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In this review, we rederive the controversial influence functional approach of Golubev
and Zaikin (GZ) for interacting electrons in disordered metals in a way that allows us to
show its equivalence, before disorder averaging, to diagrammatic Keldysh perturbation
theory. By representing a certain Pauli factor (5 —2p°) occuring in GZ’s effective action
in the frequency domain (instead of the time domain, as GZ do), we also achieve a more
accurate treatment of recoil effects. With this change, GZ’s approach reproduces, in a
remarkably simple way, the standard, generally accepted result for the decoherence rate.
— The main text and appendices A.1 to A.3 of the present review are comparatively
brief, and have been published previously; for convenience, they are included here again
(with minor revisions). The bulk of the review is contained in several additional, lengthy
appendices containing the relevant technical details.
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1. Introduction

A few years ago, Golubev and Zaikin (GZ) developed an influence functional ap-
proach for describing interacting fermions in a disordered conductor.?”” Their key
idea was as follows: to understand how the diffusive behavior of a given electron
is affected by its interactions with other electrons in the system, which constitute
its effective environment, the latter should be integrated out, leading to an influ-
ence functional, denoted by e~ (iSr+51 ), in the path integral / D'R describing its
dynamics. To derive the effective action (25' R+ S 1), GZ devised a strategy which,
when implemented with sufficient care, properly incorporates the Pauli principle —
this is essential, since both the particle and its environment originate from the same
system of indistinguishable fermions, a feature which makes the present problem
conceptually interesting and sets it apart from all other applications of influence
functionals that we are aware of.

GZ used their new approach to calculate the electron decoherence rate 7, (T')
in disordered conductors, as extracted from the magnetoconductance in the weak
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localization regime, and found it to be finite at zero temperature,®” ’ySZ(T —
0) = vg’GZ, in apparent agreement with some experiments.® However, this re-
sult contradicts the standard view, based on the work of Altshuler, Aronov and
Khmelnitskii (AAK),'° that vﬁAK(T — 0) = 0, and hence elicited a considerable
controversy.* GZ’s work was widely questioned,'* !7 with the most detailed and
vigorous critique coming from Aleiner, Altshuler and Gershenzon (AAG)'81 and
Aleiner, Altshuler and Vavilov (AAV),2%21 but GZ rejected each critique* ¢ (see
footnote a) with equal vigor. It is important to emphasize that the debate here was
about a well-defined theoretical model, and not about experiments which do or do
not support GZ’s claim.

The fact that GZ’s final results for v5%(T) have been questioned, however, does
not imply that their influence functional approach, as such, is fundamentally flawed.
On the contrary, we show in this review that it is sound in principle, and that the
standard result WS?AK (T) can be reproduced using GZ’s method, provided that it is
applied with slightly more care to correctly account for recoil effects (i.e., the fact
that the energy of an electron changes when it absorbs or emits a photon). We
believe that this finding conclusively resolves the controversy in favor of AAK and
company; hopefully, it will also serve to revive appreciation for the merits of GZ’s
influence functional approach.

The premise for understanding how ngK can be reproduced with GZ’s methods
was that we had carried out a painfully detailed analysis and rederivation GZ’s
approach, as set forth by them in two lengthy papers from 1999 and 2000, henceforth
referred to as GZ99% and GZ00.* Our aim was to establish to what extent their
method is related to the standard Keldysh diagrammatic approach. As it turned
out, the two methods are essentially equivalent, and GZ obtained unconventional
results only because a certain “Pauli factor” (5 — 2pY) occuring in Sk was not
treated sufficiently carefully, where p° is the single-particle density matrix. That
their treatment of this Pauli factor was dubious had of course been understood
and emphasized before: first and foremost it was correctly pointed out by AAG 19
that GZ’s treatment of the Pauli factor caused their expression for vgz to aquire
an artificial ultraviolet divergence, which then produces the term v%5%, whereas no

@
such divergence is present in diagrammatic calculations. GZ’s treatment of (5 —27%)
was also criticized, in various related contexts, by several other authors.!+12:16,17,20
However, none of these works (including our own,® which, in retrospect, missed
the main point, namely recoil) had attempted to diagnose the nature of the Pauli
factor problem with sufficient precision to allow a successful remedy to be devised
within the influence functional framework.

This will be done in the present review. Working in the time domain, GZ rep-
resent (6 — 27°(t)) as 1 — 2ng[ho(t)/2T), where ng is the Fermi function and hq(t)
the free part of the electron energy. GZ assumed that ﬁo(t) does not change during

aMost relevant references can be found in the review® by Golubev, Zaikin and Schén, which gives
a useful overview of the controversy from GZ’s point of view.
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the diffusive motion, because scattering off impurities is elastic. Our diagnosis is
that this assumption unintentionally neglects recoil effects (as first pointed out by
Eriksen and Hedegard!!), because the energy of an electron actually does change
at each interaction vertex, i.e., each time it emits or absorbs a photon. The remedy
(not found by Eriksen and Hedegard) is to transform from the time to the frequency
domain, in which (8 — 25°) is represented by 1 — 2ng[h(é — )] = tanh[h(z — ©)/2T],
where hi is the energy change experienced by an electron with energy he at an
interaction vertex. Remarkably, this simple change of representation from the time
to the frequency domain is sufficient to recover véAK. Moreover, the ensuing cal-
culation is free of ultraviolet or infrared divergencies, and no cut-offs of any kind
have to be introduced by hand.

The main text of the present review has two central aims: firstly, to concisely
explain the nature of the Pauli factor problem and its remedy; and secondly, to
present a transparent calculation of 7,, using only a few lines of simple algebra.
(Actually, we shall only present a “rough” version of the calculation here, which re-
produces the qualitative behavior of 74K
quantitative agreement with AAK’s result for the magnetoconductance [with an
error of at most 4% for quasi-1-D wires], has been published in a separate analysis
by Marquardt, von Delft, Smith and Ambegaokar.2?:23 The latter consists of two
parts, referred to as MDSA-T and DMSA-II below, which use alternative routes to
arrive at conclusions that fully confirm the analysis of this review.)

We have made an effort to keep the main text reasonably short and to the point;
once one accepts its starting point [Egs. (1)—(4)], the rest of the discussion can easily
be followed step by step. Thus, as far as possible, the main text avoids technical
details of interest only to the experts. These have been included in a set of five
lengthy and very detailed appendices, B to F, in the belief that when dealing with
a controversy, all relevant details should be publicly accessible to those interested in
“the fine print”. For the benefit of those readers (presumably the majority) with no
time or inclination to read lengthy appendices, a concise appendix A summarizes
(without derivations) the main steps and approximations involved in obtaining the
influence functional.

The main text and Appendices A.1 to A.3 have already been published pre-
viously,! but for convenience are included here again (with minor revisions, and
an extra sketch in Fig. 1), filling the first 23 pages. The content of the remaining
appendices is as follows: in Appendix A.4, we address GZ’s claim that a strictly
nonperturbative approach is needed for obtaining v, and explain why we disagree
(as do many others'®2!). In Appendix B, we rederive the influence functional and
effective action of GZ, following their general strategy in spirit, but introducing
some improvements. The most important differences are: (i) instead of using the
coordinate-momentum path integral [DR [ DP of GZ, we use a “coordinates-only”
version f 25’R, since this enables the Pauli factor to be treated more accurately; and
(ii), we are careful to perform thermal weighting at an initial time ¢ty — —oo (which
GZ do not do), which is essential for obtaining properly energy-averaged expres-

(T); an improved version, which achieves
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sions and for reproducing perturbative results: the standard diagrammatic Keldysh
perturbation expansion for the Cooperon in powers of the interaction propagator
is generated if, before disorder averaging, the influence functional is expanded in
powers of (ZS’ R+ S 1)/h. In Appendix C we review how a general path integral ex-
pression derived for the conductivity in Appendix B can be rewritten in terms of
the familiar Cooperon propagator, and thereby related to the standard relations fa-
miliar from diagrammatic perturbation theory. In particular, we review the Fourier
transforms required to obtain a path integral NQEH(T) properly depending on both
the energy variable he relevant for thermal weighting and the propagation time 7
needed to traverse the closed paths governing weak localization. Appendix D gives
an explicit time-slicing definition of the “coordinates-only” path integral [ D' R used
in Appendix B. Finally, for reference purposes, we collect in Appendices E and F
some standard material on the diagrammatic technique (although this is bread-
and-butter knowledge for experts in diagrammatic methods and available elsewere,
it is useful to have it summarized here in a notation consistent with the rest of
our analysis). Appendix E summarizes the standard Keldysh approach in a way
that emphasizes the analogy to our influence functional approach, and Appendix F
collects some standard and well-known results used for diagrammatic disorder av-
eraging. Disorder averaging is discussed last for a good reason: one of the appealing
features of the influence functional approach is that most of the analysis can be
performed before disorder averaging, which, if at all, only has to be performed at
the very end.

2. Main Results of Influence Functional Approach

We begin by summarizing the main result of GZ’s influence functional approach.
Our notations and also the content of some of our formulas are not identical to those
of GZ, and in fact differ from their’s in important respects. Nevertheless, we shall
refer to them as “GZ’s results”, since we have (re)derived them (see Appendix B
for details) in the spirit of GZ’s approach.

The Kubo formula represents the DC conductivity opc in terms of a retarded
current-current correlator ([7(1), 7(2)]). This correlator can (within various approxi-
mations discussed in Appendices B.5.6, B.5.7, B.6.3 and A.3) be expressed as follows
in terms of a path integral Pgﬂg representing the propagation of a pair of electrons

with average energy he, thermally averaged over energies:

2 o .
woc =5 [ desivdo [(@)n ) [ arBlGe). ()

o RU(3)=rm  ,R°(F)=rv _
lef, 2 (7) :7[ % D' R e iS5 =55) = (iSr+5D](7) (1b)
’ RF(=3)=ry JRP (=)=

The propagator 152112,:’53(7), defined for a given impurity configuration, is written
in terms of a forward and backward path integral ?/?[ D'R between the specified
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initial and final coordinates and times. It gives the amplitude for a pair of electron
trajectories, with average energy he, to propagate from ro/ at time —7/2 to ry at 7/2
or from 71/ at time 7/2 to ro at —7/2, respectively. [The sense in which both 7 and e
can be specified at the same time is discussed in Appendix A.3, and in more detail in
Appendix C.4, Egs. (C.21) to (C.24)]. We shall call these the forward and backward
paths, respectively, using an index a = F|, B to distinguish them. 5'3 = 5’5 /B are
the corresponding free actions, which determine which paths will dominate the
path integral. The weak localization correction to the conductivity, J]%VCL, arises
from the “Cooperon” contributions to opc, illustrated in Fig. 1(b), for which the
coordinates 71, 7}, r2 and r} all lie close together, and which feature self-returning
random walks through the disordered potential landscape for pairs of paths RT/E ,
with path B being the time-reversed version of path F, i.e., RY (t3) = RB(—tg) for
ts € (—7/2,7/2). The effect of the other electrons on this propagation is encoded
in the influence functional e~ (*r+51)/" occuring in Eq. (1b). The effective action
iSk + S; turns out to have the form [for a more explicit version, see Eq. (A.7) in
Appendix A; or, for an equivalent but more compact representation, see Egs. (B.93)

Fig. 1. (a) Structure of vertices on the forward or backward contours of Keldysh perturbation
theory. F': the combinations GZK 4 E?ﬁ and GE 4 63{2 occur if vertex 4 lies on the upper forward
F4Fr F ipdp ~34p

contour. B: the combinations Zf 3G~f . and ff SGf . occur if vertex 4 lies on the lower
. B BiB °77 T4B BiB . .
contour. Arrows point from the second to first indices of propagators. (b) Sketch of a pair of time-

reversed paths connecting the points at which the current operators i,/ - jog act [cf. Eq. (1a)],

decorated by several (wavy) interaction propagators Efa/,A/K(w). In the Keldysh formalism, the

electron lines represent the electron propagators G/4(w) or G¥ (w) = tanh(fw/2T)[GF — G4 (w).
The effective action defined in Egs. (2) to (4a) in effect neglects the frequency transfers w; in
the arguments of all retarded and advanced electron Green’s functions [GR/A (e—wi—-) —
GT/A(g)], but, for every occurence of the combination £R/4(w;)GX (e — w;), retains it in the
factor tanh[fi(e — w;)/k] of the accompanying G function. The latter prescription ensures that
a crucial feature of the Keldysh approach is retained in the influence functional formalism, too,
namely that all integrals [ dw; over frequency transfer variables are limited to the range |Aw;| ST
[which is why the neglect of w; in G®/A(e — w; — ---) is justified]. In contrast, GZ also neglect
the —w; in tanh[hA(e — w;)/A] [see Sec. 4], which amounts to neglecting recoil. As a result, their
J dw; integrals are no longer limited to |hw;| < T, i.e., artificial ultraviolet divergencies occur,
which produce GZ’s temperature-independent contribution 'yg’GZ to the decoherence rate [see
Eq. (11)]. Thus, 'yg’GZ is an artefact of GZ’s neglect of recoil, as is their claimed “decoherence at
zero temperature”.
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and (B.96) of Sec. B.6.3]:

iSr(T) taa 304,/
{Sm}_"l“z /%d““/ d“’{ K} (2)

Here s, stands for sp,p = +1, and the shorthand 5304; = L[ts, — ty,, R*(t3,) —
R (t4,,)] describes, in the coordinate-time representation, an interaction propaga-
tor linking two vertices on contours a and a’. It will be convenient below to Fourier

transform to the momentum-freqency representation, where the propagators £X
and £% can be represented as follows [(d)(dq) = (dwdq)/(27)"]:

£, = [ (@a)(dg)e @R ) R G 1S ) £ @) (3a)
_, 6 —2p°) LR if o =F,

i, = [(~ 2 )L 3,40 (3b)
e [LA(0 —2")]aps, if o =B,

= /(d@)(dq)eisa/ (@-[R*(t3,)—R" (ta ,)]—®(ts, *t4a,))£’g’ (@). (3¢)

[Note the sign s,/ in the Fourier exponential in Eq. (3c); it reflects the opposite
order of indices in Eq. (3b), namely 34 for F versus 43 for B.] Here £¥ is the
Keldysh interaction propagator, while £F/5, to be used when time 4, lies on
the forward or backward contours, respectively, represent “effective” retarded or
advanced propagators, modified by a “Pauli factor” (5 —2p") (involving a Dirac-
delta Sij and single-particle density matrix [’u in coordinate space), the precise
meaning of which will be discussed below. CK , A( ) denote the Fourier transforms
of the standard Keldysh, retarded, or advanced interaction propagators. For the

screened Coulomb interaction in the unitary limit, they are given by

_ _ E% —iw [DY(w)] 1
R/—-\ __ Ar—\1* _ _ 4 — q
L3 (@) =[L5@)]" = 2 E WEY (4a)
L (@) = 2i coth(hw/2T)Im[LE (@)], (4b)
A0/-\ __ 1 ~NO [ —, 1
Ca(w) = E; —io’ Dalw) = EY—io’ (4)
Ey=Dgq’, E;=Dg +u, (4d)

where, for later reference, we have also listed the Fourier transforms of the bare
diffuson D° and Cooperon C° (where 7y is the dephasing rate of the latter in the
presence of a magnetic field, D the diffusion constant and v the density of states
per spin). Finally, £& (&) in Eq. (3c) is defined as

F/B

7!

o (@) = tanh[h(c — ©)/2T) L5 (@), (4e)
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where he is the same energy as that occuring in the thermal weighting factor
[—n/(he)] in Eq. (1a).

Via the influence functional, the effective action (2) concisely incorporates the
effects of interactions into the path integral approach. S; describes the classical
part of the effective environment, and if one would replace the factor coth(hw/2T")
in ﬁg (w) by 2T/l (as is possible for high temperatures) it corresponds to the
contribution calculated by AAK.'© With Sz, GZ succeeded to additionally also
include the quantum part of the environment, and in particular, via the Pauli
factor (5 — 27°), to properly account for the Pauli principle.

Casual readers are asked to simply accept the above equations as starting point
for the remainder of this review, and perhaps glance through Appendix A to get
an idea of the main steps and approximations involved in deriving them. Those
interested in a detailed derivation are referred to Appendix B (where S Rr/I are
obtained in Sec. B.5.8). It is also shown there [Sec. B.6] that the standard results
of diagrammatic Keldysh perturbation theory can readily be reproduced from the
above formalism by expanding the influence functional e~(*5#+51)/% in powers of
(15' r+S 1)/ k. For present purposes, simply note that such an equivalence is entirely
plausible in light of the fact that our effective action (2) is linear in the effective
interaction propagators £~, a structure that is typical for generating functionals for
Feynman diagrams.

3. Origin of the Pauli Factor

The occurence of the Pauli factor (5 —2p°) in Sk was first found by GZ in precisely
the form displayed in the position-time representation of the effective action used
in Eq. (2). However, their subsequent treatment of this factor differs from ours, in
a way that will be described below. In particular, they did not represent this factor
in the frequency representation, as in our Eq. (4e), and this is the most important
difference between our analysis and theirs.

The origin of the Pauli factor in the form given by our Eq. (4e) can easily be
understood if one is familiar with the structure of Keldysh perturbation theory.
[For a detailed discussion, see Sec. B.6.2.] First recall two exact relations for the
noninteraction Keldysh electron propagator: in the coordinate-time representation,
it contains a Pauli factor,

Gl = /dxk(éR — G5 — 20, = /dxk(s — 20 (GF— Gy (5a)
which turns into a tanh in the coordinate frequency representation:
NK (—) - AR/~ SA (-
Gy (w) = tanh(hw /27 (G (@) — G (W)] .- (5b)

Now, in the Keldysh approach, retarded or advanced interaction propagators always
occur [see Fig. 1(a)] together with Keldysh electron propagators, in the combina-
tions GX, L& or L1 3G ., where the indices denote coordinates and times.
[Likewise, the Keldysh interaction propagators always come in the combinations
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GR,.LK, or LI ;G4 . ] In the momentum-frequency representation, the combi-
nations involving G¥ therefore turn into Z,-JR/A (@) [GR - G4] qiq(é— @) tanh[h(€ —
@)/2T). Thus, in the frequency representation, the Pauli factor is represented as
tanh[/(g — @)/2T]. Here the variable he represents the energy of the electron line
on the upper (or lower) Keldysh contour before it enters (or after it leaves) an
interaction vertex at which its energy decreases (or increases) by ho [see Fig. 1(a)].
The subtraction of @ in the argument of tanh thus reflects the physics of recoil:
emitting or absorbing a photon causes the electron energy to change by hw, and
it is this changed energy /(¢ — ) that enters the Fermi functions for the relevant
final or initial states.

Of course, in Keldysh perturbation theory, k¢ will have different values from one
vertex to the next, reflecting the history of energy changes of an electron line as it
proceeds through a Feynman diagram [as illustrated in Fig. 1(b)]. It is possible to
neglect this complication in the influence functional approach, if one so chooses, by
always using one and the same energy in Eq. (4e), which then should be chosen to
be the same as that occuring in the thermal weighting factor [—n'(he)], i.e., he = he.
This approximation, which we shall henceforth adopt, is expected to work well if
the relevant physics is dominated by low frequencies, at which energy transfers
between the two contours are sufficiently small [i(€ — ) < T, so that the electron
“sees” essentially the same Fermi function throughout its motion. [For a detailed
discussion of this point, see Appendix B.6.2.]

Though the origin and neccessity of the Pauli factor is eminently clear when seen
in conjunction with Keldysh perturbation theory, it is a rather nontrivial matter
to derive it cleanly in the functional integral approach [indeed, this is the main
reason for the length of our appendices!]. The fact that GZ got it completely right
in the position-time representation of Eq. (2) is, in our opinion, a significant and
important achievement. It is regrettable that they did not proceed to consider the
frequency representation (4e), too, which in our opinion is more useful.

4. Calculating 7, a la GZ

To calculate the decoherence rate 7, = 1/7,, one has to find the long-time decay of
the Cooperon contribution to the propagator N(_fg(T) of Eq. (1). To do this, GZ pro-
ceeded as follows: using a saddle-point approximation for the path integral for the
Cooperon, they replaced the sum over all pairs of self-returning paths R/? (t3p,5)
by just the contribution <e’%(i53+§1)(7)>rw of the classical “random walk” paths
R, (t) picked out by the classical actions S§, namely R”(t3,) = Ryy(t3,) and
RB(t3,) = Ryy(—ts,), for which the paths on the forward and backward Keldysh
” indicates that each such
classical path is a self-returning random walk through the given disorder poten-

contours are time-reversed partners. The subscript “rw

tial landscape, and ( ), means averaging over all such paths. Next, in the spirit
of Chakravarty and Schmid,?* they replace the average of the exponent over all
time-reversed pairs of self-returning random walks, by the exponent of the average,
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e P where F(7) = (iSg 4+ Si)rw/h (cf. Eq. (67) of GZ99%). This amounts to
expanding the exponent to first order, then averaging, and then reexponentiating.
The function F'(7) thus defined increases with time, starting from F(0) = 0, and
the decoherence time 7, can be defined as the time at which it becomes of order
one, i.e., F(r,) =~ 1.

To evaluate <z§ r+ S I)rw, GZ Fourier transform the functions ES,A; =
L[tss, R(t3) — RY (t4)] occuring in S'R/h and average the Fourier exponents us-
ing?* the distribution function for diffusive motion, which gives the probability that
a random walk that passes point R, (f4) at time ¢4 will pass point R, (t3) at time
t3, i.e., that it covers a distance R = R,y (t3) — Ryw(ts) in time |t34]:

(1T B ()~ R ()] o /ddR<

d/2
) e—R2/(4D\t34\) ¢l R
Dlts4]

_ o—@Dltsa| _, é§(|t34|) = e Faltaal (6)

(Here t34 = t3 — t4.) The arrow in the second line makes explicit that if we also ac-
count for the fact that such time-reversed pairs of paths are dephased by a magnetic
field, by adding a factor e~ 7#I%1l the result is simply equal to the bare Cooperon
in the momentum-time representation.

Actually, the above way of averaging is somewhat inaccurate, as was pointed
out to us by Florian Marquardt: it neglects the fact that the diffusive trajectories
between t3 and t4 are part of a larger, self-returning trajectory, starting and ending
at 71 ~ ro at times F1/27. It is actually not difficult to include this fact, see
MDSA-I,22:23 and this turns out to quantitatively improve the numerical prefactor
for 7, (e.g., in Eq. (18) below). However, for the sake of simplicity, we shall here
be content with using Eq. (6), as GZ did.

Finally, GZ also assumed that the Pauli factor (5 —2p%) in Sk remains un-
changed throughout the diffusive motion: they use a coordinate-momentum path
integral [DR [DP [instead of our coordinates-only version [D’R], in which
(6 — 2p°) is replaced by [1 — 2ng(ho)] = tanh(ho/27T), and the free-electron en-
ergy ho [R(ta), P(ta)] is argued to be unchanged throughout the diffusive motion,
since impurity scattering is elastic [cf. p. 9205 of GZ993: “n depends only on the
energy and not on time because the energy is conserved along the classical path”].
Indeed, this is true between the two interaction events at times t3 and t4, so that
the averaging of Eq. (6) is permissible. However, as emphasized above, the full tra-
jectory stretches from —7/2 to t4 to t3 to 7/2, and the electron energy does change,
by +hw, at the interaction vertices at t4 and t3. Thus, GZ’s assumption of a time-
independent Pauli factor neglects recoil effects. As argued in the previous section,
these can be straightforwardly taken into account using Eq. (4e), which we shall
use below. In contrast, GZ’s assumption of time-independent n amounts dropping
the —h@ in our tanh[A(e — @) /2T function.



736  J. von Delft

If one uses GZ’s assumptions to average Eq. (2), but uses the proper tanh[fi(e —
@)/2T] function, one readily arrives at

(iSrw | [ 74 ) I (-
{ (B } =2Re —21/(dw)(dQ) {ﬁff(w) } [ 8 = f ](7')] , (7)

where f5°!f — fvert are the first and second terms of the double time integral

Wy

z t
/2 it 3 dt, e i@tss <€i<1'[Rrw(t3)*Rrw(t4)] _ eiq»[Rrw(ftg)erw(t4)]>r (8)
~3 z

corresponding to self-energy (a = a’ = F) and vertex (a # @’ = F) contributions,
and the 2Re[ | in Eq. (7) comes from adding the contributions of @’ = F' and B.
Performing the integrals in Eq. (8), we find

fself(T) _ ég(—@)T + [ég(_@)F[ef‘r(EaJri@) _ 1] , (9&)

17 (r) = (@)

_ —iwT __ 1 —EgqTm _ 1
0 € n e 4 :| (9b)

—iw Eq

Of all the terms in Eqs. (9), the first term of f%! which is linear in 7, clearly
grows most rapidly, and hence dominates the leading long-time behavior. Denoting

the associated contrib}g}c}onlfto Eq. (7) by (1/h)(iSg/S;)icadingself = B/ Tsell )
,se

corresponding rates v, obtained from Eqgs. (7) and (9) are:
e 1 / o h(e — @) i/2(EQ — i)
R,self q
v = — [ (dw)(dg) tanh [7 2Re | ——+—2——1|, 10a
¢ | (d)da) 2T 20EY(Eq + i) (10a)
1 hw w
I,self - —
S = — [ (dw)(d th | —| 2 —_— | . 10b
e h/( w)(dg) co [2T] Re {21/E§(Eq+iw)] (10b)
Let us compare these results to those of GZ, henceforth using vy = 0. Firstly, both
our yL= and 4=l are nonzero. In contrast, in their analysis, GZ concluded that

<5’ r)rw = 0. The reason for the latter result is, evidently, their neglect of recoil
effects: indeed, if we drop the —fiw from the tanh-factor of Eq. (10a), we would find
’yf = 0 and thereby recover GZ’s result, since the real part of the factor in square
brackets is odd in @.

Secondly and as expected, we note that Eq. (10b) for 'yi;self agrees with that of
GZ, as given by their equation (71) of GZ99? for 1/7,, i.., WS{;SEH = ’YSZ~ [To see
the equivalence explicitly, use Eq. (A.9).] Noting that the [da-integral in Eq. (10b)
evidently diverges for large @, GZ cut off this divergence at 1/7¢ (arguing that
the diffusive approximation only holds for time-scales longer than 7], the elastic
scattering time). For example, for quasi-1-dimensional wires, for which [(dg) =
a=2[dg/(2r) can be used (a® being the cross section, so that o1 = a?ohide is
the conductivity per unit length, with oB&de = 2¢2vD), they obtain (cf. (76) of
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GZ993):

1 e*V2D 7 (dw) b hol e \/ﬁ 2T\/TGITSZ ) 1

TS’Z ~ hoy /T—lﬁ wl/2 cot {ﬁ] T whor \V Ta h 1. (D
@

[The use of a self-consistently-determined lower frequency cut-off is explained in

Sec. 6]. Thus, they obtained a temperature-independent contribution 'yg’GZ from

the +1 term, which is the result that ignited the controversy.

Thirdly, however, we observe that, due to the special form of the retarded in-
teraction propagator in the unitary limit, the real parts of the last factors in square
brackets of Egs. (10a) and (10b) are actually equal (for vz = 0). Thus, the ultravio-
let divergence of 'yi,’self is cancelled by a similar divergence of 'yf’self. Consequently,
the total decoherence rate coming from self-energy terms, 'yi,elf = ’yi;self + ’yfvself, is
free of ultraviolet divergencies. Thus we conclude that the contribution v%%% found
by GZ is an artefact of their neglect of recoil, as is their claimed “decoherence at

zero temperature”.

5. Dyson Equation and Cooperon Self Energy

The above results for 45! + Lself turn out to agree completely with those of a
standard calculation of the Cooperon self energy 3 using diagrammatic impurity
averaging [details of which are summarized in Appendix F]. We shall now summarize
how this comes about.

Calculating 3 is an elementary excercise within diagrammatic perturbation the-
ory, first performed by Fukuyama and Abrahams.2> However, to facilitate compar-
ison with the influence functional results derived above, we proceed differently: we
have derived [Sec. B.6.1] a general expression,” before impurity averaging, for the
Cooperon self-energy of the form ¥ = Y, ,[2I ,+%% ] which keeps track of which
terms originate from iSg or S7, and which contours a,a’ = F/B the vertices sit
on. This expression agrees, as expected, with that of Keldysh perturbation theory,
before disorder averaging; it is given by Eq. (A.10) and illustrated by Fig. A.1 in
Appendix A. We then disorder, average using standard diagrammatic techniques.
For reference purposes, some details of this straightforward excercise are collected
in Appendix F.2.

For present purposes, we shall consider only the “self-energy contributions”
(a = d') to the Cooperon self energy, and neglect the “vertex contributions”
(a # @), since in the above, we likewise extracted vf T from the self-energy con-
tributions to the effective action, (5’ R/ p)leading,self © After impurity averaging, the
Cooperon then satisfies a Dyson equation of standard form, C;*(w) = CO(w) +

bThe expressions for S that we published in Ref. 16, Egs. (A.16), contain incorrect signs and
missing factors of 1/2, and should be replaced by Egs. (A.10) of this review.
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el \self aself : . . .
Co(w) S5 (w)Coe (w), with standard solution:

_ 1
CSelf — _ , 12
a @) Eq —iw — X5 (w) (12)
where SR/ Tself — 5~ SE/sell Gith f}igﬁelf(w) = [f}fz/é;elf(—w)]*, and
alself, _ 1 N haw AR (-\] 0 -
YorrWw) = ~ (d®)(dg) coth oT Im[L7 (@0)]Cq_g(w — @), (13a)

Som (W) = % / (dw)(dq){ tanh
X [CO_ o (w — @) + [D2(@)2([C ()] " + [Dg<w>]1>]}. (13)

In Eq. (13b), the terms proportional to (D°)%[(C°)~! + (D°)~!] stem from the so-
called Hikami contributions, for which an electron line changes from G®/4 to GA/R
to GE/A at the two interaction vertices. As correctly emphasized by AAGI8:19
and AAV,%° such terms are missed by GZ’s approach of averaging only over time-
reversed pairs of paths, since they stem from paths that are not time-reversed pairs.

Now, the standard way to define a decoherence rate for a Cooperon of the form
(12) is as the “mass” term that survives in the denominator when w = Eq = 0,
ie., ylf = —5¥1(0) = —2Re[Sq 5" (0)]. In this limit, the contribution of the
Hikami terms vanishes identically, as is easily seen by using the last of Egs. (4a), and
noting that Re[i(D°)~1(D?)?(D°)~1] = Re[i] = 0. (The realization of this fact came
to us as a surprise, since AAG and AAV had argued that GZ’s main mistake was
their neglect of Hikami terms,'® 2% thereby implying that the contribution of these
terms is not zero, but essential.) The remaining (non-Hikami) terms of Eq. (13b)
agree with the result for 3 of AAV2? and reproduce Eqs. (10) given above, in other
words:

se Sse I <& \leading, se
7o = =351 (0)] = — (1SR + Syl (14)

Thus, the Cooperon mass term —Y5(0) agrees identically with the coefficient of
7 in the leading terms of the averaged effective action of the influence functional.
This is no coincidence: it simply reflects the fact that averaging in the exponent
amounts to reexponentiating the average of the first order term of an expansion
of the exponential, while in calculating the self energy, one of course also averages
the first order term of the Dyson equation. It is noteworthy, though, that for the
problem at hand, where the unitary limit of the interaction propagator is considered,
it suffices to perform this average exclusively over pairs of time-reversed paths —
more complicated paths are evidently not needed, in contrast to the expectations
voiced by AAG'®19 and AAV.20

The latter expectations do apply, however, if one consideres forms of the in-
teraction propagator ££(w) more general than the unitary limit of (4a) (i.e., not
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proportional to [D3(w)]~!). Then, the Hikami contribution to 75 = -5 (0)
indeed does not vanish; instead, by noting that for w = ¢ = vy = 0 the second line
of Eq. (13b) can always be written as 2Re[DJ(w)], we obtain

T = %/(d@)(dé) {coth [%] + tanh [w}}
20

(B +&"

x Im[LE(@)]

q

which is the form given by AAV.20

6. Vertex Contributions

Eq. (10b) for vi,’se“ has the deficiency that its frequency integral is infrared diver-
gent (for w — 0) for the quasi-1 and 2-dimensional cases, as becomes explicit once
its g-integral has been performed [as in Eq. (11)]. This problem is often dealt with
by arguing that small-frequency environmental fluctuations that are slower than
the typical time scale of the diffusive trajectories are, from the point of view of the
diffusing electron, indistuingishable from a static field and hence cannot contribute
to decoherence. Thus, a low-frequency cutoff v, is inserted by hand into Egs. (10)
[i.e., fo diw — f%: dw], and =y, determined selfconsistently. This procedure was mo-
tivated in quite some detail by AAG,'®19 and also adopted by GZ in GZ993 [see
Eq. (11) above]. However, as emphasized by GZ in a subsequent paper, GZ00,* it
has the serious drawback that it does not necessarily reproduce the correct func-
tional form for the Cooperon in the time domain; e.g., in d = 1 dimensions, the
Cooperon is known!® to decay as e~%7/7)** ie.. with a nontrivial power in the
exponent, whereas a “Cooperon mass” would simply give e~7/7.

A cheap fix for this problem would be to take the above idea of a self-consistent

infrared cutoff one step further, arguing that the Cooperon will decay as e_”ielf(ﬂ,
self
©

via a time-dependent infrared cutoff. Concretely, using Eqgs. (13) and (10), one

would write
5 RPN hw 1 h(e — sw)
self _
A/ap (7—) = 2/1/T(d(U)w {Coth [ﬁ:| + 5 Sgistanh [727" :| }

(dg) 1
X . 16
/ hw (Dg?)? 4 &2 (16)
It is straightforward to check [using steps analogous to those used below to obtain
Eq. (18)] that in d = 1 dimensions, the leading long-time dependence is 75 (1) o

where 738 (7) is a time-dependent decoherence rate, whose time-dependence enters

71/2 50 that this cheap fix does indeed produce the desired e—2(7/7¢)*"* behavior.

The merits of this admittedly rather ad hoc cheap fix can be checked by doing
a better calculation: it is well-known that the proper way to cure the infrared prob-
lems is to include “vertex contributions”, having interactions vertices on opposite
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contours. In fact, the original calculation of AAK!? in effect did just that. Likewise,
although GZ neglected vertex contributions in GZ99,% they subsequently included
them in GZ00,* exploiting the fact that in the influence functional approach, this
is as straightforward as calculating the self-energy terms: one simply has to in-
clude the contributions to (iSgr/Sr)my of the vertex function —f¥e** in Eq. (7),
too. The leading contribution comes from the first term in Eq. (9b), to be called
(iSp/Sp)leadingvert " which gives a contribution identical to (iSg/S)icading self put
multiplied by an extra factor of — sin(w7)/@7 under the integral. Thus, if we collect
all contributions to Eq. (7) that have been termed “leading”, our final result for
the averaged effective action is 1/h(iSg + Sy)ieading = [o(7), with

F;(1) = T/(d@)@ {coth [%] 4 tanh {w} } (1 _ w>

(dg) 1

x/ h (D@2 +a? (17)
This is our main result: an expression for the decoherence function Fjz(7) that
is both ultraviolet and infrared convergent (as will be checked below), due to the
(coth + tanh) and (1 —sin)-combinations, respectively. Comparing this to Eqgs. (16),
we note that F7(7) has precisely the same form as ijflf (1), except that the infrared
cutoff now occurs in the [(dw) integrals through the (1 — sin) combination. Thus,
the result of including vertex contributions fully confirms the validity of using the
cheap fix replacement [ (do) — [, /7 (dw), the only difference being that the cutoff
function is smooth instead of sharp (which will somewhat change the numerical
prefactor of 7.,).

It turns out to be possible to also obtain Eq. (17) [and in addition all the
“subleading” terms of Eq. (7)] by purely diagrammatic means: to this end, one has
to set up and solve a Bethe-Salpeter equation. This is a Dyson-type equation, but
with interaction lines transferring energies between the upper and lower contours,
so that a more general Cooperon C’Z(Ql,Qg), with three frequency variables, is
needed. Such an analysis will be published in DMSA-II.2223

To wrap up our rederivation of standard results, let us perform the integrals
in Eq. (17) for Fy(r) for the quasi-1-dimensional case d = 1. The [(dg)-integral
yields @=3/2\/D/2/(o1h/e?). To do the frequency integral, we note that since
the (coth 4 tanh)-combination constrains the relevant frequencies to be |iw| < T,
the integral is dominated by the small-frequency limit of the integrand, in which
coth(fiw/2T) ~ 2T /hi, whereas tanh, making a subleading contribution, can be
neglected. The frequency integral then readily yields

4 Tr/n 4 (1P
A N, = v (‘) ’ (18)

so that we correctly obtain the known e—al(r/me)*? decay for the Cooperon. Here
g4(L) = (h/e?)ozL9~? represents the dimensionless conductance, which is > 1
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for good conductors. The second equality in Eq. (18) defines 7, where we have
exploited the fact that the dependence of Fy on 7 is a simple 73/2
which we made dimensionless by introducing the decoherence time 7. [Following
AAG,'19 we purposefully arranged numerical prefactors such that none occur in
the final Eq. (19) for 7, below.] Setting 7 = 7, in Eq. (18) we obtain the self-
consistency relation and solution (cf. Eq. (2.38a) of AAG!19):

1 T/h h2oy \**

L__T/hR R <7"1 ) . (19)
To  9q(\/D7yp) Te2\/D

The second relation is the celebrated result of AAK, which diverges for 7" — 0. This

completes our recalculation of WAAK using GZ’s influence functional approach.
Eq. (18) can be used to calculate the magnetoconductance for d = 1 via

power law,

WL(F) = Ugémie drCO_, Je=Fr () 20
oWk ( DC_ / GO . (20)
(Here, of course, we have to use vy # 0 in C(T):O(T). Comparing the result to
AAK’s result for the magnetoconductance (featuring an Ai’ function for d = 1),
one finds qualitatively correct behavior, but deviations of up to 20% for small
magnetic fields H. The reason is that our calculation was not sufficiently accurate to
obtain the correct numerical prefactor in Eq. (18). [GZ did not attempt to calculate
it accurately, either]. It turns out (see MDSA-I?2:23) that if the averaging over
random walks of Eq. (6) is done more accurately, following Marquardt’s suggestion
of ensuring that the random walks are self-returning, the prefactor changes in such
a way that the magnetoconductance agrees with that of AAK to within an error of
at most 4%. Another improvement that occurs for this more accurate calculation
is that the results are well-behaved also for finite vy, which is not the case for
our present Eq. (10a): for vy # 0, the real part of the square brackets contains a
term proportional to yg/ Eg, which contains an infrared divergence as ¢ — 0. This

problem disappears if the averaging over paths is performed more accurately, see
MDSA-1.22:23

7. Discussion and Summary

We have shown [in Appendices B to D, as summarized in Appendix A] that GZ’s
influence functional approach to interacting fermions is sound in principle, and that
standard results from Keldysh diagrammatic perturbation theory can be extracted
from it, such as the Feynman rules, the first order terms of a perturbation expansion
in the interaction, and the Cooperon self energy.

Having established the equivalence between the two aproaches in general terms,
we were able to identify precisely why GZ’s treatment of the Pauli factor (5 —2p%)
occuring Sk was problematic: representing it in the time domain as tanh|[ho(t)/2T],
they assumed it not to change during diffusive motion along time-reversed paths.
However, they thereby neglected the physics of recoil, i.e., energy changes of the
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diffusing electrons by emission or absorption of photons. As a result, GZ’s calcula-
tion yielded the result (iSG?%)., = 0. The ultraviolet divergence in (S¥?),,, which
in diagrammatic approaches is cancelled by terms involving a tanh function, was
thus left uncancelled, and instead was cut off at w ~ 1/7,), leading to the conclusion
that 752 (T — 0) is finite.

In this review, we have shown that the physics of recoil can be included very
simply by passing from the time to the frequency representation, in which (5 —27°)
is represented by tanh[fi(e — ©)/2T]. Then (iSg)wy is found not to equal to zero;
instead, it cancels the ultraviolet divergence of <.§’ I)rw, SO that the total rate
Yo = ’yi, + ’yf reproduces the classical result A/?AK7 which goes to zero for T — 0.
Interestingly, to obtain this result, it was sufficient to average only over pairs of
time-reversed paths; more complicated paths, such as those represented by Hikami
terms, are evidently not needed. (However, this simplification is somewhat fortu-
itous, since it occurs only when considering the unitary limit of the interaction
propagator; for more general forms of the latter, the contribution of Hikami terms
is essential, as emphasized by AAG and AAV.18720)

The fact that the standard result for 7, can be reproduced from the influence
functional approach is satisfying, since this approach is appealingly clear and simple,
not only conceptually, but also for calculating v,. Indeed, once the form of the
influence functional (2) has been properly derived (wherein lies the hard work), the
calculation of (zS’ r+S I)rw Tequires little more than knowledge of the distribution
function for a random walk and can be presented in just a few lines [Sec.4]; indeed,
the algebra needed for the key steps [evaluating Eq. (7) to get the first terms of
(9), then finding (10) and (17)] involves just a couple of pages.

We expect that the approach should be similarly useful for the calculation of
other physical quantities governed by the long-time, low-frequency behavior of the
Cooperon, provided that one can establish unambiguously that it suffices to include
the contributions of time-reversed paths only — because Hikami-like terms, though
derivable from the influence functional approach too, can not easily be evaluated in
it; for the latter task, diagrammatic impurity averaging still seems to be the only
reliable tool.
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Appendix A. Outline of GZ’s Influence Functional Approach

Without dwelling on details of derivations, we outline in this appendix how the
influence functional presented in Sec. 2 is derived. (A similar summary is contained
in a previous paper by this author!® (see footnote b on p. 11); however, it is incom-
plete, in that we have introduced important improvements since.) Before we start,
let us point out the two main differences between our formulation and that of GZ:

(i) GZ formulated the Cooperon propagator in terms of a coordinate-momentum
path integral [ DR [DP, in which (6 — 23°) is represented as [1 — 2ng(hg)] =
tanh(ho/2T), where the free-electron energy ho[R(t,), P(t,)] depends on position
and momentum. This formulation makes it difficult to treat the Pauli factor with
sufficient accuracy to include recoil. In contrast, we achieve the latter by using a
coordinates-only version [ D'R, in which exact relations between noninteracting
Green’s functions make an accurate treatment of the Pauli factor possible, upon
Fourier-transforming the effective action to the frequency domain.

(ii) GZ effectively performed thermal weighting at an initial time ¢( that is not sent
to —oo, but (in the notation of the main text) is set to to = —7/2; with the latter
choice, it is impossible to correctly reproduce the first (or higher) order terms of a
perturbation expansion. GZ’s claim in GZ00* that they have reproduced these is
incorrect (see end of Appendix C.3), since their time integrals have —7/2 as the
lower limit, whereas in the Keldysh approach they run from —oo to +00. We have
found that with some (but not much) extra effort, it s possible to properly take
the limit ¢ty — —o0, to correctly recover the first order perturbation terms [Ap-
pendix C.3] and to express the conductivity in a form containing thermal weighting
in the energy domain explicitly in the form of a factor [(de)[—n}(he)]P*, where P*
is an energy-dependent path integral, obtained by suitable Fourier transformation
[Appendix C.4].

A.1. Outline of derivation of influence functional

Consider a disordered system of interacting fermions, with Hamiltonian H = Hy +
Hii

o = / dz ) (2)ho (@) (x) (A.1a)
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2

8= S [ oty e TR )i (A0

Here [dz =Y, [dr, and U(x) = (r, o) is the electron field operator for creating
a spin-o electron at position r, with the following expansion in terms of the exact
eigenfunctions ¥ (z) of ho(x) = (=h?/2m)V2 + Vimp (1) — p:

d(x) =Y a@)en,  [ho(z) = Exia(e) = 0. (A.2)
A

The interaction potential Vi3t = Vi (|r; — ry|) acts between the normal-ordered
densities at 71 and r3. The Kubo formula for the DC conductivity of a d-dimensional
conductor gives

opCc = —Re

. 1 . .3
Jim, doo Z/dﬂ?ﬂn/ “JaorJ11r,22(wWo) |z =2y, | s (A.30)
o1

Ji1 22 (wo) = / dt12€iw°t129@‘12)@11/,22/] , (A.3b)
- 1 . . . .
Chu2e) = ﬁ<[¢T(t1,ml/)w(h,xl),wutm$2')¢(t2,3?2)]>H7 (A.3c)

where j,1, = (—iefi/2m)(V1 — V1) and a uniform applied electric field E(wg) was
represented using a uniform, time-dependent vector potential, E(wg) = iwgA(wp)-
A path integral representation for 6'[11/,22/] can be derived using the following strat-
egy, adapted from GZ993: (1) introduce a source term into the Hamiltonian, in
which an artificial source field 99/5 couples to (ta, acgz)&(tg, x2), and write (:”[11/’22/]
as the linear response to the source field 029, of the single-particle density ma-
trix pyy = (T (t1, 1) (t1, 21))m. (2) Decouple the interaction using a Hubbard-
Stratonovitch transformation, thereby introducing a functional integral (...)y over
real scalar fields Vi, p, the so-called “interaction fields”, defined on the forward
and backward Keldysh contours, respectively; these then constitute a dynamic, dis-
sipative environment with which the electrons interact. (3) Derive an equation of
motion for p};,, the single-particle density matrix for a given, fixed configuration
of the fields Vi, p, and linearize it in 022, to obtain an equation of motion for the
linear response 65y, (t) to the source field. (4) Formally integrate this equation of
motion by introducing a path integral [ D’ (R) over the coordinates of the single
degree of freedom associated with the single-particle density matrix §5};,. (5) Use
the RPA-approximation to bring the effective action Sy that governs the dynamics
of the fields Vi, p into a quadratic form. (6) Neglect the effect of the interaction on
the single-particle density matrix wherever it occurs in the exponents occuring un-
der the path integral [ D'R, ie., replace ﬁ}; there by the free single-particle density
matrix

pY = (@F (@)d(@i))o = Y ¥x(x;)valzi)no(€r) (A4)
A



Influence Functional and Interacting Electrons in Conductors 745

where thermal averaging is performed using (O)g = Tr[e‘ﬁH0 O]/Tr[e_ﬁﬁo]. (7) Per-
form the functional integral (- - -)y (which steps (5) and (6) have rendered Gaussian)
over the fields Vg, p; the environment is thereby integrated out, and its effects on
the dynamics of the single particle are encoded in an influence functional of the
form ¢~(7+51)_ The final result of this strategy is that §oo - j1;,Ci11v 22/ can be
written as [cf. (I1.49)]

B lr plp _
/dx2j22f “J11:Cprr 22y = /don,GBﬁgFoBﬂ[ 3 D'(R)
or Jog

1 o —’L~ ~I 1 1
x 3 [3(t2p) = 3 (t2n)] 3 (01)e iSnrsiltto)/l (A.5)

where D/(R) is used as a shorthand for the following forward and backward
path integral between the specified initial and final coordinates and times:

ir B RY (tF)y=rF .
f ﬁ'(R) = / ﬁ/RF(tg)eiSé:(tf,tf)/h
J

= F(4F\_pF
JB R (tj )—Tj

RE(18)=r? _ I
x / D'RP(t§ e~ o (100 . (A.6)
R (t7)=r}

F oB . . . .
(55 =53°) occuring therein involves the action

The complex weighting functional e’
for a single, free electron. Expression (A.5) has a simple interpretation: thermal

averaging with i at time ¢ (for which we take the limit — —oc0) is followed by

propagation in the presence of interactions (described by e~ [iSr+51 ]) from time tg
up to time #;, with insertions of current vertices j (t2,) at time to on either the
upper or lower Keldysh contour, and j’(tl) at the final time ¢;.

For the purpose of calculating the Cooperon propagator, we now make the
following approximation in Eq. (A.5) [referred to as “approximation (ii)” in Ap-
pendix B]: for the first or second terms, for which the current vertex occurs at time
ta, on contour a = F' or B respectively, we neglect all interaction vertices that occur
on the same contour a at earlier times t3, or t4, € [to,t2,]; however, for the opposite
contour containing no current vertex, we include interaction vertices for all times
€ [to,t1], with t¢ — —oo. [This turns out to be essential to obtain, after Fourier
transforming, the proper thermal weighting factor [—ng(he)] occuring in Eq. (1a),
see Appendix C.4.] The rationale for this approximation is that, in diagrammatic
language, this approximation retains only those diagrams for which both current
vertices Joo and ji;, are always sandwiched between a G- and a GA-function;
these are the ones relevant for the Cooperon. The contributions thereby neglected
correspond to the so-called “interaction corrections”. [If one so chooses, the latter
can be kept track of, though.]

This approximation (ii) is much weaker than the one used by GZ at a similar
point in their calculation: to simplify the thermal weighting factor describing the
initial distribution of electrons, namely to obtain the explicit factor pg in Eq. (49)
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of GZ99,% they set to — to (their ¢’ corresponds to our t5), and thereby perform
thermal weighting at time to, instead of at —oco. As a consequence, in their analysis
all time integrals have to as the lower limit, which means that (contrary to their
claims in GZ00%) they did not correctly reproduce the Keldysh first order pertur-
bation expansion for 5[11/722/]7 in which all time integrals run to —oco. A detailed
discussion of this matter is given at the end of Appendix C.3. [Contrary to our
initial expectations, but in agreement with those of GZ, it turns out, though, that
the choice of ¢y does not have any implications for the calculation of 7,,, which does
not depend on whether one chooses ¢ty = t3 or sends it to —oo.]

Having made the above approximation (ii), the effective action (iSg + S;) oc-
curing in Eq. (A.5) is found to have the following form (we use the notation S /S;
to write two equations with similar structure in one line, and upper or lower terms
in curly brackets refer to the first or second case):

[ZSR/S[ tl,to Z/ dtg/ dt4 ZLR/L )3 4.1y (A?)

aa’

- ¥ 1 < [5_2ﬁ0]4pzlp 5
GL%/LY)3,4, = -5 034033, { 5 E;/Zi , (A.8a)
4pdp
P 1. [6 = 274,10
GL% /L34, = 5 934{ 5, 4 £§13/Z?53333 , (A.8b)
~ ~ o — 27014
GL®/L )s3pas = F5 93453F3Fﬁf3/§; { [ . P lipas }, (A.8¢)
0ipap
[6 - 26°]s
(iL"/L")3p4 = £= 1934£4B3B53333 { 3 tete L (A.8d)
41545

Here 05 = 05,0,0(r;—7;) and (LRAK); 5 = (LRAK) (4, —t;,, 72 (t,) =72 (t5,,))
are the standard retarded, advanced and Keldysh interaction propagators. For each
occurrence in Egs. (A.8) of a pair of indices, one without bar, one with, e.g. 4, and
4,, the corresponding coordinates z§ and x§ are both associated with the same time
t4, and integrated over, [dx{dz}, in the path integral [D(R). (This somewhat
unusual aspect of the “coordinates-only” path integral used in our approach is
discussed in explicit detail in Appendix D.4; it is needed to account for the fact that
the density-matrix p° is non-local in space, and arises upon explicitly performing
the f DP momentum path integral in GZ’s formulation.) The Sﬂ functions on the
right hand side of Egs. (A.8) will kill one of these double coordinate integrations
at time ;.

Equations (A.7) and (A.8) are the main result of our rederivation of the influence
functional approach. They are identical in structure (including signs and prefactors)
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to the corresponding expressions derived by GZ (Egs. (68) and (69) of GZ993), as
can be verified by using the relations

PRy = £ = Ly, Py =l = - gil, (A.9)
to relate our interaction propagators CNU to the functions Ry and I; used by GZ.
However, whereas Eqs. (68) and (69) of GZ99? are written in a mixed coordinate-
momentum representation in which it is difficult to treat the Pauli factors (6 — 2°)
sufficiently accurately, our expressions (A.8) are formulated in a coordinates-only
version. Formally, the two representations are fully equivalent. The key advantage of
the latter, though, is that passing to a coordinate-frequency representation (which
can be done before disorder averaging, allows us to sort out the fate of (6 — 25°),
as discussed in Sec. A.3 [and extensively in Appendix B.6.2].

A.2. Cooperon self energy before disorder averaging

From the formalism outlined above, it is possible to recover the standard results of
diagrammatic Keldysh perturbation theory, before disorder averaging, by expanding
the path integral (A.5) in powers of the effective action 1/h(iSg+S;). For example,
using Eqgs. (A.8) [and being sufficiently careful with signs, see Appendix B.6.1]
one readily obtains the following expressions for Cooperon self energy SF/!1 =
Y aa’ ifa/,l, summarized diagrammatically in Fig. A.1:

~ 3pdrp ) ~ — - . _
(SE)7 = DGRy G (£R/EF e (A102)
ip3p 2 BSB
- 3rpd ; N - ~ 1 ~ _
(Egg)ﬁq P _ _ﬂ(GK/R)3p4pG2_L433B fR K ip 7 (A.10b)
ip3p 2 2 3g
~ 3rpdr ih ~ i~ 5 1
(E%I ) = - GR3rA(GRIAY, o (LA ) SLE) 3P (Al0c)
ip3p 2 2 i
sR/1\3F4F ih R 3pdp FEK)A FA K
(555), . = =G (G Mgy (£ L) im0, (A.10d)

To obtain this, we exploited the fact that every vertex occuring in the effective ac-
tion is sandwiched between retarded propagators if it sits on the upper contour, and
advanced ones on the lower contour. The Keldysh functions arise from using some
exact identities, valid (before impurity averaging) in the coordinate-time represen-
tation: depending on whether a vertex at time ¢4, sits on the forward (time-ordered)
or backward (anti-time-ordered) contour (¢’ = F/B), the factor (§ — 25°)L%/4 oc-
curing in L, is sandwiched as follows (on the left hand sides below, a coordinate
integration [ dx4,, over the un-barred variable at vertex 4 is implied):

GR 4 (6 —20%) 0,0, L5 GE . — GE, (e—0)LR, @)GE,, (), (Alla)

éé 4 221433[(5 - 2p~0)4345éf315] - _G?BZIB (g)ﬁfBB(w)éK 7. (g_ ‘D) N (A"]']'b)

iB4B
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Fig. A.1. First order contributions to the irreducible self energy of the Cooperon, illustrating
Egs. (A.10). The arrows associated with each factor Gy or £ in Egs. (A.10) are drawn to point
from the second index to the first (j to ¢). Filled double dots denote the occurence of a factor
(6— 2p)4 1, on the upper contour or (6 - 2p)igap on the lower contour. Bars on filled dots are

used to indicate the barred indices to which the interaction lines depicting sz are connected. Both
filled and open single dots indicate a delta function 5; the open dots stand for delta functions that
have been inserted to exhaust dummy integrations, as discussed after Eqs. (A.8) [and, in more
detail, in Sec. 6.1]. The diagrams in (b) and (c) coincide precisely with those obtained by standard
Keldysh diagrammatic perturbation theory for the Cooperon self energy, as depicted, e.g.,, in Fig. 2
of Ref. 20. (There, impurity lines needed for impurity averaging are also depicted; in the present
figure, impurity averaging has not yet been performed.)

The left- and right-hand sides are written in the time and frequency domains,
respectively. To obtain Keldysh functions from the left-hand side expressions, we
exploit the fact that the upper or lower contours are time- or anti-time-ordered to
add an extra —G*4/® = 0, and then exploited Eq. (5a) to obtain a factor =G (see
Sec. B.6.2).

A.3. Thermal averaging

It remains to figure out how the thermal weighting in Eq. (1a) can be derived from
our general path integral expression Eq. (A.5). This is a standard, if nontrivial, ex-
ercise in Fourier transformation, carried out (along the lines of a similar analysis by
AAK') in Appendix C.4. The result is an equation for the conductivity similar to
but more general than Eq. (1), with fooodTp;f,:’gﬁ (1) replaced by fOOOdTlgp;f,l’e(Tlg),
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involving a slightly more complicated path integral [Eq. (C.21)], defined as

RY(Z)=r RE(Z)=r,
2112/l / dr 1757[ (3)=m % (3)=m ﬁ/(R)e—[iS'R-i-S‘I]/E ]

RF(—5—1)=ry JRB(—5+3)=r,

(A.12)

Note that the duration of the forward and backward paths differs by a time 7, in
contrast to the path integral (1b) used in the main text. The combination [ de [ d7
of integrals from Egs. (1a) and (A.12) have the effect of fixing?* the average energy
of the forward and backward trajectories to be close to the Fermi energy, with energy
spread of roughly +7 (see Appendix C.4 for a detailed discussion). This energy &
is the same as the one that in perturbative calculations shows up in the tanh[hi(e —
©)/2T)-factors of the Keldysh electron Green’s functions G¥ (¢ — @), which play a
role in determining the phase space available for electrons to get scattered upon
absorbing or emitting a noise quantum. In Appendix C.4 we argue that the simplest
way to keep track of this in the influence functional approach is to replace Eq. (A.12)
by Eq. (1b), which mimics the effect of the former’s integral [d7e’*” by using
(i) forward and backward paths of equal duration 7 and (ii) an effective action
whose time integration boundaries are fixed at +7/2, but which depends explicitly
on the average propagation energy € [via Eqgs. (2), (4e), or equivalently Egs. (B.93),
(B.96)].

Note that GZ’s approach in effect employs the same simplification, since they
likewise have no [ d7e*" integral and use forward and backward paths of equal
duration 7. Their effective action depends on the average energy e, too, via
the tanh[he/2T-factor in their Sr. However, lacking the —@ recoil shift, their
tanh-terms turn out to yield zero after averaging over random walks, so that

(iSG%) 1 =~ 0.

A.4. Perturbative versus nonperturbative methods

We conclude this overview-style appendix with some general comments on whether
it is sufficient to calculate 7, perturbatively, as we contend (in agreement with
others'®21) or whether a truly nonperturbative approach is needed, as GZ have
argued in GZ00.* We have made an effort to keep the discussion as nontechnical
as possible and accessible to casual readers that have not studied Appendix B in
detail, although we will on occasion refer to results from the latter.

In GZ’s influence functional approach the decoherence time is defined as the
scale at which the function F(7) = 1/h<ZSR + 51) 1w, which in their theory is linear
in the interaction propagators R/I, becomes of order one. This means that Ty is
the crossover scale between the regimes where perturbation theory is rigorously
valid or breaks down, F(7) < 1 or > 1, respectively. To determine this scale,
we contend that it is sufficient to calculate F(7) perturbatively (assuming, strictly
speaking, F(1) < 1), and then to enquire for what time the perturbative result
so obtained ceases to be small, setting F'(7,) ~ 1. (This is analogous to the fact
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that the crossover scales T or T., the Kondo temperature in the Kondo problem
or the critical temperature in the theory of superconductivity, can be calculated
perturbatively as the scales where perturbation theory breaks down.) An accurate
knowledge of F(7) for 7 2 7, would be needed only if we desired to accurately
include exponentially small (e~¥(7) <« 1) contributions to weak localization, which
is usually deemed not worth the effort. (In contrast, for the Kondo problem or
superconductivity, nonperturbative treatments are worth the effort, because the
phenomena of interest become strong in the nonperturbative regimes.)

GZ have argued in GZ00* that a perturbative treatment of weak localiza-
tion is insufficient, because according to them, it fails to disentangle the effects
of preexponent and exponent in an Ansatz for the Cooperon of the general form
C(1) = A(1)e~F("): when this is expanded in powers of the interaction, both A and
F contribute to the first-order term C'Y). The influence functional approach avoids
this problem by very naturally generating a general expression for the function F'
in the exponent — which in GZ’s approach turns out to be linear in the interaction
propagator [Eq. (2), or Eq. (B.83)]. However, the problem of disentangling the ex-
ponent from the preexponent is easily avoided in the diagrammatic approach, too,
by calculating not the Cooperon itself, but its self energy, to linear order in the in-
teraction; Fourier transforming the resulting Cooperon C(w) into the time domain,
this automatically yields an expression of the form A(7)e~ ("), again with F linear
in the interaction propagator. [The prefactor arises from wave-function renormal-
ization effects, see DMSA-II,?223 Eq. (14a).] Since both the influence functional
and diagrammatic strategies yield results for which the exponent F' is linear in the
interaction (and contains contributions with a similar coth + tanh structure), it is
reasonable to expect that if both approaches are implemented with sufficient care,
their answers for F' should agree completely.

They do agree, in fact, if the recoil-incorporating effective action proposed in this
work and featuring tanh[fi(e F @)/2T]-factors is used. (This agreement is demon-
strated explicitly in DMSA-I1.22:23) But they differ if GZ’s procedure is followed
without modification, leading to their no-recoil tanh[he/2T)-factors. It is impor-
tant and instructive, therefore, to identify at which point of the derivation of the
influence functional approach the need for a modification of GZ’s approach first
manifests itself. We shall now argue that this point is reached when the order in
which two distinct averaging procedures are performed, over paths R and fields
V, is tacitly interchanged, an aspect that has not been emphasized in the preceding
sections.

To be concrete, let us focus on an intermediate stage of GZ’s first principles
calculation of the weak localization contribution agvé‘ to the conducitivity. Following
the enumeration of steps used in Appendix A.1, p. 744, this stage is reached after
steps (1) to (6) [or according to the enumeration of Appendix B.4, p. 762, after steps
(A) to (G)], resulting in the following expressions [the first of which corresponds
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to Eq. (B.54a)]:

1 o
O0DC,real = Z E /deQ]lll '322/J12/721/(0), (A13a)
o1
=z (GF _&B
Tz 210(0) = J15%50 (0) (" SV =5 M)y (A.13b)
13/ = / o dtsht P (ts, RY/P (1)), (A.13¢)
-5%%

o = L O 1/(d€)[—n’(h€)] /OO dTeiTsﬂ[RF(%)_”

RF(—%——) Tor

RB(2) v ~ G &F T _r_T\_&B(r _T1, %
X# D'(R)e'S0 (5:=5=3) =5 (5 =3 +3)/h ... (A13d)
RE(=3+5)=r2

The correlator j{Q,,gl,(O) originates from 5[11/,22/] of Eq. (A.3c). It has here been
expressed [starting from Eqgs. (B.49) to (B.51), and using the results of Egs. (C.14),
(C. 19a) and (C.21)] as a double average ((---)cqp)v Over a pair of phase factors

5V =) which describe the influence of interactions, represented by fluctuating
fields Vg, B(tg, r3), on a pair of closed quantum-mechanical paths (cqp). [The de-
tailed form (A.13c) of the phase factors follow from Eq. (B.55), with h{, given by
(B.36b); see also Eq. (B.57), and the discussion thereafter]|. Eq. (A.13b) instructs us
to first pick out a specific configuration of the fields Vi, g(t3,73), then to calculate
the average (- - -)cqp Of this phase factor over all closed quantum-mechanical paths
with boundary conditions specified in Eq. (A.13d) [as obtained from Eq. (C.21)],
and to evaluate the average over all field configurations in the end. Thus, for a given
V', the set of paths making the dominant contribution will depend on V.

Now, the next step of GZ’s strategy [step (7) according to Appendix A.1, or
step (H) according to Appendix B.4], is to perform the average (---)y over the
interaction fields. To carry out this step, GZ (tacitly) interchange the order of
averages [as do we in Appendix B.5.5], in effect replacing Eq. (A.13b) by

7 iW(SE_GB RPA _3

J{2’,21’(0) = <<€ (5v Sv)/h>V>qu = <€ Se“/h>cqp7 (A143«)
~ 1 ~ ~ ~ ~ ~
Sesi[R*] = 2h<(5v SU)(Sy = S7))v = iSr+ Sr. (A.14b)

Equation (A.14a) instructs us to first pick out a specific pair of paths R /B (t3),
and then to calculate the influence functional <€¢(55_55)/ "y which describes how
the chosen pair of paths are effected on average by interactions. Within the RPA
approximation, the (---)y average can now be done exactly, yielding an effective
action Se that is linear in interaction correlators R/I [Eq. (B.83)]. The sum over
all closed quantum paths is to be performed at the end.
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Now, this seemingly innocuous change in the order of averages is without con-
sequence only if both averages are performed exactly, as is possible in an order-for-
order perturbation expansion (or, to all orders, for exactly solvable models such as
the Caldeira-Leggett model). However, this is not the case in GZ’s theory (or our
version thereof), which proceeds to use the semiclassical approximation of replacing
the sum over all closed quantum paths by a sum over only the saddle point paths
that extremize the action. In principle, this can be done in at least two different
ways, which we indicate schematically as follows:

(e wSenlr®ly o GZ (o= RS el e o 7 (S PEareare (A.15a)
(e Sonlrl)oqp Y, (e el g e (A.15b)

Here the subscripts bare/dressed indicate that the sums over the paths on the right
side of Eq. (A.15) are taken only over those paths, with boundary conditions as
specified in Eq. (A.13d), which extremize the bare action Sy = S — SF (“bare”
paths, Eq. (A.15a), used by GZ), or the full action Sy = Sy 4 iSeq (“dressed”
paths, Eq. (A.15b), discussed below). On the far right of Eq. (A.15a), we indi-
cated a further (uncontroversial) approximation, used by GZ and others when an
exponential is to be averaged over bare paths, namely to lift the average into the
exponent. In practice, [e.g., Sec. 4], the averages (- - -)pare On the right-hand-side of
Eq. (A.15a) are replaced by ((- - “Ybare)dis — {* - *)rw, Where the latter average is over
diffusive random walks (rw) with appropriate boundary conditions. In other words,
(- “Ybare is approximated by considering only semiclassical trajectories in a disor-
dered potential landscape (while fluctuations about these semiclassical paths are
neglected), and, after implicit disorder averaging, these semiclassical trajectories
are treated as random walks.

Ideally, one would of course prefer to average over dressed paths [Eq. (A.15b)],
which “know” about the effects of interactions due to the role that i Seg plays in de-
termining the saddle point trajectories. (Even more ideally, one would also take into
account fluctuations about these dressed paths) In such a calculation, the iS; term
in iSeg would cause the dressed paths Rdrebsed to acquire an imaginary component
(we thank Igor Gornyi for alerting us to this fact), implying that the contributions
of the two terms in (iSg + S7)[R%.eseeq] can partially cancel, even though both Sg
and S; are purely real functionals of their arguments (GZ overlooked the possibility
of such a partial cancellation, because they considered only bare paths, see below.
Marquardt!” has illustrated how such a partial cancellation occurs in the Caldeira-
Leggett model). Note that such a dressed-path procedure would require only that
Siot[RS essedl /> 1, and would not require Se[RS coeql/B to be small. Indeed,
its results would be nonperturbatlve in the interaction correlator R/ I, since Sef,
though linear in R/, is a non-linear functional of RS, .4, which itself is nonlin-
ear in R/T (as illustrated explicitly in the Caldeira-Leggett model, where all these
nonlinear functions can be evaluated explicitly).
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However, in the present theory, using fully dressed paths is not technically fea-
sible. Therefore, GZ made the standard and seemingly natural choice of averaging
purely over bare paths. Indeed, they write (just before Eq. (61) of GZ99%): “In
the zero-order approximation, one can neglect the terms Sk and S; describing the
effect of Coulomb interaction” so that “the path integral is dominated by the saddle-
point trajectories for the action Sy”. In other words, bare paths don’t “know” about
the interactions at all. Consequently7 GZ used an effective action S obtained by
treating the Pauli factor 6— 2p in S.g as time- independent (arguing that the energy
argument of the corresponding Fermi function is conserved during propagation), es-
sentially replacing it by tanh[he /2T]. [See p. 9205 of GZ993: “n depends only on the
energy and not on time because the energy is conserved along the classical path”.]

Once the approximation of using purely bare paths has been made, the ef-
fective action S ZIR} ] is linear in the interaction propagators (since Ry, is
now 1ndependent of the interaction). This implies in our view that GZ’s results
are purely perturbative. GZ dispute this characterization, calling their approach

nonperturbative because in their view it does not require SG*[Ry.,..] < K, only
SGZIRE, ] < So[Ry...)- We disagree, contending that GZ do need the former con-
dition, because without it, their use of purely bare paths would not be be justified:
a semiclassical treatment requires the evaluation of the action Siot [R?] to be ac-
curate to within 7, implying that the effects of S, on the semiclassical paths can
be neglected only if SGZ[RE,..] < h. [Note, also, that an approach that reliably
evaluates (Seg) in the regime where the result is < 7 would yield the function F(7)
in the regime where it is < 1, which is entirely sufficient to reliably extract 7, as
argued in the second paragraph of this subsection.]

While it is a matter of somewhat empty semantics whether an approach using
purely bare paths can be called nonperturbative or not, the validity of such an
approach can be subjected to a hard test: does the result which this approach
produces for F'(7) after the average (- - -)pare has been performed agree, in the regime
F(1) < 1, with that obtained from Keldysh perturbation theory? (GZ’s claim in
GZ00* that their approach agrees with Keldysh perturbation theory, is true only if
the perturbation expansion is performed before averaging over paths, see Secs. B.6.1
and C.3). The answer is no; The perturbation expansion obtained by expanding the
first-principles expression (A.13) in powers of (5’5 — 5'5 )/h shows unambiguously
that the paths arising in the perturbation expansion, do know about the interactions
(in contrast to bare paths): energy conservation induces recoil at each interaction
vertex, so that the electron frequencies incident and leaving a vertex differ from
each other, £ versus € F @, in a way relevant for the Pauli factors, which depend
on £ F w. This effect is negligible for retarded and advanced electron propagators,
which depend only on the combination /(& F ©) — &, & ih/Te), With & = P?/2m
[Eq. (F.2)], since in this combination energy shifts by h|w| < h/7e are negligible.
However, it is not negligible for the Keldysh propagator, which contains fermion
functions of the form [elEF@)=erl/T 1 1]=1 [Eq. (B.47b)], in which the largeness
of hé is cancelled by that of ep. Thus, interaction events with recoil energies of
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order hijw| 2 T strongly change the value of the Fermi function which specifies the
phase space available for a given transition. Since these recoil effects are present in
the original order ((--)cqp)v of doing the average but absent in the switched order
(e’ggfz/h>bare if GZ’s version of the effective action is used, something is clearly
amiss in the latter approach.

The main assertion of our own work is that for the purpose of describing deco-
herence in weak localization, recoil effects can be taken into account in the influence
functional approach provided GZ’s use of bare paths is supplemented by the use of
an effective action that keeps track of recoil (rec):

(e hSerrly I kS ey, o kS e (AL16)

[In practice, we perform the averages over bare paths on the r.h.s. the same way
as GZ do,3* i.e., using an average over semiclassical diffusive random walks (and
neglecting fluctuations about these), ({-- Yvare)dis — (- *)rw.] Here S‘éfefc is the ef-
fective action obtained by representing (6 — 25) by tanh[i(e T @)/27T-factors [as
made explicit in Eq. (B.95)]. The result for S*¢[R{, ] so obtained [Eq. (2), or
Eq. (B.93) with (B.96)] is linear in the interaction propagators R/I, just as GZ’s
effective action is, but in contrast to the latter, an expansion of e~ (S Jvare 1o
first order in the exponent yields results consistent with the Keldysh perturbation
expansion also if the average over paths in (1/%)(S%)pare is performed explicitly
first and the exponential expanded only thereafter. Moreover, the results for F(1)
so obtained agree fully with those from a diagrammatic Bethe-Salpeter calcula-
tion of the Cooperon (see DMSA-II?%23). A crucial ingredient for ensuring this
agreement is that the ultraviolet divergencies arising in each of the two terms in
((iS55° + Se)| bare])bare cancel each other [Sec. 4]. This cancellation is possible
because the functional Srec[ bare), despite using only bare paths, is not purely
real, thereby capturing an essential feature of S'eﬂ[ Gressed] that is not present in
S [ bare]

Smce GZ contend that their approach is nonperturbative, they reject arguments
based on perturbation theory, defending their use of purely bare paths by evoking
only the standard semiclassical approximation. But the need to keep track of recoil
arises within the latter framework, too, in a way very similar to that described
above: the standard condition for the validity of the semiclassical approximation is
that the propagation energies and momenta of the quantum particle that is to be
described semiclassically should be much larger than the typical frequencies and
wave numbers characterizing the potential landscape which it is moving in, so that
the latter appears “smooth”. If one were to consider a single noninteracting electron
propagating with energy hé ~ ep through a disordered potential landscape, this
implies the conditions ep > /7 (or kr > 1/l.), which certainly are satisfied in
the regime of weak localization. However, GZ’s theory for an electron propagating
through and interacting with a Fermi sea of other electrons shows that the propa-
gation energy enters not only in the free part of the action, but also in the Fermi
function [e("#=¢7)/T 1-1)~1 arising from the Pauli factor § —24 in Sk. To ensure that
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this factor is treated accurately, the standard semiclassical condition ep > h/7e
evoked by GZ is not sufficient, since inside the Fermi function the largeness of A&
is cancelled by the largeness of €. Thus, interaction-induced changes in & of order
@ < 1/74 will produce strong changes in the Fermi function between ~ 0 and ~ 1.
These changes need to be kept track of. As argued above, this can be accomplished
by the recoil contributions F@ in our tanh[h(e F @)/2T]-factors.

Appendix B. Derivation of Influence Functional Approach

In this appendix, we rederive the influence functional approach of GZ, with the
aim of establishing clearly (i) how far it can be taken without any approximations,
and (ii) what the consequences are of the approximations that they eventually do
make. We generally follow the strategy they have chosen to use, but the details of
our notations and derivations deviate from GZ’s whenever we believe that greater
compactness, clarity or generality can thereby be achieved. The most important
difference is that instead of using the coordinate-momentum path integral [D(RP)
of GZ, we use a coordinate-only version [D’'R, since this enables the Pauli factor
to be treated more accurately.

The outline of this appendix is as follows. After a summary of our notational
conventions, Secs. B.1 to B.3 define the model and decouple the interaction using a
Hubbard-Stratonovich transformation within a Keldysh framework. In Sec. B.4, we
summarize GZ’s procedure for deriving their influence functional approach, and in
Sec. B.5 repeat their steps in explicit detail, although with some changes. Finally,
Sec. B.6 establishes a link between the influence functional so derived and Keldysh
perturbation theory, and discusses the fate of the Pauli factor.

Notational conventions

We begin by summarizing, for ease of reference, some notational conventions to
be used throughout: we shall use the shorthands = = (v,0) for electron posi-
tion and spin, and [dz = Y _ [dr. Operators will generally carry hats (e.g.,
ﬁg), and the subscripts S, H and I will distinguish operators in the Schrédinger,
Heisenberg or interaction pictures, respectively. For c-number fields, the shorthand
Vi = Vi(t;) = V(t;, r;) will often be used, i.e., the time argument, when not dis-
played explicitly, will be understood to be t;. cc-number functions depending on two
different coordinates, i.e., coordinate-space matrices, will generally carry tildes [e.g.,
pij = p(z4,;)], and their Fourier transforms w.r.t. 7, — r; will carry bars, e.g.,

—ipry ~ 1 1
ﬁ(Rij,p) = /d’l”ije Py <R1] + §Tij,R¢j — 51"1]) , (B.1)
where R and r; will generally denote center-of-mass and relative coordinates,
RijZ(Ti-f—Tj)/Q, Ty =T, —T;. (B'2)

We do not set & = 1, but display it explicitly throughout. Hence, the variable p in
Eq. (B.1) (and likewise k, g below) denotes a wave-number, with units of inverse
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length, not a momentum; the corresponding momenta will always be denoted by
capital letters:

P=hp, K=hk, Q=Iq. (B.3)

For correlation functions, the shorthand Gy = Gy (t;) = G(ty; xi, ;) will often
be used, i.e., the time argument, when not displayed explicitly, will be understood
to be t; = t; — t;. [For the step function, we use 6; = 6(t;).] The corresponding
frequency Fourier transform w.r.t. ¢; will be denoted by

Gy(ta) = [(@)e 3Gy, [la)= [ 52 (B.4)

where w has units of inverse time. If coordinate-space subscripts are not dis-
played explicitly, they are understood to be summed over, e.g., [G(t)é(t’ )Ny =
[ dryGir (t)Gr;(t'). We distinguish forward and backward parts of the Keldysh
contour by an index a = F,B [GZ use a = 1,2 instead], and use boldface for
matrices in Keldysh space, e.g., C:‘lj

A pair of indices such as ', appearing once without prime and once with, will
denote independent coordinates x; and x; referring to the same time (i.e., t; =t
is to be understood), which are, however, to be set equal at the very end of the

calculation, after being differentiated upon, i.e.,
(Vi = Vi)pir = (Vi — Vi)piirlwi=a, - (B.5)

We shall often encounter double summations over coordinates referring to the same
time. For such coordinates we shall use the index pair 7, one without bar and one
with, take it to be understood that ¢; = t;, and denote the double summation by

/dxm = Z/dmdr;. (B.6)

When taking the limit of infinite volume, we shall use the shorthand notation
dp 1
=/ ——= lim — B.
/(dp) / (27T)d Vollgoo Vol Xp: ’ ( 7a)

5@ (p—p) = Vc}ligoo dp,p VoI, (B.7b)

so that [(dp)d(p) = 1, i.e., 6(p) equals (2m)? times a d-dimensional Dirac delta
function. If the integrand under [(dp) depends only on the energy &, = P?/2m—ep
and if it decays at least as fast as 1/¢2 for &, — oo, we shall use [(dp) — v [d&p.
Here v denotes the density of states per spin at the Fermi surface, which in d = 3

or 2 dimensions is given by
d—2
~m  [kp _d{n)
YT onn2 ( ™ ) B ’ (B8

where (n) = [, _ i (dR) = (7/2d)(kp/ 7)% is the average electron density per spin.
The purely 1-dimensional case d = 1 will not be considered here; nevertheless, d = 3
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or 2 of course include the case that a sample is quasi 1-dimensional, in the sense
that only one of its dimensions is larger than the phasebreaking length, L 2 \/D—Tg, ,
where D = UFTel /d is the diffusion constant.

For quasi-d-dimensional diffusion, the actually measured (bare) DC conductivity
og is related to the Drude conductivity aDmde = 2¢2vD by an extra factor ad"j7
which accounts for the sample’s transverse directions along which motion is not
diffusive (d = 3 or 2 is the actual dimension of the sample, d = 3, 2 or 1 the effective
dimension for diffusive motion). Hence, it is customary to define [cf. AAK,0 after
Eq. (5)] o7 = U]]grcudead*‘z as the conductivity per unit length and unit area of
a 3D sample (for d = 3), or the inverse square resistance of a film (for d = 2),
or the inverse resistance per unit length of a wire (for d = 1). Likewise, the weak
localization correction to the conductivity is often expressed in terms of these actual
conductivities by defining JWL = optal

The fact that the weak locahzatlon correction is small compared to the Drude
term is often made explicit by writing the prefactor of the Cooperon term as

oBide /g o(Ly) [see Eq. (C.9)], where Ly = /D7y is the magnetic length and
9a(L) = (h/e*)ogl?™?, (B.9)

is the so-called dimensionless conductance, defined as the conductance, in units of
¢2/h, of a rectangular (d-dimensional) block with volume a4~9L%
one of the “long” directions (of length L). . . .

For good conductors, gj(L) = (7'=%/d)(akp)? 4 (lakr)? 1 (L/lg)?2 is large
whenever L is large: we may assume lgkrp > 1 and akyp > 1 throughout, thus
for d = 3 or 2, any length L > I, implies gz(L) > 1; for d = 1 the function
g1(L) likewise starts out being > 1 for L =~ [, but decreases with increasing L;
nevertheless, it reaches g1 (L«) = 1 only when L exceeds the very large length scale
L. = (akp)? e > Lo

, measured along

B.1. The model and Kubo formula

Following GZ, we consider a disordered system of interacting fermions, described
by the Hamiltonian H = Hy + H;, where

. - . —R?

o = [ aebl@ho@is(e), ho@) = F=V2+Vipplr) =, (B10)
2 ~ .

Hi = % /dxldxg . ’fllls . Vf;t . ’fLQQS ‘y (Bll)

s = fgs — (Ngs)o, Mg = Pl g (i) (B.12)

(O)o = Tr{Opo}, po=e PHo{Tye BHo} (B.13)

Vlmp( r) is the disorder potential. We shall assume that the interaction potential
Vit = Vint(|p) — 1,]), which guarantees that its Fourier transform in d effective
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dimensions, VI**(q) = Vi*(|g|) = a®~4 [ d?re~"@TV"(r), is real. For example, for
the Coulomb interaction, they are given by Vi2* = 1/(|ry — r3|), and

i a2
la|
Equation (B.12) corresponds to a normal-ordering prescription which subtracts the
expec‘Eation vallle w.r.t. the free density matrix pg. The second-quantized electron
field ¥ 4(x) = ¢g(r,0) (in the Schrédinger picture) destroys a spin-o electron at
position r, and can be expanded as follows in terms of the exact eigenfunctions
Ya(x) of ho(x), with eigenvalues £y :

ds(r) =) Ua(@)ers,  [ho(x) — E\tpalz) = 0. (B.15)
A

v AT e Vg = a*In(g’a®). (B.14)

The current density operator has the form

2
2 . € ~
js(tl,’l”l) = E |:.711/ — %A(thT'l) nll,s, (BlG)

o1

where A is the vector potential, j,;, = (—ieh/2m)(V1 — V1), and the convention
of Eq. (B.5) was used for the indices 11’. An external electric field, E(ta,r) =
—V V. (t2, 7)—01, A(te, ), switched on at time ¢, is described by the perturbation®

ext

Hoa(ts) = 0(ts — 1) / dahS (s, 22) (B.17a)

hS (b2, 22) = M3y g, hSy = eV (ta,m2) — A(t2,72) - fap . (B.17b)

According to the Kubo formula, the linear response of the current density to this
perturbation is

R e2 . ) t1 oxt . N
(6T u(ti,r1)) = Z l_EA(tl’rl)<nuS> - Z/ dta /dIth)ﬁfJu/C[uzzw]
to

g1

(B.18)

The first term of Eq. (B.18) is the diamagnetic contribution, (n) = 2ver/d being the
average electron density per spin [cf. Eq. (B.8)]. In the second term, the correlator

~ 1 . .
Chiuroz) = 7_i<[n11’H7n22’H]> (B.19)

is to be evaluated with Hey; set to zero, where By (t) = eth/the’mt/h describes

time evolution in the Heisenberg picture, and thermal averaging is defined by (0O) =
Tr{Opr}, where pg = e PH /{Tre=PH} is the full equilibrium density matrix.

¢ We use e < 0 for the electron charge, as do AAG,'8:19 whereas GZ use —e < 0, hence our
potentials are related to GZ’s by a minus sign: el/;})‘(etre = —eVzGZ, and likewise eVI?ere = —eVlGZ,

eVhere = —eV,G% for the potentials introduced in Eq. (B.28d) below.
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The DC conductivity is defined via the low-frequency limit of the current re-
sponse to a spatially homogeneous applied AC field E(t2) = [(dig)e™ 02 E(&y).
For a d-dimensional isotropic sample, it can be written as

P .

(6T (), (B.20)

= 1' —
7DC = %0 d OB (wo)

where E(wg) can be represented by either of the choices (related by a gauge trans-
formation)

A=0, V_(wy,r2)=—72-E(wy), (B.21a)

E(wo)
in

A(wg) = . V. =0. (B.21b)
GZ use choice (B.21a) (but note our footnote c¢), AAG use choice (B.21b). Taking
the limit ¢, — —o0, one then readily finds from Egs. (B.20) and (B.18) that opc
can be written in either of the following forms, depending on whether the electric

field is represented using a scalar or a vector potential:

€ . . 7
opc = 4 /d332311/ "2 J;TO J12/ 21/ (wo) (B.22a)
o1
.1 1 , .= ie*(n
opc = lim — Z |:— /dx2j11/ -322/;]12/’21/(0]0) + M , (B22b)
o1

m

where we have introduced the retarded correlator [with 619 = 6(¢12)]

o0

j12/721/(QJ0) = / dtlgei“’ot120126~'[11/,22/] . (B23)

— 00

Sometimes, it is covenient to average the coordinate r; over the volume Vol, in
which case one should replace ), in Eq. (B.22) by [ dx1/Vol.

B.2. Keldysh approach with source fields

We now use the Keldysh real-time approach to rewrite 5[11/,22/] in terms of correla-
tors whose dynamical and statistical properties are governed entirely by Hy: first,
thermal weighting is done in the infinite past using the free density matrix pg, and
then the interaction is turned on adiabatically. For arbitrary operators Ay and By,
this amounts to the replacement

<AH(t1)BH(t2)> — <AH(t1 - to)BH(tz —to))o, (B.24)

where the initial time tg is sent to —oo so that all disturbances associated with
switching on the interactions have decayed in the infinite past (the limit tg — —oo,
will be understood but not displayed below). Second, the time evolution of all
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operators is expressed in the interaction representation, using the familiar operator
identity

e Hti—to)/h — e*mo(ti*to)/hﬁl (ti,to), (B.25a)
U, (ti, ;) = Te ® i distlua(ts) (B.25b)
Ar(ty) = emo(ti*to)/hﬁge*mo(“7’50)/’&1, (B.25¢)

where 7 is the time-ordering operator (the anti-time-ordering operator, needed for
U;, will be denoted by 7). The correlator Cf11- 22) then becomes

—_

6[11/,22/] = —( A;(tlvto)flu'l(h)ﬁl (t17t2)fl22'1(t2)01 (t2,t0))o

>t

1, i ) .
- E<U}(t27 to)ﬁzw(b)U} (t1, t2)n1 1 (81) U (1, t0))o - (B.26)

This expression can be recovered via functional derivates from the following
construction:

5 _ ;0P (i o)

00qq =0
B (b1, o) = (U] (t1, to)ivyy (0) Uy p(t1,10))o (B.27b)
(U] (t1,t0)U; o (t1,0))0
U'Ia(thto) _ 767% ftt01 dts [Hi[(t3)+@1(t3)] , (BQ?C)
1(ta) = [ dag g (ta)isar (1) (B.27d)

The index a = F, B will be used to distinguish propagation associated with U; or
U in Eq. (B.26), i.e. with the forward or backward parts of the Keldysh contour,
respectively. Since UI BUI r = 1, the denominator in Eq. (B.27b), included for later
convenience, in fact equals unity. p,,,(t1,t0) = p(t1,t0; 1, z1/) is the reduced single-
particle density matriz. We call it “reduced”, since the thermal average ( )¢ in
Eq. (B.27b) traces out all electron degrees of freedom but one, to be called the
“singled-out electron”, for which the others constitute an effective environment.
Note that we have defined p,,, (t1, o) in the presence of a source term? to generalize
this to 9(¢3), defined by Eq. (B.27d) [which uses the conventions of Eq. (B.6)] on the
interval t3 € [to, 1] in terms of a real c-number “source field” 95, (t3) = 0(t3; 23, z3)
that couples to the (not normal-ordered) operator fiszr(t3). The source field is
devoid of physical meaning, and is introduced merely as a mathematical device

dFor our purpose, it turns out to be sufficient to use the same source term ¢ and source field 95
on the forward and backward contour; to calculate correlators more general than p,,,, one would
introduce a separate source term 9® and corresponding source fields v for each of the forward
and backward contours, a = F/B. The corresponding generalizations below are straightforward.
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to generate 67[11/,22/] via functional differentiation. For © = 0, our reduced density
matrix pq,(t,to) corresponds to p(t;r1,r2) of (GZ-11.20) of GZ, who simply call it
“density matrix”.

In the usual Keldysh approach, all time integrals involving the interaction extend
from —oo to co. This can also be achieved in the present approach, if desired, by
inserting a factor of 1 = U;B (too, tl)UIF(too7 t1) just to the left or right of 711/7(¢1)
in the first or second lines of Eq. (B.26), respectively, and taking the limit ¢o, — oo,
to — —oo. However, the actual value chosen for t., does not matter, and in the
present approach, it is actually simplest to use too = t1.

B.3. Hubbard-Stratonovich transformation

Following GZ, we now decouple the interaction term H; in U, using a Hubbard-
Stratonovich transformation that introduces a path-integral over a further pair of
real, spin-independent c-number fields V, (¢3,73):

DVa (t37 7‘3)1;{(1 (tl y to)@is?’a(tl to)/h

Upy(trsto) = , (B.28a)
/DVa (t37 7‘3)6is?/a(t1’t0)/h
" dq Va(ts, —q)Va(ts, q)

SV (ty,t) = dt N, A B.28b
1% ( 1, 0) [0 3/ (27'(')3 2V1nt(q) ’ ( )
Z/A{a(thto) — Te Jug dts[Va(ts)+01(t3)] 7 (B.28¢)

Va(tg) = /d%geva(tg,rg) Iﬁgg[ : (tg). (B28d)

The fields V, (t3,73) and their Fourier transforms V, (t3, q) are defined on the inter-
val t3 € [to,t1] on the upper or lower Keldysh contour for a = F or B, respectively
(i.e., the time argument of V, is understood to carry an implicit index o). By using
Eqs. (B.28a) to rewrite all Uz, in Eq. (B.27b) in terms of U,, the reduced density
matrix can be expressed as

ﬁll’(thto) = <ﬁ11/(t17t0)>v7 (B.29a)
- . N

pyy:(t1,t0) = (UB(tlvtO)nZlE;(tth))uF(tlvto»o ) (B.29Db)

Z(ty, to) = (U (t1, to)Ur (t1,0))o (B.29¢)
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[ ove [ Dvaresy

(FlValhy = — (B.29d)
/ DVp / DVpe' SV (tto)/h
1S (ty, to) = i(SY — SYB) + hIn Z. (B.29¢)

In Eq. (B.29a), the reduced density matrix p,;, is expressed as a functional aver-
age, over all configurations of the fields V,, of the functional p,,,(¢1,t0). The latter,
defined in Eq. (B.29b) (and called py by GZ), is the reduced density matrix cor-
responding to a particular configuration of the fields V,. For any such functional
F|[Va], the functional average is defined by the functional integral (B.29d), with
an effective action S{°* given by (B.29¢). Note that S{?*, via its dependence on Z,
depends on the source field 7.

B.4. Roadmap for GZ’s strategy

If, in Eq. (B.29b) for 5, (t1, to), the evolution operators U, are expanded in powers
of the V, ’s, the standard Keldysh perturbation expansion for these correlators would
result (as recapitulated in Appendix E). The approach of AAG!®1? amounts to
doing just such an expansion to order Vag However, such a perturbation expansion
has infrared divergencies which are cured only when the leading divergencies are
summed to all orders (or by introducing an infrared cut-off by hand, such as an
external magnetic field, as done by AAG). At present, no exact way of summing the
entire perturbation series is known. Already in 1982, AAK'? were able to perform a
summation of the leading infrared divergencies by treating V, as a classical field; this
indeed cured the infrared problems, but neglects the quantum nature of V.., hence
corrections to AAK’s calculation are to be expected at sufficiently low temperatures.
GZ attempted to proceed both beyond AAK’s calculation (by including quan-
tum corrections) and beyond perturbation theory (by summing an infinite subset of
the perturbation series). The essence of their idea was to integrate out all electron
degrees of freedom but one, the “singled-out electron”, thereby deriving an influ-
ence functional describing the effect of the other electrons (an effective dissipative
environment) on the diffusive motion of the singled-out electron. To this end, they
adopted the following strategy, which we shall repeat below in our own notation:

(A) An exact equation of motion is derived for p,q, (¢, to) [(GZ-11.24), our (B.33)].

(B) From this, another exact equation of motion is derived for the linear response
dp11/(t1,t0) to the source field v [(GZ-11.39), our (B.35)], together with the form of
the effective Hamiltonian H [(GZ-11.40), our (B.36)] which governs the dynamics

of 5ﬁ11/ (tl, t()).

(C) This second equation of motion is integrated exactly [(GZ-11.41), our (B.38)]
in terms of effective evolution matrix functions Ug(t,t') [(GZ-11.42), our (B.40)].

(D) A functional derivative of 65,/ (t1,to) w.r.t. the source field ¢ is taken to obtain
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an expression for the conductivity [(GZ-I1.49), our (B.52) or (B.54)], which involves
a functional average of the form (U p°UP)y over the fields V,, [Egs. (B.51)], where
p° = pv,—o is the (initial) density matrix in the absence of interactions. The purpose
of the subsequent steps (E) to (G) is to facilitate the evaluation of this functional
average.

(E) The evolution functions ﬁ{; introduced in (C) are represented as path in-
tegrals over the degrees of freedom of a single electron, whose Hamiltonian de-
pends on the fields V. We shall use a coordinate-space-only path integral | D'(R)
[Eq. (B.55)], thereby deviating somewhat from GZ, who use position-momentum
space integrals [DR*DP* [(GZ-11.44), our Eq. (D.1a)]. The relation between GZ’s
position-momentum and our coordinates-only path integrals is explained in time-
slicing detail in Appendix D.

(F) The action S{°* (more specifically, the term InZ) that governs the weights
of different configurations of the fields V, in the functional average (UF3°UP)y, is
expanded to second order in Va, corresponding to the standard RPA approximation
[(GZ-11.30), our Egs. (B.61) and (B.67)].

(G) The density matrix p,; (t;,to), wherever it still occurs, is approximated by its
noninteracting (V, = 0) version pY;,. [GZ make this approximation twice: (i) in the
propagators U{;, to obtain (GZ-11.43), and (ii) in the initial-time thermal averaging,
to obtain (GZ-11.49); we use the analogue of (i) [Sec. B.5.7], but do not need (ii).]
(H) The functional average ( )y, which through the approximations (F) and (G)
has been reduced to a Gaussian functional integral, is performed to yield an effective
action iSgr + Sy [(GZ-11.54), (GZ-IL55), our (B.78), (B.82)]. This effective action
determines the influence functional of the environment (the other electrons) on the
singled-out electron.

In GZ’s paper, the above steps are presented in a somewhat different order:
approximation (F') is discussed already after (B), and approximation (G) is made
directly after (C). We prefer to carry out the steps in the order stipulated above,
because this allows us to postpone each approximation to the latest possible stage.

The results derived by the above steps are used in Secs. B.6 and C.3 to make
contact with diagrammatic perturbation theory, and in the main text [Sec. 4] to
calculate the decoherence time. For the latter, we continue to follow GZ’s approach
in spirit, but use a more careful treatment of a certain “Pauli factor”; remarkably,
this turns out to lead to AAK’s result for 7, instead of GZ’s. Although the details
of this calculation are presented in the main text, we shall now summarize them
here, too, in order that the present brief overview of GZ’s strategy be complete.

(I) The term iSk in the effective action turns out to depend on a certain “Pauli
factor” (6 —24°), which we treat differently from GZ: in their position-momentum
path integral, it is represented as [1 — 2n¢(ho)], where ho(R(t), P(t)) is the single-
particle energy of the singled-out electron, which GZ assume to remain constant
during the diffusive motion. In our opinion, this assumption neglects recoil effects
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associated with electron-electron interactions [see Sec. B.6.2]. Therefore, we instead
use a Fourier representation of the effective action, in which the Pauli factor is
represented as [1 — 2ng(fi(e — @))] [Eq. (B.90)], where hie corresponds to GZ’s hq,
and @ is the frequency transfer upon emission or absorption of a photon.

(J) The path integrals [ DR/ for the singled-out electron are performed in the saddle
point approximation, meaning that only the contributions of pairs of time-reversed
diffusive (or “random walk”) paths are retained.

(K) The average of the influence functional over all such random walk paths, namely
<e’(iSR+S’ )@rwl is approximated by exponentiating the average of the effective
action, e~ (19rR+S1)mw /P [(GZ-11.67), our Sec. 4].

(M) The exponent F(7) = (iSg+ S1)rw/li, a growing function of time, is evaluated
by Fourier transforming the effective action into the frequency-momentum domain
and averaging the Fourier exponents, using (¢'@R(ta)=R(ta)l) -~ o=@ Dltasl [our
Eq. (6)].

(L) The resulting function F(7) is used to identify the decoherence time as the
time for which F(7,) becomes of order unity [(GZ-11.67), (GZ-11.70), or (GZ-IIL6)
(GZ-111.22), or our Eq. (18)].

B.5. Repeating GZ’s strategy in detazl

The remainder of this appendix is devoted to a detailed discussion of steps (A) to
(I), using our own notation.

B.5.1. Ezact equation of motion for p(t,1o)

To derive an exact equation of motion for p,, (t,to), we start from the simple
relations

ihduby (t, ) = ho(x), (t,z), (B.30a)

hOUL, (1) = [Va(t) + 01 (U, (2). (B.30D)

Since all functions in Eqgs. (B.30) are evaluated at the same time ¢, as are all other
functions needed below up to Eq. (B.37), we shall suppress the time argument below
and use the shorthand notation

Piir = Py (t,T0) Uy = Z:{a(t,to) » M = g (£ (B.31a)
hoi = ho(x;), V., =Valt,ri), S = 0@ (ri —=7i)00,0, - (B.31b)

From Egs. (B.30), we then readily find
ihpyy = 2 ihO UL, Ur)o — pyri0: 7], (B.32a)

thoZ = /dxk(eVFk - eVBk)<L?; ST Ur)o, (B.32b)
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im0 ULR,, Ur)o = (hoi — hoi) U, Ur)o

~

+/d$k< Ag[ﬁw(evm g 0) — (€Vgy T R D) JUR)o

+ / day, oy, Ub [, 7y JUE)o (B.32c)
Equation (B.32a) can be brought into the form
ihdupsg = [hoi + €Vl Psir — Pisr [hoir + €V, ]
—/dﬂfk[ﬁik(evm = Vi) Py + PipOpir = VigoPyr] (B.33)
by using the identities
=) [51' wkw Jw ﬁkifgﬂg + @fi&}f ki,
et = Vb — Dbl = fgdyy + Db b, (B.34)

AQ}E@"&%&M@%@O = PiirPpi —

™

ik ki’ -

The last of these can be checked by expanding both sides in powers of Va, and
evaluating each term in the expansion using Wick’s theorem. Since V, is quadratic
in i’s, one readily finds that the combinatorial factor for each topologically distinct
diagram is just equal to unity, and that the left- and right-hand sides of Eq. (B.34)
generate precisely the same set of topologically distinct diagrams.

Equation (B.33) is the desired equation of motion for g, . [It reduces to (GZ-
I1.24) upon setting the source fields to zero, © = 0 and recalling our footnote c.]
The term on the right-hand side of Eq. (B.33) that contains a term quadratic in p,
coupling to e(Vy — Vi), will be seen below to be responsible for enforcing the Pauli
principle. Note that Eq. (B.33) contains only c-number functions (no hats occur).
Hence the order of factors in products does not matter as long as their subscripts
are displayed explicitly (the derivatives contained in the functional operator hg;
should be understood to act on index i’ of p,; even if we write them in the order
P, hoir). Nevertheless, the subscripts do imply that the products have the structure
of matrix multiplication in coordinate space; we hence chose to write the factors in
an order that is suggestive of this matrix multiplication. [This order conforms to
that used by GZ, in whose notation the coordinate indices are not displayed, but
are implicit.]

B.5.2. Equation of motion for §p;:(t,to)

Next, we expand the reduced density matrix to linear order in the source field
(which i 1s sufficient for a linear response calculation of the conduct1v1ty) by writing
Piyr = p”, )+5p“,, where the superscript (ns) denotes “no sources” and 0p,,, is linear
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in 0. It satisfies the following equation of motion, found by expanding Eq. (B.33),

ihddpy, = Diyr + / de; HE6p., — / day 8p HE (B.35a)

Dy = / dayd, pY) — / day P25, | (B.35b)
where the effective Hamiltonians HY and HP are defined as follows®:
af = hOiSﬁ + il}\;im a7 = Siihm + ﬁgﬂv (B.36a)

PR R - _ -
hir; = 0i7€Vis — piz(eVir — eVpg) = Z Wiz Var
a==

) ) (B.36b)
h,; = eVpidy + (eVir — €Vpr) pu = Z Vorlig® |
a=+

B = by, Wl = sa%e(éﬁ — 2. (B.36¢)
[Equations (B.36) correspond to (GZ-11.39,40); their —eV,(r;) corresponds to our
¥;.] In Egs. (B.35), the combination of indices i or 74, one without bar, one with,
will always refer to two independent position indices associated with the same time
(i.e., tz = t;). The Hamiltonians HF and HB are associated with propagation
along the upper and lower Keldysh contours, which is why in Eq. (B.35a) they are
contracted from the left or right with the first or second index of 65,;,. In Eq. (B.36¢)
for the vertices wi™* and elsewhere below, the symbol s, stands for “sign of a”, with
sp/p = *1. The fields Voz = Vas(ts, 77) (With a = £) occuring in Eq. (B.36b) are
defined as symmetric and antisymmetric linear combinations of the fields V,; (i.e.,
the time and coordinate arguments of V. ; and V_; on the upper and lower Keldysh
contours are both equal to (tz, r7)]:

(VH) _ (1/2 1/2) <VF1>. (B.37)
V., 1 -1 Viar

Since both HY and HZ depend, through V,;, on both Vp; and Vg, crossterms
will occur below that link the forward and backward Keldysh contours. Note that
the field V7, which shall always carry a “barred” index below, is contracted with
the second index of wE® in AL or the first index of w2 in AL, respectively. Thus
V_ and @~ “do not commute”, which will be important below. The factor (6 —27)

in w*~ will be seen below to account for the Pauli principle.

°Note that [}%7 like ho;, is a c-number functional operator — the derivatives contained in hOiSﬁ
get “transferred” onto the function it multiplies:

/ da:(V25,)67.,, = V365, . / de:5p,,(V25,,) = V267, .



Influence Functional and Interacting Electrons in Conductors 767

All functions occuring in Egs. (B.36) depend on the same time argument ¢, which
we henceforth display explicitly again. It is worth emphasizing that, through their
dependence on p(m) (t,t0), the expressions 6p,;, D,., H: and U“ [defined below in

i

Egs. (B.40)] all explicitly depend on the initial time g, too although for notational
brevity, this to-dependence will be displayed below only for pL¥(t, to).

B.5.3. Ezact expression for §p (t,1o)

The formally exact solution of Egs. (B.35) can be written in the form

8Py (t) /dt /dmkk Et, Dy (OB, (¢, 1) (B.38)

where the functions Uif (¢,t') and Uﬁ (t',t) are defined by the requirements that

. . N

UL (t,t) =Uf(t,1) =6y, (B.39a)
iho UL (¢, 1) ‘/d@ UL (1), (B.39b)
ihoUS (T 1) j/dxljl ', ) HEZ (). (B.39c)

Equations (B.39) are fulfilled by time-ordered exponentials
U5 (1,') = [Te ko )y,

=6, — h/ﬁﬂw)
77,2 /t/ dts /t/ dt4/da:kH t3 ij(t4)+ . (B.40a)
ﬁff('ﬁ/,t) - [76% T dt3ﬁ3(t3)]ﬂ ’
-
_ 3 4 7B
= 51] + 7—1 ‘/t/ dtgHji (tg)

1 t ta B B
_ﬁ/t/ dt4/t/ dtg/dkaﬁ(tg)Hﬁ(t4)+... (B.40b)

where we always take ¢ > t/, and where each “internal” product of two factors
fffkﬁ ki that arises when expanding the exponential involves a further coordinate
integral [dwzy. [Below, we shall often suppress time arguments and use the short-
hand U'g = Ug-(ti,tj) and likewise U% = U@“-(ti,tj).] Note that the time-ordered
exponentials (B.40a) and (B.40b) for U;ﬂ and U'f are defined in terms of the power
series expansions indicated above; the same is true for all path integral represen-
tations of UL and UP to be used below. Note also that Ug is spin-diagonal, since
this is the case for HE(t) = 04,0, H*(t,7i,77) and pi(t, to) = 04,0, p(t, to; Ti, 7).
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Equation (B.38) corresponds to GZ’s exact Eq. (GZ-I1.41). Note that the proce-
dure by which it was obtained, namely, first differentiating p and then integrating
§p w.r.t. t, has produced a result in which the reduced density matrix p(®) appears
in the exponent, via its occurence in ﬁ;j‘ and Ug Accordingly, the effective action
to be derived below will likewise depend on p(*).

Let us now also derive an equation of motion for the time evolution of the
;38)7 since we need it in Eq. (B.38),
where it enters via the D of Eq. (B.35Db). [This point is not discussed by GZ, who
simply replace ﬁ(.38) in Eq. (B.38) by ﬁ%,, as discussed in Sec. B.5.7.] Evidently,

i
the desired equation of motion for (, *) is the © = 0 version of that of Py, namely

Eq. (B.33)3=0, which can, in analogy to Eq. (B.35a) (without its first term), be
rewritten as

density matrix in the absence of source fields, p

matp““) /dx H'Fpgm) /dxj plm)H' . (B.41)

Here the primed Hamiltonians 1{] 2 are defined by equations identical to Egs. (B.36)
for the unprimed ones, except that the vertices wa* of Eq. (B.36¢) are replaced by
primed vertices w/2® that are defined as follows!:

IN 1 ns
= edi, W= sag (8 — y 2. (B.42)

Here the y*/B € [0,1] are (arbitrary) real numbers, with y* 4+ y® = 1. Tt will
turn out below to be convenient to let the choice of values for y* depend on which
contour the current vertex at time ¢o, is located: if it is on contour F//B, we shall
choose y¥/B = 0 =1 — yB/F (compactly: y* = 0 for j(tz,) on contour a; Fig. B.1
below shows an example with @ = F'). The solution of Eq. (B.41) can be expressed
as

P (o) = UL (. t0) U5 (to, 1), with y™ +yP =1, (B.43a)

~Z,£(t,to)‘ L AOE o t) i yT =0, yP =1,
= (B.43b)
Ui};(t,to)pkkUl  (to, )’yB if yB =0, yF =1,

fThe reason for the extra y® in front of p~(.ns)

i for QZJ;?_, which is the only difference compared to

wi of Eq. (B.36¢c), is as follows: The linear response equation of motion for 65, contains two
kX%

different contributions that are quadratic in p, namely ﬁgzs)evikéﬁki, and 6p~ikeV7kﬁ§£,s), which
in Eq. (B.35a) were grouped with the first and second terms respectively. In contrast, the equation
~(n;

: ®) turns out to contain on the right-hand side just one type of term quadratic

in p, namely pik )eV kp,(ﬂ,)

of motion for s

, with total Welght 1. By using y¥ + yP = 1 in Eq. (B.42), we have

distributed this term with weights y* and y® among the two terms on the right-hand side of
Eq. (B.41).
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The primed propagators U’“ are defined analogously to Eqs. (B.40), but with
H — H' everywhere. In Eqs (B.43), we have implemented the standard ini-
tial condition for the Keldysh approach, namely that at time ¢ = tp, the den-
sity matrix was free, i.e., p; )(t07t0) = ﬁ%,. Below [cf. Eq. (B.50b)], we shall
insert Eqgs. (B.43b), with t9 — —oo, into Eq. (B.38), where it enters via the
D of Eq. (B.35b), to ensure that thermal averaging is done in the infinite past.
This is an important improvement relative to an approximation used by GZ, who
simply replace p(m) (t,tp) in Eq. (B.38) by py,, they thereby effectively perform
thermal averaging with a nonequilibrium initial density matrix, as discussed in
Sec. B.5.7.

The way in which Ulf , U £ and ﬁg’s) differ from their free versions is evidently
through their dependence on the fields V, and the density matrix p; in Eqgs. (B.36).
Let us now briefly discuss their free versions. Firs(t7 )in the absence of all interactions,

the expression for the reduced density matrix Dij

Py =D Uale) i (z;)no(6n) = (75)" (B.44)
A

reduces to the form

where ng(€y) = [e$2/T +1]7! is the Fermi function, and 1 (x;) are the exact single-
particle eigenfunctions of hg;, with eigenvalues &y [cf. Eq. (B.15)]. Next, let U'g“
denote the propagator to which [7{; reduces in the absence of interactions, i.e., for
Vai = 0 in Egs. (B.36) [so that ffg = hgid;]. Tts explicit form is easily found by
constructing an object satisfying the defining Eqgs. (B.39) for V,; = 0; the result is
independent of whether a = F or B, and given by:

09 =09 = da(wwi(ey)e ©W/M =in(GF ~ G4y, (B.45)
A

where ég/ 4= io(it@')(é; - é;) are the standard free retarded and advanced
electron Green’s functions, with

:liihé<»/> _ { <1E(t L ) I(tz,ﬂfz»o}

; NI
Wy (ti )91t 2))o (B.46)

=Y al@ vl () N g (£61) -
A

It follows that for a given time order, as occurs under a time-ordered integral, U'g“
is equal to either a retarded or an advanced Green’s function; e.g., for ¢; > t,
we have UJF = ihGE and U%P = —ihG4. Nevertheless, it will be useful to
generally retain both terms in Eq. (B.45), because that allows expressions in-
volving the free reduced density matrix to be simplified by Fourier transform-
ing from the time to the frequency domain: for example, denoting the frequency
Fourier transform of UY(t) by UY(w), we immediately find the exceedingly useful
relations:
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Fig. B.1. A pair of backward (B) and forward (F) paths contributing to J1(2,)21,(t1,t2; to), with

t1 > ta > to. There are two ways to view this figure: (i) Ignore the wavy interaction lines, double
dot vertices and frequency assignments; then this figure illustrates the second line of Eq. (B.51a),

and the solid or dashed lines represent the full unprimed (UZ?/B) or primed (U’fj) propagators,

respectively. (ii) Imagine the propagators U¥/B and U'F to have been expanded in powers of the
interaction [as in Eq. (B.48)]. This generates a forward and backward backbone of free propagators
U%F or U%B (represented by either solid or dashed lines, which now have identical meanings),

which are respectively decorated by the vertices l~z vz and h 1 (represented by a pair of dots;
both dots are associated with the same time, but the one drawn on the side of earlier times
is distinguished by a bar; the origin of this convention is explained in App. D, Fig. D.1). The
vertices generate, after averaging over the fields V7, the wavy interaction lines fzaja,, connected

to the barred dots. [The interaction lines are labelled according to Eq. (B.83) below: L,q stands
for ElKaJ . Efﬂ , or EJ ,740 if generated by (Viz,Vig v, (V4z,Voj, v, or (Voz,Vig v,
respectively, cf. Eq. (B. 74b) | For both cases (i) and (ii), arrows are drawn to point from the second
index to the first index of each of U F U B and [,f(gR/ 4 . Thus, they point from later to earlier times
along the backward Keldysh contour and from earlier to later times along the forward Keldysh
contour (i.e., they form a continous loop, starting on the backward contour from ¢; backwards
to to = —oo, then continuing on the forward contour from to = —oo forwards via t2 to t1).
Finally, the frequencies label the interaction correlators £,,/(w) and Green’s functions GR/4(w)
and GX(w) = tanh(hw/2T)[GE — GA](w) that arise (before disorder averaging) upon Fourier
transforming from the time to the frequency domain, as for Egs. (B.85) or (C.16a) below. The
effective action defined in Egs. (2) to (4a) of the main text neglects the frequency transfers w; in the
arguments of all retarded and advanced electron Green’s functions [GF/4 (e —w; —- - -) — GF/A(e)],
but, for every £1/4(w;)GX (e — w;), retains it in the factor tanh[h(e — w;)/h] of the accompanying
GX function. [As discussed in Sec. 3 or B.6.2, this is justified by the fact that all integrals over
frequency transfer variables are limited by Fermi factors to the range |hAw;| < T7.

/ 408 (@) = no(w)T2(w) = —ihGS W), (B.4Ta)

/ s[5 — 27500 (w) = [1 — 2n(w/2T)T0w) = ihGE (w),  (B.ATD)

where Gff = G> + G< is the Keldysh function. Note, in particular, that by passing
to the frequency representation, the Pauli factor (6 — 27°) in Eq. (B.47b) gets
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mapped onto [1 — 2ng(hw/2T)] = tanh(hw/2T"), a fact that will be very useful in
Sec. B.6.2 below.
For future reference, we note that when the matrix propagators Uif and Uf

[with ¢ > ] are expanded in powers of h¢, [i.e., in powers of the fields V,, see
Egs. (B.36b)], they take the form of time-ordered or anti-time-ordered power series,
respectively:

ﬁlF (t,t) > 1 ti t1
NJB , } - Z h_N/ dtl/ dtQ
Uji (', 1) N=0 tj tj

tN—1
/ dt]\]/dxljdedeNN
t.

J

()N OQFRE (OOF . R 0F

Vil VNN~ Nj B.48
X . .
(_H-)NﬁogﬁB o _ﬁo_BBB_ fJOB ( )
jN""VNN 21 Vi1l

These expansions [illustrated in Appendix D by the third row of Fig. D.1] are
alternative but equivalent to those of Egs. (B.40), and, just as the latter, can be
regarded as formal definitions of f]g, and of all path-integral representations thereof
to be used below. Note that for each occurrence of a “vertex” B‘I;lFl—F or ‘Iil—BlB, the
vertex coordinates x;, and 7 are both associated with the same time ¢;, and both
are integrated over in [ dzx; ; [cf. Eq. (B.6)]. This need for a double position integral
at each vertex is a direct consequence of the fact that the effective Hamiltonians
fI{; of Egs. (B.36) are nonlocal in space. Since the integrals in Eq. (B.48) are time-
ordered, each U occuring in UF can be replaced by ihG%, and each U in UP
by —ihG4 [see Eq. (D.11c)]. Indeed, the latter replacements are, in effect, used in
the path integral representation of U® to be introduced below [Eq. (B.55)]. We have
nevertheless chosen to write Eq. (B.48) in terms of U% functions, as a reminder
that the density matrices occuring in the interaction vertices h¢, can be converted
to Fermi functions using Eqs. (B.47).

B.5.4. FEzact expression for conductivity

The density-density commutator 67[11/,22/] [Egs. (B.19), (B.27), (B.29a) and (B.38)]
can now be obtained by taking the functional derivative of §p,4(t) with respect to
the source field & [occuring in (B.38) via D of (B.35b)]. Henceforth writing ¢ = ¢,
and t' = to, the result can be written as

Chvoz(ts —t2) = Y J5 o (tr, tato) + CHETSS (B.49)
a=F,B
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where C[Iﬁ‘,“gg?] is a contribution irrelevant to weak localization, which will be

dropped henceforth.® The J(®’s are defined in terms of the correlator

o a3 21 (b1 125 o)
= %ﬁg(h,t2)/33;)(f2,to)ﬁifi/(fmtl) (B.50a)
= %/dxo,oﬁf;/(thtz)Uég(tmtO)ﬁgaﬁég(tO»h)ﬁgl@m’51)» (B.50b)

[the second line follows via Eq. (B.43a)] by:

. N
Tigr (tr, tasto) = /de<J1V2’,22,§1’(t17t2?t0)>V,ns

1 ~rp ~pn ~ F_
= [ s OLTERTEND . (Bs1a)

jl(g?le(tth;tO) = _/dx§<j1‘%’§2/’21/(t17t2§t0)>V,ns
N 1 F 30 (7B B, \v"=0 B.51b
= ﬂfo,oh< 10PooY 02’ 21'>V,ns . (B. )

JE) [llustrated in Fig. B.1] and J(B) denote correlators that have a current vertex
inserted on the forward or backward Keldysh contours, respectively. As a notational
reminder, the indices 2, 2/, and 2 here all refer to the same time, ¢, in this case,
and after performing the derivatives implicit in j,;, and hS3f, we have to set 2 = 2'.
However, z5 in Egs. (B.51) is an independent integration variable. The subscript ns
(for “no sources”) in ( )vns indicates that, following the prescription of Eq. (B.27a),
all remaining v-dependencies are to be dropped henceforth by setting © = 0. The

8The term CHartree in Fq. (B.49) has the form

[117,227]
5 0lnZ 6InZ
CHir s :‘<* t,t 7> —i(Pyp(tr,t n<7> ;
n22 = H Pralty to) e s Vons WPt to))vins | 5y Vins
0In Z 17 -~ N K
2 = i (UL (1, to U (t1, t2) P (£2)U o (22, €
St~ 'z Ut oW (11, t2)y 1 (42 (2, t0))o

- (LA’L(Q’tO)ﬁ22'1(t2)a}T3(t1,tz)ﬁp(tmto))o] ,

and arises since the effective action S¥?* of Eq. (B.29¢) in the functional average (B.29d) depends,
via In Z, on v too. é[}ll?ftégﬁ}] corresponds to (GZ-11.47) and is neglected by GZ [see the discussion
after (GZ-11.47)], because in the absence of interactions, it vanishes entirely, and hence does not
contribute to the weak localization correction to the conductivity (in other words, éﬁ?}rgg?] is
irrelevant to the question how this correction is affected by interactions). We shall not consider
it further either, since in diagrammatic terms it corresponds to Hartree contributions to the
electron Green’s functions, which merely renormalize the magnitude of the conductivity (and

were neglected by AAG,819 too).
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second lines of Egs. (B.51a) and (B.51b), in which we set y* = 0 for the corre-
lator J(®) containing the current vertex on contour &, follow from Eq. (B.50b) for
j1V21,2§f,§1/ by using the first or second line of Eq. (B.43b) for U'F j°U"B , respectively
[thereby conveniently avoiding primed propagators U’ under the x3-integrals on the
“other” contour a’ # a, which thus have the form fdxiﬁgﬁ'% = Ug-/; the latter
composition rule follows from Eq. (B.45) and the completeness of the wavefunctions
¥x(z;) occuring therein.

Inserting Eq. (B.49) for (3[11/,22/] into Eq. (B.22a), the expression for opc that
results upon representing the applied field in terms of a scalar potential, and then

relabelling x5 <> x5 in the term containing J®B) | we find:
e2 t1
opCc = % Z‘/ioo dtg/d.’tgé[?”g — TQ]
o1

(V1 = V) (Y5 9391 (1,12 10)) e - (B.52)
Eq. (B.52) for the DC conductivity is analogous (but, as discussed below, not
identical) to (GZ-11.49) [the factor U, (¢, tg)ﬁil,(tg,tl) which occurs in our
Jiar,9331/ (1, t2; to) is the analogue of the function J(t1,t9;71,71;72,73) occuring
in Egs. (GZ-11.49) and (GZ-11.50)]. In deriving Eq. (B.52), no approximations have
been made, apart from not displaying the Hartree terms [cf. footnote g].

Instead of (B.22a) and (B.52), it will be more convenient for our purposes to use
Eq. (B.22b) as alternative expression for opc, derived by representing the applied
external field via a vector potential. The correlator j12/,21/ (wo) occuring therein can
[via Eq. (B.49)] be expressed as:

j12/721/(w0) = / dt12€iwgt12 . lim Z 012j1(g/)721/(t1, tQ; to) . (B53)

00— —00

a=F,B
Since j12/721/ stems from the commutator CN[H/’QQ/] [Eq. (B.19)], whose terms satisfy
(Ayy g i) = (Pggr gty 1) the correlators J(@) satisfy

Tia oy (b1, ta5t0) = =J155 (b1, ta5t0) , J{5 o1, (w0) = —[J{15) 50 (—w0)]"

The first of these [which implies the second] is manifestly obeyed by Egs. (B.51).
Taylor-expanding Eq. (B.22b) using J(wg) = J(0) + woJ'(0) + - - -, and separating
ODC = 0DC, real T 10DC, imag into real and imaginary parts, we obtain

1 . .z
ODC, real = Z a /dx2.711' -322,(]{2,,21,(0), (B.54a)
o1

1 i62 <fL11H> 1 ~

' imag = lim — ——+ = [ dxagqy - JoorJ127,210(0)| . (B.54b

LODC, imag 1 Z{ m + d/ T2J11/ * JoorJ127,210(0) ( )
o1

Since we have taken the DC-limit wy — 0, the imaginary part opc,imag must be

strictly equal to 0 (to all orders in the interaction), which is a useful consistency

check.
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In Appendix C we show how Egs. (B.54) can be massaged into more familiar
expressions for opc, both in the absence and presence of interactions [cf. Egs. (C.3),
(C.8b), (C.28Db)].

B.5.5. Coordinate-space path-integral representation for U'{Jl

In this subsection, we shall derive path integral expressions for the objects in terms
of which the conductivity is expressed in Eq. (B.54a), namely the propagators U{;
[Eq. (B.40)] and the interaction-averaged correlators (J(®)y [Eqs. (B.51)]. We de-
viate from GZ’s approach, who used a path integral [DR [P over both coordinate
and momentum space, in that we shall use coordinate-space-only path integrals
J D’ , because that makes possible a more accurate treatment of the crucial
nonlocal Pauli factors (6 — 2) in the effective Hamiltonian H® of Eq. (B.36).

We begin from the power series expansions (B.48) of the evolution matrix func-
tions Ug-(t,t’) of Eqs. (B.40) in powers of h¢, and introduce, as a shorthand for
these expansions, the following coordinate space path integrals:

FTF (4 4 R%(t)=r; . — ¢ Wl s
[{zj (tat ) } _ / T ﬁ/Raeisusg(t,t/)/h exp [ Zhsa / dt3 {hngBF ‘| . (B55)

Uit t) Re(t)=r; h53333

Here s, stands for sp/p = +, and the index value a = F or B should be used for the
upper or lower term in the curly bracket, respectively. The coordinate-space path
integral is over all paths R"(t3) that begin at time ¢’ at point 7; and end at time ¢
at point r;; the time t3 that is used to parametrize this path R"(¢3) is understood
to refer to the upper or lower Keldysh contour for a = F or B, respectlvely [in this
sense, an index a on t3 is implicit, as in R(t3,)]. The objects S§ and h¢, in the
exponential factors in Eq. (B.55) are both functionals of the path R®(t3): S§ is the
standard action for a noninteracting electron in a disorder potential,

t
~ a 1 - a2 a
Sg(t,t’)[R (tg)] E/ dts [§mR (tg) - V}mp(R (tg)) R (B56)
t/
whereas in the second exponential, we used the following shorthand notation:

§ ~Fo
V3F3F w3p3p 043F

= 0" ts, v (ts), 75 (t3)] Va [t5, 75 (23)] , (B.57a)
a=+
B€EB3B = Z VOZBB w?)BBO%B
= Z Va [t37 T?(tg)} U~}Ba [t3, ’I”?(tg), ’I"g(tg)] . (B57b)
=+

In Appendix D, we give an explicit definition of the path integral Eq. (B.55) by
time-slicing the time interval [t,¢] [Sec. D.4], and a detailed demonstration that
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it satisfies the defining Eqgs. (B.39) [Sec. D.2]. The explicit derivation given there
shows that, when writing down the path integral (B.55), the following points are
to be implicitly understood [see also Fig. D.1 of Appendix DJ: (i) The path integral
(B.55) is simply a short-hand for the time-ordered power series expansion (B.48),
with (—i/h)UCF. replaced by GE . and (i/R)U%8 by G4 . [cf. Eq. (D.11c)]. (ii)

tFJF 7’F.]F JB'B ]BZB
For each occurrence of a “vertex” h€3 3, OF hvg 3, the vertex coordinates r§(ts)

and 7§(t3) are both associated with the same time t3, and both are assumed to
be 1ntegrated over in the path integral [as in Eq. (B.48)], thereby taking into ac-
count the nonlocal nature of the Hamiltonians iz‘{/lj (iii) The associated integrations
Ik dzg 3 are understood to be included in the measure Ik D'R® (the prime serves as
reminder of this fact), in addition to the integrations associated with propagators
between vertices. (iv) Vertices are connected by propagators of the form GlF jp OT
Gﬁs 2, on the forward or backward Keldysh contours, respectively. However, since
these propagators occur under time-ordered integrals anyway, they can equally well
also be written as (—i/h)USE, or (i/h)USE . as is convenient [in order to exploit
Eq. (B.47)] whenever they are contracted with a density matrix 59 . or p?_, .
Now use the path integral representation (B.55) (twice) in Eq. (B.50b) for
(jV>V7nS, and interchange the order of averages, ([D'(R)- )y — [D'(R){---)v.
[The latter step could have been postponed until the beginning of Sec. B.5.8, but
is used already here, since it simplifies subsequent expressions. Its use, sooner or
later, is a crucial ingredient in GZ’s approach. Its far-reaching consequences are

discussed in detail in Appendix A.4.] We obtain

- 1 -
<J1‘g/72§/7§1/(t1)t2;t0)>\/7ns = ﬁ/dl‘oF,(—)BpOFﬁB

1r 2r 2% R
xﬂ[ D'(R) D'(R)Fu, 1) [R*], (B.58)

= /2B 0r JOB
where # #D'(R) is used as a shorthand for the following forward and backward
path integral between the specified initial and final coordinates and times:

iF B RF(tF):’I‘f e
f’[ @/(R)...E/ DR (1)ei55 ¢ A0/
JF JB RF(tf):T‘JF
RE(t7)=ry _
X D'RB (t5)e 5 WX17)/h . (B.59)
RB(tf):er

The influence functional ]t'(tl,to) [R"] in Eq. (B.58) is defined by the following func-
tional integral over all configurations of the fields Vig = Vi (t3,73) of Egs. (B.37),
with t3 € [to,tl]:

/ DV, / DV [5'—B V]t 10

/ DV, / DV_ehS¥ (t1.t0)

‘7?(751,150)[ (t3) RB t3 (B60a)



776 J. von Delft

tl -
BVt = [ dia [dra 3 Bultara)Valta,ra), (B.60b)
to a=+

Ba(ts,r3) = SFW;;%F(S(Tg —r3,)+ SBW{;%B(S(Tg —-r3,), (B.60c)

WL = 030038 + oz . (B.60d)

Here SiPt(t1,t0) is given by Eq. (B.29¢), and Eq. (B.60c), which defines the field
Bas = Bal(ts,rs), follows from using Egs. (B.57) or a primed version thereof, for
t3 > to or t3 < to, respectively. The distinction between the two time orderings,
which is reflected in the definition (B.60d) of the vertices Wé%o‘ (and not noted by
GZ, since they set tg = t2), is necessary, since Eq. (B.50b) correspondingly features
unprimed or primed propagators ﬁ{; or ﬁ{j“, respectively, which have different ver-
tices [compare Eqs. (B.36¢) and (B.42)]. Note that B, is itself a functional of both
the paths R (t3) and RP(t3). The influence functional® f(tl,to)[R“] describes the
effect of all other electrons on a pair (forward and backward) of singled-out electron
trajectories R (t3) and R (t3) between the initial time to and final time #;. Impor-
tantly, this influence functional incorporates the Pauli principle, via the presence

of the Pauli factor (§ — 2p) in w?~.

B.5.6. RPA approximation

To evaluate the influence functional ﬁ(thto) explicity, our next task is to perform
the functional integrals [DV, stipulated in Eq. (B.60a). As a first (standard) step
toward making these integrals Gaussian, i.e. doable, we apply (following GZ) the
RPA approximation: we approximate the effective action S{°* of Eq. (B.29¢) by the
part quadratic in the fields V, say

iSSP (ty,t0) = i(SYF — S9P) + hz® = —Z[V- A-V(t1, o) (B.61a)

N | =

1 t1 t1 N ,
= —5 / dtg / dt4 / d7’3d7'4 Z Vag.Agf Vo/4 y (B61b)
to to ool

so that Eq. (B.60a) becomes

(B.62)

hThe term “influence functional” is used here in precisely the sense in which Feynman used it:
Our F23[R*] is analogous to the quantity F[g(t),¢’(t)] of Eq. (12)-(90) of R. P. Feynman and
A. R. Hibbs, “Quantum Mechanics and Path Integrals”, McGraw-Hill (1965).
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To find A, we have to find an explicit expression for the term £Z?) in Eq. (B.61a),
which arises from expanding the factor In Z = Z() + O(V;?) to second order in V,
using

Z(t,to) =142 + 23 L ov?), (B.63a)

t1
- %2/ dtg/ At {(TVr(t3)Vr(ta))

+(TVp(ta)Va(ta)) — 2(Va(ts)Vie(ta))o} (B.63b)

and noting that Z() vanishes, since V, is normal-ordered [cf. Eq. (B.28d)]. Express-
ing Eq. (B.63b) through the fields V,; (o = +1) of Eq. (B.37), we find

t1 t1
hz® = — / t3 / dty / drsdra(iV_sXsaViy +V_sisaV_y),  (B.64)
to to

where X4 (the charge susceptibility) and 7j; (characterizing charge fluctuations) are
defined as

. 2¢? R . R~
Xy = —279@@‘)“2 TL“‘](tl) o njj](tj) :]>0 = 4€2h1m[Gng<l] y (B65a)

e2

ﬁij = %<{ 'fL“‘](ti) I ﬁjj[(tj) :})0 = —GQHRG[GZG;] 5 (B65b)
with equal spins, o; = o, (for o; # o, both these quantities vanish). [Egs. (B.65)
correspond to (GZ-11.31) and (GZ-11.32).] The right-most equalities were obtained
by using Wick’s theorem to rewrite the correlators in terms of the single-particle
Green’s functions G [Eqs. (B.46)]. The Fourier transforms of ¥; and 7; satisfy
X p(—w) = Xe(w) = X—k(w) and 7k (—w) = fr(w) (thus the latter is real), and
are related by the fluctuation dissipation theorem [(GZ-I1.33)]:

e () = —% coth(hw /2T)Tm Ya () . (B.66)

Now, if we write the second-order contribution iS‘(,2 )(t,to) in the form of
Eq. (B.61b), and Fourier transform,’ we obtain from Eqs. (B.28b) and (B.64):

dkdw _ ol B
V-A. V= / o)+ Z Va,—k(—w) ALY (w)V k(W) , (B.67a)
0 e-k(-w)
Taa’ . Vint(k)
At W) ==t , (B.67b)
k) 2 (w)
Vlnt(k) oo

iStrictly speaking the Fourier transform (B.67a) is an exact representation of V - AV only if the
time integrals in Eq. (B.61b) are unbounded, e.g., for to = —oo and ¢; = oo. In our formalism,
this indeed is the case, since we do take the limit tg — —oo, and may also take t; — +oo (because
the t1-dependence drops out, anyway).
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where £x(w) = 1 — VI"'(k) yg(w) is the dielectric susceptibility. [The latter rela-
tion is a generalized version of (GZ-I1.35); in (GZ-11.36), GZ added to &g(w) an
electron-phonon contribution, which is not important for the present discussion
and neglected by GZ themselves later on, after (GZ-11.75).]

Having found A, let us now also find and discuss some useful properties of its
inverse, A~! [it will be needed in the next section after evaluating the functional
integral Eq. (B.62)]. Using é_g(—w) = &, (w), we find

_ , I (w iRk (w
(A3 () = ( R_’“}f( _)w) ’;( )) : (B.68)
with matrix elements given by
_ - Vint(k)
Ry (w) = W) (B.69a)
I (w) = M = — coth(hw/2T)Im R (w), (B.69b)

ek (w)[?

where the last equality in Eq. (B.69b) follows from Eq. (B.66). Note that the as-
sumptions [stated before Eq. (B.14)] that V"(k) is real and symmetric, imply
that

R*j(~w) = Re(w) = Ry (w),
(B.70)

I (-w) = Ie(w) = L(w) = In(-w),

so that the functions ]:ZU and I~ZJ are both purely real: ]:ZU = ]:21*] and I~ZJ = f;]‘ =
I ji- For reference purposes, we note also that their frequency Fourier transforms,
denoted by R;(w) and I;;(w), satisfy the relations R;(w) = Rji(w) = Rj(—w) and

Ij(w) = Iji(w) = I} (—w) = Ij(~w) = — coth(hw/2T)Im[Ry (w)] . (B.71)

Furthermore, Rm (w) is analytic in the upper half plane, implying that Rl] is pro-
portional to 6(t;). In contrast, fy is symmetric in its indices and thus nonzero for
both ¢ > 0 and < 0.

The components of A~! are of course related to field correlation functions of
the type (VaiVasj)vns, as follows from a simple exercise in Gaussian integration:
Introducing the generating functional

i

QLA = (e F Vs, (B.72a)

t1
[€-V(t1,t0) = /t dts / drs > CasVas, (B.72b)
0 a=1=
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where (o = (o(ti, 7;), with o = £1, are two real source fields, we find

/DV+/DV em BV AV HEY
Rra “HeATC . (BT3)

/DV+/DV e~ ImVAY

The field correlators are then easily found to have the form

1 52QI) e _ (T iR
~ViiVir v =~ | = ([ )2’ = [ B.74a
h< J>V 5§M5ca,j =0 ( )J iRji 0 " ( )
1. .
(=LK LR
=27 . (B.74b)

A

aa’

where Eq. (B.68) has been used, and the functions [cf. (GZ-I1.56) and
(GZ-IL57)]

(R/T)y = / (dke)(dw)e =t T (R T () (B.75)

are defined via their Fourier transforms, given by Egs. (B.69a) and (B.69b) above.
Equation (B.74b) expresses the general fact [reviewed in Appendix E.2] that the
field correlators can also be written in terms of the standard retarded, advanced
and Keldysh components of the interaction propagator, ﬁl] , ﬁA and ﬁff , implying
that these are proportional to Rij, Rji and Iij [cf. (GZ—III.A14)]. This implies that
Rl’j is a retarded propagator and thereby confirms that it is proportional to 6(¢;)
[as had already been concluded above from the analytic properties of Ry(w)].

To obtain explicit expressions for Ry (w), one needs £x(w) and hence yg(w), for
which one has to calculate a polarization bubble [see Appendix F, Fig. F.1(e)]. If
Vint(k) = 47/k* represents the unscreened Coulomb interaction [Eq. (B.14) with
Ao = 0] and, as is usually the case in the presence of disorder, only small frequencies
and wave numbers are of interest, a standard calculation yields [cf. Eq. (F.5e) and
(GZ-I1.36)):

k2 Drude 47T0.D6ude

W) = —pats e W=l 5t

_ DK’ — iw

B.5.7. Approrimating pfj s) by ﬁ%

Even after having made the RPA approximation, the functional integral in
Eq. (B.62) over all field configurations of V,, is not yet Gaussian. The reason is
that the term B’ -V in the exponent depends, via w®~, on the full, interacting
Em)( t'), which depends on the fields V,, too, in a highly nontriv-
ial way. To make further progress, we shall ultimately have to neglect the effect

density matrix p
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of interactions on the single-particle density matrix, by replacing [;Z‘.J?‘S) (t') by its
noninteracting (and hence time-independent) version 53

Py (t) T 5 = Gigsho. (B.77)

] 4 =

GZ use this approximation at two points in their calculation [see the comment after
(GZ-11.43)]: (GZi) to simplify the propagators Ug7 namely when passing from (GZ-
11.40) to (GZ-11.43); and (GZii) to simplify the thermal weighting factor describing
the initial distribution of electrons, namely to obtain the explicit factor pg in (GZ-
I1.49). In our formalism, (GZii) would correspond to setting tg — t, i.e., making the
replacement pé2,)(t27 to) — pYy in Eq. (B.50a) for J12, 3 31/ (t1, t2; t0) and inserting
the result into Eq. (B.52), since this would reproduce (GZ 11.49).

We shall use similar but weaker approximations, and proceed in two separate
steps:

(i) We “linearize” the exponential factor B -V in Eq. (B.62) by making the
replacement B[pfjm ] = B[#}], so that the functional integral (B.62) becomes truly
Gaussian in V and can readily be performed [see Sec. B.5.8]. We thereby neglect
the effect of interactions on all occurences (via w®~ in ﬁ%,) of () in the propaga-
tors U{;, the rationale being that in order to calculate the decoherence rate, we are
interested in how the interaction affects the time-evolved propagation of electrons
along time-reversed paths, and not how it modifies equal-time objects like p;. Dia-
grammatically, this corresponds to neglecting diagrams which modify the Keldysh
Green’s function without affecting the retarded or advanced ones, i.e., which modify
only the tanh factor, but not the propagator f]ij in Eq. (B.47Db).

(ii) For the propagator J(®, which is defined as the sum of all terms for which
the current vertex joor occurs on contour a at time to,, we neglect all interaction
vertices that occur on the same contour a at earlier times ts, or t4, € [to,%t2,].
Thus, in the second lines of Egs. (B.51a) and (B.51b), we make the replacements
Uil — UYy and UB — UY,,.
current vertex, we include interaction vertices for all times € [to, ¢1]. The rationale

However, for the opposite contour containing no

for this is that, in diagrammatic language, this approximation retains only those
diagrams for which both current vertices 522, and j 11 are always sandwiched be-
tween a GE- and a éA—function, ie., éRj GA. These are the ones relevant for the
Cooperon; the contributions thereby neglected correspond to the so-called “inter-
action corrections”, which feature at least on current vertex sandwiched between
two retarded or advanced functions, i.e., C;'R.;CZ'R or éAj'éA.

Note that this approximation (ii) is much weaker than (GZii): we do not re-

place ﬁ(ns) by p5 in Eq. (B.50a) (i.e., we do not set ¢ty — t3), but instead use

22/
péz,)(tg,to) UL, UL, [Eq. (B.43a)] and send to — —oc. Also, we wish to em-
phasize that “interaction correction” terms can be calculated from our formalism if
one so chooses, by avoiding our approximation (ii) altogether and keeping track of
all interaction insertions on the entire interval [tg, ¢1] of both contours [Egs. (C.10c)

and (C.10d) give examples of such contributions]. For the sake of greater generality,
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we shall thus for the moment use only approximation (i), and postpone the use of
(ii) to Sec. B.6.

B.5.8. Integrating out the fields V,, to obtain iSg + S;

The approximations discussed in the previous two subsections render the functional
integral (B.62) for Fy, +,)[R"] Gaussian. In fact, Eq. (B.62) is just of the form
(B.73), with ¢ - V replaced by B -V of Eq. (B.60c), so that we get

ﬁ(tl’to)[Ra] — 6_%6”.471.6 = e—[ié]@-ﬁ-é[](tl,tg)/ﬁ. (B?S)

The exponent (iSg+S7)[R®] = B-A~'-B/2, which is a functional of the paths R?,
can be regarded as an “effective action” that describes the effect of interactions on
the “singled-out” electron traveling along the paths R®. The indices R,I are meant
to distinguish terms depending on the interaction propagators R and I. Before
working out the explicit form of the effective action, however, let us first collect
results to obtain path integral expressions for the correlators jl(g,/ ;i), of Egs. (B.51).

These contain the correlators (J), 45 5,/)v,(ns), for which we use Eq. (B.58), with

Flt1,t) 8iven by Eq. (B.78), and [ dx3 integrals, which we perform in the same way
as for the second equalities of Egs. (B.51):

B 1 )
J1(2/{21)/ (tlth;tO) = :l:ﬁ /dIOFyDBp(O)FGB

1r 2r plp
VR el
2/F OF OB
X
1r plz 25
VA el
Or 2B 0B

Combined with the current vertex insertions [dzajsq - ji1o of Eq. (B.54a), we
obtain

e [ESr+S1](t ,to)/ﬁ|yF/B:0 )

(B.79)

/d$2j22/ “J Z jl(g'),21/(tl7t2§t0)

a=F,B

1r llB
~0 =
:/deF)DBPOFGBﬂi g D/(R)
F B

1 Gt
X ﬁ{[] (top )3 (tr)e SmFSIELI/A]

—[J(t2,)] (tl)e*[iSR+SI](t1,tO)/h]yB:O} . (B.80)
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This expression, which is the first central result of our formalism, has a simple
interpretation: thermal averaging with ﬁga at time ty (— —o0) is followed by prop-
agation, in the presence of interactions (described by e~ [iSr+S1 ]), along all possible
paths from time ¢y up to time #;, with insertions of current vertices j(ts,) at time
ty on either the upper or lower Keldysh contour, and another current vertex j’(tl)
at the final time.

Let us now determine the effective action explicitly, by using Eq. (B.60c) for B
to evaluate (1/2)B- A~ - B

[iSg 4 Sr](t1,to)[RY]

= _ Z/ dtg/ dt4 29348FW3F3F (A_l)%géFSFWQOA{F

ao’

T Ba 1\aao' TrFa’ T Fa 1—1\ao’ TrBa’
+SBW§B3B (A )3 ip SFW4F‘_1F +SFW3F§F (A ):3) ip W‘IB4B

+29345BW£%B(A 1)?§4BSBW£O‘1B . (le)

There are now two somewhat different routes to proceed, which lead to two some-
what different (but equivalent) representations for the effective action. The first,
followed in the present section, exploits symmetries under 3 « 4, and writing the
effective action in terms of as few terms as possible, leads to expressions [(B.82),
(B.83), or (A.7), (A.8)] useful for recovering the Keldysh diagrammatic results for
the Cooperon self energy [(B.88) or (A.10)]. The second, summarized in Sec. B.6.3,
does not combine similar-looking terms, and is useful for establishing contact with
other, more standard influence-functional approaches.

Let us proceed with the first route. Since (A=1)g5" = (A~1)$5%, the integrand in
Eq. (B.81) for B-A~1.3 is symmetric under the exchange of variables >_,, [dtsdrs <
Yo Jdtadry. We have exploited this fact to insert a factor of 2034 into the first
and last terms of Eq. (B.81), which both individually have this symmetry, to obtain
time-ordered integrals for these, which has the advantage of reducing the number
of terms in subsequent expressions. (We could similarly have inserted 2034 into
the second and third terms of Eq. (B.81), too, but since only their sum has the
above-mentioned symmetry, this turns out to be inconvenient.)

More explicit expressions for Sp /1 can be found with the help of Eqgs. (B.60d)
for Wg(", Eq. (B.74) for A~! and recalling that #s4R;3 = 0. Using the
shorthand (iS’R/S'I) to present two similar equations in one line, and writing
(iR/D)i,;., = (iR/D)[ty,r ro(t;)—7% (t;)], where t;; = t;—t; [and likewise for £/ AR

J TaJa’
we find:

[iSr/S1](t1,t0)[R Z/ dtg/ dts, (iL"/L")3,4 ,[RY], (B.82)

aa’ to

—(iiR/f/I)gF;;F = _9345F5FW£,§FW£‘:Z (ZR/j)gple

1~ 0 — (Oaz + y7024)20%4,2, | =
= iy, [ (042 y~ 24)2p" )41 ﬁgR/zi( 7 (B.83a)
2 0345417211: F4F
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(PR, = —§sBsFWf:§F(2zR/I) R

[0 — (Baz + y024)20°), 4,

1. R/K
= —52 1~ £3E{4F53535 5 (B83b)
254}741:'
CGER PN, = —§SFSBW3I;§F(27,R/I) W
1 - A/K [S - (042 + 93024)2[70]41343
= & Sid,a, Ll L . (B.83c)

54543

~GLR )L )34, = ~Bsaspsp(iR/Dg,a, WEE WET

[0 — (B2 + yP024)27°]1,
e s { “

} . (B.83d)

03407 54,

The &;; functions in the second lines of Eq. (B.83) will remove one of the coordinate
integrations [dx;; that are contained in the path integral [ D’ (R). The second and
third terms of Eq. (B.81) are equal as can be seen by setting 3 «+» 4 and a <> o' in
the third and recalling that (A~1)$%* = (A™1)$"; we exploited this property above
to combine those contributions from these terms that are proportional to R3 Lip lOr
R3,1,] together into Eq. (B.83b) [or Eq. (B.83c)], hence the factors of 2R in these
equations.

Note that if we make approximation (i) of Sec. B.5.7, a useful simplification
occurs [which was exploited in Appendix A to obtain Egs. (A.8) from Egs. (B.83)]:
all the factors (04,2 —|—yal924a,) above then reducel to 1, because yal # 1 was needed
only to deal with interaction vertices occuring at times ¢4 , earlier than a current
vertex on the same contour a’, and these are precisely the ones that are dropped
under approximation (ii).

Equations (B.83) for the effective action (iS;+Sg) constitute the second central
result of this section. It should be emphasized that in the path integral (B.80), the
Pauli principle is fully accounted for by the Pauli factors (6 —27) in S®. The ability
(a=F/B)

ITo see this explicitly, we argue as follows, discussing in parallel the cases of J , having

a current vertex on the upper/lower contour and for which we have decided to use ya= F/B =0:
if an interaction vertex lies on the same contour as the current vertex, i.e., for J(@=F/B) on the
upper/lower contour at time t4,, (hence a’ = F/B), approximation (ii) says that it must lie at
greater times than the current vertex, t4F/B > t2F/B’ implying that (04F/32 +yF/3924F/B) =1.
If instead the interaction vertex lies on the opposite contour than the current vertex, i.e., for
J(a=F/B) on the lower /upper contour at time tig, p (hence a’ = B/F), the fact that y¥" +yZ =1
(always) and that we chose y&= F/B =0, implying yB/F
1, independent of the value of t4B/F.

= 1, also gives (0ap, 2 +yB/F924B/F) =
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to incorporate the Pauli principle into an influence functional for interacting elec-
trons may be regarded as one of the main achievements of the formalism developed
so far.

This concludes our rederivation of GZ’s influence functional. In the remaining
section B.6, where we show how it is related to diagrammatic Keldysh perturbation
theory, and in the main text, where we use it to calculate the decoherence rate .,
our analysis differs significantly from GZ’s, since we come to different conclusions.

Let us just mention here one such difference: according to the first lines of
Egs. (B.83), iSg and S; are, respectively, purely imaginary or purely real functionals
of the paths R®, since W, ]:ZU and fy are all purely real functions. GZ have used
this fact to argue that after averagingﬁ*(iSRJrS’)hb” over all paths [as required
by the path integrals in Eq. (B.79)], e =5 /" will produce an exponentially decaying
function of time and thereby determine the interaction-induced decoherence rate,
—1Sr/h will just produce an oscillating time dependence, and hence, quite
generally, cannot contribute to decoherence; in particular, they argued that “iSg
can never cancel any contribution from S;” [discussion before (GZ-II1.22)]. This
general argument would work if the measure used in the path integral were real;

however, it does not apply to the present case of Eq. (B.79), where the measure

oF/B b . . . .
eFiS0" "/ is complex, since the average of a purely oscillatory function, using a

complex measure, can well contain a decaying component, too. Indeed, it is shown
in the main text [end of Sec. 4] that contributions from Sk and St do partially
cancel each other.

whereas e

B.6. Influence functional versus Keldysh diagrammatics

To check the general formalism developed above, it is important and instructive to
verify that it can reproduce the standard results of diagrammatic Keldysh pertur-
bation theory, before disorder averaging. We shall do this by expanding the path
integrals (B.79) in powers of the effective action (iSg + Sr):

e s N/ (iSr+S1)/h — 1 et N
—(1OR I — _
%F D'(R)e =y N!ﬂ[ D'(R)

O N=0 " /0r 70z
_1 t1 ty ~ ~ o
<y / dts, / dta, LR, , + L4 4 ]
h aa’ Y to to ’ ’
(B.84)

Now and henceforth using approximation (ii) of Sec. B.5.7, we shall use this ex-
pansion to reproduce the Keldysh expressions for the conductivity in first order
perturbation theory [Egs. (B.85)], and to obtain general expressions for the first or-
der contributions to the Cooperon before disorder averaging [Eqgs. (B.88)], thereby
reproducing the familiar Keldysh diagrams for the Cooperon self energy [Fig. A.1
of App. Al.
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~ (R ~
i éi;/l) JRD 3 I;lg/l)

Fig. B.2. Feynman diagrams for the first-order correlators J (R/I) of Eq. (B.85), and for the
vertices of Egs. (B.91).

B.6.1. First order terms and cooperon self energy SR/

The N = 1 terms of Eq. (B.84) can be used to obtain the first order con-
tributions, J{(Ql,?gl,(()), to the correlators needed for opc rear [Eq. (B.54a)]. This
straightforward, if tedious, excercise is discussed in Appendix C.3. The result can
be written as J{(Ql,?gl,(()) = f(da).]{(;,?;,, where [see Fig. B.2]

T30 = [=np(he)] (—%ﬂf) / (d) Y[+ T (B.85a)
j;r(g/l G 5(e )GK/R( —w)éfg,( )G21'( )(ZR/ﬁK)M(@), (B.85b)

TR = Gr{"e - @)G 00k ¢ -o) (£7 /36) (@) B3%0)
34

- - - - - - 1 ~
Tia" = Gl (e — )GR (2)G2 () Gy (e — @) (cA / icK) @), (B.85d)
43

Tip' " = Gy ()G ()G (e — )G () (L4 £5)1(@) (B-85c)

where j;(a]?/ D denotes a first-order contribution from (157 /87, with interaction
vertices that lie on contours a and a’. These expressions agree with those of standard
diagrammatic Keldysh perturbation theory. Thus, the basic building blocks of the
influence functional approach, including its treatment of the Pauli principle, have
survived their first test.

Next, we shall derive a general expression for the self energy of the Cooperon
propagator. Usually, the Cooperon self energy is defined, after Fourier transforming
to momentum space and disorder averaging, by a Dyson equation of the form C, =
(fg —Hfgiq(fq, where @2, the free Cooperon in the absence of interactions, is the con-
tribution to (GFG4) ;s of time-reversed paths [cf. Eq. (F.3b)]. To identify a similar
structure in position space and before disorder averaging, we need to write the first
order (N = 1) term of Eq. (B.84) in the form U5 -%- U'B, i.e., a self-energy insertion
sandwiched by two forward-backward propagators (U5 )WF = UOF“”FUOB =

JB'B B
R2GE: 1”FG34MB (each of which will produce a Cooperon upon dlsorder
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averaging):
1 R I 7
_Eﬂ[ ﬂ{ R)(iLR /LT )ou (t3,ta) = (UF - £, UB)J;ZZ (B.86a)
JF JB
7 < 4 s dpj
/ dsp s, / sy dag, ()3 (S04 ((ifyieie (B.86b)

(For ease of recognition, we here and henceforth in this section write indices asso-
ciated with the forward () or backward (B) paths as superscripts or subscripts,
respectively). As made explicit by Eq. (B.86b), the first (or second) dot product on
the right-hand side of Eq. (B.86a) indicates integration over the two coordinates
associated with the two “outgoing” (or the two “incoming”) vertices at the cor-
ners of the self-energy box [see Fig. A.1a]. Now, the left-hand side of Eq. (B.86a)
contains fwo vertices, associated with the indices of (iiR/£1)3u4u, [Egs. (B.83)],
as insertions into a double path integral, and therefore contains four Green’s func-
tions G [cf. the rule of thumb (D.10) of Appendix D.3]; however, for Uj -3 - U, we
formally need siz Green’s functions G and four vertices, one for each corner of the
self-energy box. To achieve this, we proceed as follows: the two corners to which
the interaction lines are connected [black dots in Fig. A.1] can be naturally labelled
by a and o', which take the values F/B, according to the contour that the corner
sits on; let @ and a’ similarly label the other two, “free” corners [empty circles in
Fig. A.1]. For the free corner a (and similarly for a’), we use the identity (¢5 is an
arbitrary time between ¢; and t;)

GRIA = / Ay, 1, Gl Ok, G (B.87)

taja

taking R/A and s; = 1 if a = F/B, to write one Green’s function as the con-
volution of two, and regard the ba function as the “vertex” at the corresponding
free corner of the self energy box.¥ In this way, the self-energy contributions ifa/,l
are found to be given by the first lines of the following equations (summarized
diagrammatically in Fig. A.1):

(zﬁfg)““ = O3 (WFHop - UF - 5BWF3F)3F3F (iR/I)3"

o o o i
= _%(GK/R)3F4FG:14B3B (ﬁR/ﬁK)?’F‘lF 7 (B.88a)

3 3rdr SFY 7 T % 3pdp 1

(B85 ) 1nay = (0705 - UF - Wi W) 0 2GR/ D)y,

=g, (zR /%sz) W (B.gsb)
3B

kBy using Eq. (B.87) twice at the two free corners, an extra overall phase factor of (isg)(isgz/) =
—Sa8, is generated. The latter cancels the overall phase factor (—sq$,/) occuring in the first
lines of Egs. (B.82) for —(iL® /L), which is why this factor does not occur in the first lines of
Eqgs. (B.88).
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SR/1)3rd VT ~F % sr\3ripl, . = =
(Eﬁg)i;g = (W™ Wz - U - 5B5F)4ZBZE(ZR/I)3F ip

ih ~ i~ N 1 - 3F
= —5GR,3F4F (GK/A)ZLB?)B <£A/§£K) iy (BSSC)

= 3rdFp <F1% s 4 <\ 3FdFr 1, .~ -
(555 ) 105y = 034 (0" W - UF - Wiy 67) 500" = (iR/ D)y,
ih ~ i, = A A
= = G (GR ), (L L5 )3 (B.88d)

To obtain the second lines of Egs. (B.88) from the respective first lines, we proceed
similarly as for Eqs. (B.83) [but now with 645 + y“/924 = 1, since we use approx-
imation (ii), as explained in the paragraph after Eqs. (B.83)]. In particular, we
exploit the fact that the time-integrals in a path integral are time-ordered for the
upper contour and anti-time-ordered for the lower contour to replace UoF by ihGR
and U8 by —ihGA [cf. Eq. (B.46)], or, if they are pre- or post-contracted with
(6 —2p0), by ihGf [Egs. (B.47b)]. For example, to obtain Egs. (B.88a) and (B.88d)
for fJ?F/BB, we used:

3pdr

ip3p

(WFJrSB . Ug . SBWFL)

:/da:ngx4B/dx4FdngS3F3F5434B

x UOF3rAr B, 5o %8}7(1 — 20)*rir (B.89a)
= +%(ihC~¥K’3F4F)(—ih(~¥fB3B) : (B.89b)
(3" Wp_ - Uf - WBH§F)3rr
= /dngde/dedngg?’F?’F
x %53(1 = 200)154, U4 ULS5, 033 6740 (B.89c)
= RGP GRGE ). (B.89d)

Satisfactorily, the second lines of Egs. (B.88), summarized diagrammatically in
Fig. A.1, are identical to what one obtains from Keldysh perturbation theory, as
can easily be verified starting from Eq. (E.24) of Appendix E.3. Moreover, they are
evidently consistent with the first order results listed in Egs. (B.85) above. (In fact,
the latter could have been used to guess Egs. (B.88); the reason for nevertheless
going through the above analysis was to check that the signs can be organized in
a manner that allows for a series to be summed up.) In Sec. F.2, we shall calculate
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the Cooperon self-energy explicitly by starting from Eqs. (B.86b) and (B.88) and
performing the disorder averaging diagrammatically.

B.6.2. Fuate of the Pauli factor (6 — 27°)

One instructive outcome of the analysis of the previous section is that we have
learnt quite generally how to deal with the Pauli factors (5 —2p%) occuring in Sg:
all Keldysh functions in Eqgs. (B.85) and (B.88) arose from exploiting the identities
U6 — 2% = (6 — 2[30)ﬁ(7% = lh@ff [Eq. (B.47b)]. Since its frequency Fourier
transform obeys [Eq. (B.47b)] GK (¢) = [1-2n(he)][GE—G£](¢), and in Egs. (B.85)
and (B.88) all Keldysh functions come in the combination G¥ (e — @) L%/ (@), we
can deduce a rule of thumb: by transforming to the coordinate-frequency represen-
tation, one generates the replacement

(6 —2p") LA — tanh[¥] LB D). (B.90)

Actually, in deriving the general structure of the self-energy above [Eq. (B.88)],
this replacement has, in effect, already been deduced directly, and to all orders
in the interaction, from the general form of zLaa, in Egs. (B.83), by exploiting
the fact that in the path integral, each Laa, is sandwiched between propagators
U°. Since this point is so important, let us spell it out once more: depending on
whether a vertex at time 4, sits on the forward (tlme ordered) or backward (anti-
time-ordered) contour (o’ = F/B), the factor (5 — 25°)L"/4 occuring in LE, is
sandwiched as follows between two G- G® or G4 ... G4 functions [see bottom
two diagrams of Fig. B.2]:

[éi4p(5 - 2p~0)4F1F}£~§24FGfij - GK

irdr

E—-@)Lf (@)GE ., (), (B.91a)

ArjF

GA

B4nB

’CZ{‘BS[(S_ 250)15456214373} - GA

21, OLE @G (—@). (B.IID)
Here the left- and right-hand sides are written in the time and frequency donains,
respectively, and the replacement rule (B.90) follows from Egs. (B.91) since G¥ (6 —
@) contains a factor tanh[h(é—w)/2T]. To be very explicit, the arrows in Egs. (B.91)
are shorthands for the following series of manipulations on the above factors of
GE 4, (0 =20 4,4, or (0 —2p°)4,4,G4i,;, occuring on the forward or backward
contours [indices are now dropped, for brevity]:

GRG — 27°) =[G — GA) (6 — 27°) = GF W [GR — G4 tanh X G tanh,

~ (1

(6 — 2G4 = (5 — 25°)[GA - GR] = —GK Y _[GR — GA)tanh & G4 tanh .

(B.92)
Beginning in the position-time representation on the left hand side, we exploit the

fact that the upper or lower contours are time- or anti-time-ordered to add an extra
—GA/R = ( inside the square brackets, thereby obtaining a £G*. Step (1) indicates
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Fourier transforming to the position-frequency domain, in which the tanh factor
becomes explicit. (Step (2) will be discussed later below.) The expressions obtained
after step (1) are the ones used to produce the right-hand sides of Egs. (B.91);
satisfyingly, the latter are precisely the combinations produced by the Feynman
rules of diagrammatic Keldysh perturbation theory, illustrated in Fig. B.2. [As
Eqgs. (B.88) show, the signs work out correctly, too, if the bookkeeping is done
sufficiently carefully]. The above argument is indeed completely general, and holds
for each vertex separately (but with different h&’s at each vertex), to all orders in
perturbation theory. Thus, we have succeeded in recovering the Feynman rules from
the influence functional approach.

In Egs. (B.90) and (B.91), the variable /i represents the energy of the electron
line on the upper (or lower) Keldysh contour before it enters (or after it leaves)
an interaction vertex at which its energy decreases (or increases) by hw [see lowest
two figures in Fig. B.2]. The subtraction of @ in the argument of tanh thus reflects
the physics of recoil: emitting or absorbing a photon causes the electron energy to
change by fiw, and it is this changed energy /(2 — @) that enters the Fermi functions
for the accessible final states. (A standard back-of-the-envelope argument for the
origin of the Pauli factor, based on the availability of initial and final states, is
given in MDSA-1,22:23 Sec. V.A.) Of course, hé will have different values from one
vertex to the next, reflecting the history of energy changes of an electron line as it
proceeds through a Feynman diagram.

The final step (2) in Egs. (B.92) [not contained in Eq. (B.91)] indicates an
approximation that occurs if one chooses to evaluate the path integral by including
only time-reversed paths [as GZ do, see Sec. 4 of main text]: one thereby drops terms
containing interaction vertices at which GER changes to G* on the upper contour,
or G4 changes to G on the lower contour [so-called Hikami box terms], and thus
drops G/ tanh terms on the upper/lower contour. Of course, this last step (2)
is optional; the Hikami terms can be retained, if one so chooses, and we do so in
Appendix F.2 when diagrammatically deriving a Dyson equation for the Cooperon
that includes the Hikami box terms. The result of that analysis is used in the main
text [Sec. 5] to calculate the decoherence rate; remarkably and unexpectedly, it turns
out that the Hikami-box contribution to the decoherence rate happens to be zero
for the special form of the interaction propagator used in the main text, namely the
unitary limit of Eq. (4a). This fact implies that, for the specific purpose of deriving
the decoherence rate (but not necessarily for other, more general quantities) from
an influence functional, we may indeed adopt step (2) and drop Hikami-box terms.
We shall do so henceforth. For the remaining terms, comparison of the very left
and right-hand sides of Egs. (B.92) clearly shows that one really can simply replace
(5 —27°) by tanh, without worrying about signs, etc., as specified in Eq. (B.90).

Having adopted step (2) of dropping Hikami-box terms, our rule of thumb re-
placement (B.90) can quite easily be implemented “to all orders” in the influence
functional approach: Fourier-transform the kernels (L /L’ )3.4,, [Eas. (B.83)] of
the effective action (iSg+S;) [Eq. (B.82)], and simply make the replacement (B.90)
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in the Fourier-transformed version of iL¥, now using the same energy hé = he as
that which enters the overall weighting factor [—n{ (he)]. The resulting form of the
effective action is summarized in Egs. (2) to (4) of the main text, which serve as
the starting point of our calculation of the decoherence rate there.

Diagrammatically speaking, the procedure just proposed amounts to using the
same ¢ inside each tanh[h(e — ©)/2T|LF/4(@). If one intends to consider only self-
energy diagrams and to treat infrared divergent frequency integrals with a self-
consistently-determined lower cutoff 1/7, (as GZ in fact do themselves in GZ99,°
and as discussed in detail in Secs. 4 and 5 of the main text) then this procedure
would in fact not introduce any further approximations: the energy entering and
leaving each self-energy insertion then is indeed the same for all such insertions, so
they all should have the same tanh[h(e — @)/2T] L7/4(©) factors.

Of course, once one includes vertex diagrams too, as needed if one wants to cure
infrared problems “properly” (as in GZ99*) instead of “by hand” (as in GZ99%),
then the proposed procedure of using the same e everywhere amounts to a fur-
ther approximation, since it neglects the accumulation of energy changes that are
generated by vertex terms transferring energy between the forward and backward
contours [as illustrated by the frequencies @, and @s in Fig. B.1]. Nevertheless, the
mistake incurred by this approximation is insignificant, since the vertex terms are
not ultraviolet divergent, and the frequency transfers contained therein are limited
to the range fi|w| < T, just as for self-energy terms. In fact, vertex terms become
important only in the infrared limit where & ~ 1/t (as required, of course, to cure
infrared problems of the self-energy diagrams), so that we may replace @ by 0 wher-
ever else it occurs in a diagram. More formally, it suffices to treat the w-dependence
explicitly only for that part of a diagram where it occurs as energy transfer, while
Taylor-expanding in @ all other factors of the diagram to which this w-dependence
has propagated; only the zeroth-order terms of this Taylor expansion need to be
retained, since the others contain higher powers of @ ~ 1/¢, and hence produce
contributions with a subleading time dependence.

Note also that the accumulation of energy transfers manisfests itself only in
diagrams of second or higher order in the interaction propagator. However, the
influence functional approach proposed by GZ and rederived here features an effec-
tive action that is linear in the interaction propagator, and hence is equivalent to
reexponentiating the first order term in the expansion of the Cooperon in powers
of the interaction propagator (as shown explicitly in DMSA-I11?2:23). Hence an ac-
curate treatment of effects occuring only in second or higher order is beyond the
accuracy of the influence functional approach, in both GZ’s original formulation
and the modified version proposed here. The accumulation of energy transfers is
such an effect. Fortunately, it only produces corrections that are subleading in time,
as argued above.

It is shown in the main text that if the replacement Eq. (B.90) is used in a
“nonperturbative calculation” of 7, & la GZ, a result consistent with conventional
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wisdom is obtained. Conversely, the reason why GZ obtained a different result is
that they, in effect, omitted the —w in the tanh-function in Eq. (B.90), and hence
lost the physics of recoil, as first suspected by Eriksen and Hedegard.'!

B.6.3. Alternative representation of effective action

To facilitate a comparison of the influence functional approach developed in the
present review with that of MDSA-I,2%23 it is convenient to rewrite the effective
action derived in Sec. B.5.8 and summarized in Egs. (A.7), (A.8), in the following
form (to be compared to Eqs. (21) of MDSA-122:23):

t1 1 -,
[ZSR + S] tht() / dt3/ dt4 SaSa’ <—§Z) §g4u/ . (B93)
to F/B

In particular, the integrands are to contain nonzero contributions not only for ¢34 >
0 [as is the case in Egs. (A.8)] but also for ¢34 < 0. To this end, we follow the second
of the routes mentioned after Eq. (B.81). We start from the latter, but instead of
exploiting any 3 < 4 symmetries and inserting any factors of 2634, as done in
Sec. B.5.8 (“route one”), we now write out all terms explicitly, while still making
approximation (ii) of Sec. B.5.7, namely to replace all factors of (04,2 + y“/024a,)
and (04,2 + y“,924a,) by 1. [A perhaps quicker way to obtain the same results is
to start directly from Egs. (B.82), (A.8), but to symmetrize the integrands w.r.t.
3 « 4 by replacing >, L3,4. by Y. 1/2[L3,42 + L4,3,,].] The result can be
written in the form of Eq. (B.93), with gf;la, being a shorthand for the following
expressions:

aa’'=

£§‘3F44 - 53F3F’C~§<FZLFS4FZLF + S3F3F‘C~§p1p [5 - 2p~0]4FZlF + [5 - 2p~0]3F3F’C~§4p71p54F‘1F

531‘3311 55333‘6?{;11:541741: + 5333355{%5?11: [5 - 2/30]417711? - [5 - 250]§B3BL§51F54F‘1F
Lé%f,im = 53F§F‘C§(FZLB 521343 - 53F3F£§%F4_13 [5 - 2/30]4_1343 + [5 - 250]3F3F£§4p13 54_1343
’CBBBEiM = 53333‘6?{;436‘1545 - 5gB3B£5RBZLB [5 - 2p~0]le4B - [5 - 2p~0]3535£§3135‘1545 .

(B.94)
[The double spatial indices, 33 for the forward and 33 for the backward contour,
are associated with the same time t3 and are both integrated over in the path
integral (similarly for 44,44 and t4), see point (iii) after Eq. (B.57)]. As explained
in Sec. B.6.2, upon Fourier transforming, the Pauli factors can be converted via
Keldysh Green’s functions into tanh functions. However, we now need to use a
more general replacement rule (of which the one discussed in Sec. B.6.2 was a
special case), involving either of the expressions th+ = tanh[h(e F @)/2T]. The
reason is that we now have to distinguish two types of vertices: for vertices of “type
one” [Fig. B.3(a)], the arrows of the L4 and G¥ correlators that get generated
both point in the same direction (i.e. both away from or both towards the same
vertex), in which case we get the combination LF/4(2)GX (e — @):
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F € 44 - € 33 €+
R ® % K R ® § K
R <3 A<4
A4 R-3
g O % E gy © § g
K 33 A K 44 A
(a) "type one" (b) "type two"

Fig. B.3. (a) Vertices of “type one” and (b) of “type two” arising in Keldysh perturbation theory;
the accompanying Keldysh Green’s functions are G¥ (¢ F @), respectively, producing Pauli factors
tanh[(e F®)/2T] that dress the associated interaction propagators Eg(@) and E_g‘ (@) [Eq. (B.95)].

0 =274, — tho LE(®),
B (B.95a)
. — th_ L3 (@).

For vertices of “type two” (the occurence of which was studiously avoided in
Sec. B.5.8), the arrows point in opposite directions (one toward, the other away from
the same vertex), [Fig. B.3(b)], which gives the combination L#/4(0)G¥ (¢ + ©):

ifizls [S - 2p~0]‘1B4B - th+£g(@) )
(B.95b)

6~ 2058, Lk s, — thy £2(@).
Using these replacement rules, the effective Fourier representations of Eqs. (B.94)

are readily seen to have the following forms:

‘Z3a4u/ = /(d@)(dq)elq[Ra (tz,)—R” (t4a/ )]e—izﬂ(tg.a —ta, )Ega' (LD) , (B96a)

L3 (@) = LE (@) + sarth_s, LE(@) + sathis, L5 (@) . (B.96b)

Equations (B.93) and (B.96) together constitute an alternative and perhaps more
compact expression for the effective action of Egs. (2) to (4).

Appendix C. Relation between Path Integral and Cooperon

In this appendix, we show how the general path integral expression derived for the
conductivity in the main text in terms of Jyo 91/ [Eqs. (B.54a) and (B.79)], can
be rewritten in terms of the Drude conductivity o55'4¢ and the familiar Cooperon,
and thereby clarify how they are related to the standard relations familiar from
diagrammatic perturbation theory. We begin [Sec. C.1] by reviewing the noninter-

acting case before disorder averaging, then [Sec. C.2] recall how disorder averaging
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produces the standard result for o). Next [Sec. C.3] we discuss the first order in-
teraction contribution and subsequently [Sec. C.4] generalize the analysis to include
interactions to all orders, before disorder averaging. In particular, we elucidate how
the average energy he of the two counterpropagating trajectories is fixed in this
formalism. Finally, we perform a disorder average for the general case with inter-
actions [Sec. C.5] to establish a connection to the general Cooperon propagator in
the presence of interactions, and [Sec. C.6] review its structure in the coordinate
space representation.

C.1. Noninteracting limit before disorder averaging

Let us check that in the noninteracting limit but before disorder averaging,
Eqs. (B.54) for opc, with J’(0) given by Egs. (B.53) and (B.51), reproduce familiar
expressions for the conductivity J“O’“mt If interactions are neglected, both U'{Jl and
U{j‘l in Eq. (B.51) reduce to Ug. Using Egs. (B.45) and (B.47a) in Eqs. (B.51), one
then readily obtains

jl(gl) 21/ t17t2,t() Z Jl(g’) 21/ tl,tg,to) — hG12/G21/ + hG /G21/ . (Cla)
a=F,B

Inserting Eq. (C.1a) into Eq. (B.22a), we obtain a standard expression for ofgnt,
before disorder averaging. To evaluate its real part a]g%]’ir‘ga] [Eq. (B.54a)], we have

to Fourier transform J according to Eq. (B.53). Writing the result as j1((2)f),21/(w0) =
J(de) 713750 (o) we et

TS50 (wo) = h[GRy (e4)Csp(e2) + Gy (64)Ch (e2)] (C.1b)

with e+ = ¢ + wp/2. Now expand J(©=(wy) = J©2(0) 4 weJ'(©¢(0), as needed
for Eq. (B.54a). Using G (ex) = —no(he+)[GE — Gffl(e+), replacing GF*/4(ex)
by G/ (¢), and dropping terms in J'(©9(0) containing 9.GF/4(¢), since they are
smaller than those kept by a factor T'/er, we obtain

Jl((z)') 51/( ): _”O(FLE)FL[@FQ'( )G21’( ) G12'( )G21’( )} (C.2a)
T35 (0) = —np(he) PG ()G (e)- (C.2b)

Here nj(£) = d¢no(€), hence, in the J'(0:¢(0) correlator of Eq. (C.2b), the energy
nonint

argument e is constrained to be < 7T". The desired result for o2, of Eq. (B.54a)
thus is:

IISOCIJan:etal Z /d5 —ng(he)] /d332.711’ 322'hG12'( )G21/( ) (C.3)

This is a standard result; it still has to be averaged over disorder, a step that we
review in Appendix C.2.
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The J(©:(0) correlator of Eq. (C.2a), in which the energy argument is not
constrained, turns out to cancel the (first) diamagnetic term in Eq. (B.54b), imply-

ing that op@int, . = 0, as expected. This cancellation can be verified, even before

disorder averaging, by using an exact identity,
1 . ~R/A, .  ~ARJA e’ ~r/A
3/‘1552311' ) [Gn// (5).722/G21/f (5)] = _EGH/ (€), (C.4)

proven below, to rewrite the contribution from J(®(0) to Eq. (B.54b) as follows:

7(0)
. i (0)  he? . .
Z/dIQ-jll’ - J oo 127,21 = o Z/(d&‘)no(hf) [Gﬁ(f) - G?l(f)}

de

e 2 [ @i

- _Zi62<ﬁ11H> (C 5)
o —~ wom ’ '

which indeed cancels the first term of Eq. (B.54b). Since the DC conductivity is
a real quantity, the latter cancellation of the two contributions to ail?n(f;g, namely
the diamagnetic term and a term containing an integral [deng(he) over the entire
Fermi sea, must hold order for order, to all orders, in perturbation theory in the
interaction. Therefore, we shall henceforth not keep track of these terms, and take J
to represent only those terms that end up containing a factor —n((fie) that restricts
£ to the vicinity of the Fermi surface, as in Eq. (C.2b) for J/(©).

It remains to prove Eq. (C.4). It follows directly from another exact identity,

[dmin G @G @) = 115 @), (C.0)
which can be derived!®!? before disorder averaging by evoking gauge invariance: let
Ua(x;) = (z;|A) and € be exact eigenfunctions and eigenvalues of the single-particle
Hamiltonian Hy [i.e., Ho|\) = &x|\), cf. Eq. (B.15)], and let A be a spatially uniform
vector potential. Then the gauge-transformed wave-functions e %A "i/fy)y (z;) =
Ua(z;) = (x5)A) are eigenfunctions of the gauge-transformed Hamiltonian Ho =
Ho(P + e¢A) = Hy(P) + A - j + €2 A% /2m, again with eigenvalue &y, i.e., Ho|\) =
&x|A). Consequently, the gauge-transformed version of ég/ 4 (¢) can be written in
two equivalent ways, as follows:

. jod 1 1 \ 1
efzeA»mj/hGE/A g) = TNy ——— (AN|x;) = (x;| —————— ;) .
2@ %} N e W) = ¢ Pl
(C.7a)

Expanding both the left- and right-hand sides to linear order in A, and representing
the latter in terms of the non-gauge transformed wave functions (x;|\) = ¥x(x;),
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we obtain
z'eA-mj NR/A 1 ’ ~ 1
- L o / 7 A Y 2 ).
0y e = ) g T WIA I g (e
(C.7b)

This readily yields Eq. (C.6), since the matrix elements of the current operator are
given by (X|FIA) = [ dayjy (3 (w0 ) (@)

C.2. Disorder average of noninteracting case

Evaluating the disorder average (GG4)4is needed in Eq. (C.3) is a textbook exer-
cise: introducing an extra dummy integration Vol ' [ dry into Eq. (B.54a), using
Egs. (F.1) and (F.3) from Appendix F and performing the momentum integrals
using Eq. (F.6b), we find:
i = [ @) [-ni(re)

224

2V1Zp P'Gy ()95 ()

X [519,;7’ + gﬁ (€)g£(6)52+pl (0)1 (C.Sa)

Vol 2rv7a?/h

~ oDrude [1_% / deh]—nl(he)] / (dq) /0 b dTég(T)]. (C.8b)

Here ohitde = 2¢2uD is the Drude conductivity and D = v%7./d is the diffusion
constant. For the second term of Eq. (C.8b), we introduced the variable g = p +
p’ and set ¢ = 0 everywhere except in @g(w = 0), because the latter’s infrared
singularity as ¢ — 0 dominates the [(dq) integral. [Since D3,(0) from Eq. (F.3b)
has no singularities, its contribution to Eq. (C.8b) was dropped.] The [de integral
in Eq. (C.8b), which trivially equals one, is displayed here explicitly only for the
sake of comparison with later results.

The fact that the weak localization correction is small compared to the Drude
term is often made explicit by expressing the prefactor of the Cooperon term in
terms of the dimensionless conductance ga(L) [see Eq. (B.9), and the discussion
thereafter]: Using [(dq) = a?=d J ddq/ (2m)¢ for the momentum integral over the
diffusive motion, and introducing, e.g.,, the dimensionless variables u = 715 /7 and
2z = qLy (with Ly = /D7g) [if more convenient, e.g., in the absence of a magnetic
field, one could replace 7 by 7, here) we obtain from Eq. (C.8b) (times ad=dy:

. 1 2 diz [ =
monint _ - _|{ _ - _ d CO R C.9
Tape [ ga(Llm) / (2m)? /Tel/m Gt ) o

where we inserted an ultraviolet cutoff at small times, needed for d = 2, 3. Appeal-
ingly, the prefactor of the Cooperon term manifestly displays the smallness of o’(‘iZVL
via the largeness of g;.
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C.3. First order calculation of J’

In this section, we illustrate the structure of the perturbation expansion generated
when the influence functional is expanded in powers of the effective action (ZS’ R+
S1), as in Eq. (B.84): using approximation (ii) of Sec. B.5.7, we explicitly calculate
the first order contribution J1(2')21/ (0) to the correlator of Eq. (B.54a), i.e., the wy =
0 value of first derivative 0, of the wo-Fourier transform of elgjl(;/)gl,(tl,tg; tg) =
> ua [Jéf,) jél)] Here J, (R/ D= => . jéZZR/ D denotes the first-order contribution
to 1) that arises from (zSR /S7) and has interaction vertices lying on contours a
and a’, while the index a in jéZ}R/ D indicates which contour the current vertex is
located on.

Our starting point is Eq. (B.79), expanded to first order in —(iSg/Ss)/h, using
Eq. (B.82):

1p t fJR yr=0
R/ _ b2 (
J(Ea’ / ) /dIOF,OBpOFOBf f R) dtgadt4u, { =7 }
0p to L

3adys

1r t fJR yB=0
B,R/I 012 ?
Jéa/ /1) = /dIOFyOBpOFOBf % R) dt3adt4a/ =7
25 J0p to L 3ad,

a*a

If interaction and current vertices occur on the same part (forward or backward) of
the Keldysh contour, then, depending on the relative time orderings of the vertices,
there can be more than one contribution to each of these quantities, which we shall
denote by J @RI ith i = 1,2, 3, etc.

Consider J Bl /1) [see Fig. C.1(a)], which has two interaction vertices on the
forward contour at times t3 and t4 satisfying tg < t4 < t3 < t1, and a current vertex
on the backward contour at time to satisfying ¢ < t2 < 1 [in GZ’s approach, who
take tg = ta, cf. Sec. B.5.7, these two sets of inequalities are replaced by a single
one instead, namely to < t4 < t3 < t;]. Inserting Eq. (B.83a) for (iL"/L")3,.4, into
the first of the above equations, we obtain:

B1,R/I) 1012
Jé‘F / 2h2/ dtgF/ dt4F/d$0F OBU1F3F53F3F 3pdp

(0= 27")ai FR/K 770 =0 770 770
X N LEFZIF X UZLFOFpOFOBU(_)BQIBUQBllB
034044,

1
= —5il? / dts / dt,GRGEIRGs, G LR (C.10a)

Here, integration over repeated spatial indices such as O or Og or 3r is implied;
those over time are displayed explicitly, to keep track of the integration boundaries.]
Eq. (C.10a) [whose index contractions are illustrated in Fig. B.2(a)] follows from the
first line by relations such as Eqgs. (B.45) and (B.47) (and dropping the subscripts
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SRSt e P

a) J(BIR/I) J(FIR/I) C) J(FZR/I) d) J(F?R/I)

Fig. C.1. Feynman diagrams for the correlators jif/[) of Egs. (C.10).

F,B on indices). Moreover, taking the limit ¢y — —oo [but keeping ¢; fixed], the time
integrals were extended to range over [—oo, co]. This is possible, since éf} contains
a factor 0, CNJ;;-‘ a 6;;, and L',N;ﬁ a 034, so that the product of Green’s functions
under the time integrals automatically vanishes for time arguments lying outside the
integration ranges stipulated by the integration boundaries and #-functions occuring
in the first line. [However, if tg had erroneously been replaced by ¢ in the first line
above, as GZ do, the second line would have integration limits ftzodhxp ftzodtgp,
since G, contains no 6y9.]

The case of jgf’R/ D is similar, but since both the interaction vertices at times
t3, t4 and the current vertex at time t¢o all reside on the forward contour, three
separate diagrams have to be considered [see Fig. C.1(b)-C.1(d)], corresponding
to the three possible time orderings, namely (1): tg < to < t4 < t3 < t1, or (2):
to <ty <ty <tz <ty,or (iil): o < tg < t3 < to2 < t1 [since GZ implicitely take
tg = ta, the latter two cases do not occur in their approach]:

=(F1,R/1) _ 012
JI(TF "= 2h2/ dtb‘F/ dt4p/d930p OBU1F3F53p3p 3rdr
(5= 20" | sr/ =0 o
X{ 0 S _ L3F4F‘U 2/ UQFOFpOFOBUDBl’B
3404 pd

1
= il / dts / dt,GRGE/PGR, G5, L8 . (C.10b)

F2,R/T) _ 012
jgamin _ O / dts., / it / B0y 05 Dy 83r50 Oy, TSt
darir | sr/k o 0 0
% < 0 Ly U0, Poo, Uty
03404 .1,

1
:—iiFiQ/ dtg/ dt,GRGR,GR G5, LR (C.10c)

=(F3,r/T) _ 1012
J}(?F /): 2h2/ dt3F/ dt4F/d.’E0F OBU1F2’ U2F3F53F3F‘U3F4F
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5. =

4rdr FR/K 770 2 770

X Oands = £3F4FU4F0F OFOBU(_)Bl’B
3404 pdp

:_—m2 / dts / dt,GR, GRGR G5 LR (C.10d)

Equations (C.10b) correspond to Figs. B.2(b). The absence of a factor (§ — 23°) in
the first lines of Eqs. (C.10c) and (C.10d), and the corresponding absence of a G-
function in the respective second lines, reflects the fact that we took yf = 0 and
that t4 < to in these integrals, so that the factor (042 + yr#242)27° in Eq. (B.83a)
for (iL%/L")3,.4, vanishes. Equations (C.10c) and (C.10d) are examples of contri-
butions for which one or more interaction vertices occur on the same contour as the
current vertex, but at earlier times. As discussed in approximation (ii) of Sec. B.5.7,
such terms contribute to “interaction corrections” but not to decoherence, and thus
will henceforth be be excluded from our considerations.

Adding the two terms [(C.10a), (C.10b)] that survive under the said approxi-
mation (i), we obtain J}, R/I) =5 j}&;’R/I). The other three correlators, jg}/”,
j}lgl) and Jggl), can be calculated in an entirely analogous manner. The results
are:

T = —Lin2 [ dtadta GRGa/ R [GR, G5 + Gy G (LR /L5 )50, (Cl1a)

Tl = —Lin? [% dtsdtsGr{ " (G G5y + Gy G Goho, (CR /LK), (C.11D)
TN — _Lin? [ dtsdt,GL, [G32,G + G5, GY }Gﬁ{A (EA /%iK)%, (C.11c)

Satisfactorily, these expressions agree completely w1th those [Egs. (E.31)] obtained
in Appendix E.4] using diagrammatic Keldysh perturbation theory.

To obtain J'(0), we have to Fourier transform these equations w.r.t. tio, and
then calculate Ja(al,%/ 1)( 0) = [&)OJaf/ D (wo)]we=0- For example, .]Ng}/”(wo) is given
by

TP (w0) = —in [ (de)(@e)Gly ()G (e - 0) 5% @)

X KGRy (e4)Gisi (o) + Gy ()G (6] (C.12)
and jg?/ D (0) is easily calculated by noting that the factor in the second line of
Eq. (C.12) equals jig,)m,(wg) [cf. Eq. (C.1b)], whose first derivative is given by
Eq. (C.2b), namely jflgf);l, (0) = —nf(he)h?GE, (e)G4Y, (¢). Thus, the final result
for jgg/l) (0) is

TR0 (0) = — i / (de)(d) [ = (he) |Gy () G ™ (e — @)

x GB(e)Gah (o) Lo ™ @) .
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FIR/T)

aa’

Similar expressions for the other contributions (0) can be derived from
Egs. (C.11) in an entirely analogous manner, and are given in Eq. (B.85) of Ap-
pendix B.6.2. In each case, the combination h[ég,éz + éfQ,é‘Q“J-] produces a factor
2 [=ny(he))G L (£)G3 (e)-

Actually, it is clear from the above derivation that in every order of perturbation
theory in the interaction, such a factor will be produced for all terms that survive
the abovementioned approximation (ii): in analogy to Egs. (C.10a) and (C.10b), it
will arise from a factor

1 - - -
_ 0 0 _ 770 0
_Z don,oB [UiFOF Popos UOBQ;B UszB
70 770 =0 70
- iFg,I:UQFOFPOF()BUGBjB} ’ (Cl?))

where t;, and t;, are the times of the earliest interaction vertex on the upper or
lower Keldysh contour, respectively.

To conclude this section, we wish to emphasize once more the significance of the
fact, illustrated by Egs. (C.11) but valid for all contributions to J() (including the
“interaction corrections”), that all time integrals occuring in Keldysh perturbation
theory can be extended to range over the entire real axis. Importantly, this implies
that the Fourier transforms that are needed to obtain J™) (wp) (and from there the
conductivity) are always given by simple convolution integrals, such as Eq. (C.12).
In contrast, in GZ’s calculations, all time integrals f dtszdty have to as lower limit,
see e.g., (GZ-I11.A20) and (GZ-II11.A23) in GZ00,* whose t' corresponds to our t.
This means that instead of obtaining simple convolution integrals, they erroneously
end up with sin and cos functions, see (GZ-II1.58) and (GZ-II1.61). This leads to
numerous incorrect complications and conclusions, such as the claimed existence of
an “oscillating cos-term” in (GZ-II1.70). Thus, GZ’s perturbative analysis in Sec. IV
of GZ00,* in particular their discussion of the “breakdown of the Fermi golden rule
approximation” in Sec. IV.B, is invalid, since its starting point is based on the
replacement ty — t2, which is incorrect (and unnecessary, since the correct limit
to — —oo can be incorporated into GZ’s approach, as emphasized in Sec. B.5.7 and
illustrated explicitly above).

C.4. Thermal weighting and path integral, before disorder
averaging

The presence of interactions will, in general, modify the result (C.8b) for oB%™ in
two ways: firstly, it can renormalize the value of oB:de, but this effect is not in-
teresting for present purposes and will be ignored here. Secondly, it can reduce the
life-time of the Cooperon propagator, thereby contributing to decoherence, which is
the effect we are interested in. Our goal in this section is to express the conductivity
of Eq. (B.54a) in terms of double path integral expressions for .]N{Q,’Ql, (0), obtained

from Eq. (B.79), in a way that is generally valid in the presence of interactions,
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before disorder averaging, and properly accounts for thermal weighting via a fac-
tor [—ng(he)], as in Eq. (C.8b). Hence, we will have to find appropriate Fourier
transforms of our path integral expressions that relate them to the energy he.

An important first clue comes from the first order relations (B.85) for j{2,721, (0):
each term contains a factor [(de)h?[—nj(fie)]GE, (s)éfj (€), thus the current ver-
tex joo is always sandwiched between a retarded and advanced function with
energy ¢, GE, (s)jQQ,G‘Q“j, and thermal weighting is always governed by a factor
[—ng(he)]. As explained after in Appendix C.3 [just before Eq. (C.13)] these prop-
erties actually hold in every order of perturbation theory in the interaction, for all
terms that survive approximation (ii). Of course, the other current vertex j;i,
is similarly sandwiched, too, but in general with a different energy argument,
éﬁ, (e —@)j 11/ G (e — ©). The general expression for that part of the conductivity
containing the Cooperon propagator, relevant for weak localization, is by definition
the sum to all orders of all such terms containing [—ng]ég,jm,é% S éﬁ,jn,éﬁ.
In path integral language, it will thus have the following form,

1 . . -
opc = Z p /dxzju, “ J o9 /(dE)J{Z,m, , (C.14)
o1

written in analogy to Eq. (B.54a) for opc real, where the integral equals j{Q,’Ql,(O),
and j{€2’721’ equals [—n{(he)] times some suitable frequency Fourier transform
(needed to set the energy to €) of a double path integral whose forward path con-
nects the points 7o, and 71, while the backward path connects ro and r1.. To find
the appropriate expression, we begin by considering the general double path integral

R (t)=r{ (RP(t5)=r} St
; rlﬂg T B (R)e-lSR SN ()

]54132 = 6‘12934#

RF(tF)=rE JREGE)=rP

depicted schematically in Figs. C.2(b) and C.2(c). It ranges from 71 at time £ to
ri" at time tI” (> tI') on the forward contour and from r¥ at time ¢t to rZ at
time t£ (> tP) on the backward contour. These times are understood to be the
limits of the [ dt, time integrals in 5’3 and (iS'R + 5’1)7 and t8, t8 are in general
not equal to t£, tI" since they will have to be Fourier transformed independently
[as required, e.g.,, to properly define the variable ¢ in Eq. (C.14)]. For general time
arguments, we adopt the following conventions, depicted in Fig. C.2(c), for Fourier

transforming from the time to frequency domain and back:

Pi = [ (de) () (a9 ) 2052 P (€3 1, 02)

X expi{—tf[ff—i—@} +tF {5—1— w}

0 —Q Oy +Q
—tB {5 - %} +t5 {5 - %] } (C.16a)
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tF= T+ T,/2 rk= Py P,/2 tF=v+7/2 rf=p+p/2
Qy-Q 5 q+p;
E+ =5 )
Q,+Q 3 4+p3
-5 ht
B=—t,+ 7,2 rB=p,-p,/2 th=—v +7/2 rB=Dp -p/2

()

Fig. C.2. (a) Diagrammatic depiction of Egs. (C.18) for ]{52, o1, or Eq. (C.29) for o, Be-

fore disorder averaging the black box represents 752112: (e — 1/2&; —&, @), thereafter it represents

e—L1g

C; 2Y(—,®)/ (27172 /B). (b) Real-space depiction of a typical pair of Drude (dashed) and time-

PlQ,Drude 512, WL
A3 and P,

reversed (solid) trajectories contributing to , corresponding to Egs. (C.31a)
and (C.31b), respectively. (c¢) Definition of variables used for Fourier-transforming the double
path integral 154132 (€,Q1,92) of Eq. (C.16a). In (c), frequency and momentum variables are cho-
sen such that Q7 and Qg are, respectively, the outgoing and incoming “Cooperon frequencies”
(i.e., frequency differences between upper and lower lines); g + pg3 are the outgoing and incoming
“Cooperon momenta” (i.e., sum of momenta of upper and lower lines); £ &+ Q3/2 are the average
(between upper and lower) frequencies flowing out of or into the Cooperon, respectively. The time
variables 71,2 and 71,2 and coordinate variables P12 and i)l,Q are purposefully defined in such a
way [Egs. (C.17a), (C.32)] that the Fourier exponents in Egs. (C.16b), (C.16c) and (C.35) are free
of factors of 2. (Our labelling convention differs from that of AAK,'? which has typos involving
factors of 2.)

_ 1 1
= / (d€)(dw)(dw) P43 (&w +5whw - §w’>
« e—i[?125+‘?12w'+7’12w] ) (C.lﬁb)

'ﬁig((‘:, Qq, Qg) = /dTldngﬁgei[ﬁQl77292+f125]p4132(7'12, T12, 7’12) . (C].GC)

(For P, the indices }2 stand for both coordinate and time variables, for its frequency
Fourier transform P, distinguished from the former by using calligraphic script, they
stand for coordinate variables only; we use a similar convention for the Cooperon,
C or C, defined below.) For Eq. (C.16b), we changed frequency variables to w =
1/2(21 + Q2) and w’ = Q1 — Q9, and introduced various sum and difference times
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[see Fig. C.2(c)]:

= F B tf_tf - F B tg—tf
TI=t] +t7, TlET’ To =1ty +t3, TQET, (C.17a)
T + T2

: (C.17b)

T2 =T1—T2, Ti2=T1—T2, Tiz2=

On the right-hand side of the back transformation (C.16c), PE (12, 712, T12) by
definition is given by P2 of Eq. (C.15), with the understanding that the indices
12,43 now only specify the path end points 7 vl r2 rB but that the time
arguments ¢, 5" 8 t8 in Eq. (C.15) are chosen such that Egs. (C.17) hold.

The frequencies introduced in Eq. (C.16) have evident physical interpretations
[see Fig. C.2(c)]. The “Cooperon frequencies” ©; and 9 are the outgoing and
incoming frequency differences between upper and lower lines, respectively, while
€ +1/2Q3 are the average (between upper and lower) frequencies flowing out of or
into the Cooperon. In general, the presence of external time-dependent fields would
require 23, the total frequency difference between outgoing and incoming lines, to
be nonzero. However, for the present purpose of calculating the conductivity in
linear response, such external fields can be set to zero; hence in Eq. (C.16a) we use
a delta-function to set 23 equal to zero, thus recovering translational invariance in
time for P

Having identified the meaning of the frequency arguments &£, ©; and 9
[Fig. C.2(c)], and inspecting the frequency labels of the standard diagrammatic de-
piction [Fig. C.2(a), where an integral over the “internal” frequency & is implied] of
the current-current correlator needed for the conductivity, it becomes evident that
the average frequency is & = ¢ — 1/2w, while the outgoing and incoming Cooperon
frequencies are ; = —© and Qy = @, respectively (i.e., w = 0 and W’ = —20).
Moreover, the upper line runs from 7o to 71, while the lower line runs backwards in
time from 71/ to r9. Thus, the particular Fourier transformed version of P needed
for Ji5, 51 in Eq. (C.14) is

Ty o1 = [-1(he)] /(d2w)7321, (e — 305 —@,). (C.18)

To check that that the normalization factors and frequency assignments are correct,
let us expand P1 . in Eq. (C.18) to zeroth and first order in the interaction in
order to calculate J1’32,721, = [J"©= 4 J'(De] 1y 510, and compare the results to our
previously-obtained expressions for these [Egs. (C.2b) and (B.85)]. To this end,
we begin with ]565, as given in Eq. (C.15) and with general indices, expand it to
first order in —[iSk + S;]/h, and express the resulting terms in terms of GK/R/A
functions. The details are analogous to those presented in Sec. C.1 and C 3 to
derive jl(g,) 51, and jl(;,) 21/ from jf;//gy of Eq. (B.79) (except that the latter’s first
line is not needed for Pg2, and the limits of the path integrals are different). The
result can be written as P2 = P 65 + > { P(I)} ey’ where ]31(3’)65 and

aa’
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]3;5/[) are given by Eqs. (C.1a) and (C.11), respectively [with (12,21") — (12,65)],
except that all occurences of the combination h[GE, G5, + G35,G45] have to be
replaced by hzégég‘j. Fourier transforming the result for Pi2 [via Eq. (C.16¢)] to
obtain P2(E; 0, Qy), specifying the spatial indices as (12, 65) — (12/,21’) and then
integrating as stipulated in Eq. (C.18), one recovers jﬁ,,m, = [J'©F 4 J D] 10 011,
with the first and second terms given by Egs. (C.2b) and (B.85), respectively,
as expected. Thus, our check worked. [Also, the reason for the 2 in [(d2w) in
Eq. (C.18) becomes clear: Pg2(£; 01, Qy) turns out to contain factors of 278 (Q; — Q)
or 2m6(Q1 — Qo + - - +) for self-energy and vertex terms, respectively, which under
the integral [(d20)Pa2 (¢ — 1/20; —&, &) of Eq. (C.18) have to collapse to unity,
J(d20)270(- -+ — 20) = 1]

Finally, let us rewrite Eq. (C.18) in a more suggestive form. Transforming back

to the time domain using Eq. (C.16¢) and writing the result in terms of the time
variables of Eq. (C.17b), we find

jﬁ/,m/ = [—"/(hﬁ)]/ dﬁngllz//’a(ﬁz), (C.19a)
0

P2112’/’6(712) :/ dTi2 /(d%f)e*i%ﬁz/ dFppeiT12(E=3%)

— 00

x P} (112,12, T12) , (C.19b)
= / dﬁgeﬁlzeﬁzll%/ (112, —%fu, T12) . (C.19¢)

We need to consider ]52112,/ only in the limit 7o — 71, since the Cooperon con-
tribution to it is negligible for |r; — r2| 2 Ap, where Ap is the Fermi wavevector
(assumed to be much smaller than the mean free path, Ap < le1). The purpose of
the time integrals in Eq. (C.19b) is to project out from the general path integral
]52112,, of Eq. (C.15), defined in the position-time domain, an object depending in
an appropriate way on both the average propagation time 712 of the forward and
backward paths and the energy ¢ occuring in the thermal weighting factor. (The
simultaneous specification of both a time and an energy does not violate the time-
energy uncertainty relation, as incorrectly argued by GZ,?6 because ]52112,/’5(7'12) is
constructed from two electron propagators, not one). To see how this projection
works in detail, we use Eqgs. (C.17b) to write the time differences 712, 712 and 712
as follows:

- 1
o = 5[ = 15) + (65 — )], T2 = [0 +2]) — (85 + 7))

N =

(C.20)
Tia = (tf —t5) — (tF —tF).
The [d7i, integral in Eq. (C.19b) fixes the average energy of the upper and lower

electron lines (in diagrammatic language) to be € — @/2 [where 713 is the length
difference between the forward and backward pieces of the contour]. The [(dw)
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integral averages over all possible frequency differences @ between the upper and
lower electron lines, as is necessary when vertex terms are present that transfer en-
ergy between them. And finally, the [d7i2 integral projects out the 712-dependence
of P2’ [where 715 is half the difference between the midpoints of the forward and
backward pieces of the contour|. The only remaining time variable, 712, is the av-
erage of the lengths of the forward and backward pieces, and can be viewed as the
“observation time” as a function of which ]52112,/’6(712) will decay. ]52112,/’6(712) will
contain a contribution resulting from time-reversed paths that corresponds to the
full Cooperon in the position-time representation, C'p:()(ﬁg). The time scale on
which it decays is the desired decoherence time 7.

Now, the [(dw) integral in Eq. (C.19b) yields 6(7+ (1/4)7) [here and henceforth
we drop the subscripts on 7, 7 and 7|, leaving us to consider a path integral with time
arguments P2 (1, —(1/4)7,7), as indicated in Eq. (C.19¢). These time arguments
can be obtained by choosing, e.g., t1 = t3 = 7/2 and to 4 = —(7 £ 7)/2, resulting

m:
. o RU(H)=m RP(§)=ry -
B = [arerf T T prme Sesin,
o RF(=5—§)=ry JRP (- 5+5)=r2

(C.21)

Equations (C.14), together with (C.19a) and (C.21), are the central results of this
section, because they express the conductivity in terms of a general path integral
influence functional, with thermal weighting taken properly into account. The main
difference to the path integral (1b) used in the main text (and by GZ) is that in
Eq. (C.21) the duration of the forward and backward paths differs by a time 7 that
is being integrated over in [d7 e’™®. The remainder of this section is devoted to
justifying the replacement of Eq. (C.21) by the simpler Eq. (1b).

The combination [de [d7 of integrals from Egs. (C.14) and (C.21) have the
effect of fixing the average energy of the forward and backward trajectories to be
close to the Fermi energy, with energy spread of roughly +7" (in a way reminiscent
of Appendix B of the review?* by Chakravarty and Schmid). To see this, consider
first the noninteracting limit (i.e., ignore iSp+ 5 1) in the semiclassical approxima-
tion, where the path integrals in Eq. (C.21) are restricted to all possible classical
forward and backward paths rg/ B(tg) having the specified boundary conditions,
with corresponding classical actions S(f élB (1/2,—7/2 F 7/2). Since these paths fol-
low diffusive trajectories through a disordered potential landscape, for any given
7 and 7 the path integral still includes many such classical paths, with a range of
different classical energies (and correspondingly different diffusion constants). Now,
the energy integral in Eq. (1a) restricts the [d7 integral in Eq. (C.21) to the range
|7| < h/T, since

whtT

/da[—n/(hs)]eiﬁ = m . (C22)

The relevant values of 7 are thus much smaller than the typical propagation times
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T relevant for determining the decoherence time [7 ~ 7, ~ hg(L,)/T > h/T, see
Eq. (19)], so that the classical actions can be expanded?* to first order in 7,

F/B(T T _ T\ _oF/B(T T 1__.r/B
sid (3-3 7 3) =i (3-5) 7 o7& (C.23)
where 55/ B is the classical energy at the endpoint of the corresponding classical
path 7'5/ B(tg). Using this in Eq. (C.21), the [d7 integral is seen to fix the average
classical energy of the forward and backward classical paths to be close to the Fermi
energy e = 0, with an energy spread of order T

0o _
1 L %6”#5%5 ) = / de[—n’ (he)]5 <g - %(55 + 55{)) (024
(The right-hand side follows from using the integral representation (C.22) for the
sinh-function.) Note that the energy spread is consistent with the time-energy un-
certainty relation in the limit of present interest, 77" > h.

Now, in the absence of interactions, the only effect of fixing this average energy
€ to be roughly £p is that the velocity appearing in the diffusion constant is the
Fermi velocity, D = vZ7./d. However, in the presence of interactions, the energy
€ also plays a role in determining the phase space available for electrons to get
scattered upon absorbing or emitting a noise quantum. In particular, in perturbative
calculations it shows up in the tanh[i(e F @)/2T]-factors of the Keldysh electron
Green’s functions G¥ (¢ T@). In our influence functional approach this can be kept
track of by replacing Eq. (C.21) by Eq. (1b), which mimics the effect of the former’s
integral [d7e’™ by using (i) forward and backward paths of equal duration 7 and (ii)
an effective action whose time integration boundaries are fixed at £7/2, but which
depends explicitly on the average propagation energy €. Note that GZ’s approach in
effect employs the same simplification, since they likewise have no [ d7e*7 integral
and use forward and backward paths of equal duration 7.

The e-dependence of the effective action enters through the Pauli factor (§ — 27)
occuring in Sg [Egs. (A.8) or (B.94)], which we treat differently from GZ. In our
approach, it produces factors of tanh[i(e F @)/2T in the frequency representation
of Sk [cf. Egs. (4e) or (B.96)], chosen in such a way as to be consistent with Keldysh
perturbation theory, as discussed in Sec. 3 and (more extensively) B.6.2, B.6.3. In
GZ’s approach, the tanh-arguments contain ¢ instead of ¢ F @ (i.e., their effective
action depends on the average energy too). However, lacking the Fw recoil shifts,
the tanh-terms turn out to yield zero after averaging over random walks, so that
(i5G%) 1w ~ 0.

The strategy just described for arriving at forward and backward paths of equal
duration is of course not exact; but it is sufficiently accurate for our purposes: the
errors incurred by it are of order ii/(T'7) (< 1 for 7 ~ 7,,), as can be shown by a de-
tailed comparison with Keldysh diagrammatic perturbation theory (Appendix B.6.2
of this review, and Appendix A.3 of DMSA-II?2:23).
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C.5. General Cooperon, after disorder averaging

Let us now disorder average Egs. (C.18), in order to arrive at an expression for O'%V(If

in terms of a general Cooperon propagator, in the presence of interactions. To this
end, we have to Fourier transform from position to wave-number variables,

~ 1 B . n
TSR ol (o A L.

Vol? 2
P1,P2,P3,9
q—p q+p
S e e Rl Tl e
2 2
—rB. {—pg +4 _2”3} } . (C.25)

as depicted in Fig. C.2(c). (Again, the d,, o guarantees translational invariance.) Ac-
cording to the standard diagrammatic approach for disorder averaging [cf. Fig. F.1
in Appendix F], the disorder average of ’Pi’g;’g? can be separated into a “Drude”
and a “weak-localization” contribution,

_ _ 1 - 1
£,91,0\ . _ $2AR A
(Pap,.p, Jais = It Iigtm, <€ - 591) Yia-p, (5 B 501)
%q—P2

1 CE(Q1,9)
X(E—20 ) L~ %, C.26
< 2 2) Vol 27tv7e2/h ( )
where in the second term, the contributions from the four external electron lines
were separated and a conventional prefactor (2mv7,?/h) =1 was split off. The nor-
malization of the general Cooperon in the presence of interactions, é‘;(Ql,QQ), is

fixed by requiring that when interactions are switched off, it reduces to its free
version, C9 (1), according to

_ 1 5
X {27‘((91 — Q2)bp, p, + g?qﬂlz (6 + 502) G

CE (1, Q) =25 278(Q — )C (), Co() = m . (c.21)
Just as C3(€), the full Cooperon C&(€21,92) does not depend on the external
momenta p; 5, because, in diagrammtic terms, it is separated from external lines
by impurity lines.

In a purely diagrammatic approach, where one typically works exclusively in the
wavenumber-frequency domain, Eq. (C.26) would be the standard starting point for
further calculations. Since the dominant contribution to C’g (Q1,Q9) typically comes
from small g (with glei < 1) and small ;o (with Q4 27e < 1), while & is likewise
small (S T), it is customary to neglect the terms £q/2 and £ £ ©;9/2 in the
arguments of the external G*/4 functions, which simplifies the [dp, , integrals.
To explore the effects of interactions, one would proceed to expand C% (€1, €2) in
powers of the interaction propagator, etc.
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Instead, here we shall use the general Eqs. (C.25) and (C.26) for P}2(E;Qy, Qy)
to analyse the general structure of the disorder-averaged version of Eq. (C.14), as
needed for (opc)dis- As an intermediate result, we obtain

/d@ju/ “J oo <752112'/(5§91»Q2)>dis

et £.0,,9
= ——= > (a+P1—P2) (@ — P+ Do) Py s ais
4m?Vol pipea
x/drgei(”_”)'(pl_“) (C.28a)
1 _
— Drude 2mh |:27T(Ql QQ) - ﬁ /(dq) Cg(Ql,QQ)] y (C28b)

where Eq. (F.6b) was used (under neglect of ££1/2Q /5 in the frequency arguments
of all electron Green’s functions) to perform the momentum integrals, i.e., the
[ (dg) integral for the Drude contribution to Pgp*22, and the [(dp,) integral
for the Cooperon contribution (for the latter, the 1/2q arguments in the external
electron leg Green’s functions were neglected). Inserting Eqgs. (C.18) and (C.28b)

into Eq. (C.14), we readily find:

opc = opede [1—— / deh[—ng(he)] / (dq) / (d23)C5 %% (—5,0)| . (C.29)

Equation (C.29) is the desired generalization of Eq. (C.8b) [and in the absence of
interactions, duly reduces to the latter, via Eq. (C.27)].

C.6. Cooperon in position-time domain

For our present purpose of relating the diagrammatic and path integral aproaches
to each other, it is instructive to understand the consequences of Eq. (C.26) also
in path integral language. To this end, let us transcribe Eq. (C.26) back into the
position-time domain, in which the Cooperon is defined as:

Cﬁ(Tl,Tg) = /(dq)(dQl)(dQQ) (p-g—u71+Q272) CE(Ql,QQ) (C30)

Inserting Eqs. (C.25) and (C.26) into Eq. (C.16a) yields (P)gj, = PPrde 4 pWL
with

]34132’Dmde = 71297}?12 (hz)gﬁm (ta3), (C.31a)

p12WL :/drldTthldtldtht/ (dg) —i& (Fy ) —Fa— 1))
43 2nvTa? /R

1,. .1 - -
X Cfl —72 (§(t1 - tll)a §(t2 - t/g)) h2g,,,1 — (tl - tl)

X G (b —T)GE . (T2 — t2)GE . (T —t3). (C.31b)



808 J. von Delft

Figure C.2(b) offers an intuitive interpretation of these expressions: Pja>™ gives
the amplitude for propagation from (rs,t2) — (r1,t1) (forward in time) times that
for (rs,ts) — (r4,ts4) (backward in time). And ]54132’WL gives the amplitude for
forward propagation from (ra,ty) — (Fo,%2) — (#1,f1) — (r1,t1), times that for
backward propagation from (rs,t3) — (72,1,) — (¥1,1}) — (r4,t4). The middle
part of the forward and backward paths have the same beginning and end points
in space, albeit not in time, and hence can interfere constructively if the paths
connecting them are time-reversed partners.

The approximation mentioned above of neglecting +q/2 and € £+ Q4,2/2 in the
arguments of external G*/4 functions has a counterpart in the position-time do-
main: when performing the integrals in Eq. (C.31b), it corresponds to exploiting
the fact that G,(f) has a short range in space (|r| < 71) and time (|| < lo) [cf.
Eq. (F.2d)]. To be explicit, the latter fact means that the disordered Green’s func-
tions occuring in the second line of Eq. (C.31b) act effectively as delta-functions in
time as far as the factor e %! )CS _#,( ) is concerned. Thus, in the latter we may
make the replacements t; — ti, tl — tq, to — 1o, t2 — t3, after which the four
time-integrals each yield a zero-frequency Green’s function, [df Gr(t) = Gr(e = 0).
Introducing the sum and difference coordinates

F | .B F | .B
plz%v plzrf—'rf, /7)25%, pQE’I”g—'r?, (032)
recalling similar definitions (C.17) for the time variables, and shifting the space
integrations according to #; — #; + p; for i = 1,2, Eq. (C.31b) gives:

& e —poti1—7a \T15 T2
P4132’WL = /d’l~°1d1~'2/(d5)e*157’12 P1—P2+T1 2( )

2nvTe?/h
<G, (0G4, 5 (0GE 1, (067 1, (0). (C.33)

Since the zero-frequency Green’s functions GF(0) decay with distance as e~ I"1/2e1]
we note that 7; ~ 1/2p, ~ —7;, which implies that |7;| < le and |p;| < le1. Thus,
we may drop the terms #1 — # from the argument of C¢ in Eq. (C.33), whereupon
the spatial integrations can be performed explicitly, using

/ dt/ di; /dngR/“‘ )G/ (Ey) = M;J) (C.34a)

&F

= Lok} B in(kprj;

0., (1) = ( iﬂ'F) e~ i/ 2le Sm(r,b.ﬂr]) 7 (C.34D)
i

where 8, () is a “smeared-out delta function” of normalization [drd,, (1) = 1
and width ~ 1/kp, the Fermi wavelength (since 1/krp < lo, the width is set by
the oscillating factor sin(kgr)/r, not by the exponential e~"/21). Thus, Eq. (C.33)
becomes:

n 5 —ig(ﬂ—?g)égl—l_?Q(Tl’TQ)
2o (o) (p2) [ e IC SRS

512, WL
Py3
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This useful result clarifies the relation between the coordinates 1, 2, 3, 4 of 154132 ’WL7
and the times and spatial coordinates relevant for the Cooperon. In particular, we
see that P2 is nonzero only for |p,| = |r1 — 74| < 1/kp and |py| = |7y —
r3| < 1/kp. Moreover, if we want to describe a Cooperon with a specified average

energy &£, we need to Fourier-transform ]54132 WL with J dr12€712. Note that for
]32112, WL as needed in Egs. (C.19), the Cooperon position argument is identically

zero, p; — Py = 0, while |p;| = |r1 — r2| ensures that 71 and 72 lie close together.

Appendix D. Time-Slicing of Path Integral for l};

In this appendix, we give an explicit time-slicing definition for the path integral
representation (B.55) of the propagators f]{; used in the main text, and derive
various properties thereof. Our discussion is very (perhaps overly) detailed, since
the object of interest is somewhat unconventional, namely a path integral for a
non-local Hamiltonian. We begin [Secs. D.1 to D.3| by defining it in terms of a path
integral [DR [DP over paths in both coordinate and momentum space, which is
the form used by GZ; then [Sec. D.4] we explicitly perform the [DP integral to
arrive at a “coordinate-space-only” path integral [ D'R, which is the form used in
Appendices B.5 to B.8. Finally [Sec. D.5], we present explicit expressions for the
effective Hamiltonian H¢ in the position-momentum representation used by GZ,
and [Sec. D.6] recover from this GZ’s expressions for the effective action (iSgr +
Sr)[R®, P?].

D.1. Time-slicing definition

The propagators Ui‘; are defined by the requirement that they have to satisfy both
the conditions Eqgs. (B.39). This fact can be used to give meaning to the formal path
integral of Eq. (B.55), by using the standard time-slicing procedure to construct
an object that satisfies this requirement. To this end, we divide the interval [¢',¢]
into M = (t — t')/e time intervals, with ¢, = t’ + ne for n = 0,...M, and write
re =r*(t,)[r§ =rj, r$; = r;] and p? = p®(t,). Then the following construction,
illustrated in the first row of Fig. D.1, has the desired properties:

U (t,t M-t M a N a
fJ( ) = 50,;07 lim </d,’,z> H (/ dL"d) e(ls{IE/ﬁ) MLy (Dla)
UJg(t/7t) M=o n=1 n=1 (27T)

= /DR/DPe“Sa/ﬁ)g”[R“vP”]. (D.1b)

The second line, with action S¢ =€ L%, is a formal shorthand for the detailed
time-slicing construction of the first line. Here and below, ¢ > ', the index value
a = F or B should be used for the upper or lower term in the curly bracket,
and s, stands for sp/p = £. The multiple products in Eq. (D.la) contain one

momentum integral (M in total) for each interval, and one position integral (M —1
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Fig. D.1. Three representations of the propagators (a) Uif(t, t') and (b) Uﬁ(t’,t), with ¢ > t/.
Arrows point from the second to the first index of propagators. The first row illustrates the
position-momentum (dots-squares) time-sliced path integral representation of Eq. (D.la) (with
the choice by = d,p in cf. Eq. (D.3), so that R}, = 7% _,); the wavy line indicates which end of
the n-th time slice the interaction field V_ (t,,r%_;) is attached to. The second row depicts the
first order perturbation expansion of Eq. (D.8b), obtained after performing the momentum path
integral, using Eq. (D.9) to convert l_ﬁ/ to fzﬂl/ The third row shows the N-th order perturbation
term of Eq. (D.11b). The double dots remind us that the vertices izgnﬁ and ﬁgﬁn are nonlocal
(since they contain factors of ppn or pan): they arise from “pulling together” the two local vertices
at times t,, and t,—1 of the second row of this figure into a single nonlocal vertex at time ¢, with
which we hence associate a double integration [dzf, or [dzZ, . The dot carrying a bar indicates
which of these two integration variables occurs in the argument of V_ (75 ), namely the one drawn
on the side of earlier times.

in total) for each boundary between intervals (see Fig. D.1). The Lagrangian L¢
and Hamiltonian H¢ = H%(t,,, R%, P%) associated with the n-th interval are given
by (here P} = hp2):

fe=po.on _ o (D.2a)

" €
H = /d(dri)e_““pz";rzﬁa(tn, Ry 4 54(1 — bo)0Ts, Re — Sabgore).  (D.2Db)

Here we introduced relative and “asymmetric center-of-mass” coordinates for the
nth interval,

! — $a(1 = bg)é6r%, (D.3)

1

F F

a __ ..a a a __ n— a __ n
ory=ry—rh, Ry=9 5 +sabadry = B
T, o

where the “asymmetry parameter” b, is a real number with 0 < b, < 1, which
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in general can be different for a = F or B. The actual values chosen for b, do
not affect any of the final results, hence they can be chosen according to taste or
convenience, or left unspecified, as we shall do for now. It is to be understood that
under the path integral, the notation R(t,) and P*(¢,) [e.g., as arguments of the
fields Vi (ty,, R*(t,)], should be interpreted as R;, and P;, respectively.

The arguments of H® in Eq. (D.2b) were purposefully constructed such that the
inverse Fourier transform of Eq. (D.2b) yields

d @ . a a = IN{F tn7TF 7};7 ’
JRC T RO R i AY)
(2m) HB(t,,r5 | rB).

n—1

This equation can be regarded as the defining relation for H? (and Eq. (D.2b) as its
consequence): H is the (generally asymmetric) Fourier transform, with respect to
the relative coordinate 7%, of He(t %(ty,), in which the position arguments r% and r%_,
occur in a time-ordered or anti-time-ordered fashion for a = F or B, respectively
(i.e., the coordinate associated with the later time, ¢,,, appears to the left or right of
the earlier time, ¢,,_1, respectively). This, of course, is required to ensure that the
path integral representation for Ué‘ﬂ (t,t') and U B (t',t) produces time-ordered and
anti-time-ordered expressions, respectively, as illustrated in Fig. D.1. The reason for
using a factor s, in the Fourier transform exponentials e~**«™""P" in the definition
(D.2b) of H? and its inverse, Eq. (D.4), is simply that the factor e**=""P* occuring
in the latter is generated by the combination is,L® in the action of Eq. (D.la).
Finally, note also that H%(R®, P®) is independent of P if and only if H®(r%, )
is proportional to §(r% — 7%).

D.2. Verifying the defining equations and composition rule

It is straightfoward to verify that Eq. (D.1a) satisfies all the requirements expected
of a propagator. We shall now first show that it fulfills the defining conditions for
Ug, namely Egs. (B.39), and then check that it satisfies the usual composition
rule. Since the manipulations for a = F' and a = B are very similar, but differ in
numerous minor details, we shall mostly consider the former case only. Hence, a
will be understood to stand for F' below, except when explicitly noted otherwise.
Normalization: To recover the normalization condition Eq. (B.39a), take the
limit ¢ — ¢’ by taking M = 1 and ¢ — 0. Then the entire path integral reduces
simply to
lim O2(t,') = 87,0, / L (D.5)
ey 93 (27T)d 9
Equation of motion: To recover the equation of motions for 05 and U ﬁ , hamely
Egs. (B.39b) and (B.39c¢), add one time slice in Eq. (D.1a) (M — M + 1, so that
now 7§ = r4,, ), and expand the corresponding exponential elisa€/MLhi1 o first
order in e:

UF t+et) Z(SWTM /drM/ PM+1 P10 N4 {1 _ %HAF/‘I+1:| Uﬁj(t,t’)

oM
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—uf (1,0) / deky 7E, (0T (1,1), (D.6a)

- d € —
Uﬁ(tl,t—F € deloM /d"']y[ / %Uﬂ\/l('ﬁ t) —1PM+1 51‘M+1 |:1 —+ %Hﬁ—kl]

oM

Here Egs. (D.4) and 7§, = r{ were used to obtain Egs. (D.6a) and (D.6b), which,
in the limit € — 0, reproduce Eqgs. (B.39b) and (B.39c).

Composition rule: Next we check that Eq. (D.la) also satisfies the usual com-
position rules for propagators, namely

/dmlUﬂ (t,t)UL; (t,t) = U, (t.t),

/dxlUﬁ (' 1)U (t1,1) = Uj] (1),

To this end, let M be the number of intervals between ¢; and ¢/, i.e., write t; =t/ +
eM; and r1 = 7y, . Then, by concatenating two expressions of the form Eq. (D.1a)
for U}] and Ule , we find that the left-hand side of the above equation can be
/ dr¥ lim < / dr )
M4>oo

written, up to a factor d,0,00,0,, as
/ dpg (ie/h) Zﬁl:M +1 I:f
2 ) . 1
(2m)
M +1

My—1 My dpF y
F n ie/h LLE
AL (fert) IL([ o) s, >0
n=1

n=1

M—-1

—M +1

This is equal to U'g(t, t') as given by Eq. (D.1a), since [dr{ = [dr}, . The deriva-
tion for U ﬁ is entirely analogous.

D.3. Power series expansion in h®:

The power series expansions of 05 (t,t') and U'ﬁ (t',t) in powers of hf and hi
are given by Eq. (B.48). To illustrate how they come about from the time-slicing
definition (D.1a) of the path integral, we begin by considering only the first order
terms (the higher order terms will be discussed subsequently). To this end, we
expand each factor e™*+¢/®Ln in Eq. (D.1a) to linear order in h{.,., to obtain

elisac/MIL] oriy (—sai€/h)hS,, . Here LY is the V-independent part of L |
and for the second term, all contributions of order €? or higher were dropped (in
particular, we replaced e~ 5a¢/Mhon; 1y 1). Then, to leading order in ¢, Eq. (D.1a)

nq _|_€lgapn1
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readily yields the following expression:
TF 770
%wm—%wm}
7B 770
Uji (tla t) - Uji (t/a t)

B . (—sqi€)
o 5(” 73 JV}I—IPOO h

S ([ (o) 11 () ]

ni=1 n=ni+1 n=ni1+1
} i

(D.8a)

d
[ [, fars, [ i, |
n1 —2 nl 1 a
/ dry, / . plisae/m) YL T LO®
(2m)¢
:501‘01‘ hm Sale /drn /drn 1
e—0 b 1

n11

UOF (t,t,, )hE (tn, YUOF | (tn,—1,t)
mny Vning—1 n;—15\n1 5
><{U (t' tn,—1)hE (tnJUOB (1) (D-8b)
gni—15\" > tn1=1)1yny —1ny n1i\“N1s
UPFhF UOF
ZSa dtl dxl i ' Vit + - 5 (DSC)
0B hG;, 09P
Vil

in agreement with the N = 1 terms of Eq. (B.48). For Eq. (D.8b), which is
illustrated in the second row of Fig. D.1, we have evoked Eq. (D.4) to make the

identification
dpn 18 h\};n n 1(t )
/ e PTG, _{ Vi . (D.9)
hVn1 1ny (tnl)

From the above excercise, we extract the following rule of thumb: when a function
fi(t1) = f*(tr, R*(t1), P*(t1)) [e.g., h{, above] occurs at time ¢; along the forward
or backward parts of the Keldysh path integral [ DRYDR?, the Ik dpfne”””% O,

momentum integral at the corresponding time slice ¢,, = t; converts it into
rim W(tny) or fB 1 (tny)- Combining this with the propagators implicit in
250 | generates terms of the form U, f11U OF or U uB fnUu , respectively [where

fo and f* are Fourier transform pairs, in analogy to H® and H® of Egs. (D.2b)
and (D.4)]. To be explicit, we have

R (ti)=r; s 03f£0%
5mj/ DR"/DP“e““So(t’t)f“(tl):/dxlj _ 7 (Do)
Re(tj)=r; U%ng%
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Having found the rule (D.10), it is straightforward to go beyond the first order and
to recover the full perturbation expansion from the path integral:

UL (t;,t; T st 7
( ﬂ}:&m/'mwm/Dmeﬂ%W*hm%WJ (D.11a)

i
Uﬁ (tj ) ti)

= 5g,igj/ i'DRa(tl)/'DPa(tl)e:tiS'g(t,t’)

> (:FZ)N t; t1 tn—1 _ _ _
X Z hN / dtl/ dtg-'-/ dtNhav(tl)h(‘l/(tQ)"'h(‘l/(tN)
t t t

N=0 J J J
oo ti t1 tnN—1
= Z/ dt1/ dtz---/ dtN/dxl,ide,Q"'deN
N=0"1i ts b

(—i/R)NUOFRE UOF ... hE [0
% 1 "vi11~12 VNN~ Nj . (Dllb)

(+i/ RN OERY - U3 b, OFF

oo ti
= Z/ dtl---dtN/da:m---deﬁ
N=0"1ti

GRRE,GE, - B GE
% 17%v1112 VNN~ Nj . (DllC)

~A 7B SATB. AA
GjNhVNN T Gzihvali

Equation (D.11b), which is illustrated in the third row of Fig.D.1, was obtained

from the line preceding it by multiple applications of the rule of thumb (D.10), and

reproduces the expansions of Egs. (B.48). For Eq. (D.11c), we recalled Eq. (B.45)

to set UF/B = +ihGE/4 along the forward or backward contours, respectively.

D.4. Coordinate-space-only path integral

Since the power series expansions (D.11b) for U;; do not contain any explicit mo-
mentum integrals, they may be used as starting points for deriving coordinates-only
path integral expressions containing no [DP® integrations at all, so that only the
coordinate integrations [DR® remain. To this end, we simply perform the [DP¢
integrals in the definition of the free propagators Ug“ explicitly, with the well-known

result:
U (¢, ') RIS M ipt
) = 0pi0; lim ari ) [T\ | 52
OO (. 1) e I EAVCD)
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M-—1

VK
] it )|

R*(t)=ri _ 5
/ DR isa/M)SG (1) (D.12a)
Re(t')=r;

V)

m

Md/
ot

27iSq€h

S

iseM
xexpl ;; Z(
n=1

t

82 (1, 1) R (15)] = /

dts BmR‘”(tg) - Vimp(Ra(tg))] . (D.12b)
&
Here 5’3 is the standard action for a noninteracting electron in a disorder potential,
and the tilde indicates that [in contrast to H® of Eq. (D.2b)] it is a functional of
R"(t3) only, not of P(t3) too. The tilde on [DR in Eq. (D.12a) indicates that
the measure includes the prefactor in the line above it. Now, if we take the power
series expansion (D.11b) for ﬁi‘; and insert Eq. (D.12a) for each occurrence of f]g“,
we obtain for f]{; a coordinate-only path integral expression with a precise (though
cumbersome) time-slicing definition. In the main text, we have used for the path
integral so obtained the formal path integral notation (B.55), with actions defined
by Egs. (B.56) and (B.57), and measure [ D'R, where the prime reminds us of the
double position integrals [dz;; occuring in Eq. (D.11b). The points discussed after
Eq. (B.57) in the main text all follow directly from the explicit construction given
above.

D.5. Explicit expressions for IrIg

The material presented up to now in this appendix was general, applicable to
any nonlocal Hamiltonian of the form fIg = gijhoj + IN”L?,Q Let us now be more
concrete and specialize to the Hamiltonian defined by Egs. (B.36), in order to
verify GZ’s expression for the effective action derived for their [DR [DP path
integral.

Inserting Eqgs. (B.36) into Eq. (D.2), we readily find that

H = ho(RS, P2) + i (b, to; RS, PL) = hoy + R, (D.13)
h$r, = W (tn, to; Ry, P)Va(tn, Ry) (D.13b)
a=+
B Pa2

ho(R®, P%) = T + Vimp(R") — 1, (D.13c)



816 J. von Delft

W (t, to; R*, P*) = 1

. . (D.13d
esaie—i(ba—SEB)meVRa [1 _ 2ﬁa(t, to; Rla7 Pa)] ( )

p%(t, to; R*, P%) = /dr“e’is‘l”a"’aﬁ(“) (R + 54(1 — ba)r®, R* — 54ba1%) .
(D.13e)

Here ho(R®, P®) and p%(t,to; R*, P*) are, respectively, the free Hamiltonian and
the single-particle density matrix (in the presence of interactions but without source
terms) in the mixed representation. In the definition (D.13d) of @w®~, it is to
be understood that R'® should be equated to R® after evaluating the action of
the exponential differential operator on the function V_(t,, R;.) to the right of
w* (t,t0; R*, P%) in Eq. (D.13b), and all equations derived therefrom.

For general choices of b,, the shift operator e~ *(ba=%8)Ves Vrs i Fq. (D.13d)
is needed for the following reason: In the defining Eqs. (B.36a) for HE and HZ,
the arguments of the field V_; are evaluated at ! and 72, respectively. When
considering the n-th interval (for which r¢ = 7%, v = r%_,), these arguments of
V_; become 7F = vF | = RN — bpor? and v2 =B | = R — (1 — bp)or? [cf.
Eq. (D.3)], which are evidently shifted relative to the argument at which the field
V_(tn, R;.) is evaluated in Eq. (D.13b), namely R;,, by an amount —s,(bg—05)07%.
The exponential shift operator implements this shift [as can be verified by inserting
Egs. (D.13) into Eq. (D.4) to recover HEL and HZ]. Evidently, though, one can
achieve RY = rF (= rf) and R? = rZ(= rP) and hence avoid the need for
shifts, by making the special, “maximally asymmetric” choice b, = d,p. Indeed,
for this choice, which we shall adopt henceforth, the exponential shift operators
e~ ba=0a8)Vp'VR reduce to unity. Moreover, since R, then depends on only one
of the position coordinates r% and r¢_; associated with the n-th time interval,
namely the second, which greatly simplifies subsequent manipulations. The “price”
to be paid for this simplification is not high — one merely has to remember that
the definitions (D.2b) of H® in terms of the Fourier transforms of H* and p® with

respect to the relative coordinate become fully asymmetric:

7E = /d(5r5)e_ip5'5T§ﬁF(tn,rf_l +orf Pl )
= ho(rf_1,pE) + hirn, (D.14a)
7B — B\ ipZ.6v2 7B B B B
n — /d(&rn)e " n~H (tna Ton—1:Tn—1 — 5rn)
= BO(rfflapf) + B‘Ejn ) (D14b)
where h{,,, = > _ 02 Vo(tn, r2_1), with 02" = e and w2~ = es,[1—2p%]/2, and

p% is defined in terms of ﬁg’s) (tn,to) by Fourier transform relations [Eq. (D.13e)]

that are analogous to those [Egs. (D.14)] for H® in terms of ﬁg(tn)
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D.6. GZ’s effective action in position-momentum representation

Having specified the time-sliced versions of H? in the position-momentum repre-
sentation, it is straightforward to also derive the effective action (iSg+S;)[R", P?]
for this representation: simply repeat the strategy followed in Appendix B.5.5 to
5.8, but use the position-momentum representation (denoted by bars instead of
tildes) throughout. Since the details are very analogous, we shall be very brief, and
indicate only the main differences.

The starting point is again Eq. (B.58) for <J1V2, 2331/ (t1,t2510)) /0 DUt With the
coordinates-only path integral measure f 5&5 D’(R) replaced by a position-momentum

path integral measure, # % D(RP), which is a shorthand for

iF 1B
7[ D(RP)- -
jr YJiB

R7 (t;)=r; .
/ DR (t3) [ DPF(t2)e' S5 010"
R

F(ty)=r;

R (ti):’l‘i
X / DR (t3)
RE(
X /DPB(tg)e_igl?(t“tj)/h e (D.15)
S¢[R*(t3), P%(t3)] in the weighting factor is the action for a single, free electron,

ti _

S5(t0t) = [ dnlP(t)- 0, B (1) — ho(R' (). P'(0)]. (D10
tj

and the bar on Sy (and B, S'R/I below) indicates that [in contrast to 5'87 B, S’R/I
of Appendix B] they are functionals of R*(t3) and P“(t3), not of R*(¢3) only. In
Egs. (B.60), B,s is replaced by

o(ts, T3) Zsaw3 (rs — R(t3)), Wit =e, (D.17a)

W3a’=e%8a[ — (032 + y%023) 5% (t3, to; R (t3), P*(t3))].  (D.17b)

Now use precisely the same set of approximations and arguments as in Ap-
pendix B.5.6 to B.5.8 to derive the effective action iSg + S;. One readily arrives at
an equation just like (B.82), but with (iL®/LT) of Eqs. (B.83) replaced by!

1 R e !’ ~ ~
>SasaWa Wi F(2R/1)3,4,, (D.18)

(iL"/L")3,4,, = 5

where the density matrix occuring in W2~ now is the free one, p&. Multiplying out
the terms in Eq. (D.18) explicitly (and setting (04,2 + y“,924u,) = 1 for reasons

IThe O34 (ZR/D34 occuring in Eqgs. (B.83) was written as 1/2(2iR/I)34 here, exploiting the sym-
metry I34 = I43.



818 J. won Delft

explained in footnote j on page 783), we find

S (thto / ' dt3/ dt4 ]. - 2p0 (RF(t4) PF(t4))]

x (Rltss, R (t3) — R" (ta)] — Rltss, R” (ts) — R (t4)])
+ [1 = 205 (RP (ta), PP (t4))] (R[tsa, RT (t3) — RP (1))

— Rltss, RE(t3) — RB(t4)])}7 (D.19a)

Sr(ti,to) = / dtg/ dt4 I[tsa, RY (t3) — RF (t4)]
— I[tss, RP(t3) — RY (t4)] — I[tss, RY (t3) — RE (t4)]
+ Iftss, R (ts) = RP (1))} (D.19b)

This reproduces GZ’s expressions for the effective action, since Eqgs. (D.19) are the

analogues of (GZ-11.54) and (GZ-IL.55) [our 1st, 2nd, 3rd and 4th terms, having

aad’ = FF, BF, FB, BB, correspond to GZ’s 1st, 4th, 3rd and 2nd terms, respec-

tively]. The only difference is that in their Pauli factor, GZ have evidently replaced

our pi (R*(t), P*(t)) by n(R(t), P*(t)), which they define as the Fermi function
n(ho), evaluated at energy ho(R®(t), P(t)).

GZ offered no justification for the latter replacement in GZ99,% but have de-
fended it in subsequent papers® by arguing that it amounts to a quasiclassical
approximation that neglects terms of order i. We have argued in a previous pub-
lication'® that the “small parameter” that would protect this approximation is
actually 7e1/T, which evidently is not small in the T — 0 limit of present interest.
Much more alarming, though, is that when averaging over all self-returning random
walk paths, GZ proceeded to make the assumption that “ny depends only on the
energy and not on time (our emphasis), because the energy is conserved along the
clasical path” [see discussion after Eq. (GZ-11.68)]. As argued in Sec. 4 of the main
text, however, this neglects recoil, and produces incorrect results. A more accurate
way of treating the Pauli factor, that properly includes recoil, is discussed in Sec. 3
of the main text.

Appendix E. Diagrammatic Keldysh approach

In order to facilitate comparison between GZ’s notation and ours, this appendix
collects some standard definitions (following Rammer and Smith™) and results for
electron and field correlators used in the Keldysh approach. [Where relevant, GZ’s
notation is given in brackets.] Below, subscripts ¢ are abbreviations for (¢;, z;) when

m J. Rammer and H. Smith, Rev. Mod. Phys. 58, 323 (1986).
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used for fermion fields or for (¢;,7;) when used for interaction fields. éij is a short-
hand for Gy;(t;) = G(ty; xi, ;) [and similarly for £;], i.e. the time-argument, when
not displayed explicitly, will be understood to be t; = t; — t;. As elsewhere, the
tilde signifies the matrix structure in coordinate space, while bold symbols are used
for matrices in Keldysh space, e.g. C:‘lj

E.1. Electron correlators

We begin with the electronic Green’s functions Gy, and consider for the moment
only those for free, noniterating electrons (i.e., evaluated for V, = 0): the basic
correlators

G5 = L0t m)b (e [= GG, (E.1a)
GEE—%@A%mMHmzmo[:G%wﬂ, (E.1b)

are used as follows to construct the time-ordered, anti-time-ordered, retarded, ad-
vanced, Keldysh and contour-ordered Green’s functions, respectively:

GL = 0(ty)G5 +6(t;:)C5  [= GS(i)], (E.2a)
GL = 0(t;:)G3 +0(ty) G5 [= GS2 ()], (E.2b)
GI = 0(ty)(G; - G5)  [= GRC2()) (E.2¢)
G = —0(t;:)(G; — CF) [= GV (i), (E-2d)
GF = G5 + GF = G + G2, (B.20)
Gy =G5 -Gy =G; -Gf, (E.2f)
G =G + G =G - Gf +267 (E-2g)
Uy =i(Gf - Gif) = i(GF - GF), (E.2h)
Gj = {Gi otz (E.2i)
Gy for t; <.tj,

where t; >, t; means that ¢; is further along the Keldysh contour than t;, and 7.
denotes contour-ordering along this contour. (The Keldysh contour runs from the
initial time ¢y to +o00 and back.) Under complex conjugation, the following relations
hold:

Gy =@/, (CEYy =-GE, G57)y=-G57. (E.3)

Ji Ji o
It is customary to represent the contour-ordered Green’s function éfy by a 2x2 ma-

trix C:‘% in Keldysh space, whose components are the quantum-statistical averages
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of contour-ordered operator products,
~ ' 2y 2y 1 ~ ~g!
(G =(Gg" o, Gy = 3 Tl (i xa)dy (15, 27)]. (B4)

and are labeled by indices a, a’ that take the values ' and B, with the convention
that if @ = F (or B), then t; resides on the forward (or backward) part of the
Keldysh contour, and similarly for a’ and ¢;. In matrix notation, we have

= G = s (& 0 E

where we used a boldface notation for the fermion ﬁelds to 1nd(1)cate that it has two
components in Keldysh space, ’l/)i (Zg Ei$)) [Note that (G )@ corresponds to
GZ’s GS4 (i), with F — 1 and B — 2]. A more convenient, since tridiagonal, form
is obtained using the representation™

. . At ot = s ot

Y =Ly, ¢ =¢, LT, G;= _ﬁ[zﬁﬂﬂ 7 (E.6a)
- x G Gk
G = (Gyo=LrGyLt = 7 |, (E.6b)

where 7123 denote the Pauli matrices acting in Keldysh space, L = 1/v2(; 71),
and Eq. (E 6b) follows from the definitions (E.2).

For future reference, note also that density operators nf;;(¢1) located on the
forward or backward branches of the Keldysh contour have the following represen-
tations (suppressing the time argument), for a = F, B:

s at va _ atp o ot o s
iy =050 = ) Pap; =, Potp ., (ETa)

1 1
Pr/p = 5(1i73), Ppp=Lr°PppL’ = i(nin. (E.7b)

E.2. Field correlators

Next we consider the “interaction propagators” L~¢j, i.e., correlators involving the
real, bosonic fields V; that were introduced via the Hubbard-Stratonovich transfor-
mation (B.28a). Below, we shall use V; as a shorthand for V,(¢;,7;), taking it to
be understood that if a = F' (or B), then t¢; resides on the forward (or backward)
parts of the Keldysh contour. The basic correlators

ﬁj = <V V>V = [,ﬂ, (ES)

h
are averaged over all field configurations according to Eq. (B.29d). The definitions

of the correlators LZ, E;‘g, ij‘, L',;;‘, L',K and L',C in terms of L',< and L',> are identical

2 A. I. Larkin and Yu. N. Ovchinnikov, Zh. Eksp. Theor. Fiz. 68, 1915 (1975) [Sov. Phys. — JETP
41, 960 (1975)]. This is also the form used by Rammer and Smith (see footnote m).
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to those of the corresponding electronic Giy’s in terms of G’; and é; in Egs. (E.2).

c

The matrix representation El’j of the contour-ordered interaction propagator L',Nl],

with matrix elements
)
ie
¢
takes a form analogous to Eq. (E.5), namely:
Z" _ ﬁ <VF1'VF]‘>V <VF1'VBj>V _ EZ; ﬁ;
Tooh (VBiVEi)v  (VBiVBj)v ﬁ; cr )

Lo = —(TVaiVarj)v = L3° (E.9a)

Ji o

(E.9D)

Following AAG,'®19 we shall use the transformation L = 1/\/5(} _i) to obtain a
tridiagonal representation, reminiscent of Eq. (E.6b),

o (B RN e (2VeiValv o (VVogv
Ly=LLL ={ ==+ 1 (E.10a)
ﬁij 0 <V7iv+j>V §<V7ivfj>v
2il;  —Ry
= ( ZRJ 0 ]> ) (E.10b)
Ry

’

with matrix elements to be denoted by éga , where a, o take the values 4. The
last equality of Eq. (E.10a) was obtained by using

V2 0 , ,
, (V“):E(V“), (E.11)
75 V_; VBi

[cf. Eq. (B.37)] to rewrite iﬁijiT in terms of the correlators e*(V,;Vy;)v. The
relations (E.10a) are general. The explicit expressions for these correlators given
by Eq. (E.10b), which are specific for the present model, follow from Eq. (B.74a).
[Incidentally, comparing Eqgs. (E.10a) and (E.10b) proves Eq. (B.74b]. Using the
explicit forms for Ry and I; of Eqs. (B.75), it can easily be checked that

(Lg/A)* _ fRIA _ FAIR

] jio

(/jg)* = _ﬁg — _[K

i

(E.12)
and that their Fourier transforms w.r.t. ¢; satisfy the relations

ﬁf}(w) = L',Nﬁ(w) = L',Ng*(—w) = E?*(w) , L',Ng(w) = LNﬁ (w) = —L',fo*(w) , (E.13)

LE (w) = coth(hw/2T)[LF(w) — L} (w)]. (E.14)

]
Equation (E.14) [cf. Eq. (B.71)] has the form required by the fluctuation-dissipation
theorem.

Explicit expressions for the interaction propagators are most readily written
down in the Fourier representation. For disordered metals, where small frequencies
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and wave numbers dominate, we obtain from £ = —e2R and (B.76) the following
relations (in agreement with Eq. (5.8) of AAG8:19):

Dq? —iw

.
Lew) == 5P

a , Zé((w) =2 coth(hw/QT)ImEqR(w). (E.15)

E.3. Keldysh perturbation theory

In this section, we recall how the Feynman rules for Keldysh perturbation theory
are derived, and use them to obtain an expression for the self energy 3 of the
Keldysh electron Green’s function [Eq. (E.24)].

In the Keldysh approach, expectation values of the form occuring in Eq. (B.27b)
are written as follows (following Rammer and Smith, see footnote m):

(Urs(t,t0)O1()Urr(t,t0))o  (TeSeiSesOr(t))o

O@)) x = = & = —ev 7 (E.16a)
(Urs(t, to)Urr(t,to))o (725¢iSes)o
8= Temwledtsfurlts) & = T o= 7 [ dtads(ta) (E.16b)

where fc dt; and 7. indicate integration and time ordering along the familiar
Keldysh contour [H;; and o are defined in Eqs. (B.10) and (B.27d)]. In Eq. (E.16a),
the operator O;(t) can be written as either OF (t) or OP(t), where the superscripts
indicate that the operator resides on the upper or lower branch of the Keldysh
contour, since the contribution from the portion of the Keldysh contour from t to
oo cancels that from oo back to t. Consequently, we can also represent O[(t) as
1/2[0F 4+ OP](t), which turns out to be most convenient and will be used hence-
forth. For example, the reduced single-particle matrix p,,,(¢,to) of Eq. (B.27b) can

be written as®

) 1 . -t - ‘ g
plll(t17t0) - §<TL1F1/I +TL131/[>K - <$1/1/2T1$1>K = —ZhTI'K |:§T1Q§11/1:| s
(E.17)

Hfzre Tr g denotes a trace over Keldysh indiges, Qﬁ”ll,l = <Q~ZJ> k (and likewise Qrﬁ, =
<Q~11/>K,ns, which will occur below, too), Qn has the same matrix structure as in
Eq. (E.6a), and the superscript “full” (or “ns”) indicates that the average is to
be evaluated in the presence of the full interaction and including (or excluding)
all external perturbations, i.e., with ( g (or { )k ns) instead of ( )o. As a check,
we note that in the absence of interactions, Eq. (E.17) reduces to —ihl/Zéﬁ, =
1/2(@/}1,1/}1 - @[’11/1“0» which is equal to the desired result of <¢If¢1>0 (recall that
1y, and ¢, anticommute, since x1/ is equated to z; only at the very end of the
calculation).

°An alternative but equivalent form to Eq. (E.17) is often used (e.g., by AAG,181° Eq. (5.1), where
the factor 2 in front of 71 is a typo), namely p,,, = <ﬁ1,(7’1 - 1)/2i1>K = —ih[(T! — 1)/2Q§‘i1,1 ,
where it is to be understood that ¢, = t1 + 0.
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By writing [ dts0;(t3) = ftooo dts[06d; — 98], and switching to the Keldysh rep-
resentation of Eq. (E.6a), S¢; takes the form

Scf) — 7;6_% Jf%o dt3fdr3,éﬁsﬁ(t3) (E18a)

N - . . . AT
Da3(ts) = Ta3(ts)[Adg; — Rag] = U33(t3) P51, . (E.18b)

As a special case of Eq. (E.18b), we note that the external perturbation, Hey of
Eq. (B.17), generates vertices of the form
. ~ext . ex ~ T ~
(=i/h)hyyr = (—i/h)h55i%,, 19, . (E.19)
To linear order in iLEXt, where each fermion line is simply decorated by the insertion
of a single external vertex, we thus have the Feynman rule that each full G

5 1sto
be replaced by

2 2 E(wo) - 100, 2 2
hg§$<gi2’1g2j>K,ns — 7( 2})0 J22 <Q12/1Q2j>1{7ns , (E.20)

where the subscript “ns” denotes “no (external) sources”, and the term in brackets
indicates the form which hS5} assumes under Fourier transformation, if we use the
gauge of Eq. (B.21b).

For any expectation value of the form <O(t)> Kk, the interaction term H;; in S
can be decoupled using the Hubbard-Stratonovitch transformation of Egs. (B.28),
just as in Sec. B.3, using the fields Vr and Vg for the forward and backward branches

of the Keldysh contour, respectively. One then readily finds that (O(t))x can be
expressed as follows as a functional average over all fields Vg, p:

(O1(t) i = (OV (t, 1))y (E.21a)

v _ (T SevSes01(t))o
0" (t,tg) = 200 t0) , (E.21b)
Z(t,t0) = (T.SevSes)o (E.21c)
Sov = Tpe Fli dta ] duslly (E.21d)

V., = e[nidy Vi (rs) — al, Vi (rs)]

— e[ (WVig + 371 Vog)b, ). (B.21e)

Here the functional average ( )y over all field configurations is defined, as before,
by Egs. (B.29d), where the functional Z occuring in Eq. (B.29¢) is now given by
Eq. (E-21c).

To obtain an perturbation expansion within the Keldysh approach, one expands
S.v in powers of (—i/h)V 5, which thus serves as a basic interaction vertex, and
then applies Wick’s theorem to the fermion fields. In the nth order term, there
are n! equivalent ways to connect the n vertices with n fermion lines of the type
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Fig. E.1. Feynman diagrams for the interaction propagator [Eq. (E.22)] and the correlators Jpp,
Jpp and Jrppi+pr [Egs. (E.28)] that give the leading correction to the conductivity due to
electron-electron interaction. Solid lines denote matrix Green’s functions Q%, wavy lines inter-

’
action propagators él]a , and the symbols o and o’ the vertices v* and 'ya,. Arrows point from

the second to the first index of propagators.

<éléj>o = ihég, yielding a combinatorical factor of (i%)"n! which cancels the

(—i/R)"/(n!) from the expansion of the exponent of Sgy. Next, the average ( )y
over all field configurations is to be performed, which yields contractions between
the interaction fields pairs of vertices. These contractions have the form

«a o ot o’
<K’sz> = __zhz, ,l/) ,l/) = Qj,’)/ ﬂj 5 (E22)
where we introduced the “vertex matrices” v+ =1 and vy~ = 7', the field propaga-

tor in the Keldysh representation é:a is given by Egs. (E.10), and the Feynman di-
agram corresponding to Eq. (E.22) is the leftmost graph in Fig. E.1. Equation (E.22)
implies the following Dyson equation (cf. Eq. (5.6) of AAG!®:19),

G = GY + / dtsdt, / dasdrsGis3s, G (E.23)

to

where, to lowest order in the interaction, the self-energy is given by

-— 1 . @A o ~aa’
By = —5ih G Ly (E.24)

E.4. Conductivity

In this section, we derive a general expression for conductivity opc in the Keldysh
approach and expand it to leading order in the interaction propagator. This will
allow us to check the perturbative expansion (C.11) of our influence functional
j12/,21/ of Sec. C.3.

We start by using Eq. (E.17) to express the quantum-statistical average of the
current density operator Tn (t1,71) of Eq. (B.16) as follows,

(Tu(ty,r))k =) [jn, — gA(tl,rl)} (—ih) TrK[ G?y}]. (E.25)

Next we expand Eq. (E.25) to first order in hey [using Eq. (E.20)], and then
use Eq. (B.20) to calculate opc; the result has the form of Eq. (B.22b), where
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jlgf,glz(wg) therein is given by the Fourier transform w.r.t. t15 of the following
expression:

“Keldys 1 2 ~
szf%h = hTrg §T1<Q12’Q21’>K,ns : (E.26)
In the absence of electron-electron interactions, this readily reduces to
0),Keld sh
T (GU,GQI, +GE.GE) = h(Gh, G5 + G5 Ga) . (B27)

The second equality follows from Eq. (E.2g) (with G*g/ Aéf/ ® = 0) and confirms
Eq. (C.1a).

Let us now obtain the leading correction to opc due to the electron-electron
interaction. To this end, we have to expand Eq. (E.26) for jg?fij{? " to second order

in 23. One readily arrives at the following result [which can also be obtained by
starting directly from Eq. (E.25), expanding Gﬁ”ll,l therein to first order in X5, using
Eq. (E.23), and then expanding each Q in the latter equation to first order in Aeys

using Eq. (E.20)]:

T e S 1 . o T T T
JEp et = _51712 /t dtsdt, / drsdry(Jpr + Jpp + JBE),
0

Jrp =) Trg —rlc 0 v G G G, Loy ] (E.28a)
7 [1 10 A0 _a/~ 0 o A0 Faa!

Top =3 Tri 5T GirGas7 GV G Lsy | (E.28b)
FB = ZTI‘K _T1G13’YQG 2/G 4'7 G 1/5?40‘] . (E28C)

The correlators JFF, JBB and jﬁg are illustrated in Fig. E.1, and correspond
to self-energy insertions in the upper and lower Keldysh contours, and a vertex
correction, respectively. Multiplying out the Keldysh matrices explicitly7 taking the
trace and omitting all terms involving the combinations G£,£4, or G4, LE, which
vanish (since 6346043 = 0), we obtain:

. 1~
Jrr = §G1 [GELLE + GRLE] (Gih Goy + Gl o)

+%[él (GELE + GELE + G, L4Y)

+ G (GLLE + GELE) |Gy GEy (E.29a)
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+- G L GE(GELE + GELE)GE,

+ (GELCE + GELE + G4, GL ] (E.29b)

JFB——(G32,G24+G (Gay) (GG LE + G G LS, + G GTaLay)
1~p = SO P [ O -
+ 5 G G [GR G Ly + Gy G L3y + (G Gy + G Giy) £34]

+ = G32/G2 [G41/G £34 + G41/G ﬁ (G41/G + G41/G )£~3R4:| .
(E.29¢)

Now, terms that involve the combination G GJ. or G, G4, contribute to the so-
called interaction corrections, and do not contribute to “decoherence”. Hence, we
retain only the first lines of Eqgs. (E.29) henceforth. For these, we use the identity
[cf. (E.2g)]

1 ~p~ =g A ~ R A ~ o~ 1 -5~ ~ A A

5(GRGK + GEGA) = GRG< 4+ G<G + 5(GRGR - GAGY)  (E.30)

and drop the last term, for the same reason. The remaining terms then take the
following form:

Jrp = G [GE LY + GELE](GR G5 + G Gay) (E.31a)
Jpp = (G, G5y + G Gay) [GHLLE + GE L4y Gy (E.31b)

']FB = (G32/G + G§2/G ) [G41/G £34 + G41/G L + G41/G £ } (E31C)

These expressions agree with the expansion (C.11) we obtained from the influence
functional approach, as can be seen by relabelling 3 < 4 in some terms. [JEE here
accounts for both Jpr and Jrp there.]

Appendix F. Diagrammatic Disorder Averaging

In this appendix we summarize, for reference purposes, some standard and well-
known conventions and results used for diagrammatically performing disorder av-
erages, using notations summarized at the beginning of Appendix B.

F.1. Definitions, standard results and useful tricks

To perform the disorder averages, we take the impurity potential to be short-ranged,
Vimp (7") = Vimp »_; 6(7 — R;), (vimp has units of energy times volume), represent the
fermion fields as th, (t,7) = Vol /2 dop eP"cp(t), and Fourier transform as follows:

A
G = GIA (g, 35, 2))
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Using standard diagrammatic techniques, the disorder-averaged single-particle
propagator is found to have the form [Fig. F.1(a)]:

<G§’/17A ()ass = 5pﬁ’gf/A (), (F.2a)

R/A —iety; ipTy R/A 1 F.9
9p /dtl]/dr e e <Gu Dais = he 6 T ih2ra (F.2b)

Here 7o) = h/ (27r1/clmpv12mp) is the elastic scattering time, ¢jmp the impurity concen-
tration, &, = p*h?/2m — ep, and calligraphic symbols will be used throughout for
disorder-averaged quantities. The corresponding position-time expression, found by

inverse Fourier transforming, is:

G5/ (1) = / (dp)e’™ T / (de)e™ G/ (e). (F.2¢)
) m /2 ”’"zzj iept/h ,—|t|/27ql
= F70() (i27rht) eXpl oht ]e ¢ - (|2

The disorder-averaged products (G*G4) ;s have the form [Fig. F.1(b)],

(CEIAGEA () 1. = S p0pr pG A ()GH A (2) (F.3a)

p'p p'p

(Gpp()Ghp(9) 4iy = Op.p0p 9Ty (), Gp (2)
+ 015,189 (£)Gp (€)G71 ()57 (€)
D) (e —8)+Cpiple —28)
Vol 27712 /R ’

(F.3b)

Cy(w) and D(w) being the bare (i.e., without interactions) Cooperon and diffuson,
respectively. Figure F.1 summarizes the standard calculations of CJ(w) and Dj(w),
and of the diffusion-dressed interaction vertex I'q(w) and polarization bubble xq(w),
which is defined as the Fourier transform of Eq. (B.65a):

(Xa(@)),,. = —i2eh / () (dp)(Gf o= + )G (0)

+Gpiqle+ w)G;,L‘ (5)>dis (F.4a)

~ —i2€2h/(ds)(dp)<[—wn6(5)]§5+q(6 + w)G{,‘(s)

—n0(2) [ g e + )GE(E) = Gy ge +0)Gi(0)]) . (FaD)

dis
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Fig. F.1. The building blocks of diagrammatic perturbation theory: (a) Basic definitions for
the electron lines GS/A and g',’f/“‘(a), impurity lines, the function Mg (w) of Eq. (F.5a), and the
interaction lines £;; or Lq(w) of Eq. (B.74b). For all correlators, arrows point from the second to the
first indix. creation to annihilation operators] Internal impurity momenta are to be integrated over
with [(dk), as in Ilg (w). (b) Eq. (F.3b). (c) The bare Cooperon CQ(w) [Eq. (F.5b)] and bare diffuson
52 (w) [Eq. (F.5¢)]; (d) the diffuson-dressed vertex T'q(w) [Eq. (F.5d)] and (e) polarization bubble
Xq(w) [Eq. (F.5¢)]. For each of Ilq(w), CO(w) and [q(w), the frequency argument w is defined as
the frequency of the corresponding retarded Green’s function minus that of the advanced one.
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The results are:

- . . 21U, .

Mg(w) = / (dR)GE (e + )Gy k(e) = =21~ 7a(Dg” —iw) + -], (F.50)

Ow) = —— = ! + (F.5b)
4 1 —T4(w)/(2rvra/h) Dg? —iw+vyu

_ 1

PO(0) — el - : F.
1« = T o @) - D@ o T (F5c)

= 114 (w)Dy(w) 1

Falw) =1+ 2mvTa2/h Ta(Dg? —iw) T (F.5d)

2 Drude
- — e | Y i =_9%9%c | .
Xq(w) = —i2e {DqQ — ] D — i +-ee (F.5e)

Here D = U%Tel/d is the diffusion constant in d = 3 or 2 dimensions, vy is a
magnetic-field cutoff and the dots indicate subleading terms that are small in w7y <
1 and ¢l < 1.

For convenience, we also summarize here some results that are useful for evalu-
ating momentum integrals that arise in diagrammatic perturbation theory. Usually,
the energy parameter he of the disorder-averaged Greens’ functions _C';f / A(E) is con-
fined to the vicinity of ey, typically by the presence of a factor —d.ng(fie) in an
[ de integration, so that terms of order he/ep can be neglected. [The second term
of Eq. (F.4b) does not contain a factor —d.ng, but one can be generated by inte-
grating by parts.] The explicit form (F.2) for 75 / A(e) then implies the following
“identities”:

/ (dp) QR(E)Qﬁ(e) =1, /MQR/A(E)Q;?/A(E) =0, (F.6a)

2nvTe /BT P 2nvTa /BT P

[ g4 " [ )"

. m—1 . n—1
—iT T m+n—2
=|— — . F.6b
(&) (%) ( m—1 ) (F6b)
Furthermore, in the limit of small frequencies (w,& < 1/7¢) and wavenumbers

(¢%,q*> < 1/D7y)), integrals of the following kind can be evaluated by a systematic
expansion in the small parameters, combined with repeated use of Egs. (F.6):

—d > ~ .
/ 277(”71-:3/71 gg/A(E)gﬁif(E +w)=1-71a[Dg* +iw] + -, (F.7a)
L[ GG+ G+

Tel ) 27T /R TP

=+i{l —1a[D(g+q)* Ti(w+o)]}+--, (F.7b)
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h? (dp) . , )
- / srvm T 90 € Gty (& + )3 g e + 0)

=2—71q[4D(q +q)* £ 3i(w+ @) + -, (F.7¢)

2 dp) . . - ~
o [ G GG e+ Gl e+ G e+ 0

=2—7a[D[4(q+q)* +4(¢')* — 64" - (g + q)]
+3i(wHw—w))+---. (F.7d)

F.2. Cooperon self energy

In this section, we provide some details for how the Cooperon self energy can be
calculated by performing the disorder average diagrammatically. As a starting point,
we use Eqs. (B.88), which we derived in Sec. B.6.1 from the influence functional
approach, but which are equivalent to the standard Keldysh expressions following
from Eq. (E.24). According to Egs. (B.88), there are four self-energy contributions
to the Cooperon self energy, which we write as:

o 1 (dw e - - -
Sfw =g o [@DShe +Shy + S+ 58] @)
The diagrams for ¥I, are depicted in Fig. F.2(b), those for ¥£ in Figs. F.2(c)-

F.2(f) (which correspond one-to-one to Figs. 2(b)-2(f) of AAV??). Starting from
Eq. (B.88), the corresponding algebraic expressions can be written as:

Shp = —=iLK(@)CO_4(w — @)Y
Shy = —oiLE@)C_(w + )Y,
1
YR, = _EM@R(‘D) tanh[h(s +w — @) /27
) 0 ) 4 . (F.9)
X {Cg_q(w —-o)Yp’ — 7'911—%(@) Z Y, } ,
n=2
SRy = —Silg (@) tanh[h(e — w)/2T
B ~ 4
x {—cg_q(w + @)V 4 ral? 4 (-2) Y Yg“} .
n=2

£ . the minus signs before Y}”, Yﬁ’), YI§4) and Yél) arise

from the minus sign in GX = tanh( ) [G® — G4], and the Y’s represent integrals

In the expressions for &
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Fig. F.2. (a) Dyson equation [Eq. (12)] for the Cooperon, for the case that the Cooperon self
energy contains only self-energy contributions. The latter are shown in diagrams (b) to (f), which
depict how to perform the disorder average of the various contributions iifl f% to the Cooperon self
energy, leading to Egs. (F.9) and (F.10a). Diagrams (b) depict S}F/BB; the diagrams (c) + (d)
+ (e) + (f) depict SII?F/BB’ the four contributions corresponding to the terms in Egs. (F.10) that

contain Ya(l)7 Ya(Q)7 Y(L(B) and Ya(4), respectively. [To avoid cluttering the figure with factors of 1/2,
the energy and momentum labels €, w and q used here were assigned in a less symmetrical way
between upper and lower lines than in Fig. C.2(c); to transcribe the expressions used in this section
into the notation used there, make the replacements (¢ +w)nere — (64+1/2w), Pl ore — (P1+1/29),
DPhere — (p2 + 1/2(I): and identify (8 + 1/291)there = (5 + 1/2Q2)there =&+ 1/2"""]
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over internal momenta, that can be performed using variations of Egs. (F.7):

h (dp) 5 5 _
v =2 T A p (G + WG 4 (e - 2)

h dp’) - ~ o
T %g‘??’ (€)Gp—gle +w = @)Gp (e +w)

— (—i){1 - 7a[D(2q — §)® — (20— @)] + - 2, (F.10a)

Y}gz) _ h? /M[G§(5+w)]2,g7;‘7@(s+w—w)gf,p(s)

Ta? ) 2mvTa/h
=2—7a[4D(q+ q)* — 3i(w + ©)], (F.10b)
h dp) _ _
v =2 %gﬁ(s +W)GA (e +w— @)L ()
h dp') - B o
X _ mgg(E—FW)gﬁ_q(E-i—w —w)gtf_p/(e)
= ()*{1 - 1a[D(q +q)* —i(w+ )]+ }? (F.10c)

X ,C';;‘,_q(s +w—®)[GF (e +w)]?
= (=9)*{1 — 7a[D(2q)* — i2w] + - - - }*{1 — 7a[D(29)? — i20] + ---}* (F.10d)

Performing a similar set of integrals for the Yén)’s, we readily find that Yé,n) (w) =

Y™ (~). Note that the sums 3> _, Y}g%, which are associated with the so-called

“Hikami-box” diagrams of Figs. F.2(d)-F.2(f), add up to zero in leading order,

which is why the next order had to be included. Finally, the results for 515 and

ER’SEH, given by Egs. (13b) in the main text, are obtained by inserting Eqgs. (F.10)
into Egs. (F.9) and (F.8), and making the replacement epere — w/2 (cf. caption of
Fig. F.2).
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