to implement the CPHASE gate between two SCqubits in a cavity.

Applying the protocol explained in Fig. 2.12 on the initial step, we get the following final
step:

|Ψf 〉 =
(
α |g1g2〉+ β |g1e2〉+ γ |e1g2〉 − δ |e1e2〉

)
⊗ |0〉 (2.27)

which corresponds exactly to what a CPHASE gate does: the state where both qubits are
excited has now a minus sign whereas the other states did not change. We see that the use
of the third level was crucial to implement in a few steps this logical gate using only resonant
couplings. It would not have been possible without it.

Detailed protocol for the CPHASE gate

At the beginning the cavity field has 0 photon which corresponds to the state |0〉 and both
SCqubits are in the superposition states 1√

2
(|g1〉 + |e1〉) and 1√

2
(|g2〉 + |e2〉) which can be

obtained by performing a fast Hadamard gate or a y rotation. The initial state of all the
system is thus

|Ψ0〉 =
(
α |g1g2〉+ β |g1e2〉+ γ |e1g2〉+ δ |e1e2〉

)
⊗ |0〉 (2.28)

i) First step: we want to use the cavity as mediator
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For this we have to map the second SCqubit into the cavity-qubit. The qubit 2 and
the resonator are tuned on resonance with the coupling constant g2 for a π-pulse. To put
in resonance both system, we change the transition frequency using additional control lines
reaching each qubit. As a result a mapping of the second SCqubit onto the resonator qubit
is performed and can be described as following:

|Ψ1〉 =
(
α |g10〉+ β |g11〉+ γ |e10〉+ δ |e11〉

)
⊗ |g2〉 (2.29)

The cavity contains at this step one or zero photon and it will be possible to perform the
well-known CPHASE gate between the cavity and the first qubit.

ii) Second step: CPHASE gate between the first qubit and the cavity qubit according to
the realization in Cavity QED [28].

The qubit {|e1〉, |a1〉} and the cavity are tuned on resonance via the coupling g′1 for a 2π-pulse.
The SCqubit-resonator system undergoes a reversible Rabi-oscillation. The global state inside
the cavity is now:

|ψ1〉 2π−pulse→ |ψ2〉 =
(
α |g10〉+ β |g11〉+ γ |e10〉 − δ |e11〉

)
⊗ |g2〉. (2.30)

iii) Third step: CPHASE between the two SCqubits through a mapping back.

At this stage the CPHASE gate has been done between the first qubit and the cavity. Our aim
is to implement this logical operation between the two qubits. To reach it, we have to map
back the cavity-qubit onto the second qubit. This ”back mapping” can be done via tuning
on resonance once again the second qubit {|g2〉, |e2〉} and the resonator with the coupling g2

for a π-pulse. The resulting state is:

|ψ2〉 π−pulse→ |ψ3〉 =
(
α |g1g2〉+ β |g1e2〉+ γ |e1g2〉 − δ |e1e2〉

)
⊗ |0〉. (2.31)

Summary

Thanks to this protocol conceived to implement the CPHASE gate in a fast way and the
universal one-qubit gates, we possess at this stage all the required tools to perform standard
quantum computing in Circuit QED with resonant gates.
Nevertheless because the iSWAP and

√
iSWAP are widely used as universal two-qubit gates,

we will present a protocol also exclusively in the resonant regime for each of them. Concerning
the CNOT gate, it can be decomposed by using the Hadamard and CPHASE gates as shown
in Appendix B so we will not detail the realization of this gate here.

2.2.3 The iSWAP and
√

iSWAP gates

The iSWAP and
√

iSWAP are very useful to implement lots of algorithms or to construct
other two-qubit gates. However they have been implemented until now only in the dispersive
regime using the flip-flop interaction Hamiltonian Ref. [29, 31] for which they occur naturally.
In this section we will give their implementation with only fast resonant steps. Whereas the
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implementation of the CPHASE gate was inspired from quantum optics, these protocols are
completely new. We use the same tools, the cavity as mediator and a third level but the
protocol is more sophisticated and requires another transition frequency of the first qubit.
We will show that we can implement the iSWAP and

√
iSWAP gates in five steps using only

resonant couplings.

The iSWAP and
√

iSWAP gates

The corresponding matrices are respectively [30]:

iSWAP =




1 0 0 0
0 0 i 0
0 i 0 0
0 0 0 1




√
iSWAP =




1 0 0 0
0 1√

2
i√
2

0
0 i√

2
1√
2

0
0 0 0 1




The iSWAP operation is equivalent to the CNOT gate up to one-qubit gates but with an
additional phase i. The CNOT gate has for effect to exchange the states of the second qubit
or target-qubit if the first qubit or control-qubit is in state |1〉. The

√
iSWAP has for effect

to rotate both qubits too but with a different phase. Therefore it can be implemented with
the same protocol, we have just to be careful to rotate the first qubit for a π/2-pulse instead
of a π-pulse for the iSWAP. This will be specified in more detal in the protocol.

As for the CPHASE gate, we will summarize the protocol into a table Fig. 2.14 in order
to get the main idea of the steps. The detailed protocol can be found afterwards.

Figure 2.13: Scheme for the implementation of the iSWAP and
√

iSWAP gates.

The initial state is:

|Ψi〉 =
(
α |g1g2〉+ β |g1e2〉+ γ |e1g2〉+ δ |e1e2〉

)
⊗ |0〉. (2.32)

The steps described in the table Fig. 2.14 and applied on the initial state lead to the
following final state:

|Ψf 〉 =
(
α |g1g2〉+ β i |e1g2〉) + γ i |g1e2〉+ δ |e1e2〉

)
⊗ |0〉. (2.33)

which corresponds exactly to the iSWAP gate with only resonant operations between two
SCqubits inside the same resonator. Because it is a new proposal we will compare the time
required for the implementation of the

√
iSWAP gate following our protocol to the time needed

for a realization in the off-resonant regime. Experimentally, the dispersive implementation
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Figure 2.14: Protocol to implement the iSWAP gate between two SCqubits in a cavity.

can be done with the experimental setup of the Yale group [23] in one step with a π/4-pulse.
The corresponding rate is thus: tdisp = π∆

4g2 . In our case, we put equal to g the coupling
constants for simplicity. This leads to the time: toff = 5π

g . We can observe that our protocol
is efficient when we have at least a dispersive regime characterized by ∆ ≥ 20g. Theoretically
the large detuning occurs when ∆ ≈ 100g. In this case our proposition is really much better
than the off-resonant regime. As a consequence, if one works experimentally with a small
detuning, the time of the realization does not change depending to the regime in which you
are. However if one supposes a strong detuning in your system, then it is really better to use
our proposal.

Detailed protocol for the iSWAP and
√

iSWAP gates

Let us mention that the protocols for implementing the iSWAP and
√

iSWAP gates follow
similar steps. The initial state is:

|Ψ0〉 =
(
α |g1g2〉+ β |g1e2〉+ γ |e1g2〉+ δ |e1e2〉

)
⊗ |0〉 (2.34)

i) We want use the cavity qubit as mediator. Therefore, we map the second qubit into
the cavity by tuning on resonance the levels {|g2〉, |e2〉} with the cavity |0〉 via the coupling
constant g2. We perform a π-quantum Rabi pulse.

The resulting state is:

|Ψ1〉 =
(
α |g10〉+ β |g11〉+ γ |e10〉+ δ |e11〉

)
⊗ |g2〉. (2.35)

ii) We want to shelve the population of the excited level of the first qubit |e1〉 to the
auxiliary level |a1〉 in order to be free to rotate the population of the ground state of the first
qubit |g1〉 without reaching other levels.
We implement this population transfer by coupling the levels {|e1〉, |a1〉} with the cavity via
the coupling constant g′1 and perform a π-quantum Rabi pulse.

We get:
|Ψ2〉 =

(
α |g10〉+ β |g11〉+ γ |e10〉+ δ |a10〉

)
⊗ |g2〉. (2.36)

iii) We want now to rotate the first qubit. The difference between the iSWAP and
√

iSWAP
gates is at this step. For the iSWAP gate, we tune on resonance the qubit {|g1〉, |e1〉} and
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the cavity via the coupling constant g1 for a π-quantum Rabi pulse. The global phase has to
be set to φ = 0. Whereas for the

√
iSWAP gate, we tune this transition frequency with the

cavity for a π/2-quantum Rabi pulse with the same global phase φ = 0. For the iSWAP gate,
we will obtain the state:

|Ψ3〉 =
(
α |g10〉+ β i |e10〉) + γ i |g11〉+ δ |a10〉

)
⊗ |g2〉. (2.37)

iv) We have now the logical operation corresponding to the iSWAP gate but between the
first qubit and the cavity-qubit. To get it between the two SCqubits, we have to do the inverse
population transfer and the back mapping.
The inverse qubit transfer can be done by tuning on resonance the transition {|e1〉, |a1〉} with
the cavity via the coupling constant g′1 for a (−π)-quantum Rabi pulse. The back mapping is
implemented by tuning on resonance again the second qubit {|g2〉, |e2〉} and the cavity with
the coupling g2 for a π-quantum Rabi pulse.

The final state for the iSWAP gate is:

|Ψfinal〉 =
(
α |g1g2〉+ β i |e1g2〉) + γ i |g1e2〉+ δ |e1e2〉

)
⊗ |0〉. (2.38)

Summary

Using always the same experimental setup and one auxiliary level, we are able to implement
all the most important two-qubit operations in a resonant way. In the next chapter we will
apply these new experimental possibilities to two research fields: one-way quantum computing
and strongly correlated systems. One-way quantum computing is an alternative scalable
quantum computer proposed several years ago. One of the requirement is to work on a
particular entangled state, the cluster state. Our goal will be to implement it in Circuit QED
using the two-dimensional cavity grid in an optimal way, again with resonant operations. A
second application concerns the simulation of strongly correlated systems. We will concentrate
on the XX and Ising models using a very new theoretical approach. The idea consists in
simulating these models in Circuit QED with the help of quantum circuits. After explaining
the arguments leading to this method, we will implement the gates required in these circuits
using only resonant steps.



Chapter 3

Application to one-way quantum
computing

In this chapter we will present a protocol to implement a cluster state in the two dimensional
cavity grid with the resonant operations discussed in the last chapter. A cluster state is a
particular multiqubit entangled state that will be defined below. It constitutes the first step
towards the realization of a scalable one-way quantum computer [32, 33]. We will show that
for N2 qubits in the cavity-grid, the time to get the cluster state scales with N. First we
will expose the main ideas of one-way quantum computing which constitutes an alternative
to standard quantum computing. Then we will define the cluster state and finally we will
present its protocol of implementation specific to Circuit QED in the 2D-cavity grid.

3.1 Review of one-way quantum computing

The principle of standard quantum computing is based on producing and exploiting entan-
glement during the computation process. The information is written on an input state, then
operations and measurements are performed and the final result is read out. The main charac-
teristic of one-way quantum computing is that the entire resource of entanglement is provided
by the initial state. The quantity of entanglement thus decreases with every measurement.
This has to be compared to schemes where measurements, such as Bell measurements, are
able to create entanglement during the process. In a one-way quantum computer the initial
state is a cluster state whose number of qubits defines its class of entanglement. For instance,
a cluster state of three qubits belongs to the GHZ class, whereas a cluster state of four qubits
belongs neither to the GHZ nor to the W class [34, 35, 36]. Another distinction of one-way
quantum computing is that only one-qubit measurements are required. It has been shown
that any quantum circuit can be imprinted by one-qubit measurements on a cluster state [32].

More precisely, quantum computation on a cluster state according to the principles of
one-way quantum computing works as follows: An input state is implemented on the cluster
state by performing σz measurements on a set of qubits. Then the remaining qubits are
measured in an certain order and in a certain basis. The basis depends on the results of the
preceding measurements. This allows to propagate the information horizontally in the cluster
and two-qubit operations are performed vertically as shown in Fig. 3.1. The final state is
read out by measuring the last qubit on each ”wire”.
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Figure 3.1: Example of one-way quantum computing. The circles symbolize measurements
in the σz basis and are used to implement the initial state. The information is propagated
horizontally by performing measurements in the σx basis (vertical arrows) and measurements
in the x-y plane (tilted arrows). The state is finally read out on the last free qubit on each
wire. Illustration taken from [32].

In the next section, we will define the cluster state in one and two dimensions and see
how it can be constructed theoretically. Finally, we will present a protocol to implement
it in Circuit QED in the two dimensional cavity grid in a fast way. We will consider the
case where the cavity-array contains N2 SCqubits. Because we already know how to perform
certain two-qubit gates in the resonant regime as discussed in the last chapter, we will try to
use them to optimize the construction of this specific entangled state.

3.2 Cluster states

Topological definition [33]

Given a lattice of dimension d and the subset A ⊂ Z of all sites of the lattice occupied by a
qubit, a cluster C ⊂ A is a subset of A obeying the following properties:

• any two sites c and c’ ∈ C are connected

• any sites c ∈ C and a ∈ A\C are not connected

where the term ”two qubits are connected” means that there exists a consecutive sequence of
occupied neighbouring sites between both qubits.

Mathematical expressions

In one dimension, a cluster state of N qubits corresponds to a maximally entangled chain and
is defined as:

|ΦN 〉 =
1

2N/2

N⊗

c=1

(
|0〉c + |1〉cσc+1

z

)
, (3.1)

where σz is the Pauli matrix and σc+1
z acts on the qubit at site c+1.
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To illustrate this definition, let us give the expression of a cluster state formed of three
qubits where each qubit can be one of the states {|0〉, |1〉}.

|Φ3〉 = |000〉+ |001〉+ |010〉 − |011〉+ |100〉+ |101〉 − |110〉+ |111〉 (3.2)

Recalling the logical operation of the resonant CPHASE gate, we may notice immediately
that it is rigorously the same state which we would have obtained implementing a CPHASE
gate between the neighbouring qubits of a 1D-chain composed of three qubits. The states
with two neighbour qubits in state |1〉 are π-phase shifted, which explains the sign minus
in front of them. When there are two pairs of neighbour qubits in state |1〉, both minus
signs cancel, which explains the sign plus in front of the state |111〉. As we know how to
perform the CPHASE gate fast, this equivalence will be the key point in the implementation
of a cluster state in Circuit QED. One can remark that the order of the operations does not
matter. Mathematically this is proven noting that the commutator

[
σa

z , σb
z

]
= 0, where a and

b denote different qubits.
In a two-dimensional space, a cluster state is defined as:

|ΦN 〉 =
1

2N/2

⊗

c∈C

(
|0〉c + |1〉c ⊗γ∈Γ σc+γ

z

)
,

where

• Γ stays for the basis of the lattice. For instance if d = 2, Γ = {(1, 0), (0, 1)},
• C denotes the set of SCqubits belonging to the cluster,

• if c + γ 6∈ C, then σc+γ
z = 1,

• c + γ > c.

It can be proved that in two dimensions the equivalence with the CPHASE gate is still
valid. Indeed considering always CPHASE operations between neighbour qubits, it does not
matter in which direction and in which order we first perform the gate. We only have to be
careful not to perform the gate between two diagonal qubits. We give here an example of
a cluster state in two dimensions composed of four qubits |Φ4〉. The notation for a state is
|1 2 3 4〉 according to the notation of Fig. 3.2 .

|Φ4〉 = |0000〉+ |0001〉+ |0010〉 − |0011〉+ |0100〉 − |0101〉+ |0110〉+ |0111〉+
+ |1000〉+ |1001〉 − |1010〉 − |1011〉 − |1100〉+ |1101〉+ |1110〉+ |1111〉 (3.3)

One can explain the signs of this state with the same rules as in one dimension and being
careful not to entangle diagonal qubits. We can remark that the order in which we entangle
the qubits is not important.

We will now present how a cluster state can be built from a theoretical point of view. In
the initial state all qubits should be in a superposition state that can be realized by performing
a Hadamard gate or a y rotation on each of them. The state is:

|Ψin〉 =
N⊗

a=1

( |0〉a + |1〉a√
2

)
. (3.4)
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Figure 3.2: Two dimensional cluster states with four qubits. A nearest-neighbour interaction
entangle them, which can be implemented with a CPHASE gate or by applying the evolution
operator of the Ising model for a specific time - Eq.(3.7).

Then we make the neighbour qubits interact via an Ising interaction. In one dimension the
Hamiltonian describing the Ising model with the restriction of nearest-neighbour interactions
is:

HIsing = ~g
∑

a,b∈C
b−a=1

(1− σa
z

2

)(1− σb
z

2

)
,

where g is the strength of the short-range interaction.
In two dimensions it is:

HIsing = ~g
∑

a,a′
f(a− a′)

(1− σa
z

2

)(1− σa′
z

2

)
, (3.5)

where

• the indices a and a′ run over all occupied sites of the lattice (site a ∈ Zd ),

• f(a− a′) specifies the interaction range. Here it is a next-neighbour interaction repre-
sented by f(a− a′) = δ

(2)
a+1,a′ .

For simplicity we will use the Hamiltonian in one dimension in the next explanations but
it would be the same with the Hamiltonian in two dimensions. The corresponding evolution
operator SIsing is:

SIsing = e−
i
~HIsingt = e

−igt
∑(

1−σa
z

2

)(
1−σb

z
2

)

=
∏

a,b∈C
b−a=1

exp(−i
gt

4
) exp(i

gt

4
σa

z ) exp(i
gt

4
σb

z) exp(−i
gt

4
σa

zσb
z). (3.6)

To get the same expression of a cluster state as in Eq. (3.1), we have to choose t so that
gt is equal to π. The unitary operation required to get a cluster state in one dimension is
thus:

Scluster =
∏

a,b∈C
b−a=1

exp(−i
π

4
) exp(i

π

4
σa

z ) exp(i
π

4
σb

z) exp(−i
π

4
σa

zσb
z). (3.7)
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Now we can implement theoretically the interaction between the neighbour qubits in a
superposition state by applying this evolution operator on the initial state Eq. 3.4. It will
lead to the cluster state. We can note that all the operators in the evolution operator Scluster

commute. This means that it is at least mathematically possible to apply it simultaneously
on all neighbour qubits of the system. However, experimentally it depends on the physical
system we work with. In our case it is the two-dimensional cavity grid and we will see that
it does not allow the simultaneous realization of all gates.

Summary

On the one hand, we explained how a cluster state in one and two dimensions can be built by
implementing an Ising interaction between neighbour qubits. On the other side, considering
the definition of a cluster state, we became aware that it is equivalent to the state obtained
after performing the CPHASE gate between all neighbour qubits in a superposition state
initially in one and two dimensions. Fortunately we discussed in the last chapter the fast
realization of the CPHASE gate. This gives us the key idea to write a physical implementation
of the cluster state in Circuit QED using resonant operations.

3.3 Two-dimensional cluster state in a cavity grid

Figure 3.3: a) Architecture of a 2D cavity grid. Each line represents a one-dimensional
resonator presented before and qubits which are denoted with circles are situated at the
crossing point of two cavities. In a given cavity each qubit has a different transition frequency
which can be changed by playing with the parameters of the qubit. b) Two qubits can be
tuned into mutual resonance by changing their transition frequencies. Illustration taken from
[18].

We recall the setup of the two-dimensional cavity grid in Fig.3.3. We consider N2 SC-
qubits in this cavity grid. We will need two types of operations: the y rotation and the
CPHASE gate. Their definition and their fast implementation are described in chapter 2. As
explained in the last section, we will need to implement first a rotation around the y axis of
a π/2 angle on each qubit to put them in a superposition state. We could use the Hadamard
gate but even with our new proposal it would require two pulses instead of one so we stay with
the y rotation solution. Then we will have to implement the required interaction between all
neighbour qubits of the grid via CPHASE gates. The goal is to reduce as much as possible the



38 3. Application to one-way quantum computing

total time of the implementation. This is done on the one side by using resonant operations
and on the other side by performing simultaneously all the gates we can, taking into account
the constraints given by the architecture of the cavity array. At the beginning all the qubits
are in the initial state |0〉.

The first step consists in performing simultaneous y rotations on all the qubits to put them
in the superposition state. Experimentally the simultaneity is possible because the y rotation
is a local operation. Thanks to the setup we will be able to tune on resonance each qubit
with its own external driving field which contains the π/2-pulse required for the operation.
The resulting global state will be:

|Ψin〉 =
N⊗

c=1

|0〉c + |1〉c√
2

∀c ∈ C. (3.8)

The total time needed for this operation can take two forms. One solution is to consider
that all the rotations can be implementd simultaneously and then the time will be independant
of N: τ = π

2ΩR
, where ΩR is the coupling constant between the external driving field and the

SCqubit. However, with the actual setup of the cavity grid, this would require one microwave
generator for each qubit, an expensive solution that would demand N2 generators.
Another solution is to perform this operation in N steps. In this case we would send one
microwave generator that will act on one qubit in each cavity and repeat it N times. This
solution would be linear with N and we will consider this one to be the more reasonable
possible for the realization of the cluster state. The corresponding time is:

τ1 = N · π

2ΩR
. (3.9)

In the second step we have to implement all CPHASE gates between neighbour qubits.
At this stage, we have to consider the architecture of the cavity grid which will imply that
we cannot perform all the operations simultaneously. It can be explained by the following
fact. Each cavity contains zero or one photon according to the setup needed for the CPHASE
gate. The realization of this gate between two qubits inside one cavity requires the use of the
cavity qubit. The constraint is thus to never perform more than one CPHASE gate in one
cavity. This leads to the following proposition.

i) Simultaneous CPHASE gates

We can perform all CPHASE gates on the first row using the vertical cavities plus the ones
we can do on the first column with the unused horizontal cavities. We can repeat this step
N times moving the row and the column to the top and the right in order to cover all the
cavity-grid. As a result we will have implemented all the required CPHASE gates between
neighbour qubits except the ones corresponding to the crossing point between the horizontal
and vertical cavities during the operation. This is showed in Fig. (3.4).

The time needed to do these N steps is:

τ2 = N
( π

g2
+

2π

g′1
+

π

g2

)
, (3.10)

where
(

π
g2

+ 2π
g′1

+ π
g2

)
is the time needed for one CPHASE gate and g2 and g′1 are the coupling

constants characterizing the strong coupling regime between the transition frequency we want
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Figure 3.4: Implementation of the simultaneous CPHASE gates in a cavity grid following the
steps (a-d). The grid is composed of N ×N cavities and contains N2 qubits at each crossing
point of two cavities. The performed CPHASE gates for the lines are displayed in red and for
the columns in blue. The row is shifted to the top and the colum to the right. The missing
gates at the crossings are indicated as dashed black lines.

to tune on resonance with the cavity frequency defined in chapter two.

ii) The missing gates

We have now to implement the missing gates situated at the crossing points. In Fig. 3.4, we
observe that there are two missing gates in each horizontal cavity. We will have thus to do it
in two steps, one diagonal first and the second after. The time needed for this is:

τ3 = 2
( π

g2
+

2π

g′1
+

π

g2

)
. (3.11)

At this stage we have applied all CPHASE gates, which means that we have obtained the
desired cluster state required for one-way quantum computation. The total time to build it
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is:

τtot =
N · π
2ΩR

+ N
( π

g2
+

2π

g′1
+

π

g2

)
+ 2

( π

g2
+

2π

g′1
+

π

g2

)
(3.12)

=
N · π
2ΩR

+ (N + 2) 2π (
g2 + g′1
g2 g′1

). (3.13)

Thanks to this expression, we see the great advantage of this protocol. We managed to
implement a cluster state of N2 SCqubits with a building-time which scales with N. This result
constitutes the first detailed proposal to implement a cluster state in Circuit QED and opens
the way to the one-way quantum computer. Moreover it is interesting from an experimental
point of view because of the use of only resonant operations in a new architecture for Circuit
QED: the 2D-cavity grid.

Summary

In this chapter we were able to use the resonant universal gates engineered in the previous
section to build a scalable cluster state in Circuit QED and thus to make a step more in the
direction of one-way quantum computing. The main improvement comes from the fact that
we were able to implement a particular entangled state of N2 SCqubits in a time linear in N.



Chapter 4

Application to strongly correlated
systems

In this chapter we will base our work on an idea recently proposed by F. Verstraete, I. Cirac
and J. I. Latorre [37]. They propose an experimental method to simulate any state, its time
evolution and thermal superposition of many states for strongly correlated models by applying
a specific unitary transformation on a strictly local Hamiltonian. For instance, they study the
XX model and the Ising model in a transverse magnetic field. They give the corresponding
unitary operations in the form of quantum circuits composed of two-qubit gates. It should
be a great improvement compared to the actual realization of strong interactions in physical
systems because it is nowadays an experimental difficulty. The origin of the idea comes from an
analytical transformation which will be explained in the next section. They managed to prove
that the quantum circuits implementing the required unitary transformation are composed
of a finite number of non trivial two-qubit gates. First we will explain in more detail the
proposal of F. Verstraete et al. and the different required quantum circuits. Finally, we will
focus on our aim and present our realizations in the resonant regime of these two-qubit gates
using again three-level physics.

4.1 Quantum simulation of strongly correlated systems

In Ref. [37] the authors present a theoretical proposal to reproduce the strong correlations
described in the XX and Ising models in Circuit QED and to simulate the quantum evolution
of any of those states and the thermal superposition of them.

The mathematical idea is to cast the XX or Ising Hamiltonians into a simple theory with
only local terms, which means without any interaction between the elements of the system.
They reach this goal by disentangling all the eigenstates of the correlated Hamiltonian by
following the analytical transformation. The main steps are mentioned below:

1) The spins (variable σ) are mapped into fermions (variable c).

2) The Fourier Transform is used to get the fermions in the momentum space (variable b).

3) The Bogoliubov transformation is applied to diagonalize the system in terms of fermions
(variable a).
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The scheme of the total operation is:

Hcorr = H1[σ] −→ H2[c]
UFT−→ H3[b]

UBog−→ H4[a] = H̃, (4.1)

and the corresponding unitary operator is:

U = UBog UFT . (4.2)

The advantage of this operator is that it can be simulated by a quantum circuit using only
two qubit operations. We will present them for the XX and Ising Hamiltonians in this section.

Performing the unitary transformation on the disentangled Hamiltonian will lead to the
strongly correlated Hamiltonian:

Hcorr = UH̃U†, (4.3)

where

• H̃ =
∑

i ωiσ
z
i is composed of strictly non interacting terms.

• U is the unitary transformation made of two qubit gates.

Thanks to this operation they can simulate any state of the different models. Each unitary
transformation is specific to one model and to the number of qubits interacting in the system.
Then the time evolution of one state or the thermal superposition of several states can be
obtained using the following relations:

e−itHXY = Ue−itH̃U† (4.4)

e−βHXY = Ue−βH̃U† (4.5)

Concerning the quantum circuits which represent the unitary operations, they will be com-
posed of three main types of two qubit operations performing the required Fourier transform
and Bogoliubov transformation of the analytic work.

• The Fourier transform is composed of a fermionic SWAP and an associated change of
relative phase Fk:

SWAP =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 −1


 Fk =




1 0 0 0
0 1√

2
1√
2

0

0 eiφk√
2

− eiφk√
2

0
0 0 0 −eiφk




The phase factor depends on the number n of qubits in the system:

eiφk = e−i2πk/n. (4.6)

There exists several Fk gates characterized by the index k. Each k corresponds to a
different phase which depends on the analytic operation we have to perform and on the
number of qubits n in the system.

• The Bogoliubov transformation is performed using the following matrix:
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B =




cos θ 0 0 i sin θ
0 1 0 0
0 0 1 0

i sin θ 0 0 cos θ


 ,

where the angle θ depends on the external magnetic field λ: θ = arctan(λ −√1 + λ2). This
is needed to simulate the Ising model in an arbitrary transverse field.

In the next section we will see how to implement in Circuit QED these operations in the
resonant regime. For this we will try to decompose the Fourier transform and the Bogoliubov
operation in resonant steps with the help of an auxiliary level as already used for the CPHASE
and iSWAP gates. The realization is not a trivial task and consitutes a new theoretical
proposal for implementing gates in a fast way.

4.2 Physical implementation

It is known from the literature that it is possible to decompose any two qubit operation with a
minimal set of universal gates, for instance the CNOT or CPHASE gates in addition to a finite
number of local unitary operations. However this decomposition is not always the optimal
one. The goal in this section is to perform the Fourier and Bogoliubov transformations fast
although it may not correspond to a minimal number of operations. For this we will use the
cavity qubit as mediator and a third excited level for one of the SCqubits. These were the
tools already used in the previous sections to implement the two-qubit gates, the CPHASE,
the iSWAP and the

√
iSWAP gates, with resonant steps.

4.2.1 The SWAP gate

It can be written as:

SWAP = SWAP⊗ CPHASE. (4.7)

The CPHASE gate can be implemented in the resonant regime using the protocol described
in the chapter 2. The SWAP can be decomposed as:

SWAP = CNOT(1) ∗ CNOT(2) ∗ CNOT(1). (4.8)

Both CNOT gates can be decomposed with only resonant operations following the expressions

CNOT(1) = H(2) ∗ CPHASE ∗H(2), CNOT(2) = H(1) ∗ CPHASE ∗H(1). (4.9)

All these matrices are given in Appendix B. As we see, the SWAP is quite easy to implement
because we already know how to implement the CPHASE and Hadamard gates with only
resonant steps. It was the goal of the second chapter.
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4.2.2 The Fk gates

These gates yield the phase associated with the Fourier transform. Their matrix can be
decomposed as follows:

Fk =




1 0 0 0
0 1√

2
1√
2

0

0 eiφk√
2

− eiφk√
2

0
0 0 0 −eiφk


 =




1 0 0 0
0 1 0 0
0 0 eiφk+π 0
0 0 0 eiφk+π







1 0 0 0
0 1√

2
1√
2

0
0 − 1√

2
1√
2

0
0 0 0 1


 .

The first matrix of the right-hand side of the equation corresponds to a local phase gate
on the second qubit. This is a trivial operation which can be done fast. For the second we
have to give a protocol to implement it in the resonant regime. We will first study what this
second matrix does on a superposition of two qubits composed of two levels {|gi〉, |ei〉}i=1,2:




1 0 0 0
0 1√

2
1√
2

0
0 − 1√

2
1√
2

0
0 0 0 1







α
β
γ
δ


 =




α
1√
2
(β + γ)

1√
2
(−β + γ)

δ


 ,

where α, β, γ, δ are complex numbers.
The final state can be written:

α |g1g2〉+
β√
2

(
|g1e2〉 − |e1g2〉

)
+

γ√
2

(
|g1e2〉+ |e1g2〉

)
+ δ |e1e2〉 (4.10)

It corresponds to the entanglement of the states |g1e2〉 and |e1g2〉.

We will show that it is possible to get this operation in five resonant steps. The experi-
mental system is composed of two SCqubits with an auxiliary excited level, in a cavity which
can contain 0 or 1 photon. The scheme is shown in Fig. 4.1. As for the CPHASE and iSWAP
gates, we will present in a table the summary of all the steps so that one can get the general
idea of the protocol Fig. 4.2. Then a detailed version is presented below.

Figure 4.1: Scheme for the implementation of the Fourier transform operations.

The initial state is:

|Ψi〉 =
(
α |g1g2〉+ β |g1e2〉+ γ |e1g2〉+ δ |e1e2〉

)
⊗ |0〉. (4.11)
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Figure 4.2: Protocol for the implementation of the Fourier transform operations.

The protocol described in Fig. 4.2 leads to the final state:

|Ψf 〉 =
[
α |g1g2〉+

β√
2

(
|g1e2〉 − |e1g2〉

)
+

γ√
2

(
|g1e2〉+ |e1g2〉

)
+ δ |e1e2〉

]
⊗ |0〉, (4.12)

which is exactly the desired state of Eq. 4.10. It constitutes the first theoretical proposal for
the implementation of this non trivial gate in Circuit QED in a fast way.

Detailed protocol for the phase change associated to the Fourier transform

At the beginning the two qubits are in the cavity which contains zero photons. The initial
state is:

|Ψ0〉 =
(
α |g1g2〉+ β |g1e2〉+ γ |e1g2〉+ δ |e1e2〉

)
⊗ |0〉. (4.13)

i) We want to use the cavity qubit as mediator.
For this we map the second qubit into the cavity by tuning on resonance the levels {|g2〉, |e2〉}
with the cavity |0〉 via the coupling constant g2 for a π-quantum Rabi pulse. The resulting
state is:

|Ψ1〉 =
(
α |g10〉+ β |g11〉+ γ |e10〉+ δ |e11〉

)
⊗ |g2〉. (4.14)

ii) We want to shelve the population of the level |e1〉 to the level |a1〉 in order to be able
to rotate the state |g1〉 without touching other levels. For this we perform a qubit transfer by
coupling the levels {|e1〉, |a1〉} with the cavity via the coupling constant g′1 for a π-quantum
Rabi pulse. We get the state:

|Ψ2〉 =
(
α |g10〉+ β |g11〉+ γ |e10〉+ δ |a10〉

)
⊗ |g2〉. (4.15)

iii) We want to generate an entanglement between the states |g1〉 and |e1〉 by tuning them
on resonance with the cavity via the coupling constant g1 for a π/2-quantum Rabi pulse. This
is the main operation done by the Fourier transform gate as shown at the beginning of the
paragraph.

The interaction Hamiltonian in this resonant coupling considering the rotating wave ap-
proximation is:

Hint(t) = −~g1(σ+ae−iφ + σ−a†, eiφ), (4.16)
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where φ is a well-defined experimental phase. The corresponding evolution operator is:

Uint = cos
(
g1t
√

n + 1
)
|e1〉〈e1|+ cos

(
g1t
√

n
)
|g1〉〈g1|

+ ie−iφ
sin

(
g1t
√

n + 1
)

√
n + 1

a |e1〉〈g1|

+ ieiφ a†
sin

(
g1t
√

n + 1
)

√
n + 1

|g1〉〈e1|. (4.17)

The state after a π/2-pulse looks like:
[
α |g10〉+

β√
2

(
|g11〉+ ie−iφ|e10〉

)
+

γ√
2

(
|g11〉+ ieiφ|e10〉

)
+ δ |a10〉

]
⊗ |g2〉. (4.18)

To get what corresponds to the initial transformation described by the matrix, we have to
choose the phase φ equal to −π/2.
So the state is:

|Ψ3〉 =
[
α |g10〉+

β√
2

(
|g11〉 − |e10〉

)
+

γ√
2

(
|g11〉+ |e10〉

)
+ δ |a10〉

]
⊗ |g2〉. (4.19)

iv) We have now the desired operation. We have thus to come back doing the inverse
qubit transfer and the back mapping of the cavity qubit onto the second SCqubit to get the
logical gate between the two SCqubits in the cavity. The inverse qubit transfer can be done
by tuning on resonance the levels {|e1〉, |a1〉} with the cavity via the coupling constant g′1 for
a (−π)-quantum Rabi pulse. We get the state:

|Ψ4〉 =
[
α |g10〉+

β√
2

(
|g11〉 − |e10〉

)
+

γ√
2

(
|g11〉+ |e10〉

)
+ δ |e11〉

]
⊗ |g2〉. (4.20)

And the back mapping is performed by tuning on resonance the levels {|g2〉, |e2〉} with
the cavity via the coupling constant g2 for a π-quantum Rabi pulse. The final state is:

|Ψ5〉 =
[
α |g1g2〉+

β√
2

(
|g1e2〉 − |e1g2〉

)
+

γ√
2

(
|g1e2〉+ |e1g2〉

)
+ δ |e1e2〉

]
⊗ |0〉. (4.21)

This protocol allows us to implement the initial operation between two SCqubits inside
the same cavity. We recall that it is described by the matrix:




1 0 0 0
0 1√

2
1√
2

0
0 − 1√

2
1√
2

0
0 0 0 1


 .

We know at this stage how to perform the different Fk gates required in the quantum circuits
for the XX and Ising models.
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4.2.3 The Bogoliubov transformation

The effect of the matrix 4.1 on a general state of two qubits is:




cos θ 0 0 i sin θ
0 1 0 0
0 0 1 0

i sin θ 0 0 cos θ







α
β
γ
δ


 =




α cos θ + i δ sin θ
β
γ

i α sin θ + δ cos θ


 ,

where α, β, γ, δ are complex numbers.

It corresponds to a rotation of the first and last states and can be written as:

α
(

cos θ |g1g2〉+ i sin θ |e1e2〉
)

+ β |g1e2〉+ γ |e1g2〉+ δ
(
i sin θ |g1g2〉+ cos θ |e1e2〉

)
. (4.22)

This operation looks like the Fourier transform studied before, but the entanglement is
here between the states |g1g2〉 and |e1e2〉 and with a free angle θ instead of an entanglement
between the states |g1e2〉 and |e1g2〉 implemented with a π/2-pulse. So we can almost use
the same protocol as for the Fourier transform gate but we have to rotate the first qubit
before entangling its first two levels. The rotation of the first qubit will be done by sending
a classical field in resonance with its transition frequency with a coupling constant ΩR.

The experimental setup is described in Fig. 4.3.

Figure 4.3: Scheme for the implementation of the Bogoliubov transformation.

The initial state is:

|Ψi〉 =
[
α |g1g2〉+ β |g1e2〉+ γ |e1g2〉+ δ |e1e2〉

]
⊗ |0〉. (4.23)

After performing the operations described in the table Fig. 4.4 on the initial state, we
finally obtain:

|Ψf 〉 =
[
α

(
cos θ |g1g2〉+ i sin θ |e1e2〉

)
+ β |g1e2〉+

+ γ |e1g2〉+ δ
(

cos θ |e1e2〉+ i sin θ |g1g2〉
)]
⊗ |0〉. (4.24)

which is exactly the desired state.
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Figure 4.4: Protocol for the Bogoliubov transformation.

Detailed protocol for the Bogoliubov transformation

The initial state is:

|Ψ0〉 =
(
α |g1g2〉+ β |g1e2〉+ γ |e1g2〉+ δ |e1e2〉

)
⊗ |0〉. (4.25)

i) We want to use the cavity as a mediator for the operation.
For this we map the second qubit into the cavity by tuning on resonance the levels {|g2〉, |e2〉}
with the cavity |0〉 via the coupling constant g2 for π-quantum Rabi pulse. The resulting
state is:

|Ψ1〉 =
(
α |g10〉+ β |g11〉+ γ |e10〉+ δ |e11〉

)
⊗ |g2〉. (4.26)

ii) We rotate the first qubit by sending a classical field on it in resonance between levels
{|g1〉, |e1〉} with the coupling constant ΩR for a π-pulse. The general phase of the rotation φ
must be set to −π/2. This leads to the transformation:

|g1〉 −→ |e1〉, (4.27)
|e1〉 −→ −|g1〉. (4.28)

The state reads:

|Ψ2〉 =
(
α |e10〉+ β |e11〉 − γ |g10〉 − δ |g11〉

)
⊗ |g2〉. (4.29)

iii) We can perform now the steps ii) and iii) of the Fourier transform operation detailed
in the last paragraph corresponding to the qubit transfer of level |e1〉 to level |a1〉 and then
the entanglement generation of the states |g1g2〉 and |e1e2〉. The qubit transfer leads to the
state:

|Ψ3〉 =
(
α |e10〉+ β |a10〉 − γ |g10〉 − δ |g11〉

)
⊗ |g2〉. (4.30)

For the entanglement generation we tune on resonance the levels {|g1〉, |e1〉} with the
cavity via the coupling constant g1 choosing the global phase φ equal to π for a 2θ-quantum
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Rabi pulse where θ is a function of the strength of the external magnetic field. The state is:

|Ψ4〉 =
[
− γ |g10〉 − δ

(
cos θ|g11〉 − i sin θ |e10〉

)
+

+ α
(

cos θ |e10〉 − i sin θ |g11〉
)

+ β |a10〉
]
⊗ |g2〉. (4.31)

We have now the desired entanglement depending on the parameter θ. As for the Fourier
transform we have to do the first operations in the other direction in order to get finally the
gate between the two SCqubits in the cavity. For this we implement the following steps.

v) We perform the inverse qubit transfer by tuning on resonance the levels {|e1〉, |a1〉}
with the cavity via the coupling constant g′1 for a (−π)-quantum Rabi pulse. The state is:

|Ψ5〉 =
[
− γ |g10〉 − δ

(
cos θ |g11〉 − i sin θ |e10〉

)
+

+ α
(

cos θ |e10〉 − i sin θ |g11〉
)

+ β |e11〉
]
⊗ |g2〉. (4.32)

vi) We rotate back the first qubit by sending a classical field on it in resonance between
levels {|g1〉, |e1〉} with the coupling constant ΩR for a π-pulse. The general phase of the
rotation φ must be taken equal to −π/2. The transformation will thus correspond to:

|g1〉 −→ −|e1〉, (4.33)
|e1〉 −→ |g1〉. (4.34)

The state becomes:

|Ψ6〉 =
[
γ |e10〉+ δ

(
cos θ |e11〉+ i sin θ |g10〉

)
+

+ α
(

cos θ |g10〉+ i sin θ |e11〉
)

+ β |g11〉
]
⊗ |g2〉. (4.35)

vii) We map back the cavity qubit onto the second SCqubit by tuning on resonance the
levels {|g2〉, |e2〉} with the cavity via the coupling constant g2 for a π-quantum Rabi pulse.
The final state is:

|Ψ7〉 =
[
γ |e1g2〉+ δ

(
cos θ |e1e2〉+ i sin θ |g1g2〉

)
+

+ α
(

cos θ |g1g2〉+ i sin θ |e1e2〉
)

+ β |g1e2〉
]
⊗ |0〉. (4.36)

Thanks to this expression we see that it is exactly what the Bogoliubov operation does. This
can be rewritten as:

|Ψf 〉 =
[
α

(
cos θ |g1g2〉+ i sin θ |e1e2〉

)
+ β |g1e2〉+

+ γ |e1g2〉+ δ
(

cos θ |e1e2〉+ i sin θ |g1g2〉
)]
⊗ |0〉. (4.37)
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Summary

In this chapter, we implemented non trivial two-qubit operations that could be used to sim-
ulate strongly correlated Hamiltonians such as the Hamiltonians for the XX model and the
Ising model in a transverse magnetic field in one dimension. We achieved the implementation
using a finite number of states and moreover purely resonant fast gates. From an experimental
point of view it is an important issue due to the decoherence of all actual qubits. The use of
the cavity as mediator and three-level physics were the key tools for this fast implementation.

4.3 Back to one-way quantum computing

An extension of the Ising model will be to build a cluster state which is required for one-
way quantum computing as explained in the last chapter. If the initial state is composed
of a number N of qubits in a superposition state 1√

2
(|0〉 + |1〉), then applying the evolution

operator of the Ising Hamiltonian in one dimension during a time gt = π on this initial state
will lead to a cluster state.
The evolution operator of the Ising model is given by [33]:

UIsing = exp[−igt
∑

a

(
1 + σa

z

2
)(

1− σa
z

2
)]. (4.38)

And the cluster state is defined as:

|φN 〉 =
1

2N/2

N⊗

a=1

(|0〉a + |1〉aσa+1
z ). (4.39)

The great advantage of the Ising model is that all operations commute. That means that
if we are able to implement it in a physical architecture, it will be possible to generate theo-
retically a cluster state in one dimension extremely fast.

However one-way quantum computing requires a cluster state in two dimensions. Theo-
retically it is possible to do it by implementing an interaction of the Ising type between each
neighbour qubits. As a possible outlook, we conjecture about the possibility of building a
two-dimensional cluster state with the simulation techniques discussed in [37].



Conclusion

We presented the novel field of Circuit QED and the actual devices used in the research.
We detailed the four main kinds of qubits considered as artificial atoms, the one-dimensional
resonator which plays the role of the cavity and the 2D-cavity grid made of N ×N resonators
where qubits are situated at the crossing points between two cavities. In this work we consid-
ered this recently proposed architecture and tried to exploit its advantages to optimize in time
the implementation of universal gates required for quantum computing and the realization
of protocols to get multiqubit entangled states. In fact the time needed for operations and
protocols is a crucial issue for quantum computing because of the decoherence of the qubits
despite the recent improvements.

Then we focused on the realization in a fast way of one- and two-qubit operations which
can form a set of universal operations: the Hadamard, the CPHASE, the iSWAP and

√
iSWAP

gates. To reach the goal of a fast implementation, we used different tools.
For the Hadamard gate which corresponds to a rotation in the Bloch sphere, we derived an
alternative expression which uses only the x and y rotations instead of the x and z rotations.
Indeed the latter corresponds in our setup to an ac-Stark shift and is slow as consequence.
Moreover we detailed the experimental realization of this gate by explaining how the required
pulses can be produced with a microwave generator.
For the two qubit gates, we worked with two qubits situated in a same resonator. To im-
plement the operations in a fast way, we considered the cavity-qubit as a mediator for the
operation and we used an auxiliary level for one of the qubits. Three-level physics is a tool
aready known in quantum optics and trapped ions but it has never been used before for the
purposes of quantum gate implementation in Circuit QED. We showed with a simulation that
it seems reasonable to use this third level in a superconducting qubit: it looks possible to find
values for the key parameters of the qubits for which the anharmonicity of the energy levels is
strong enough to prevent qubit operations from exciting other transitions in the system. This
allowed us to develop specific protocols using only resonant steps for the CPHASE, iSWAP
and

√
iSWAP gates. They are much faster than realizations in the off-resonant regimes when

supposing a large qubit-resonator detuning. The proposed set of fast gates forms a useful
toolbox for implementing algorithms and protocols of quantum computing in Circuit QED.
Direct applications are the subject of chapters 3 and 4.

As first example, we concentrated on generating a multiqubit entangled state required for
a one-way quantum computer: the cluster state. One-way quantum computing is an alter-
native scalable model to standard quantum computing where the amount of entanglement
for the full computation is provided by the initial cluster state. We developed a protocol to
implement this cluster state in two dimensions with N2 superconducting qubits in a time
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linear with N using the fast resonant gates of chapter 2. Thus we achieved the optimization
in time of the realization of a multiqubit entangled state in Circuit QED.
A second application is the simulation of strongly correlated systems like the XX and Ising
models. The theoretical idea is to cast the strongly correlated Hamiltonian into a local term
Hamiltonian by performing a unitary transformation. The main advantage of this transfor-
mation is that it can be simulated by quantum circuits composed of a finite number of non
trivial two-qubit gates. We developed protocols to implement in a fast way these non trivial
gates in Circuit QED. In this case, we used again the cavity as mediator and an auxiliary
excited level for one superconducting qubit.

Summarizing, we achieved the implementation in Circuit QED of most important one- and
two-qubit gates for quantum computing in a fast way using as main tools resonant operations
and an auxiliary excited level for each superconducting qubit. We showed that this toolbox
of fast resonant operations can be useful for instance to optimize in time the realization of
a cluster state which is a multiqubit entangled state. Furthermore using three-level physics
again, we proposed protocols to implement non trivial two-qubit gates required for specific
quantum circuits that can simulate strong correlated models in one dimension like the Ising
model in a transverse magnetic field.
We could think about the gates and quantum circuits needed for the simulation of the Ising
model in two dimensions. This could enable the realization of a cluster of N2 qubits in two
dimensions with a circuit model and improve the realization time. Another ongoing possibility
is the use of optimal control techniques for improving on the number and the time of involved
operations.



Appendix A

Three-level physics

In this appendix, we will explain the program written in Mathematica in order to justify the
use of an auxiliary level for one superconducting qubit in our protocols for the implementation
of fast gates in Circuit QED. Indeed there are several conditions for this use. First we have
to be sure that a third excited level exists in the considered qubit: the levels considered for
the two-level system are different, according to the type of qubits we consider. They depend
on the energy potential characteristic of each qubit. Then, the anharmonicity of the energy
levels in this potential has to be strong enough in order to be able to choose the transition
frequencies we want to work with and not other ones.

The aim of the Mathematica program is to show the energy levels for each qubit as a
function of their key parameters: the ratio EJ/EC , where EJ is the Josephson energy and EC

the coupling energy, and the charge gate Ng. The ratio defines the type of qubit (charge, flux,
phase or transmon qubits). Usually we aim at working near the degeneracy point Ng in order
to reduce the decoherence of the qubit. So near this value we will calculate the levelspacing
between the first four levels and see whether there exist values for the ratio EJ/EC for which
the anharmonicity of the levels is strong enough. Or, putting it differently, we will check
whether the transition frequencies are different enough from one another. If such values exist,
then it seems to be reasonable to use a superconducting qubit with an auxiliary excited level
and to profit from the three-level physics techniques.
Let us mention that we used the Hamiltonian describing the charge and transmon qubits so
the results are only valid for these two kinds of qubits. A similar program for the phase and
flux qubits would have to be done in order to extend these results.

We will now present the program in more detail. To plot the energy levels we had first to
consider the Hamiltonian of the qubit in the basis of the number of charge on the island |N〉
and to look for its eigenvalues and eigenvectors.

HQ = 4EC

∑

N

(N −Ng)2|N〉〈N | − EJ

2

∑

N

(|N + 1〉〈N |+ |N〉〈N + 1|) (A.1)

We defined it as a function of the ration EJ/EC denoted ejec, the gate charge Ng denoted
NG, and the maximum number of Cooper pairs in the island we want to consider, denoted
maxN . Then we normalized these energies by subtracting the energy of the ground state. The
ratio ejec has to take values from 0 to 50 to cover the range of the charge and transmon qubits,
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this is given in ejecval and the gate charge can cover the number of values given in ngval. We
then defined a table which contains all the values of the eigenenergies corresponding to each
ratio of ejecval and for all gate charges of ngval. To visualize the anharmonicity, we define
the level spacing between the first four energy levels. Indeed we need the first three for our
protocols but we want to be sure that when we tune to resonance the transition frequency
between the second and third levels, we do not risk to touch the transition frequency between
the third and fourth levels. Finally, we can set an additional parameter δ which defines the
minimum degree of anharmonicity we want. A table gives us the values for ejec and ng for
which the condition is verified. These values constitute the proof that it is reasonable to think
about the use of this third level at least in the charge and transmon qubits.



Appendix B

Complement to two-qubit gates

In this appendix we will present the matrices corresponding to some basic two-qubits gates
mentioned in the chapter 4. They are useful to decompose the fermionic SWAP gate SWAP
into gates which can be implemented in the resonant regime. We remember the matrix form
of the SWAP gate and its possible decomposition.

SWAP =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 −1




It can be written as:
SWAP = SWAP⊗ CPHASE. (B.1)

Thanks to our work in chapter 2, we know how to implement the CPHASE gate in a fast
way. So we have to see how the SWAP gate can be implemented in the resonant regime too.
The SWAP can be decomposed as:

SWAP = CNOT(1) ∗ CNOT(2) ∗ CNOT(1). (B.2)

Both CNOT gates can be decomposed with only resonant operations following the expressions:

CNOT(1) = H(2) ∗ CPHASE ∗H(2) CNOT(2) = H(1) ∗ CPHASE ∗H(1). (B.3)

The matrix form of all these new introduced gates is given in the following.

• H(1) = H1 ⊗ I2: qubit1 as target-qubit; qubit2 as control-qubit

H(1) =
1√
2




1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1




• H(2) = I1 ⊗H2: qubit2 as target-qubit; qubit1 as control-qubit

H(2) =
1√
2




1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1
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• The controlled-phase gate (CPHASE)

CPHASE =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1




• The CNOT(1) gate

CNOT(1) =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




This operation can be decomposed as:

CNOT(1) = H(2) ∗ CPHASE ∗H(2). (B.4)

• The CNOT(2)

CNOT(2) =




1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0




This operation can be decomposed as:

CNOT(2) = H(1) ∗ CPHASE ∗H(1). (B.5)

In conclusion using the protocols developed in chapter 2 for the Hadamard and CPHASE
gates, we know how to implement the fermionic SWAP in the resonant regime.
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