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We have developed a general method for the description of separatrix chaos, based on the analysis of the
separatrix map dynamics. Matching it with the resonant Hamiltonian analysis, we show that, for a given
amplitude of perturbation, the maximum width of the chaotic layer in energy may be much larger than it was
assumed before. We use the above method to explain the drastic facilitation of global chaos onset in time-
periodically perturbed Hamiltonian systems possessing two or more separatrices, previously discovered �S. M.
Soskin, O. M. Yevtushenko, and R. Mannella, Phys. Rev. Lett. 90, 174101 �2003��. The theory well agrees
with simulations. We also discuss generalizations and applications. The method may be generalized for single-
separatrix cases. The facilitation of global chaos onset may be relevant to a variety of systems, e.g., optical
lattices, magnetic and semiconductor superlattices, meandering flows in the ocean, and spinning pendulums.
Apart from dynamical transport, it may facilitate noise-induced transitions and the stochastic web formation.
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I. INTRODUCTION

A weak perturbation of a Hamiltonian system causes the
onset of chaotic layers around separatrices of the unperturbed
system and/or separatrices surrounding nonlinear resonances
generated by the perturbation �1–5�. The system may be
transported along the layer in a randomlike fashion and this
chaotic transport plays an important role in many physical
phenomena �3–5�. If the perturbation is sufficiently weak,
then the layers are thin and the chaos is called local �1–4�.
As the perturbation magnitude increases, the width of the
layer grows and the layers corresponding to adjacent separa-
trices reconnect at some, typically nonsmall, critical value of
the perturbation. This conventionally marks the onset of glo-
bal chaos �1–4�, i.e., chaos in a large region of the phase
space, with chaotic transport throughout the whole relevant
energy range.

The reconnection of the layers around separatrices of the
resonances often correlates with the overlap in energy be-
tween neighboring resonances calculated independently in
the resonant approximation. The latter constitutes the heuris-
tic Chirikov resonance-overlap criterion �1–4�. But the Chir-
ikov criterion may fail if the system is of the zero-dispersion
�ZD� type �6�, i.e., if the frequency of eigenoscillations pos-
sesses a local maximum or minimum as a function of its
energy �cf. also studies of related maps �7,8� which are called
nontwist, twistless, or nonmonotonic twist maps�. In such
systems, there are typically two resonances of one and the
same order �9�, and their overlap in energy does not result in
the onset of global chaos �6–8�. Even their overlap in phase
space �10� results typically only in the reconnection of the
thin chaotic layers associated with the resonances. As the
amplitude of the time-periodic perturbation grows further,

the layers may separate again �6–8�. An example of the evo-
lution of resonances in the plane of energy and slow angle is
given in Fig. 1 �the typical evolution of a real Poincaré sec-
tion is shown, e.g., in �11��.
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FIG. 1. Typical evolution of thin chaotic layers in the plane of
slow variables of a zero-dispersion system �the perturbation magni-
tude grows from the top to the bottom�.
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As it is known �6�, any Hamiltonian system with two or
more separatrices belongs to the ZD type: the eigenfre-
quency as a function of energy possesses a local maximum
between each pair of adjacent separatrices. For the purpose
of global chaos onset, our letter �12� has addressed the pos-
sibility of combining the overlap of resonances with each
other �typical of ZD systems� and their overlap with the cha-
otic layers associated with the separatrices. Via numerical
simulations, �12� demonstrated that this is possible, leading
to a scenario of global chaos onset which requires much
smaller perturbation amplitudes than in the conventional
case. The letter �12� suggested also a heuristic theory for this
effect �more details were presented in �13��.

The present work develops a method for the quantitative
description of chaotic layers in phase space, for the reso-
nance frequency range. We uncover the physical mechanism
of their overlap with the resonances, and on this basis de-
velop a detailed self-contained theory of the facilitated onset
of global chaos. We also discuss generalizations and applica-
tions.

We especially emphasize that the method for the descrip-
tion of the chaotic layers is general. As shown recently, the
method predicts, for a single-separatrix layer, a much larger
maximum width in energy �14� than what was assumed in
�2–5�. Note also that there were various mathematical works
considering the single-separatrix layer in rather different
contexts �see �15� for the review�. In particular, they ana-
lyzed the layer width in normal coordinates. However, to the
best of our knowledge, these works do not specify the rela-
tion between the normal coordinates and variables conven-
tional in physics �e.g., energy-angle or coordinate-
momentum�. Besides, these works only estimate the width
from above and below while our method allows one to carry
out an accurate calculation of the angle-dependent width in
energy, i.e., of the layer boundaries in the Poincaré section.
And most importantly, the methods described in �15� do not
distinguish between the resonance frequency range and other
frequency ranges while our method shows �both for the
single-separatrix and double-separatrix cases� that the layers
in these ranges drastically differ from each other, as con-
firmed by simulations �6,14,16,17� and recent estimates by a
different method �17�.

The paper is organized as follows. Section II introduces a
double-separatrix model example and presents the major re-
sults of the simulations: studying numerically the frequency
dependence of the minimal amplitude of the ac drive for
which global chaos occurs, hgc�� f�, we show that hgc�� f�
possesses deep spikes at certain frequencies. Section III
gives the self-consistent asymptotic theory for the minima of
the spikes, after assessing the boundaries of the relevant cha-
otic layers. Section IV gives the theory for the spikes wings.
Discussion of generalizations and applications is carried out
in Sec. V. Conclusions are drawn in Section VI. The Appen-
dix describes in detail the method for the analysis of separa-
trix chaos.

II. MODEL AND MAJOR RESULTS OF SIMULATIONS

As an example of a one-dimensional Hamiltonian system
possessing two or more separatrices, we use a spatially peri-

odic potential system with two different-height barriers per
period �Fig. 2�a��.

H0�p,q� =
p2

2
+ U�q�, U�q� =

�� − sin�q��2

2
,

� = const � 1. �1�

This model may relate, e.g., to a pendulum spinning about
its vertical axis �18� or to a classical two-dimensional �2D�
electron gas in a magnetic field spatially periodic in one of
the in-plane dimensions �19,20�. Interest in the latter system
arose in the 1990s due to technological advances allowing
the manufactures of magnetic superlattices of high quality
�21,22� leading to a variety of interesting behaviors of the
charge carriers in semiconductors �19–24�.

Figures 2�b� and 2�c� show, respectively, the separatrices
of the Hamiltonian system �1� in the p-q plane and the de-
pendence of the frequency � of its oscillation, often called
eigenfrequency, on its energy E�H0�p ,q�. The separatrices
correspond to energies equal to the value of the potential
barrier tops Eb

�1���1−��2 /2 and Eb
�2���1+��2 /2 �Fig.

2�a��. The function ��E� is close to the extreme eigenfre-
quency �m���Em� for most of the range �Eb

�1� ,Eb
�2�� while

sharply decreasing to zero as E approaches either Eb
�1� or Eb

�2�.
Add now a time-periodic perturbation: as an example, we

use an ac drive, which corresponds to a dipole �3,25� pertur-
bation of the Hamiltonian.

(a)

(b)

(c)

FIG. 2. The potential U�q�, the separatrices in the phase space,
and the eigenfrequency ��E� for the unperturbed system �1� with
�=0.2, in �a�, �b�, and �c�, respectively.
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q̇ = �H/�p, ṗ = − �H/�q ,

H�p,q� = H0�p,q� − hq cos�� ft� . �2�

The conventional scenario of global chaos onset between
the separatrices of the system �2�-�1� is illustrated in Fig. 3.
The figure presents the evolution of the stroboscopic
Poincaré section as h grows while � f is fixed at an arbitrarily
chosen value away from �m and its harmonics. At small h,
there are two thin chaotic layers around the inner and outer
separatrices of the unperturbed system. Unbounded chaotic
transport takes place only in the outer chaotic layer, i.e., in a
narrow energy range. As h grows, so also do the layers. At
some critical value hgc�hgc�� f�, the layers merge. This may
be considered as the onset of global chaos: the whole range
of energies between the barrier levels is involved, with un-
bounded chaotic transport. The states �I�l����p=0,q=� /2
+2�l� and �O�l����p=0,q=−� /2+2�l� �where l is any in-
teger� in the Poincaré section are associated, respectively,
with the inner and outer saddles of the unperturbed system,
and necessarily belong to the inner and outer chaotic layers,
respectively. Thus, the necessary and sufficient condition for
global chaos onset may be formulated as the possibility for
the system placed initially in the state �I�0�� to pass beyond
the neighboring of the “outer” states �O�0�� or �O�1��, i.e., the
coordinate q becomes �−� /2 or �3� /2 at sufficiently large
times t�2� /� f.

A diagram in the h-� f plane, based on the above criteria,
is shown in Fig. 4. The lower boundary of the shaded area
represents the function hgc�� f�. It has deep spikes, i.e., cusp-
like local minima. The most pronounced spikes are situated
at frequencies � f =�s

�j� that are slightly less than the odd
multiples of �m,

�s
�j� � �m�2j − 1�, j = 1,2, . . . . �3�

The deepest minimum occurs at �s
�1���m: the value of hgc in

the minimum, hs
�1��hgc��s

�1��, is approximately 40 times
smaller than the value in the neighboring pronounced local
maximum of hgc�� f� at � f �1. As n increases, the nth mini-
mum becomes less deep. The function hgc�� f� is very sensi-
tive to � f in the vicinity of the minima: for example, a shift
of � f down from �s

�1��0.4 by only 1% causes an increase of
hgc by �30%.

The origin of the spikes becomes more clear looking at
the evolution of the Poincaré section for � f ��s

�1� as h grows
�Fig. 5�: it drastically differs from the conventional evolution
shown in Fig. 3. For h=0.001 �Fig. 5�a��, one can see four
chaotic trajectories. Two of them are associated with the in-
ner and outer separatrices of the unperturbed system, similar
to the conventional case �cf. Fig. 3�. They are marked by
green and blue, respectively. These trajectories fill the corre-
sponding chaotic layers, which will be referred to below as
the “inner” and “outer” separatrix layers, respectively. The
other two chaotic trajectories marked by red and cyan are
associated with the two nonlinear resonances of the first or-
der. Examples of nonchaotic trajectories separating the cha-
otic ones are shown in brown. As the perturbation amplitude
h increases, the outer separatrix layer sequentially absorbs
other chaotic trajectories while large stability islands �asso-
ciated with the resonances� arise in the layer. At h=0.003, it
has absorbed the red trajectory: the resulting chaotic layer is
shown in blue in Fig. 5�b�. At h=0.004 75, this chaotic layer
has absorbed the cyan chaotic trajectory: the resulting cha-
otic layer is shown in blue in Fig. 5�c� �26�. Finally, at h
=0.0055 the latter blue layer has merged with the inner sepa-
ratrix layer �27� �see Fig. 5�d��, i.e., the onset of global chaos
as defined above has occurred.

Even prior to the theoretical analysis, one can draw a few
conclusions from the evolution. Namely, if � f is close to the
minimum of the spike of hgc�� f�, then

�1� the onset of global chaos occurs due to the combina-
tion of the overlap of chaotic layers associated with nonlin-
ear resonances with each other and the overlap of the latter
layers with the inner and outer separatrix layers;

�2� the width of the nonlinear resonances are large already
at quite small amplitudes of the perturbation, so that the
overlap with the chaotic layers around the original separa-
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FIG. 3. The evolution of the stroboscopic �at t=n2� /� f with
n=0,1 ,2 , . . .� Poincaré section of the system �2�-�1� with �=0.2 as
h grows while � f =0.3. The number of points in each trajectory is
2000. In �a� and �b�, three characteristic trajectories are shown: the
inner trajectory starts from the state �I�0����p=0,q=� /2� and is
chaotic but bounded in space; the outer trajectory starts from
�O�0����p=0,q=−� /2� and is chaotic and unbounded in coordi-
nate; the third trajectory is an example of a regular trajectory sepa-
rating the two chaotic ones. In �c�, the chaotic trajectories mix.
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FIG. 4. The diagram indicating �shaded� the perturbation param-
eters range for which global chaos exists. The integration time for
each point of the grid is 12 000�.
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trices occurs at unusually small perturbation amplitudes; and
�3� the onset of the overlap of at least one of the nonlinear

resonances with the outer separatrix layer occurs at values of
h, which are a few times smaller than those required for the
onset of the overlap with the inner separatrix layer.

The above conclusions are also illustrated by Fig. 6,
which presents the evolution of the phase space of slow vari-

ables �1–6�, action I� I�E� and slow angle �̃��−� ft, cal-
culated in resonance approximation for the first-order spike
�see Eq. �4� below�. Similarly, for the spikes of higher order,
higher-order resonances are relevant.

III. EXPLICIT ASYMPTOTIC THEORY
FOR THE MINIMA OF THE SPIKES

The eigenfrequency ��E� is close to its local maximum
�m for most of the relevant range �Eb

�1� ,Eb
�2�� �Fig. 2�c��. As

shown below, ��E� approaches a rectangular form in the
asymptotic limit �→0. Hence, if the perturbation frequency
� f is close to �m or its odd multiples, 	� f − �2j−1��m 	
��m, then the energy width of nonlinear resonances be-
comes comparable to the width of the whole range between
barriers �i.e., Eb

�2�−Eb
�1��2�� at a rather small perturbation

magnitude h��. Note that � determines the characteristic
magnitude of the perturbation required for the conventional
overlap of the separatrix chaotic layers, when � f is not close
to any odd multiple of �m �Fig. 3�c��. Thus, if � f ��s

�j�, the
nonlinear resonances should play a crucial role in the onset
of global chaos �cf. Fig. 5�.

We note that it is not entirely obvious a priori whether it
is indeed possible to calculate hs

�j��hgc��s
�j�� within the reso-

nance approximation: in fact, it is essential for the separa-
trices of nonlinear resonances to nearly touch the barrier lev-
els, but the resonance approximation is obviously invalid in
close vicinity of the barriers; furthermore, numerical calcu-
lations of resonances show that, if � f ��s

�j�, the perturbation
amplitude h at which the resonance separatrix touches a
given energy level in close vicinity of the barriers is very
sensitive to � f, apparently making the calculation of hs

�j�

within the resonance approximation even less feasible.
Nevertheless, we show below in a self-consistent manner

that, in the asymptotic limit �→0, the relevant boundaries

−π/2 π/2 3π/2
Coordinate q h = 0.001

−1

0

1

M
o

m
en

tu
m

p (a)

−π/2 π/2 3π/2
Coordinate q h = 0.003

−1

0

1

M
o

m
en

tu
m

p (b)

−π/2 π/2 3π/2
Coordinate q h = 0.00475

−1

0

1

M
o

m
en

tu
m

p (c)

−π/2 π/2 3π/2
Coordinate q h = 0.0055

−1

0

1

M
o

m
en

tu
m

p (d)

FIG. 5. �Color online� The evolution of the stroboscopic
Poincaré section of the system �2�-�1� with �=0.2 as the amplitude
of the perturbation h grows while the frequency is fixed at � f

=0.401. The number of points in each trajectory is 2000. The cha-
otic trajectories starting from the states �I�0�� and �O�0�� are drawn in
green and blue, respectively. The stable stationary points of Eq. �14�
for n=1 �i.e., for the first-order nonlinear resonances� are indicated
by the red and cyan crosses. The chaotic layers associated with the
resonances are indicated in red and cyan, respectively, unless they
merge with those associated with the green or blue chaotic trajec-
tories. Examples of regular trajectories embracing the state �I�0��
while separating various chaotic trajectories are shown in brown.

-2π -π 0 π 2π 3π 4π
0.3

0.5

0.7

0.9

1.1

1.3
I

-2π -π 0 π 2π 3π 4π
0.3

0.5

0.7

0.9

1.1

1.3

-2π -π 0 π 2π 3π 4π

ψ∼
0.3

0.5

0.7

0.9

1.1

1.3

-2π -π 0 π 2π 3π 4π
0.3

0.5

0.7

0.9

1.1

1.3

(a)

(b)

(c)

(d)

FIG. 6. �Color online� The evolution of the separatrices of the
first-order resonances within the resonance approximation �de-
scribed by Eq. �4� with n=1� in the plane of action I and slow angle

�̃, for the same parameters as in Fig. 5. Horizontal levels mark the
values of I corresponding to the barriers.
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of the chaotic layers lie in the range of energies E where
��E���m. Therefore, the resonant approximation is valid
and it allows one to obtain explicit asymptotic expressions
both for �s

�j� and hs
�j�, and for the wings of the spikes in the

vicinity of �s
�j�.

The asymptotic limit �→0 is the most interesting one
from a theoretical point of view since this limit leads to the
strongest facilitation of the global chaos onset and it is most
accurately described by the self-contained theory. Most of
the theory presented below assumes this limit and concen-
trates therefore on the results to the lowest order in the small
parameter.

On the applications side, the range of moderately small �
is more interesting, since the chaos facilitation is still pro-
nounced �and still described by the asymptotic theory� while
the area of chaos between the separatrices is not too small
�comparable with the area inside the inner separatrix�: cf.
Figs. 2, 3, and 5. To increase the accuracy of the theoretical
description in this range, we estimate the next-order correc-
tions and develop an efficient numerical procedure allowing
for further corrections.

A. Resonant Hamiltonian and related quantities

Let � f be close to the nth odd �28� harmonic of �m, n
��2j−1�. Over most of the range �Eb

�1� ,Eb
�2��, except in close

vicinity of Eb
�1� and Eb

�2�, the nth harmonic of eigenoscillation
is nearly resonant with the perturbation. Due to this, the
�slow� dynamics of the action I� I�E�= �2��−1
dqp and the
angle � �1–8,25� can be shown to be described by the fol-
lowing auxiliary Hamiltonian �cf. �1–8��:

H̃�I,�̃� = �
I�Em�

I

dĨ�n� − � f� − nhqn cos��̃�

� n�E − Em� − � f�I − I�Em�� − nhqn cos��̃� ,

I � I�E� = �
Emin

E dẼ

��Ẽ�
, E � H0�p,q� ,

�̃ = n� − � ft ,

� = � + sgn�p���E��
qmin�E�

q dq̃

�2�E − U�q̃��
+ 2�l ,

qn � qn�E� =
2

�
�

0

�/2

d�q�E,��cos�n�� ,

	n� − � f	 � �, n � 2j − 1, j = 1,2,3, . . . , �4�

where Emin is the minimal �over all q , p� energy E
�H0�p ,q�; ����E�=dH0 /dI and qmin�E� are, respectively,
the frequency and the minimal coordinate of the conservative
motion with a given value of energy E; l is the number of
right turning points in the trajectory �q�	�� of the conserva-
tive motion with energy E and given initial state �q0 , p0�.

Let us derive the explicit expressions for various quanti-
ties in Eq. �4�. In the unperturbed case �h=0�, the equations

of motion �2� with H0 �1� can be integrated �20� �see also Eq.
�60� below�, so that we can find ��E� as follows:

��E� =
��2E�1/4

2K�k�
,

k =
1

2
���2E + 1�2 − �2

�2E
, �5�

where

K�k� = �
0

�/2 d


�1 − k2 sin2�
�
, �6�

is the full elliptic integral of first order �29�. Using its
asymptotic expression,

K�k → 1� 
1

2
ln� 16

1 − k2� ,

we derive ��E� in the asymptotic limit �→0 as follows:

��E� 
�

ln� 64

�� − �E��� + �E��
,

�E � E −
1

2
, 	�E	 � � ,

� → 0. �7�

The function ��E� �Eq. �7�� is close to its maximum

�m � max
�Eb

�1�,Eb
�2��

���E�� 
�

2 ln�8/��
�8�

for most of the interbarrier �30� range of energies �1 /2
−� ,1 /2+��; on the other hand, in close vicinity of the bar-
riers, where either 	ln�1 / �1−�E /���	 or 	ln�1 / �1+�E /���	
become comparable with, or larger than ln�8 /��, ��E�
sharply decreases to zero as 	�E 	 →�. The range where this
takes place is ��2, and its ratio to the whole interbarrier
range, 2�, is ��, i.e., it goes to zero in the asymptotic limit
�→0: in other words, ��E� approaches a rectangular form.
As will be clear from the following, it is this almost rectan-
gular form of ��E� which determines many of the character-
istic features of the global chaos onset in systems with two or
more separatrices.

One more quantity which strongly affects ��s ,hs� is the
Fourier harmonic qn�qn�E�. The system stays, most of the
time, very close to one of the barriers. Consider the motion
within one of the periods of the potential U�q�, between
neighboring upper barriers �qub

�1� ,qub
�2�� where qub

�2��qub
�1�+2�.

If the energy E�1 /2+�E lies in the relevant range
�Eb

�1� ,Eb
�2��, then the system will stay close to the lower bar-

rier qlb�qub
�1�+� for a time �31�
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Tl � 2 ln� 1

� + �E
� �9�

during each period of eigenoscillation, while it will stay
close to one of the upper barriers qub

�1,2��qlb�� for most of
the remaining part of the period of eigenoscillation,

Tu � 2 ln� 1

� − �E
� . �10�

Hence, the function q�E ,��−qlb may be approximated by the
following piecewise even periodic function:

q�E,�� − qlb = �� at � � �0,
�

2

Tu

Tl + Tu
� � �� −

�

2

Tu

Tl + Tu
,�� ,

0 at �� � �
�

2

Tu

Tl + Tu
,� −

�

2

Tu

Tl + Tu
�� , �

q�E,− �� − qlb = q�E,�� − qlb, q�E,� � 2�i� = q�E,��, i = 1,2,3, . . . .

Substituting the above approximation for q�E ,�� into the
definition of qn �Eq. �4��, one can obtain

q2j−1 � q2j−1�E� =
2

2j − 1
sin�

�2j − 1��/2

1 +

ln� 1

� + �E
�

ln� 1

� − �E
� �

,

� → 0,

q2j = 0,

j = 1,2,3, . . . . �11�

At barrier energies, q2j−1 takes the values

q2j−1�Eb
�1�� = 0, q2j−1�Eb

�2�� = − �− 1� j 2

�2j − 1�
.

As E varies in between the barrier values, q2j−1 varies
monotonously if j=1 and nonmonotonously otherwise �cf.
Fig. 11�. But in any case, the significant variations occur
mostly in close vicinity of the barrier energies Eb

�1� and Eb
�2�

while, for most of the range �Eb
�1� ,Eb

�2��, the argument of the
sine in Eq. �11� is close to � /4 and q2j−1 is then almost
constant.

q2j−1 � �− 1���2j−1�/4�
�2

2j − 1
, j = 1,2,3, . . . ,

�ln�1 + �E/�
1 − �E/��� � 2 ln� 1

�
� , �12�

where �¯� means the integer part.
In the asymptotic limit �→0, the range of �E where the

approximate equality �12� for q2j−1 is valid approaches the
whole range �−� ,��.

We emphasize that 	qn	 determines the “strength” of the
nonlinear resonances: therefore, apart from the nearly rectan-
gular form of ��E�, the nonsmallness of 	qn	 is one more
factor giving rise to the strong facilitation of the global chaos
onset.

We shall need also the asymptotic expression of the action
I. Substituting ��E� �Eq. �7�� into the definition of I�E� �Eq.
�4�� and carrying out the integration, we obtain

I�E� = I�1/2� +

�E ln� 64e2

�2 − ��E�2� + � ln�� − �E

� + �E
�

�
,

� → 0. �13�

B. Reconnection of resonance separatrices

We now turn to the analysis of the phase space of the
resonance Hamiltonian �4�. The evolution of the Poincaré
section �see Fig. 5 and the related analysis in Sec. II� sug-
gests that we need to find such a separatrix of Eq. �4�, which
undergoes the following evolution as h grows: for suffi-
ciently small h, the separatrix does not overlap chaotic layers
associated with the barriers while, for h�hgc�� f�, it does
overlap them. The relevance of such a condition will be jus-
tified further.

For � f �n�m with a given odd n, the equations of motion
of the system �4� read as follows:

İ = −
�H̃

��̃
� − nhqn sin��̃� ,

�̃
˙

=
�H̃

�I
� n� − � f − nh

dqn

dI
cos��̃� . �14�

Any separatrix necessarily includes one or more unstable sta-
tionary points. The system �14� may have several stationary
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points per 2� interval of �̃. Let us first exclude those points
which are irrelevant to the separatrix undergoing the evolu-
tion described above.

Given that qn�Eb
�1��=0, there are two unstable stationary

points with I corresponding to E=Eb
�1� and �̃= �� /2. They

are irrelevant since, even for an infinitely small h, each of
them necessarily lies inside the corresponding barrier chaotic
layer.

If E�Eb
�1�, then qn�0, so İ=0 only if �̃ is equal either to

0 or to �. Substituting these values into the second equation

of Eqs. �14� and putting �̃
˙

=0, we obtain the equations for the
corresponding actions

X�I� � n� − � f  nhdqn/dI = 0, �15�

where the signs “−” and “+” correspond to �̃=0 and �̃=�,
respectively. A typical example of the graphic solution of Eq.
�15� for n=1 is shown in Fig. 7. Two of the roots correspond-

ing to �̃=� are very close to the barrier values of I �we
remind one that the relevant values of h are small�. These
roots arise due to the divergence of dq /dI as I approaches
any of the barrier values. The lower �upper� root corresponds
to a stable �unstable� point. However, for any n, both these
points and the separatrix generated by the unstable point nec-
essarily lie in the ranges covered by the barrier chaotic lay-
ers. Therefore, they are also irrelevant �32�. For n�1, the
number of the roots of Eq. �15� in the vicinity of the barriers
may be larger �due to the oscillations of the modulus and the
sign of dqn /dI in the vicinity of the barriers� but they all are
irrelevant for the same reason, at least to leading-order terms
in the expressions for the spikes minima.

Consider the stationary points corresponding to the re-
maining four roots of Eqs. �15�. Just these points are conven-
tionally associated with nonlinear resonances �1–6�. As fol-
lows from the analysis of Eqs. �14� linearized near the
stationary points �cf. �1–6��, two of them are stable elliptic
points �33�, while two others are unstable hyperbolic points,

often called saddles. These saddles are of main interest in the
context of our work. They belong to the separatrices dividing

the I-�̃ plane for regions with topologically different trajec-
tories.

We shall distinguish the relevant saddles as the saddles
with the lower action or energy �using the subscript “sl”� and
the upper action or energy �using the subscript “su”�. The

positions of the saddles in the I-�̃ plane are defined by the
following equations �cf. Figs. 6 and 7�:

g � sgn�qn�Isu,sl�� = �− 1��n/4�,

�̃sl = ��1 + g�/2, �̃su = ��1 − g�/2,

Xg�Isl� = X−g�Isu� = 0,

dXg�Isl�
dIsl

� 0,
dX−g�Isu�

dIsu
� 0, �16�

where X��I� are defined in Eq. �15� while Isl and Isu are
closer to I�Em� than any other solution of Eq. �16� �if any�
from below and from above, respectively.

Given that the values of h relevant to the minima of the
spikes are small in the asymptotic limit �→0, one may ne-
glect the last term in the definition of X in Eq. �15� in the
lowest-order approximation, so that the equations X=0 re-
duce to the simple resonance condition

n��Isu,sl� = � f . �17�

Substituting here Eq. �7� for �, we obtain the explicit expres-
sions for the energies in the saddles as follows:

Esu,sl �
1

2
� �E�1�,

�E�1� ���2 − 64 exp�−
n�

� f
�, � f � n�m. �18�

The corresponding actions Isu,sl are expressed via Esu,sl by
means of Eq. �13�.

For � f �n�m, the values of Esu,sl �Eq. �18�� lie in the
range where the expression �12� for qn does hold true. This
will be explicitly confirmed by the results of the calculations
based on this assumption.

Using Eqs. �16� for the angles and Eqs. �18� for the ener-
gies, and the asymptotic expressions �7�, �12�, and �13� for
��E�, qn�E�, and I�E�, respectively, and allowing for the
resonance condition �17�, we obtain explicit expressions for
the values of the Hamiltonian �4� in the saddles as follows:

H̃sl = − H̃su =
� f

�
�2�E�1� − � ln�� + �E�1�

� − �E�1��� + h�2.

�19�

As the analysis of simulations suggests �see item 1 in the
end of Sec. II� and as it is rigorously shown in the next
subsection, one of the main conditions which should be sat-
isfied in the spikes is the overlap in phase space between the
separatrices of the nonlinear resonances, called separatrix

0

ω
,ω

f±
h

dq
1/d

I sl

su
ω

f

I(E
b
(1)) I(E

m
)

I
I(E

b
(2))

FIG. 7. �Color online� A schematic example illustrating the
graphic solutions of Eq. �15� for n=1, as intersections of the curve
��I� �thick solid red line� with the curves � f �hdqn�I� /dI �thin
solid green lines�. The solutions corresponding to the lower and
upper relevant saddles �defined by Eq. �16�� are marked by dots and
by the labels sl and su, respectively �we do not mark other solutions
because they are irrelevant�.
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reconnection �6–8�. Given that the Hamiltonian H̃ is constant

along any trajectory of the system �4�, the values of H̃ in the
lower and upper saddles of the reconnected separatrices are
equal to each other.

H̃sl = H̃su, �20�

which may be considered as the necessary and sufficient �34�
condition for the reconnection. Taking into account that H̃sl

=−H̃su �see Eq. �19��, it follows from Eq. �20� that

H̃sl = H̃su = 0. �21�

Explicitly, the relations in Eq. �21� reduce to

h � h�� f� =
� f

�2�
�� ln�� + �E�1�

� − �E�1�� − 2�E�1�� ,

�E�1� ���2 − 64 exp�−
n�

� f
� ,

0 � �m − � f/n � �m �
�

2 ln�8/��
,

n = 1,3,5, . . . . �22�

The function h�� f� �Eq. �22�� monotonously decreases to
zero as � f grows from 0 to n�m, where the line abruptly
stops. Figure 10 shows the portions of the lines �22� relevant
to the left wings of the first and second spikes �for �=0.2�.

C. Barrier chaotic layers

The next step is to find a minimal value of h for which the
resonance separatrix overlaps the chaotic layer related to a
potential barrier. With this aim, we study how the relevant
outer boundary of the chaotic layer behaves as h and � f vary.
Assume that the relevant � f is close to n�m while the rel-
evant h is sufficiently large for ��E� to be close to �m at all
points of the outer boundary of the layer �the results will
confirm these assumptions�. Then the motion along the regu-
lar trajectory infinitesimally close to the layer boundary may
be described within the resonance approximation �4�. Hence
the boundary may also be described as a trajectory of the
resonant Hamiltonian �4�. This is explicitly proved in the
Appendix, using the separatrix map analysis that allows for
the validity of the relation ��E���m for all E relevant to the
boundary of the chaotic layer. The main results are presented
below. For the sake of clarity, we present them for each layer
separately, although they are similar in practice.

1. Lower layer

Let � f be close to any of the spikes minima. One of the
key roles in the formation of the upper boundary of the layer

is played by the angle-dependent quantity �l 	sin��̃�	 which
we call the generalized separatrix split �GSS� for the lower
layer, alluding to the conventional separatrix split �4� for the
lower layer �l�	��low��� f� 	h with ��low� given by Eq. �A11�

�35�. Accordingly, we use the term “lower GSS curve” for

the following curve in the I-�̃ plane:

I = IGSS
�l� ��̃� � I�Eb

�1� + �l	sin��̃�	� . �23�

(a) Relatively small h. If h�hcr
�l��� f�, where the critical

value hcr
�l��� f� is determined by Eq. �41� �its origin will be

explained further�, then there are differences in the boundary
formation for the frequency ranges of odd and even spikes.
We describe these ranges separately.

�1� Odd spikes. In this case, the boundary is formed by
the trajectory of the Hamiltonian �4� tangent to the GSS
curve �see Fig. 16�a�; cf. also Figs. 8�a�, 9�b�, and 9�c��.
There are two tangencies in the angle range �−� ,��: they

occur at the angles ��̃t
�l� where �̃t

�l� is determined by Eq.
�A21�.

In the ranges of h and � f relevant to the spike minimum,

the asymptotic expressions for �l and �̃t
�l� are

�l = �2�h , �24�

�̃t
�l� = �− 1��n/4�� n�

8 ln�1/��
+ �

1 − �− 1��n/4�

2
. �25�

Hence, the asymptotic value for the deviation of the tan-
gency energy Et

�l� from the lower barrier reduces to

Et
�l� − Eb

�1� � �l sin��̃t
�l�� =

�3/2

2

h
�ln�1/��/n

. �26�

The minimal energy on the boundary, Emin
�l� , corresponds to

�̃= 0 or � for even or odd values of �n /4�, respectively.
Thus, it can be found from the equality

H̃�I�Emin
�l� �,�̃ = ��1 − �− 1��n/4��/2� = H̃�It

�l� � I�Et
�l��,�̃t

�l�� .

�27�

At �→0, Eq. �27� yields the following expression for the
minimal deviation of energy on the boundary from the bar-
rier:

�min
�l� � Emin

�l� − Eb
�1� = �Et

�l� − Eb
�1��/�e =

�3/2

2�e

h
�ln�1/��/n

.

�28�

In the context of global chaos onset, the most important
property of the boundary is that the maximal deviation of its
energy from the barrier, �max

�l� , greatly exceeds both �min
�l� and

�l. As h→hcr
�l�, the maximum of the boundary approaches the

saddle sl.
�2� Even spikes. In this case, the Hamiltonian �4� pos-

sesses saddles “s” in close vicinity to the lower barrier �see
Fig. 16�b��. Their angles differ by � from those of sl as
follows:
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�̃s = �
1 − �− 1��n/4�

2
+ 2�m, m = 0, � 1, � 2, . . . ,

�29�

while the deviation of their energies from the barrier still lies
in the relevant �resonant� range and reads, in the lowest-order
approximation,

�s =
�

2�2

h

ln�ln�1/���
. �30�

The lower whiskers of the separatrix generated by these
saddles intersect the GSS curve while the upper whiskers in
the asymptotic limit do not intersect it �Fig. 16�b��. Thus, it is
the upper whiskers of the separatrix which form the bound-
ary of the chaotic layer in the asymptotic limit, and therefore
the energy on the boundary takes the minimal value right on
the saddle s, so that

�min
�l� = �s =

�

2�2

h

ln�ln�1/���
. �31�

Similar to the case of the odd spikes, the maximal �along
the boundary� deviation of the energy from the barrier
greatly exceeds both �min

�l� and �l. As h→hcr
�l�, the maximum

of the boundary approaches the saddle sl.
(b) Relatively large h. If h�hcr

�l��� f�, the previously de-
scribed trajectory �the tangent one or the separatrix, for the
odd or even spike ranges, respectively� is encompassed by
the separatrix of the lower nonlinear resonance and typically
forms the boundary of the major stability island inside the

lower layer �reproduced periodically in �̃ with the period
2��. The upper outer boundary of the layer is formed by the
upper part of the resonance separatrix. This may be inter-
preted as the absorption of the lower resonance by the lower
chaotic layer.

2. Upper layer

Let � f be close to any of the spikes minima. One of
the key roles in the formation of the lower boundary of the

layer is played by the angle-dependent quantity �u 	sin��̃�	
which we call the generalized separatrix split �GSS� for the
upper layer; �u is the separatrix split for the upper layer: �u
= 	��up��� f� 	h with ��up� given by Eq. �A43�. Accordingly, we
use the term “upper GSS curve” for the following curve in

the I-�̃ plane:

I = IGSS
�u� ��̃� � I�Eb

�2� − �u	sin��̃�	� . �32�

(a) Relatively small h. If h�hcr
�u��� f�, where the critical

value hcr
�u��� f� is determined by Eq. �42� �its origin will be

explained further�, then there are some differences in the
boundary formation in the frequency ranges of odd and even
spikes: for odd spikes, the formation is similar to the one for
even spikes in the lower-layer case and vice versa.

�1� Odd spikes. In this case, the Hamiltonian �4� possesses
saddles s̃ in close vicinity to the upper barrier, analogous to
the saddles s near the lower barrier in the case of even
spikes. Their angles are shifted by � from those of s as
follows:

�̃s̃ = �̃s + � = �
1 + �− 1��n/4�

2
+ 2�m, m = 0, � 1, � 2, . . . .

�33�

The deviation of their energies from the upper barrier coin-
cides, in the lowest-order approximation, with �s as follows:
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FIG. 8. �Color online� �a� Chaotic layers �shaded in green and
blue, for the upper and lower layers, respectively� in the plane of

action I and slow angle �̃, as described by our theory. Parameters
are the same as in Figs. 5�b� and 6�b�. The lower and upper bound-
aries of the figure box coincide with I�Eb

�1�� and I�Eb
�2��, respectively.

The resonance separatrices are drawn by the cyan and red solid
lines �for the lower and upper resonances, respectively�. Dashed

green and blue lines mark the curves I= IGSS
�l� ��̃�� I�E=Eb

�1�

+�l 	sin��̃� 	 � and I= IGSS
�u� ��̃�� I�E=Eb

�2�−�u 	sin��̃� 	 �, respectively,
where �l and �u are the values of the separatrix split related to the
lower and upper barrier, respectively. The upper boundary of the
lower layer is formed by the trajectory of the resonant Hamiltonian

system �4� tangent to the curve I= IGSS
�l� ��̃�. The lower boundary of

the upper layer is formed by the lower part of the upper �red�
resonance separatrix. The periodic closed loops �solid blue lines�
are the trajectories of the system �4� tangent to the curve IGSS

�u� ��̃�:
they form the boundaries of the major stability islands inside the
upper chaotic layer. �b� Comparison of the chaotic layers obtained
from computer simulations �dots� with the theoretically calculated
boundaries �solid lines� shown in the box �a�.
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�s̃ = �s =
�

2�2

h

ln�ln�1/���
. �34�

The upper whiskers of the separatrix generated by these
saddles intersect the upper GSS curve while the lower whis-
kers in the asymptotic limit do not intersect it. Thus, it is the
lower whiskers of the separatrix which form the boundary of
the chaotic layer in the asymptotic limit, and therefore the
deviation of energy from the upper barrier takes its minimal
�along the boundary� value right on the saddle s̃,

�min
�u� = �s̃ =

�

2�2

h

ln�ln�1/���
. �35�

The maximal �along the boundary� deviation of the energy
from the barrier greatly exceeds both �min

�u� and �u. As h
→hcr

�u�, the maximum of the boundary approaches the saddle
su.

�2� Even spikes. The boundary is formed by the trajectory
of the Hamiltonian �4� tangent to the GSS curve. There are
two tangencies in the angle range �−� ,��: they occur at the

angles ��̃t
�u� where �̃t

�u� is determined by Eq.
�A41�.

In the ranges of h and � f relevant to the spike minimum,

the expressions for �u and �̃t
�u� in the asymptotic limit �

→0 are similar to the analogous quantities in the lower-layer
case.

�u = �2�h , �36�

�̃t
�u� = − �− 1��n/4�� n�

8 ln� 1

�
� + �

1 + �− 1��n/4�

2
. �37�

Hence, the asymptotic value for the deviation of the tan-
gency energy Et

�u� from the upper barrier reduces to

Eb
�2� − Et

�u� = �u��
1 + �− 1��n/4�

2
− �̃t

�u�� =
�3/2

2

h
�ln�1/��/n

.

�38�

The maximal energy on the boundary, Emax
�u� , corresponds

to �̃=��1+ �−1��n/4�� /2. Thus, it can be found from the
equality

H̃�I = I�Emax
�u� �,�̃ = ��1 + �− 1��n/4��/2� = H̃�It

�u� � I�Et
�u��,�̃t

�u�� .

�39�

At �→0, Eq. �39� yields the following expression for the
minimal �along the boundary� deviation of energy from the
barrier:

�min
�u� � Eb

�2� − Emax
�u� = �Eb

�2� − Et
�u��/�e =

�3/2

2e1/2
h

�ln�1/��/n
.

�40�

(b) Relatively large h. If h�hcr
�u��� f� �cf. Fig. 8�a��, the

previously described trajectory �tangent one or the separa-
trix, for the even and odd spikes ranges, respectively� is en-
compassed by the separatrix of the upper nonlinear reso-
nance and typically forms the boundary of the major stability

island inside the upper layer �reproduced periodically in �̃
with the period 2��. The lower outer boundary of the layer is
formed in this case by the lower part of the resonance sepa-
ratrix. This may be interpreted as the absorption of the upper
resonance by the upper chaotic layer.

The description of chaotic layers given above and, in
more detail, in the Appendix is the first main result of this
paper. It provides a rigorous base for our intuitive assump-
tion that the minimal value of h at which the layers overlap
corresponds to the reconnection of the nonlinear resonances
with each other while the reconnected resonances touch one
of the layers and touch or overlap another layer. It is remark-
able also that we have managed to obtain the quantitative
theoretical description of the chaotic layers boundaries in the
phase space, including even the major stability islands, that
well fits the results of simulations �see Fig. 8�b��. Note also
that the lower and upper chaotic layers in Fig. 8 are well
separated from each other so that, for the given parameters,
the presence of the second separatrix is not crucial for any of
the layers. Therefore, the excellent agreement between the
simulations and the theory indicates that our method should
be valid for single-separatrix cases too. The latter was re-
cently confirmed in �14� �see also Sec. V below�.

D. Onset of global chaos: The spikes minima

The condition for the merger of the lower resonance and
the lower chaotic layer may be written as

H̃�I = I�E = Eb
�1� + �min

�l� �,�̃ = ��1 − �− 1��n/4��/2� = H̃sl.

�41�

The condition for the merger of the upper resonance and
the upper chaotic layer may be written as

H̃�I = I�E = Eb
�2� − �min

�u� �,�̃ = ��1 + �− 1��n/4��/2� = H̃su.

�42�

For the global chaos onset related to the spike minimum,
either of Eqs. �41� and �42� should be combined with the
condition of the separatrix reconnection �20�. Let us seek
first only the leading terms of hs�hs��� and �s��s���.
Then Eq. �20� may be replaced by its lowest-order approxi-
mation �21� or, equivalently, Eq. �22�. Using also the lowest-
order approximation for the barriers �Eb

�1,2��1 /2��, we
reduce Eqs. �41� and �42�, respectively, to

H̃�I = I�E = 1/2 − � + �min
�l� �,�̃ = ��1 − �− 1��n/4��/2� = 0,

�43�
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H̃�I = I�E = 1/2 + � − �min
�u� �,�̃ = ��1 + �− 1��n/4��/2� = 0,

�44�

where �min
�l� is given by Eq. �28� or Eq. �31� for the odd or

even spikes, respectively, while �min
�u� is given by Eq. �35� or

Eq. �40� for the odd or even spikes, respectively.
The solution �hs

�l� ,�s
�l�� of the system of equations �22� and

�43� and the solution �hs
�u� ,�s

�u�� of the system of equations
�22� and �44� turn out identical to the leading order. For the
sake of brevity, we derive below just �hs

�l� ,�s
�l��, denoting the

latter, in short, as �hs ,�s� �36�.
The system of algebraic equations �22� and �43� is still too

complicated to find its exact solution. However, we need
only the lowest-order solution—and this simplifies the prob-
lem. Still, even this simplified problem is not trivial, both
because the function hs��� turns out to be nonanalytic and
because �E�1� in Eq. �22� is very sensitive to � f in the rel-
evant range. Despite these difficulties, we have found the
solution in a self-consistent way, as briefly described below.

Assume that the asymptotic dependence hs��� is

hs = a
�

ln�4e/��
, �45�

where the constant a may be found from the asymptotic so-
lution of Eqs. �22�, �43�, and �45�.

Substituting the energies E=1 /2−�+�min
�l� and E=1 /2

+�−�max
�u� in Eq. �7� and taking into account Eqs. �28�, �31�,

�35�, �40�, and �45�, we find that, both for the odd and even
spikes, the inequality

�m − ��E� � �m �46�

holds in the whole relevant range of energies, i.e., for

�E � �− � + �min
�l� ,� − �min

�u� � . �47�

Thus, the resonant approximation is valid in the whole range
�47�. Equation �12� for qn�E� is valid in the whole relevant
range of energies too.

Consider Eq. �43� in a more explicit form. Namely, we
express � f from Eq. �43�, using Eqs. �4�, �12�, and �13�, and
using also Eq. �28� or Eq. �31� for odd or even spikes, and
Eq. �45� as follows:

� f =
n�

2 ln�4e

�
��1 +

h�2

n�
+ O� 1

ln2�4e/���� . �48�

We emphasize that the value of �min
�l� enters explicitly only the

term O�. . .� while, as it is clear from the consideration below,
this term does not affect the leading terms in �hs ,�s�. Thus,
�min

�l� does not affect the leading term of �s at all, while it
affects the leading term of hs only implicitly: �min

�l� lies in the
range of energies where nqn�E���2. This latter quantity is
present in the second term in the curly brackets in Eq. �48�
and, as is clear from further consideration, hs would be larger
�smaller� if the relevant value of nqn was smaller �larger�.

Substituting Eq. �48� into the expression for �E�1� in Eq.
�22�, using Eq. �45� and keeping only the leading terms, we
obtain

�E�1� = ��1 − 4ec−2, c �
2�2

n
a . �49�

Substituting �E�1� from Eq. �49� into Eq. �22� for h�� f�
and allowing for Eq. �45� once again, we arrive at the tran-
scendental equation for c.

ln�1 + ��c�
1 − ��c�� − 2��c� = c ,

��c� � �1 − 4ec−2. �50�

The approximate numerical solution of Eq. �50� is

c  0.179. �51�

Thus, the final leading-order asymptotic formulas for � f
and h in the minima of the spikes are the following:

�s0 � �s0
��n+1�/2� = n

�

2 ln�4e

�
� ,

hs0 � hs0
��n+1�/2� = n

c

2�2

�

ln�4e

�
� ,

n = 1,3,5, . . . , � → 0, �52�

where the constant c0.179 is the solution of Eq. �50�.
The rigorous derivation of the explicit asymptotic formu-

las for the minima of hgc�� f� is the second main result of this
paper. These formulas allow one to immediately predict the
parameters for the weakest perturbation which may lead to
global chaos.

E. Numerical example and next-order corrections

For �=0.2, the numerical simulations give the following
values for the frequencies in the minima of the first two
spikes �see Fig. 4�:

�s
�1� � 0.4005 � 0.0005, �s

�2� � 1.24 � 0.005. �53�

The values by the lowest-order formula �52� are

�s0
�1� � 0.393, �s0

�2� � 1.18, �54�

in rather good agreement with the simulations.
The next-order correction for �s can be immediately

found from Eq. �48� for � f and Eq. �52� for hs0, so that

�s1  �s0�1 +
c

2 ln�4e

�
�� �

n��1 +
0.09

ln�4e

�
��

2 ln�4e

�
� ,

n = 1,3,5, . . . . �55�

The formula �55� agrees with the simulations even better
than the lowest-order approximation.
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�s1
�1� � 0.402, �s1

�2� � 1.21. �56�

For h in the spikes minima, the simulations give the fol-
lowing �37� values �see Fig. 4�:

hs
�1� � 0.0049, hs

�2� � 0.03. �57�

The values by the lowest-order formula �52� are

hs0
�1� � 0.0032, hs0

�2� � 0.01. �58�

The theoretical value hs0
�1� gives a reasonable estimate for

the simulation value hs
�1�. The theoretical value hs0

�2� gives the
correct order of magnitude for the simulation value hs

�2�.
Thus, the accuracy of the lowest-order formula �52� for hs is
much lower than that for �s: this is due to the steepness of
hgc�� f� in the ranges of spikes �the steepness, in turn, is due
to the flatness of the function ��E� near its maximum�.
Moreover, as the number of the spike j increases, the accu-
racy of the lowest-order value hs0

�j� significantly decreases.
The latter can be explained as follows. For the next-order
correction to hs0

�j�, the dependence on � reads as

hs1
�j� − hs0

�j�

hs0
�j� �

1

ln�4e/��
. �59�

At least some of the terms of this correction are positive and
proportional to hs0

�j� �e.g., due to the difference between the
exact equation �15� and its approximate version �17�� while
hs0

�j� is proportional to n�2j−1. Thus, for �=0.2, the relative
correction for the first spike is �0.25 while the correction for
the second spike is a few times larger, i.e., �1. But the latter
means that, for �=0.2, the asymptotic theory for the second
spike cannot pretend to be a quantitative description of hs

�2�,
but only provides the correct order of magnitude. Besides, if
n�1 while � exceeds some critical value, then the search of
the minimum involves Eq. �66� rather than Eq. �20�, as ex-
plained below in Sec. IV �cf. Figs. 10�b� and 11�. Altogether,
this explains why hs

�1� is larger than hs0
�1� only by 50% while

hs
�2� is larger than hs0

�2� by 200%.
The consistent explicit derivation of the correction to hs0

�j�

is complicated. A reasonable alternative may be a proper
numerical solution of the algebraic system of Eqs. �20� �38�
and �41� for the odd spikes or Eq. �42� for the even spikes
�36,39�. To this end, in Eqs. �20� �38� and �41� and �42� we
use �i� the exact values of the saddle energies obtained from
the exact relations �16� instead of the approximate relations
�17�; �ii� the exact formulas �5� and �6� for ��E� instead of
the asymptotic expression �7�; �iii� the exact functions qn�E�
instead of the asymptotic formula �12�; �iv� the relation �27�
and the calculation of the “tangent” state ��̃t

�l� , It
�l�� by Eqs.

�A11� and �A22� for the odd spikes, or relation �39� and the

calculation of the tangent state ��̃t
�u� , It

�u�� by Eqs.
�A41�–�A43� for the even spikes. Note that, to find the exact
function qn�E�, we substitute into the definition of qn�E� in
Eq. �4� the explicit �41� solution for q�E ,�� as follows:

q�E,�� = arcsin�� − �2E + �

1 − �
� for � � �0,

�

2
� ,

q�E,�� = � − q�E,� − �� for � � ��

2
,�� ,

q�E,�� = q�E,2� − �� for � � ��,2�� ,

� �
1

2
��2E − � + 1�sn2�2K

�
�� , �60�

where sn�x� is the elliptic sine �29� with the same modulus k
as the full elliptic integral K defined in Eqs. �5� and �6�.

The numerical solution described above gives

��s
�1��num � 0.401, �hs

�1��num � 0.005,

��s
�2��num � 1.24, �hs

�2��num � 0.052. �61�

The agreement with the simulation results is �i� excellent
for �s for both spikes and for hs for the first spike, and �ii�
reasonable for hs for the second spike. Thus, if � is moder-
ately small, a much more accurate prediction for hs than that
by the lowest-order formula is provided by the numerical
procedure described above.

IV. THEORY OF THE SPIKES WINGS

The goal of this section is to find mechanisms responsible
for the formation of the spikes wings �i.e., the function
hgc�� f� in the ranges of � f slightly deviating from �s

�j�� and
to provide for their theoretical description.

Before developing the theory, we briefly analyze the
simulation data �Fig. 4�, concentrating on the first spike. The
left wing of the spike is smooth and nearly straight. The
initial part of the right wing is also nearly straight �42�
though less steep. But, at some small distance from �s

�1�, its
slope changes jumpwise by a few times: compare the deriva-
tive �42� dhgc /d� f �0.1 at � f slightly exceeding �s

�1��0.4
�see the left inset in Fig. 4� and dhgc /d� f �0.4 at � f
=0.45–0.55 �see the main part of Fig. 4�. Thus, even prior to
the theoretical analysis, one may assume that there are a few
different important mechanisms responsible for the forma-
tion of the wings.

Consider the arbitrary jth spike. We have shown in the
previous section that, in the asymptotic limit �→0, the
minimum of the spike corresponds to the intersection be-
tween the lines �20� and �41� or �42� for odd or even spikes.
We recall that �i� Eq. �20� corresponds to the overlap in
phase space between nonlinear resonances of the same order
n�2j−1; �ii� Eq. �41� or �42� correspond to the onset of the
overlap between the resonance separatrix associated with the
lower or upper saddle and the chaotic layer associated with
the lower or upper potential barrier; �iii� for � f =�s

�j�, the
condition �41� or �42� guarantees also the overlap between
the upper or lower resonance separatrix and the chaotic layer
associated with the upper or lower barrier �36�.

If � f becomes slightly smaller than �s
�j� the resonances

shift closer to the barriers while moving apart from each
other. Hence, as h increases, the overlap of the resonances
with the chaotic layers associated with the barriers occurs
earlier than with each other. Therefore, at 0��s

�j�−� f ��m,
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the function hgc�� f� should approximately correspond to the
reconnection of resonances of the order n�2j−1 �Fig. 9�a��.
Figure 10�a� demonstrates that even the asymptotic formula
�22� for the separatrix reconnection line fits the left wing of
the first spike quite well while the numerically calculated
line �20� agrees with the simulations perfectly.

If � f becomes slightly larger than �s
�j� then, on the con-

trary, the resonances shift closer to each other and farther
from the barriers. Therefore, the overlap of resonances with
each other occurs at smaller h than the overlap between any
of them and the chaotic layer associated with the lower or
upper barrier �cf. Figs. 5�c� and 5�d��. Hence, it is the latter
overlap which determines the function hgc�� f� in the relevant
range of � f �Fig. 9�b��. Figure 10 shows that hgc�� f� is in-
deed well approximated in close vicinity to the right from
�s

�j� by the numerical solution of Eq. �41� or �42� for an odd
or even spike and, for the first spike and the given �, even
by its asymptotic form,

h � h�� f�

= n

− � +
� f

n�
���2 ln�4e

�
� + ln�� + �E�1�

� − �E�1��� − 2�E�1��
2�2

,
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FIG. 9. �Color online� Illustrations of the mechanisms of the
formation of the first spike wings and of the corresponding theoret-
ical lines in Fig. 10�a�. �a�, �b�, and �c� illustrate the lines by Eqs.
�20�, �41�, and �64�, respectively: the corresponding perturbation
parameters are �� f =0.39,h=0.0077�, �� f =0.41,h=0.00598�,
and �� f =0.43,h=0.01009�, respectively. Resonance separatrices
are drawn by red and cyan. The dashed lines show the functions

IGSS
�l� ��̃� and IGSS

�u� ��̃�. The black line in �c� is the trajectory of the
resonant Hamiltonian system �4�, which is tangent to both dashed
lines.
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FIG. 10. �Color online� The first �a� and second �b� spike in
hgc�� f�: comparison between the results of the numerical simula-
tions �the lower boundary of the shaded area� and the theoretical
estimates. The estimates are indicated by the corresponding equa-
tion numbers and are drawn by different types of lines, in particular,
the dashed lines represent the explicit asymptote for the solid line of
the same color.
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�E�1� ���2 − 64 exp�−
n�

� f
� ,

n � 2j − 1, 	� f − �s
�j�	 � �m. �62�

The mechanism described above determines hgc�� f� only
in close vicinity of �s

�j�. If � f /n becomes too close to �m or
exceeds it, then the resonances are not of immediate rel-
evance: they may even disappear or, if they still exist, their
closed loops shrink, so that they cannot anymore provide for
the connection of the chaotic layers in the relevant range of
h. At the same time, the closeness of the frequency to �m still
may give rise to a large variation of action along the trajec-
tory of the Hamiltonian system �4�. For the odd or even
spikes, the boundaries of the chaotic layers in the asymptotic
limit �→0 are formed in this case by the trajectory of Eq.
�4� which is tangent to the lower or upper GSS curves �for
the lower or upper layer� or by the lower or upper part of the
separatrix of Eq. �4� generated by the saddle s̃ or s �for the
upper or lower layer�. Obviously, the overlap of the layers
occurs when these trajectories coincide with each other,

which may be formulated as the equality of H̃ in the corre-
sponding tangency and saddle as follows:

H̃�Is̃,�̃s̃� = H̃�It
�l�,�̃t

�l�� for j = 1,3,5, . . . ,

H̃�Is,�̃s� = H̃�It
�u�,�̃t

�u�� for j = 2,4,6, . . . ,

Is̃ � I�Eb
�2� − �s̃�, Is � I�Eb

�1� + �s� . �63�

Note however that, for moderately small �, the tangencies
may be relevant both to the lower layer and to the upper one
�see the Appendix�. Indeed, such a case occurs for our ex-
ample with �=0.2: see Fig. 9�c�. Therefore, the overlap of

the layers corresponds to the equality of H̃ in the tangencies
as follows:

H̃�It
�l�,�̃t

�l�� = H̃�It
�u�,�̃t

�u�� . �64�

To the lowest order, Eqs. �63� and �64� read as

h � h�� f� =

�2� ln�4e

�
�

� �� f −
n�

2 ln�4e

�
�� . �65�

Both the line �64� and the asymptotic line �65� well agree
with the part of the right wing of the first spike situated
beyond the immediate vicinity of the minimum from the
right side, namely, to the right from the fold at � f �0.42
�Fig. 10�a��. The fold corresponds to the change of the
mechanisms of the chaotic layers overlap.

If � is moderately small while n�1, the description of
the far wings by the numerical lines �20� and �64� may be
still quite good but the asymptotic lines �22� and �65� cannot
pretend to describe the wings quantitatively anymore �Fig.
10�b��. As for the very minimum of the spike and the wings
in the close vicinity to it, one more mechanism may become
relevant for their formation in this case �Figs. 10�b� and 11�.

This mechanism may be explained as follows. If n�1, then
qn�E� becomes zero in close vicinity ���2� of the relevant
barrier �the upper or lower barrier, in the case of even or odd
spikes: cf. Fig. 11�. As follows from the equations of motion
�14�, no trajectory can cross the line I= Iqn=0. In the
asymptotic limit �→0, provided h is from the relevant
range, almost the whole GSS curve is farther from the barrier
than the line I= Iqn=0, and the latter becomes irrelevant. But,
for a moderately small �, the line may separate the whole
GSS curve from the rest of the phase space. Then the reso-
nance separatrix cannot connect to the GSS curve even if

there is a state on the latter curve with the same value of H̃ as
on the resonance separatrix. For a given � f, the connection
requires then a higher value of h: for such a value, the GSS
curve itself crosses the line I= Iqn=0. In the relevant range of
h, the resonance separatrix passes very close to this line, so
that the connection is well approximated by the condition
that the GSS curve touches this line �see the inset in Fig. 11�.

�u = Eb
�2� − Eq2j−1=0 for j = 2,4,6, . . . ,

�l = Eq2j−1=0 − Eb
�1� for j = 3,5,7, . . . , �66�

This mechanism is relevant for the formation of the mini-
mum of the second spike at �=0.2, and in close vicinity of
the spike, on the left �Fig. 10�b��.

Finally, let us explicitly find the universal asymptotic
shape of the spike in the vicinity of its minimum. First, we
note that the lowest-order expression �62� for the spike be-
tween the minimum and the fold can be written as the half-
sum of the expressions �22� and �65� �which represent the
lowest-order approximations for the spike to the left of the
minimum, and to the right of the fold, respectively�. Thus, all
three lines �22�, �62�, and �65� intersect in one point. The
latter means that, in the asymptotic limit �→0, the fold
merges with the minimum: � f and h in the fold asymptoti-
cally approach �s and hs, respectively. Thus, though the fold
is a generic feature of the spikes, it is not of main signifi-
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FIG. 11. �Color online� Amplitude of the third Fourier harmonic
as a function of action �solid red line�. The dashed black line shows
the zero level. Its intersection with the solid red line is marked by
the circle. The green line indicates the value of action where q3

=0. The inset illustrates the line �66� in Fig. 10�b�: the GSS curve
touches the horizontal line I= Iq3=0.

SOSKIN, MANNELLA, AND YEVTUSHENKO PHYSICAL REVIEW E 77, 036221 �2008�

036221-14



cance: the spike is formed basically by two straight lines.
The ratio between their slopes is universal. So, introducing a
proper scaling, we reduce the spike shape to a universal
function �Fig. 12�.

h̃���̃ f� = h̃�lw����̃ f� � 1 − �1 − 4ec−2��̃ f

� 1 − 0.593��̃ f for ��̃ f � 0,

h̃���̃ f� = h̃�rw����̃ f� � 1 + ��̃ f for ��̃ f � 0,

h̃�fold����̃ f� =
h̃�lw����̃ f� + h̃�rw����̃ f�

2

� 1 +
1 − �1 − 4ec−2

2
��̃ f � 1 + 0.203��̃ f ,

h̃ �
h

hs0
, ��̃ f �

� f − �s1

�s1 − �s0
, � → 0, �67�

where �s0 and hs0 are the lowest-order expressions �52�, re-
spectively, for the frequency and amplitude in the spike mini-
mum, �s1 is the expression �55� for the frequency in the
spike minimum, including the first-order correction, and c is
the constant �51�.

Beside the left and right wings of the universal shape �the
solid lines in Fig. 12�, we also present in Eq. �67� the func-

tion h̃�fold����̃ f� �the dashed line in Fig. 12�: it proposes to
show that, on one hand, the fold asymptotically merges with
the minimum but, on the other hand, the fold is generic and
the slope of the spike between the minimum and the fold has
a universal ratio to any of the slopes of the major wings.

Even for a moderately small �, like in our example, the
ratios between the three slopes related to the first spike in the
simulations are reasonably well reproduced by those in Eq.
�67�: cf. Figs. 10�a� and 12. It follows from Eq. �67� that the
asymptotic scaled shape is universal, i.e., independent of �,
n, or any other parameter.

The description of the wings of the spikes near their
minima, in particular, the derivation of the spike universal
shape, is the third main result of this paper.

V. GENERALIZATIONS AND APPLICATIONS

The new approach for the treatment of separatrix chaos
opens a broad variety of important generalizations and appli-
cations, some of which are discussed below.

�1� It may be applied to any separatrix layer, including, in
particular, single-separatrix cases. This is possible due to the
characteristic dependence of the frequency of eigenoscilla-
tion on energy in the vicinity of any separatrix: the frequency
keeps nearly a constant value even if the deviation of the
energy from the separatrix strongly varies within a given
scale of the deviation. There were various estimates of the
layer width in energy �see �2–5�, and references therein� and
in normal coordinates �see �15�, and references therein� but
the quantitative analysis of the layer boundaries in the phase
space was never done in the nonadiabatic case. In contrast,
our approach matches the dynamics of the separatrix map
with the resonance dynamics in the case when the perturba-
tion is resonant with the eigenoscillation in the relevant
range of energy, and this allows us, in particular, to quanti-
tatively describe the layer boundaries. It follows from such a
description �cf. �14�� that, for a given small amplitude h of
the perturbation, the maximal layer width in energy is much
larger than is assumed by most of the former theories �cf.
�2–5� where the maximal width is assumed to be �h�. Thus,
we can quantitatively describe large jumps and peaks of the
layer width as a function of the perturbation amplitude and
frequency, respectively �6,14,16,17�. Moreover, a rough esti-
mate on the basis of our approach indicates that, for many
classes of systems, the relative range of such jumps or peaks
�i.e., the ratio between the upper and lower levels of the
jump or peak� diverges in the asymptotic limit h→0 �14�.
Note also that the recent paper �17� suggests a method
which, in a sense, is complementary to ours: it describes the
frequency ranges beyond the resonance ones. As for the reso-
nance ranges, the method of �17� only indicates a sharp
growth of the width in them but does not describe it quanti-
tatively.

�2� Apart from the description of the boundaries, our ap-
proach allows us to describe the chaotic transport within the
layer. In particular, it may allow us to calculate a positive
Lyapunov exponent and to describe diffusion.

�3� Our approach may be generalized for a nonresonant
perturbation. The resonance approximation is not valid then
but there still remains the property of a near constancy of the
frequency of eigenoscillation within an arbitrary given scale
of the deviation of energy from the separatrix. This property
may allow us to explicitly describe the dynamics of the sepa-
ratrix map for any frequency of perturbation which is less
than or of the order of the resonance frequency �cf. �17��.

�4� Apart from Hamiltonian systems of the 3/2 degrees of
freedom and corresponding Zaslavsky separatrix maps, our
approach may be useful in the treatment of other chaotic
systems and separatrix maps �see �15� for the most recent
major review on various types of separatrix maps and related
continuous chaotic systems�.

As concerns the facilitation of the global chaos onset be-
tween adjacent separatrices, we mention the following gen-
eralizations:
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FIG. 12. �Color online� The universal shape of the spike mini-
mum �67� �solid lines�. The dashed line indicates the universal slope
of the spike in between the minimum and the fold, which have
merged in the universal �asymptotic� function �67�.
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�1� The spikes in hgc�� f� may occur for an arbitrary
Hamiltonian system with two or more separatrices. The
asymptotic theory can be generalized accordingly.

�2� The absence of pronounced spikes at even harmonics
2j�m is explained by the symmetry of the potential �1�: the
even Fourier harmonics of the coordinate q2j are equal to
zero. For time-periodic perturbation of the dipole type, like
in Eq. �2�, there are no resonances of even order due to this
symmetry �1–6�. If either the potential is nonsymmetric or
the additive perturbation of the Hamiltonian is not an odd
function of the coordinate, then even-order resonances do
exist, resulting in the presence of the spikes in hgc�� f� at
� f �2j�m.

�3� There may be an additional facilitation of global chaos
onset which is reasonable to call a “secondary” facilitation.
Let the frequency � f be close to the frequency �s of the
spike minimum while the amplitude h is �hs but still lower
than hgc�� f�. Then there are two resonance separatrices in the

I-�̃ plane which are not connected by the chaotic transport
�cf. Figs. 6�b� and 5�b��. This system possesses the zero-
dispersion property. The trajectories of the resonant Hamil-
tonian �4� which start in between the separatrices oscillate in

I �as well as in d�̃ /dt�. The frequency �̃ of such oscillations
along a given trajectory depends on the corresponding value

of H̃ analogously as � depends on E for the original Hamil-

tonian H0:�̃�H̃� is equal to zero for the values of H̃ corre-

sponding to the separatrices �being equal in turn to H̃sl and

H̃su: see Eq. �19�� while possessing a nearly rectangular

shape in between, provided the quantity 	H̃sl− H̃su	 is much

smaller than the variation of H̃ within each of the resonances,

	H̃sl − H̃su	 � H̃var � 	H̃sl − H̃el	 � 	H̃su − H̃eu	 , �68�

where H̃el and H̃eu are the values of H̃ in the elliptic point of
the lower and upper resonance, respectively. The maximum

of �̃�H̃� in between H̃sl and H̃su is asymptotically described
by the following formula:

�̃m �
�

ln�H̃var/	H̃sl − H̃su	�
. �69�

If we additionally perturb the system in such a way that
an additional time-periodic term of the frequency �̃ f � �̃m
arises in the resonance Hamiltonian, then the chaotic layers
associated with the resonance separatrices may be connected
by chaotic transport even for a rather small amplitude of the
additional perturbation, due to a scenario similar to the one
described in this paper.

There may be various types of such additional perturba-
tion �43�. For example, one may add to H �2� one more
dipole time-periodic perturbation of mixed frequency �i.e.,
��m+ �̃m�. Alternatively, one may directly perturb the angle
of the original perturbation by a low-frequency perturbation,
i.e., the time-periodic term in H �2� is replaced by the term

− hq cos�� ft + A cos��̃ ft�� ,

� f � �m, �̃ f � �̃m. �70�

Recent physical problems where a similar situation is rel-
evant are chaotic mixing and transport in a meandering jet
flow �44� and reflection of light rays in a corrugated wave-
guide �45�.

�4� If the time-periodic perturbation is multiplicative
rather than additive, the resonances become parametric �cf.
�25��. Parametric resonance is more complicated and much
less studied than nonlinear resonance. Nevertheless, the main
mechanism for the onset of global chaos remains the same,
namely, the combination of the reconnection between reso-
nances of the same order and of their overlap in energy with
the chaotic layers associated with the barriers. At the same
time, the frequencies of the main spikes in hgc�� f� may
change �though still being related to �m�. We consider below
the example when the periodically driven parameter is the
parameter � in Eq. �1� �46�. The Hamiltonian reads as

H = p2/2 + �� − sin�q��2/2,

� = �0 + h cos�� ft�, �0 = const � 1. �71�

The term ��−sin�q��2 /2 in H �71� may be rewritten
as ��0−sin�q��2 /2+ ��0−sin�q��h cos�� ft�+h2 cos2�� ft� /2.
The last term in the latter expression does not affect the
equations of motion. Thus, we end up with an additive per-
turbation ��0−sin�q��h cos�� ft�. In the asymptotic limit �0
→0, the nth-order Fourier component of the function ��0
−sin�q�� can be shown to differ from zero only for the orders
n=2,6 ,10, . . .. Therefore one may expect the main spikes in
hgc�� f� to be at frequencies twice as large as those for the
dipole perturbation �2�.

�sp
�j� � 2�s

�j� � 2�2j − 1��m, j = 1,2,3, . . . . �72�

This well agrees with the results of simulations �Fig. 13�.
Moreover, the asymptotic theory for the dipole perturba-

tion may be immediately generalized to the present case: it is
necessary only to replace the Fourier component of the co-
ordinate q by the Fourier component of the function ��0
−sin�q�� as follows:

��0 − sin�q��n = � 4

�n
at n = 2�2j − 1� ,

0 at n � 2�2j − 1� ,

j = 1,2,3, . . . ,

�0 → 0, �73�

�cf. Eq. �12� for qn�. We obtain

�sp0 � �sp0
�n+2/4� = n

�

2 ln� 4e

�0
� ,

hsp0 � hsp0
�n+2/4� = n

c�

8

�0

ln� 4e

�0
� ,
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n = 2,6,10, . . . , �0 → 0, �74�

where c is given in Eqs. �50� and �51�.
For �0=0.2, Eq. �74� gives, for the first spike, values

differing from the simulation data by about 3% for the fre-
quency and by about 10% for the amplitude. Thus, the
lowest-order formulas accurately describe the first spike even
for a moderately small �.

�5� One more generalization relates to multidimensional
Hamiltonian systems with two or more saddles with different
energies: the perturbation may not necessarily be time peri-
odic, in this case. The detailed analysis will be done else-
where.

Finally, we point out some analogy between the facilita-
tion of global chaos onset described in our work and the
so-called stochastic percolation in 2D Hamiltonian systems
described in �47�: the merging of internal and external cha-
otic zones is also relevant there, like in our case. However,
both the models and the underlying mechanisms are very
different. Namely, the problem studied in �47� is not of the
zero-dispersion type; and the two dimensionality is inher-
ently important. Let us turn now to a few detailed examples
of applications of the facilitation of global chaos onset.

A. Electron gas in a magnetic superlattice, spinning pendulum,
and cold atoms in an optical lattice

The first application relates to a classical electron gas in a
magnetic superlattice �19–24�, where the electrons may be
considered as noninteracting quasiparticles moving on a

plane perpendicular to the magnetic field spatially periodic in
one of the in-plane directions �we denote it as the x direc-
tion�. Then the electron motion in the x direction is described
by the Hamiltonian �1� in which q and p are the scaled elec-
tron coordinate x and the generalized momentum px, respec-
tively, while the parameter � is proportional to the reciprocal
amplitude of the external magnetic field B−1 and to the gen-
eralized momentum py in the second �perpendicular to x�
in-plane direction: see for details �6,19,20�. Note that py re-
mains constant during the motion �19,20�.

If an ac electric field is applied in the x direction, then the
model �2�-�1� becomes relevant. The dc conductivity in the x
direction is proportional to the fraction of electrons that can
take part in the unbounded motion in the x direction. This
fraction, in turn, significantly grows as the range of energies
involved in the unbounded chaotic transport increases
�19,20�.

If electrons move in vacuum �48�, then it may be possible
to inject a beam of electrons which possesses the same ve-
locity. In this case, the parameter � in the model �1� has
some certain value, so that the results obtained in the previ-
ous sections are directly applicable. The spikes in hgc�� f�
mean a drastic increase of the dc conductivity occurring at a
very weak amplitude of the ac electric field. The frequency
of the ac field should be close to one of the spike frequen-
cies. The effect is especially pronounced for the first spike,
i.e., when �s

�1��� / �2 ln�4e /���.
If the electron motion takes place in a semiconductor

�19–22�, then the velocity in the y direction is necessarily
statistically distributed. The same concerns the parameter �
then. This might seem to smear the effect: cf. �19� where the
conventional scenario of the onset of global chaos was ex-
ploited. However, in the case of the zero-dispersion scenario
suggested in our paper, it typically should not be so. Indeed,
a statistical distribution of the velocity typically decreases
exponentially sharply as the velocity exceeds some charac-
teristic value vc: for high temperature T, the Boltzmann dis-
tribution of energy is relevant and, therefore, vc��T; for low
temperatures, the Fermi distribution is relevant and, there-
fore, vc��EF where EF is the Fermi energy. On the other
hand, in the range of small �, the function ln�1 /�� does not
significantly change even if � changes by a few times.
Hence, if �c�1 �where �c denotes the � value correspond-
ing to vc�, then the frequency �s

�1� of the partial �i.e., for a
given value of vy� first-order spike is nearly the same for
most of the velocities in the relevant range vy �vc, and it is
approximately equal to �c�� / �2 ln�4e /�c��. Similarly,
hs

�1��hc��c�c /25. Thus, as a function of � f for fixed h
�hc, the dc conductivity should have a sharp maximum for
� f ��c.

If the parameter � is time dependent �e.g., if the external
magnetic field has an ac component and/or there is an ac
electric force perpendicular to the x direction�, then the ap-
plications may be similar, with the only difference that the
values of � f and h in the minima of the main spikes differ
from those for the additive perturbation �see Fig. 13 and the
related discussion�.

The results of the present paper may also be of direct
relevance for a pendulum spinning about its vertical axis
�18�, provided the friction is small. The periodic driving may
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FIG. 13. The diagram analogous to that in Fig. 4 but for the
system �71� �with �0=0.2�.
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be easily introduced mechanically, or electrically if the pen-
dulum is electrically charged, or magnetically if the pendu-
lum includes a ferromagnetic material.

Finally, we mention in this subsection that potentials simi-
lar to U�q� �Eq. �1��, i.e., periodic potentials with two differ-
ent height barriers per period, may readily be generated for
cold atoms by means of optical lattices �49�. The dissipation
may be suppressed by means of the detuning from the atomic
resonance �49�. Then the results of our paper are also of
direct relevance to such systems.

B. Noise-induced escape

Consider the noise-induced escape over a potential barrier
in the presence of a nonadiabatic periodic driving. For a
moderately weak damping, such a driving decreases the ac-
tivation barrier due to the resonant pushing the system in the
range of resonant energies �50�. If the damping is even
smaller, the decrease of the activation barrier becomes larger,
due, however, to a different mechanism, typically related to
the chaotic layer associated with the separatrix of the unper-
turbed system �6,16�. The lower energy boundary of the layer
is smaller than the potential barrier energy, so it is sufficient
that the noise pulls the system right to this boundary �rather
than to the very top of the potential barrier�, after which the
system may escape over the barrier purely dynamically. If
the eigenfrequency as a function of the energy possesses a
local maximum, then the effect may be even more pro-
nounced �6,51�: the decrease of the activation barrier may
become comparable to the potential barrier at unusually
small amplitudes of the driving, provided the driving fre-
quency is close to the extremal eigenfrequency. One of the
main mechanisms of the latter effect is closely related to
phenomena discussed in the present paper. In the case of
escape over two barriers of different heights, the effect
should become even more pronounced due to the mechanism
responsible for the spikes of hgc�� f� studied in the present
paper. If the potential is periodic, e.g., like in optical lattices
�49�, the effect may lead to a drastic acceleration of the spa-
tial diffusion.

C. Stochastic web

Our results may be applied to the stochastic web forma-
tion �3,52–54�. If a harmonic oscillator is perturbed by a
plane wave whose frequency is equal to the oscillator eigen-
frequency or its multiple, then the perturbation plays two
roles �3,53�. On one hand, due to the resonance with the
oscillator, it transforms the structure of the phase space of the
oscillator, leading to an infinite number of cells divided by a
unique separatrix. It has the form of a web of an infinite
radius. On the other hand, the perturbation “dresses” this
separatrix by an exponentially narrow chaotic layer �it is
sometimes called “stochastic” layer�. Such a weblike layer is
called the stochastic web. It may lead to chaotic transport of
the system for rather long distances both in coordinate and in
energy.

In the case when either the resonance is not exact and/or
the unperturbed oscillator possesses some nonlinearity, the
perturbation generates many separatrices embedded into each

other �3,54� rather than one single infinite weblike separatrix.
Then a significant chaotic transport in energy may arise only
if the magnitude of the perturbation exceeds some critical
value corresponding to the overlap of chaotic layers associ-
ated, at least, with two neighboring separatrices. And, still,
the transport in energy remains limited since the width of the
chaotic layer around each separatrix sharply decreases as the
energy increases. It can be shown �43� that some types of
additional time-periodic perturbation lead to a low-frequency
dipole perturbation of the resonance system �cf. the para-
graph preceding Eq. �70��. The structure of separatrices in
the reduced system possesses properties similar to that of the
system considered in the present paper. Indeed, in the region
between the separatrices, the resonance system performs
regular oscillations, and the frequency of such oscillations,
as a function of the value of the resonance Hamiltonian, is
equal to zero at each of the separatrices. Thus, it necessarily
possesses a local maximum between energies corresponding
to any two neighboring separatrices, like in the case consid-
ered in the present paper. If the additional perturbation has an
optimal frequency related to one of these local maxima, then
the overlap of chaotic layers associated with neighboring
separatrices is greatly facilitated, similar to the case consid-
ered in the present paper. Moreover, the local maximum of
the eigenfrequency changes from pair to pair of separatrices
weakly, so that if the magnitude of the auxiliary perturbation
exceeds the critical value even slightly the simultaneous
overlap between many chaotic layers may occur. Then, the
distance of the chaotic transport in energy greatly increases.

Similar applications are relevant for the so-called homo-
geneous �sometimes called periodic� stochastic webs �3,52�
and many other weblike stochastic structures �3�. Beside
classical systems, stochastic webs may arise in quantum sys-
tems too. It was recently demonstrated, both theoretically
�55� and experimentally �56�, that the stochastic web may
play a crucial role in quantum electron transport in semicon-
ductor superlattices subjected to stationary electric and mag-
netic fields. Due to the spatial periodicity with a period of
about a few nanometers, the system possesses narrow mini-
bands in the electron spectrum. It turns out that the descrip-
tion of the electron transport in the lowest miniband may be
approximated by the model of a classical harmonic oscillator
driven by a plane wave. The role of the harmonic oscillator is
played by the cyclotron motion while the wave arises due to
the interplay between the cyclotron motion and Bloch oscil-
lations. If the cyclotron and Bloch frequencies are commen-
surate, then the phase space of such a system is threaded by
a stochastic web. This gives rise to the delocalization of elec-
tron orbits, which leads in turn to a strong increase of the
conductivity �55,56�. However, this effect occurs only when
the ratio between the electric and magnetic fields lies in the
exponentially narrow regions corresponding to nearly integer
ratios between the Bloch and cyclotron frequencies. The re-
sults of the present work suggest a method for a significant
increase of the width of the relevant regions. If the cyclotron
and Bloch frequencies are not exactly commensurate, then
the stochastic web does not arise: rather a set of embedded
separatrices arises provided the effective wave amplitude is
sufficiently large. As discussed in the previous paragraph,
even a rather weak time-periodic driving �57� of the optimal
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frequency may significantly increase the area of the phase
space involved in the chaotic transport. This may provide for
an effective control of the electron transport in such a system
and may be used for developing electronic devices that ex-
ploit the intrinsic sensitivity of chaos �cf. �56��. A similar
effect may be used also to control transmission through other
periodic structures, e.g., ultracold atoms in optical lattices
�58–60� and photonic crystals �61�.

VI. CONCLUSIONS

We have developed a new general approach for the treat-
ment of separatrix chaos. This has allowed us to create a
self-contained theory for the drastic facilitation of the global
chaos onset between adjacent separatrices of a 1D Hamil-
tonian system subject to a time-periodic perturbation. Both
the new approach and the theory of the facilitation are
closely interwoven in our paper but, at the same time, each
of these two items is relevant even on its own. That is why
we summarize them separately.

�I� The new approach for separatrix chaos. The approach
is based on the separatrix map analysis which uses the char-
acteristic property of the dependence of the frequency of
eigenoscillation on energy in the vicinity of a separatrix: the
frequency keeps nearly a constant value even if the deviation
of the energy from the separatrix strongly varies within a
given scale of the deviation. Due to this, the separatrix map
evolves along the major part of the chaotic trajectory in a
regularlike way. The deviation of the chaotic trajectory from
the separatrix may vary along the regularlike parts of the
trajectory in a much wider range than along the irregular
parts.

In the case of resonant perturbation, we match the sepa-
ratrix map analysis and the resonant Hamiltonian approxima-
tion. This allows us, in particular, to find the boundaries of
the chaotic layers in the phase space, which well agrees with
computer simulations �Fig. 8�. The latter theory has been
successfully applied by us to the problem of the global chaos
onset in the double-separatrix case, which is summarized in
the item II below. Other applications and generalizations of
the approach include, in particular, the following:

�1� It may be applied to single-separatrix cases. In particu-
lar, our theory predicts �14� that the maximal width of the
separatrix chaotic layer in energy is typically �h, in contrast
with former theories �2–5� which assume that the maximal
width is �h.

�2� It allows one to analyze the transport within the layer.
�3� It may be generalized for a nonresonant perturbation

and for a higher dimension.
�II� The facilitation of the global chaos onset. We have

considered in detail the characteristic example of a Hamil-
tonian system possessing two or more separatrices, subject to
a time-periodic perturbation. The frequency � of oscillation
of the unperturbed motion necessarily possesses a local
maximum �m as a function of energy E in the range between
the separatrices. It is smaller than the frequency �0 of
eigenoscillation in the stable state of the Hamiltonian system
by a factor

R � ln� 1

�
�, � �

�U

U
, �75�

where �U is the difference of the separatrice energies, while
U is the difference between the upper separatrix energy and
the stable state energy.

If ��1, the function ��E� is close to �m for most of the
energy range between the separatrices: in the asymptotic
limit �→0, ��E� approaches a rectangular form. Besides,
the amplitude qn of the nth Fourier harmonic of the oscilla-
tion asymptotically approaches a nonsmall constant value in
the whole energy range between separatrices. These two
properties are responsible for most of the characteristic fea-
tures of the global chaos onset in between the separatrices.
The most striking one is a drastic facilitation of the global
chaos onset when the perturbation frequency � f approaches
�m or its multiples: the perturbation amplitude hgc required
for global chaos possesses, as a function of the perturbation
frequency � f, deep spikes close to �m or its multiples.

On the basis of the theory for the boundaries of the cha-
otic layers, we have developed a self-consistent asymptotic
theory for the spikes in the vicinity of the minima. In par-
ticular, the explicit asymptotic expressions for the very
minima are given in Eqs. �52� and �55�. The minimal ampli-
tude hgc is smaller than the typical hgc for � f beyond the
close vicinity of �m by a factor �10R�10 ln�1 /��. The
theory well agrees with the simulation results.

We have also found the mechanisms responsible for the
spike wings �Figs. 9 and 11�. The theory well fits the simu-
lations �Fig. 10�. The asymptotic shape of the spike is uni-
versal: it is described by Eq. �67� �Fig. 12�.

The facilitation of the global chaos onset may have the
following applications, in particular:

�1� drastic increase of the dc conductivity of a 2D electron
gas in a 1D magnetic superlattice;

�2� significant decrease of the activation barrier for noise-
induced escape over double or multibarrier structures, that
may lead to a drastic acceleration of the diffusion in periodic
structures; and

�3� strong facilitation of the stochastic web formation.
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APPENDIX: SEPARATRIX MAP ANALYSIS

The chaotic layers of the system �2� associated with the
separatrices of the unperturbed system �1� are described here
by means of the separatrix map. To derive the map, we fol-
low the method described in �3�, but the analysis of the map
significantly differs from existing ones �2–5,15� �cf. also the
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recently published paper �17� where the analysis of the map
has some similarity to ours but still differs significantly�.
Using our approach, we are able to calculate the chaotic
layer boundaries in the phase space �rather than only in en-
ergy�, throughout the resonance frequency ranges, and we
can quantitatively describe the transport within the layer in a
manner different from existing ones �cf. �15,62�, and refer-
ences therein�. We present below a detailed consideration of
the lower chaotic layer while the upper layer may be consid-
ered similarly and we present just the results for it.

1. Lower chaotic layer

a. Separatrix map

The typical function q̇�t� for the trajectory close to the
inner separatrix �the separatrix corresponding to the lower
potential barrier� is shown in Fig. 14. One can resolve pulses
in q̇�t�. Each of them consists of two approximately antisym-
metric spikes �63�. The pulses are separated by intervals dur-
ing which 	q̇	 is relatively small. Generally speaking, succes-
sive intervals differ from each other. Let us introduce the pair
of variables E and � as follows:

E � H0, � � � ft + �a, �A1�

where the constant �a may be chosen arbitrarily.
The energy E changes only during the pulses of q̇�t� and

remains nearly unchanged during the intervals between the
pulses, when 	q̇�t�	 is small �3�. We assign numbers i to the
pulses and introduce the sequences of �Ei ,�i� corresponding
to initial instants of pulses ti. In such a way, we obtain the
following map �cf. �3��:

Ei+1 = Ei + �Ei,

�i+1 = �i +
� f��3 − sgn�Ei+1 − Eb

�1���
2��Ei+1�

,

�Ei � h�
ith pulse

dtq̇�t�cos�� ft� , �A2�

where �ith pulse means integration over the ith pulse.
Before deriving a more explicit expression for �Ei, we

make the following two remarks.
�1� Let us denote with ti� the instant within the ith pulse

when q̇ is equal to zero �Fig. 14�. The function q̇�t− ti�� is an
odd function within the ith pulse and it is convenient to
transform the cosine in the integrand in �Ei �Eq. �A2�� as

cos�� ft� � cos�� f�t − ti�� + � fti��

� cos�� f�t − ti���cos�� fti�� − sin�� f�t − ti���sin�� fti�� ,

and to put �a=� f�ti�− ti�, so that �i�� fti�.
�2� Each pulse of q̇ contains one positive and one negative

spike. The first spike can be either positive or negative. If E
changes during the given nth pulse so that its value at the end
of the pulse is smaller than Eb

�1�, then the first spikes of the
ith and �i+1�st pulses have the same signs. On the contrary,
if E at the end of the ith pulse is larger than Eb

�1�, then the
first spikes of the ith and �i+1�st pulses have opposite signs.
Note that Fig. 14 corresponds to the case when the energy
remains above Eb

�1� during the whole interval shown in the
figure. This obviously affects the sign of �Ei, and it may be
explicitly accounted for in the map if we introduce a new
discrete variable �i= �1, which characterizes the sign of q̇
at the beginning of a given ith pulse,

�i � sgn�q̇�ti�� , �A3�

and changes from pulse to pulse as

�i+1 = �i sgn�Eb
�1� − Ei+1� . �A4�

With account taken of the above remarks, we can rewrite the
map �A2� as follows:

Ei+1 = Ei + �ih��low� sin��i� ,

�i+1 = �i +
� f��3 − sgn�Ei+1 − Eb

�1���
2��Ei+1�

,

�i+1 = �i sgn�Eb
�1� − Ei+1� ,

��low� � ��low��� f� = − �i�
ith pulse

dtq̇�t − ti��sin�� f�t − ti���

� − 2�i�
ti�

ti+1

dtq̇�t − ti��sin�� f�t − ti��� . �A5�

The map similar to Eq. �A5� was introduced for the first
time in �64�, and it is often called the Zaslavsky separatrix
map. Its mathematically rigorous derivation may be found,
e.g., in the recent major mathematical review �15�. The latter
review describes also generalizations of the Zaslavsky map
as well as other types of separatrix maps. The analysis pre-
sented below relates immediately to the Zaslavsky map but it
is hoped to be possible to generalize it for other types of the
separatrix maps too.

t’i t’i+1t’i−1 ti ti+1ti−1

0

ve
lo

ci
ty

,
dq

/d
t

time, t

FIG. 14. Schematic example of the time dependence of the ve-
locity of the perturbed system �thick solid line� in the case when the
energy of motion varies in close vicinity of the top of the lower
potential barrier. The dashed line marks the zero level of the veloc-
ity. Pulses of the velocity are schematically singled out by the par-
allelograms �drawn by a thin solid line�. The two sequences of time
instants �. . . , ti−1 , ti , ti+1 , . . . � and �. . . , ti−1� , ti� , ti+1� , . . . � correspond to
the beginnings and centers of the pulses, respectively.
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The variable ��low� introduced in Eq. �A5� will be conve-
nient for further calculations since it does not depend on i in
the lowest-order approximation. A quantity like �l
�h 	��low�	 is sometimes called the separatrix split �4� since it
is conventionally assumed that the maximal deviation of en-
ergy on the chaotic trajectory from the separatrix energy is of
the order of �l �2–5�. Though we shall also use this term, we
emphasize that the maximal deviation may be much larger.

Dynamical chaos appears in the separatrix map �A5� be-
cause ��E→Eb

�1��→0. Various heuristic criteria were sug-
gested for the estimate of the chaotic layer width in energy
�2–5�. Frequencies relevant to our problem are much smaller
than the reciprocal width of the spikes of q̇�t�. For such fre-
quencies, all these criteria �2–5� give

	E − Eb
�1�	 �

� f

�0
h	��low�	, � f � �0 � 1, �A6�

where �0 is the frequency of eigenoscillation at the bottom
of the potential well.

The estimate �A6� was used in our earlier theory �12�. But
we found later that, for the case of small � f, the aforemen-
tioned criteria were insufficient, so that the estimate �A6�
was incorrect �65� �cf. also �66,67��. Moreover, to search a
uniform width of the layer is incorrect in cases like ours,
where the width strongly depends on the angle. At the same
time, the lowest-order formulas for the spike minimum
�hs ,�s� are not affected by this, so that the results of �12�
�with only the lowest-order formulas� are correct. Still, the
higher-order corrections �quite significant for hs

�j� if � is
moderately small� would be incorrect if they were calculated
on the basis of the estimate �A6�. Besides, the paper �12� did
not address the intriguing question: why does even a small
excess of h over hgc�� f� result in the onset of chaos in a large
part of the phase space between the separatrices, despite the
fact that the width of the chaotic layers associated with the
nonlinear resonances is exponentially small for h=hgc�� f�?
The analysis of the separatrix map presented below resolves
these important problems.

In the adiabatic limit � f →0, the excess of the upper
boundary Ecl

�1� of the lower layer over the lower barrier Eb
�1�

does not depend on angle and equals 2�h �65� �cf. also �66��.
But � f relevant for the spike of hgc�� f� cannot be considered
as an adiabatic frequency, despite its smallness, because it is
close to �m or to its multiple while all energies at the bound-
ary lie in the range where the eigenfrequency is also close to
�m.

� f � �2j − 1��m � �2j − 1���Ecl
�1��, j = 1,2,3, . . . .

�A7�

The validity of Eq. �A7� �confirmed by the results� is
crucial for the description of the layer boundary in the rel-
evant case.

b. Separatrix split

Let us explicitly evaluate ��low�. Given that the energy is
close to Eb

�1�, the velocity q̇�t− ti�� in ��low� �Eq. �A5�� may be
replaced by the corresponding velocity along the separatrix

associated with the lower barrier, q̇s
�low��t− ti��, while the up-

per limit in the integral may be replaced by infinity. Besides,
in the asymptotic limit �→0, the interval between spikes
within the pulse becomes infinitely long �63� and, therefore,
only short ���0

−1� intervals corresponding to the spikes con-
tribute to the integral in ��low� �Eq. �A5��. In the scale � f

−1,
they may be considered just as two “instants” as follows:

tsp
�1,2� − ti� � �

�

4�m
, � → 0. �A8�

In the definition of ��low� �Eq. �A5��, we substitute the argu-
ment of the sine by the corresponding constants for the posi-
tive and negative spikes, respectively, as follows:

��low� � 2 sin��� f

4�m
��

positive spike
dtq̇s

�low��t − ti��

� 2� sin��� f

4�m
� ,

� → 0. �A9�

In the derivation of the first equality in Eq. �A9�, we have
also taken into account that the function q̇s

�low��x� is odd. In
the derivation of the second equality in Eq. �A9�, we have
taken into account that the right turning point of the relevant
separatrix is the top of the lower barrier and the distance
between this point and the left turning point of the separatrix
approaches � in the limit �→0.

For the frequencies relevant to the minima of the spikes of
hgc�� f�, i.e., for � f =�s

�j���2j−1��m, we obtain

��low���s
�j�� � 2� sin��2j − 1�

�

4
� = �2��− 1���2j−1�/4�,

j = 1,2,3, . . . , � → 0. �A10�

For moderately small �, it is better to use the more accu-
rate formula

��low��� f� = 2�
0

�

dtq̇s
�low��t�sin�� ft� , �A11�

where the instant t=0 corresponds to the turning point of the
separatrix to the left from the lower barrier, i.e., q̇s

�low��t=0�
=0 while q̇s

�low��0 for all t�0. The dependence 	��low��� f�	
by Eq. �A11� is shown for �=0.2 in Fig. 15�a�. For small
frequencies, the asymptotic formula �A9� well fits the for-
mula �A11�.

c. Dynamics of the map

Consider the dynamics of the map �A5�, when � f is close
to the spikes minima: � f �n�m where n�2j−1 while j
=1,2 ,3 , . . .. Let the energy at the step i=−1 be equal to Eb

�1�.
The trajectory passing through the state with this energy is
chaotic since ���E��−1 diverges as E→Eb

�1� and, therefore,
the angle �−1 is not correlated with the angle on the previous
step �−2. The quantity �−1 is not correlated with �−2 either.
Thus, sin��−1� may take any value in the range �−1,1� and
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�−1 may equally take the values 1 or −1. Therefore, the en-
ergy may change on the next step by an arbitrary value in the
interval �−h 	��low� 	 ,h 	��low� 	 �. Thus, E0−Eb

�1� may have a
positive value �h 	��low�	 �68�. Then, the approximate equal-
ity n��E0���m holds, provided the value of h is from the
relevant range. Allowing for this and recalling that we are
interested only in those realizations of the map such that
E0�Eb

�1�, the relevant realization of the map i=−1→ i=0
may be written as

E0 = Eb
�1� + �−1h��low�sin��−1� = Eb

�1� + h	��low� sin��−1�	 ,

�0 � �−1 + n� ,

�0 = − �−1. �A12�

One may expect that the further evolution of the map will
approximately follow, for some time, the trajectory of the
system �4� with the initial energy E0 �Eq. �A12��, and with an

arbitrary �−1 and initial slow angle �̃ somehow related to
�0��−1+n�. Let us prove this explicitly.

Consider two subsequent iterations of the map �A5�: 2i
→2i+1 and 2i+1→2i+2 with an arbitrary i�0. While do-
ing this, we shall assume the validity of Eq. �A7� �it will be
clarified below when this is true� from which it follows that
�i� ��Ek+1����Ek�, and �ii� �k+1−�k�n���2j−1��. It will
follow from the results that the neglected corrections are
small in comparison with the characteristic scales of the

variation of E and � �cf. the conventional treatment of the
nonlinear resonance dynamics �1–6��. Besides, it follows
from Eq. �A5� that, while the energy remains above the bar-
rier energy, �k oscillates, so that �2i=�0 and �2i+1=−�0.
Then,

E2i+1 = E2i + �0h��low� sin��2i� ,

�2i+1 = �2i +
� f

��E2i+1�
� � �2i + n� + �

� f − n��E2i�
��E2i�

,

�A13�

E2i+2 = E2i+1 − �0h��low� sin��2i+1�

= E2i+1 + �0h��low� sin��2i+1 − n��

� E2i + �02h��low� sin��2i� ,

�2i+2 = �2i+1 +
� f

��E2i+2�
� � �2i + 2�n + 2�

� f − n��E2i�
��E2i�

�A14�

�the second equality in the map for E2i+2 takes into account
that n is odd so that sin��−n��=−sin����.

The quantity �2i+2−�2i−2�n is small, so the map 2i
→2i+2 �Eq. �A14�� may be approximated by differential
equations for E2i and �̃2i��2i−2�ni as follows:

dE2i

d�2i�
= �0h��low� sin��̃2i� ,

d�̃2i

d�2i�
=

�

��E2i�
�� f − n��E2i�� ,

�̃2i � �2i − 2�ni . �A15�

Let us �i� use for ��low� the asymptotic formula �A10�, �ii�
take into account that the increase of i by 1 corresponds to
the increase of time by � /��E�, and �iii� transform from the

variables �E , �̃� to the variables �I , �̃�n��1−�0� /2− �̃�.
Equations �A15� reduce then to

dI

dt
= − h�2�− 1��n/4� sin��̃� ,

d�̃

dt
= n� − � f ,

�̃ � n�
1 − �0

2
− �̃, n � 2j − 1. �A16�

Equations �A16� are identical to the equations of motion
of the system �4� in the lowest-order approximation, i.e., to
the Eqs. �14� where qn is replaced by its asymptotic value
�12� and the last term in the right-hand side of the second
equation is neglected, being of higher order in comparison
with the term n�−� f.

Apart from the formal identity of Eqs. �A16� and �14�, �̃

in Eq. �A16� and �̃ in Eqs. �14� are identical to each other.
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FIG. 15. The theoretical estimates for the normalized separatrix
split �for �=0.2� as a function of the perturbation frequency, for the
lower and upper layers in �a� and �b�, respectively. The solid lines
are calculated by Eqs. �A11� and �A43� �for �a� and �b�, respec-
tively� while dashed lines represent asymptotic expressions �A9�
and �A44�, respectively.
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Indeed, the instant ti� necessarily corresponds to a turning
point �see Fig. 14� while the corresponding � is equal to 2�i
or �+2�i for the right and left turning point, respectively

�see Eq. �4��, i.e., �=2�i+��1−�i� /2, so that �̃�14��n�

−� ft=n��1−�� /2− �̃� �̃�A16�.
The relevant initial conditions for Eq. �A16� follow from

Eq. �A12� and from the relation between �̃ and � as follows:

I�0� = I�E = Eb
�1� + h�2�	sin��̃�0��	� , �A17�

while �̃�0��n��1−�0� /2−�0 may be an arbitrary angle
from the ranges where

�− 1��n/4� sin��̃�0�� � 0. �A18�

For moderately small �, it is better to use the more accu-
rate dynamic equations �14� instead of Eqs. �A16� and the
more accurate initial value of action instead of Eq. �A17�.

I�0� = I�E = Eb
�1� + �l	sin��̃�0��	�, �l � h	��low�	 ,

�A19�

with ��low� calculated by Eq. �A11�.
We name the quantity �l 	sin��̃�	 the generalized separatrix

split �GSS� for the lower layer. Unlike the conventional sepa-

ratrix split �l �4�, it is angle dependent. The curve I��̃�
= I�E=Eb

�1�+�l 	sin��̃� 	 � may be called then the GSS curve

for the lower barrier and denoted as IGSS
�l� ��̃�.

Finally, let us investigate an important issue: whether the
transformation from the discrete separatrix map �i.e., Eqs.
�A13� and �A14�� to the differential equations �A15� is valid
for the very first step and, if it is so, for how long it is valid
after that. The transformation is valid as long as ��Ek�
�n� f, i.e., as long as Ek is not too close to the barrier energy
Eb

�1�. At the step k=0, the system stays at the GSS curve, with

a given �random� angle �̃�0� from the range �A18�. Thus, at
this stage, the relation �A7� is certainly valid �for the relevant
range of h and for any angle except from the vicinity of the
multiples of ��.

The change of energy at the next step is positive too.

E1 − E0 � �0h��low� sin��̃0� � − �−1h��low� sin��̃−1 − n��

= �−1h��low� sin��̃−1� � E0 − E−1 � 0.

This may also be interpreted as a consequence of the first
equation in Eqs. �A16� and of the inequality �A18�.

Hence, Eq. �A7� is valid at the step k=1 too. Similarly,
one can show that E2−E1�0, etc. Thus, the transformation
�A13�, �A14�→�A15� is valid at this initial stage indeed, and
the evolution of �E , �̃� does reduce to the resonant trajectory
�14� with an initial angle from the range �A18� and the initial
action �A19�. This lasts until the resonant trajectory meets

the GSS curve in the adjacent � range of �̃, i.e., at t such that

the state �I�t� , �̃�t�� satisfies the conditions as follows:

I�t� = IGSS
�l� ��̃�t��, ��̃�t�/�� − ��̃�0�/�� = 1, �A20�

here, �...� in the second equality means an integer part.

At this instant, the absolute value of the change of energy
Ek in the separatrix map �A13� is equal to Ek−Eb

�1� �just be-
cause the state belongs to the GSS curve� but the sign of this
change is negative since the sign of sin��k� is opposite to the
sign of sin��0�. Therefore, at the step k+1, the system gets to
the very separatrix, and the regularlike evolution stops: at the
next step of the map, the system may either again get to the
GSS curve with a new �random� angle from the range �A18�
and start a new regularlike evolution as described above, or it
may get to the similar GSS curve below the barrier and start
an analogous regularlike evolution in the energy range below
the barrier, until it stops in the same manner as described
above, etc.

This approach makes it possible to describe all features of
the transport within the chaotic layer. Their detailed descrip-
tion will be done elsewhere while, in the present context, it is
most important to describe the upper outer boundary of the
layer.

d. Boundary of the layer

We may now analyze the evolution of the boundary of the
layer as h grows. Some of the evolution stages are illustrated
by Figs. 8, 9, and 16. It follows from the analysis carried out

in the previous subsection that any state �in the I-�̃ plane�
lying beyond the GSS curve but belonging to any trajectory
following Eqs. �14� which possesses common points with the
GSS curve belongs to the chaotic layer: the system starting
from such a state will get, sooner or later, to the separatrix,
where the chaotization will necessarily occur. Therefore, the
upper boundary of the chaotic layer coincides with the tra-
jectory following Eqs. �14� with the initial action �A19� and

an initial angle �̃�0� from the range �A18� such that the
trajectory deviates from the barrier energy more than a tra-
jectory �14�-�A18�-�A19� with any other initial angle does.
There may be only two topologically different options for
such a trajectory: either it is the trajectory tangent to the GSS
curve, or it is the separatrix trajectory which intersects the
GSS curve �some schematic examples are shown in Figs.
16�a� and 16�b�, respectively; some real calculations are
shown in Figs. 8 and 9�.

1. Relatively small h

Consider first values of h which are large enough for the
condition �A7� to be satisfied �the explicit criterion will be
given in Eq. �A31�� but which are smaller than the value
hcr

�l��hcr
�l��� f� determined by Eq. �41� �its meaning is ex-

plained below�. The further analysis within this range of h
differs for the ranges of � f relevant to odd and even spikes,
and we consider them separately.

Odd spikes. The relevant frequencies are

� f � n�m, n � 2j − 1, j = 1,3,5, . . . . �A21�

Let us seek the state �It
�l� , �̃t

�l�� �with �̃t
�l� within the range

�0,��� where the resonant trajectory curve is tangent to the
GSS curve. With this aim, we equal both the actions and the
derivatives of both curves. The equality of actions immedi-

ately yields It
�l� via �̃t

�l�: It
�l�� I�E=Et

�l��= IGSS
�l� ��̃t

�l��. The de-
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rivative along the GSS curve is obtained by differentiation of

IGSS
�l� ��̃�. The derivative along a resonant trajectory can be

found dividing the first dynamic equation in Eqs. �14� by the

second one. Substituting the expression of It
�l� via �̃t

�l�into the
equality of the derivatives, we obtain a closed equation for

�̃t
�l�, and its solution immediately gives us the relevant �̃�0�

as follows:

�	��low�	cos��̃t
�l���1 −

� f

n��E�
− h

dqn�E�
dE

cos��̃t
�l���

+ qn�E�sin��̃t
�l���

E=Et
�l�

= 0,

Et
�l� � Eb

�1� + h	��low�	sin��̃t
�l�� ,

�̃t
�l� � �0,��, n � 2j − 1, j = 1,3,5, . . . ,

�̃�0� = �̃t
�l�. �A22�

A careful analysis of the phase space structure shows that,
in the present case �i.e., when h�hcr

�l��� f� while j is odd�,
there is no separatrix of the resonant Hamiltonian �4� which
would both intersect the GSS curve and possess points above
the tangent trajectory �69�. Thus, for this range of h, the
outer boundary of the chaotic layer is formed by the tangent
trajectory, i.e., the trajectory following the dynamical equa-
tions �14� with the initial angle by Eq. �A22� and the initial
action by Eq. �A19� �Fig. 16�a��.

Let us find the lowest-order solution of Eq. �A22�. We
neglect the term 1−� f / �n��E�� �the result will confirm the
validity of this� and use the lowest-order expression for the
relevant quantities: namely, Eqs. �A10� and �12� for ��low�

and qn, respectively, and the lowest-order expression for
dqn /dE which can be derived from Eq. �11�.

dqn�E�
dE

= �− 1��n/4� �

4�2�E − Eb
�1��ln��−1�

,

n � 2j − 1, E − Eb
�1� � � → 0. �A23�

Then Eq. �A22� reduces to the following equation:

tan2��̃t
�l�� =

n�

8 ln��−1�
. �A24�

The lowest-order solution of Eq. �A24� in the range �0,��
reads as

�̃t
�l� = �− 1��n/4�� n�

8 ln�1/��
+ �

1 − �− 1��n/4�

2
. �A25�

It follows from the definition Et
�l� �Eq. �A22�� and from Eq.

�A25� that the lowest-order expression for Et
�l�−Eb

�1� reads as

Et
�l� − Eb

�1� = �l sin��̃t
�l�� =

�3/2

2

h
�ln�1/��/n

. �A26�

The next step is to find the minimal value of the energy on
the boundary of the layer, Emin

�l� . It follows from the analysis
of the dynamical equations �14� that the corresponding angle

�̃min is equal to 0 if sgn�q2j−1��0 �i.e., j=1,5 ,9 , . . .� or to �
if sgn�q2j−1��0 �i.e., j=3,7 ,11, . . .�: cf. Fig. 8�a�. Given that
the Hamiltonian �4� is constant along any trajectory �14�
while the boundary coincides with one of such trajectories,

the values of the Hamiltonian �4� in the states �I�Emin
�l� � , �̃

= �̃min� and �It
�l� , �̃t

�l�� should be equal to each other. In the
explicit form, this equality may be written as

�
Emin

�l�

Et
�l�

dE�1 −
� f

n��E�
� − h�qn�Et

�l��cos��̃t
�l��

− �− 1��n/4�qn�Emin
�l� �� = 0. �A27�
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FIG. 16. �Color online� A schematic figure illustrating the for-
mation of the boundary of the lower chaotic layer for h�hcr

�l��� f� in
the ranges of � f relevant to �a� odd, and �b� even spikes. The dashed
magenta line shows the GSS curve in the energy-angle plane:

E��̃�=EGSS
�l� ��̃��Eb

�1�+�l 	sin��̃�	. Green lines show examples of
those trajectories �14�, which have points in common with the GSS
curve. One of such trajectories �14� �shown by the thick green line�
relates to the formation of the upper boundary of the lower chaotic
layer: in �a�, the boundary is the trajectory tangent to the GSS
curve; in �b�, the boundary is the upper part of the separatrix gen-
erated by the saddle s. Yellow dots indicate the relevant common
points of the GSS curve and the thick green line. They have angles

��̃t
�l� and energy Et

�l� in the case �a�, and angles ��̃i
�l� and energy

Ei
�l� in the case �b�. The minimum and maximum deviation of en-

ergy on the boundary from the barrier energy are denoted as �min
�l�

and �max
�l� , respectively. The maximum deviation on the GSS curve is

equal to �l.
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Let us find the lowest-order solution of Eq. �A27�. As-
sume that Emin

�l� still belongs to the range of E where ��E�
��m �the result will confirm this assumption�. Then the in-
tegrand in Eq. �A27� goes to zero in the asymptotic limit
�→0 and, hence, the integral may be neglected �the result
will confirm the validity of this�. The remaining terms in Eq.
�A27� should be treated very carefully. In particular, it is
insufficient to use the lowest-order value �12� for qn since it
is the difference between qn�Et

�l�� and qn�Emin
�l� � that matters.

Moreover, the approximate equality qn�Et
�l��−qn�Emin

�l� �
�dqn�Et

�l�� /dEt
�l��Et

�l�−Emin
�l� � does not apply here either since,

as it follows from Eq. �A23�, the derivative dqn�E� /dE may
strongly vary in the range �Emin

�l� ,Et
�l�� if �Et

�l�−Emin
�l� � / �Emin

�l�

−Eb
�1���1 �the result will show that it is the case�. That is

why it is necessary to use for qn the more accurate expres-
sion �11�. Allowing for the asymptotic expression �A25� of

�̃t
�l� and keeping only the lowest-order terms, one can finally

reduce Eq. �A27� to the relation

ln� Et
�l� − Eb

�1�

Emin
�l� − Eb

�1�� =
1

2
. �A28�

Substituting here the asymptotic value of Et
�l� �Eq. �A26��, we

obtain the final lowest-order expression for the minimal
�along the boundary� deviation of the energy from the barrier
as follows:

�min
�l� � Emin

�l� − Eb
�1� = �Et

�l� − Eb
�1��/�e =

�3/2

2e1/2
h

�ln�1/��/n
.

�A29�

It is necessary and sufficient that the condition ��E�
��m is satisfied at the minimal and maximal energies of the
boundary to ensure that the second equality in Eq. �A7� holds
true, i.e., that ��E� is close to �m for all points of the bound-
ary.

At the minimal energy, this condition reads as

�m − ��Eb
�1� + �min

�l� � � �m. �A30�

Equation �A30� determines the lower limit of the relevant
range of h. The asymptotic form of Eq. �A30� is

ln���ln�1/��
h

�
ln�1/��

� 1. �A31�

We emphasize that any h of the order of hs0 �Eq. �52�� sat-
isfies this condition. In the asymptotic limit �→0, the left-
hand side of Eq. �A31� equals zero.

As for the maximal energy, it may take values up to the
energy of the lower saddle sl, i.e., Esl �Eq. �18��. Obviously,
Eq. �A7� is valid at this saddle, too.

Even spikes. The relevant frequencies are

� f � n�m, n � 2j − 1, j = 2,4,6, . . . . �A32�

In this case, qn�E� and dqn�E� /dE have different signs for
all E within the relevant range �i.e., where ��E���m,
qn�E��qn�Em��: cf. Eqs. �12� and �A23�. Then, in the
asymptotic limit �→0, Eq. �A22� for the tangency does not

have any solution for �̃t
�l� in the relevant range �70�. There

may be only solutions very close to some of � integers, and
the corresponding energies Et

�l� are very close to Eb
�1�, i.e.,

��Et
�l����m: therefore they are irrelevant.

At the same time, unlike in the case of odd spikes, there
exists a saddle with an angle

�̃s
�l� = �

1 − �− 1��n/4�

2
, �A33�

while the energy �which may be found as the appropriate
solution of Eq. �15�� lies in the relevant vicinity of the lower
barrier �Fig. 16�b��. In the lowest-order approximation, this
saddle energy reads

Es
�l� � Eb

�1� + �s, �s =
�

2�2

h

ln�ln�4e/���
. �A34�

This saddle �denoted in Fig. 16�b� as s� generates a sepa-
ratrix. Its upper whiskers go to the similar adjacent saddles

�shifted in �̃ by 2��. In the asymptotic limit �→0, the upper
whiskers are much steeper than the GSS curve and hence
they do not intersect it �71�. As concerns the lower whiskers,
they do intersect the GSS curve and, moreover, two intersec-
tions lie in the relevant energy range �Fig. 16�b��. Let us
show this explicitly. Let us write the expression for the
Hamiltonian �4� in the relevant vicinity of the barrier energy
�i.e., where �m−��E���m�, keeping, in the expression, both
the lowest-order terms and the terms of next order �in par-
ticular, we use Eq. �11� for qn�E� and take into account that
0��2−nqn�E���2 for the relevant range of E�,

H̃�I = I�E = Eb
�1� + ��,�̃�

= −

n� ln�2�

�
�

2 ln�4e

�
� + �� f −

n�

2 ln�4e

�
��2�

�
ln�4e

�
�

− �− 1��n/4�h�2�1 +

n� ln�2�

�
�

8 ln�4e

�
� �cos��̃� ,

�m − ��E + �� � �m. �A35�

The Hamiltonian H̃ should possess equal values at the
saddle s and at the intersections of the separatrix and the
GSS curve. Let us denote the angle of the intersection in the

range �0,�� as �̃i
�l�, and let us denote the deviation of its

energy Ei
�l� from Eb

�1� as �i
�l���l sin��̃i

�l��.
Assuming that 	�̃i

�l�− �̃s
�l� 	 �1 �the result will confirm this�

so that cos��̃i
�l����−1��n/4��1− ��̃i

�l�− �̃s
�l��2 /2���−1��n/4��1

− ��i
�l� /�l�2 /2���−1��n/4��1− ��i

�l� /h�2 /4�, the equality of the

values of H̃ reads as
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n

2 ln�4e

�
���s ln�2�

�s
� − �i

�l� ln�2�

�i
�l� ��

= h�2
n�

8

ln� �s

�i
�l��

ln�4e

�
� −

��i
�l��2

2�2h
. �A36�

Let us assume that, in the asymptotic limit �→0, �i
�l�

��s �the result will confirm this�. Then the left-hand side is
asymptotically smaller than the first term in the right-hand
side. So, Eq. �A36� implies, in the asymptotic limit, that the
right-hand side equals zero. Expressing h via �s from Eq.
�A34�, we finally obtain a closed transcendental equation for
�s /�i

�l�.

� �s

�i
�l�
�2

ln� �s

�i
�l�
� =

� ln� 4e

�
�

n�ln�ln� 4e

�
���2

� A .

�A37�

In the asymptotic limit �→0, the quantity A diverges
and, hence, the lowest-order asymptotic solution of Eq.
�A37� reads as

�s

�i
�l� =� 2A

ln�A�
. �A38�

Substituting here the expression �A34� for �s and the expres-
sion �A37� for A, we obtain

�i
�l� = h

1

4�n� ln�ln�4e

�
��

ln�4e

�
� . �A39�

Thus, we have proved the following asymptotic properties
of the separatrix generated by the saddle s: �1� the lower
whiskers of the separatrix do intersect the GSS curve in the
relevant range of E �i.e., where the resonant approximation is
valid� and �2� the upper whiskers of the separatrix do not
intersect the GSS curve �there is no solution of Eq. �A36� in
the range �i

�l���s�. The former property confirms the self-
consistence of the asymptotic theory for even spikes; the
latter property means that the upper outer boundary of the
lower chaotic layer is formed by the upper whiskers of the
separatrix generated by the saddle s.

Finally, we explicitly note that the minimal �along the
boundary� deviation of energy from the barrier energy occurs
right at the saddle s, i.e.,

�min
�l� = �s. �A40�

2. Relatively large h

As h grows, the boundary of the layer raises up while the
lower part of the resonance separatrix, on the contrary, goes
down. They reconnect at the critical value of h, hcr

�l�

�hcr
�l��� f�, determined by Eq. �41�, which may be considered

as the absorption of the resonance by the chaotic layer. If h
grows further, then the GSS curve and the resonance separa-
trix intersect. As a result, the trajectory starting from the state
with the angle �A22� and action �A19�, for odd spikes, or
from the saddle s, for even spikes, is encompassed by the
resonance separatrix. So, it does not form the outer boundary
of the layer anymore. Rather it forms the inner boundary, i.e.,
the boundary of the main island of the stability inside the

layer, repeated periodically in �̃ with a period 2� �cf. analo-
gous islands in the upper layer in Fig. 8�. Unless the lower
chaotic layer reconnects with the upper one, the outer bound-
ary of the lower layer is formed by the upper part of the

resonance separatrix. The relevant initial angle �̃�0� on the
GSS curve corresponds to the intersection of the GSS curve
with the resonance separatrix �cf. the analogous situation for
the upper layer in Fig. 8�.

2. Upper chaotic layer

The upper chaotic layer may be treated analogously �72�
to the lower layer. We present here only the results. Similar
to the lower-layer case, one may consider the ranges of rela-
tively small h �namely, smaller than hcr

�u��hcr
�u��� f� deter-

mined by Eq. �42�� and relatively large h �i.e., h�hcr
�u��. In

the former range, the formation of the boundary occurs in a
manner which is, in a sense, opposite to that for the lower-
layer case. For even spikes, the lower outer boundary is
formed by tangency while, for odd spikes, it is formed by the
lower part of the separatrix generated by the saddle s̃, analo-
gous to the saddle s in the lower-layer case �73�.

So, for even spikes, the angle of tangency �̃t
�u� is deter-

mined by the following equation:

�	��up�	cos��̃t
�u���1 −

� f

n��E�
− h

dqn�E�
dE

cos��̃t
�u���

− qn�E�sin��̃t
�u���

E=Et
�u�

= 0,

Et
�u� � Eb

�2� − h	��up�	sin��̃t
�u��, �̃t

�u� � �0,�� ,

n � 2j − 1, j = 2,4,6, . . . ,

�̃�0� = �̃t
�u�, �A41�

and �̃t
�u� determines the tangency energy,

Et
�u� = Eb

�2� − h	��up�	sin��̃t
�u�� , �A42�

where the quantity ��up� is described by the formula
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��up��� f� = 2�
0

�

dtq̇s
�up��t�cos�� ft� , �A43�

where q̇s
�up��t� is the time dependence of the velocity along

the separatrix associated with the upper barrier and the in-
stant t=0 is chosen so that qs

�up��t=0� is equal to the coordi-
nate of the lower barrier while q̇s

�up��0 for t� �0, � �. The
dependence 	��up��� f�	 in Eq. �A43� is shown for �=0.2 in
Fig. 15�b�.

The asymptotic form of Eq. �A43� reads as

��up� � ��up��� f� = 2� cos��� f

4�m
� . �A44�

For � f =�s
�j���2j−1��m, Eq. �A43� reduces to

��up���s
�j�� � 2� cos��2j − 1�

�

4
� = �2��− 1���2j+1�/4�,

j = 1,2,3, . . . , � → 0. �A45�

The lowest-order solution of Eq. �A41� is given in Eq.
�37�, so that Et

�u� is approximated by Eq. �38�. The maximal
energy on the lower boundary of the layer corresponds to
�̃�t�=� if j=2,6 ,10, . . . or 0 if j=4,8 ,12, . . . and is deter-
mined by Eq. �39�. The asymptotic value of the minimal
deviation from the upper barrier of the energy at the bound-
ary, �min

�u� , is given in Eq. �40�.
For odd spikes, the boundary is formed by the lower part

of the separatrix generated by the saddle s̃. The angle of the
saddle is given in Eq. �33� while the deviation of its energy
from the barrier is approximated, to the lowest-order ap-
proximation, by Eq. �34�.

As h grows, the boundary of the layer goes down while
the upper part of the upper resonance separatrix goes up.
They reconnect at h=hcr

�u��hcr
�u��� f�, as determined by Eq.

�42�, which may be considered as the absorption of the reso-
nance by the chaotic layer.

For larger h, the boundary of the layer is formed by the
lower part of the upper resonance separatrix �Fig. 8�, unless
the latter intersects the lower GSS curve �in the latter case,
hcr

�u� marks the global chaos onset�.
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