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received 20 April 2007; accepted in final form 19 September 2007
published online 25 October 2007

PACS 03.65.Yz – Decoherence; open systems; quantum statistical methods
PACS 85.25.-j – Superconducting devices
PACS 42.50.Pq – Cavity quantum electrodynamics; micromasers

Abstract – We study the decoherence of a superconducting qubit due to the dispersive coupling
to a damped harmonic oscillator. We go beyond the weak qubit-oscillator coupling, which we
associate with a phase Purcell effect, and enter into a strong coupling regime, with qualitatively
different behavior of the dephasing rate. We identify and give a physicaly intuitive discussion
of both decoherence mechanisms. Our results can be applied, with small adaptations, to a large
variety of other physical systems, e.g. trapped ions and cavity QED, boosting theoretical and
experimental decoherence studies.
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Introduction. – With a thrust from applications in
quantum computing, the manipulation of quantum states
in superconducting nanocircuits has made tremendous
progress over the last decade [1–9]. A crucial step for
these successes is the understanding of decoherence and
the design of good measurement schemes. The latter is a
particular challenge as the detector is made using the same
technology as the system being detected, i.e. the qubit.
Also, the measurement timescale cannot be considered
to be infinitesimally short as compared to the intrinsic
scales of the qubit evolution. Thus, understanding the
measurement process is crucial both fundamentally and
for improving experiments.
A specifically attractive development is the emergence of

circuit quantum electrodynamics (cQED) [10–17], where
effective Hamiltonians, similar to those of the coherent
light-matter interaction of quantum optics and in partic-
ular of cavity QED, can be realized in the microwave
frequency domain. There are many approaches to real-
ize the qubit, including flux and charge, and the cavity,
including a superconducting quantum interference device
(SQUID) or a coplanar waveguide.
In this context, measurement protocols making use of

dispersive qubit-oscillator interactions [1,2] are useful for
reducing the backaction on the qubit [18]. For example, in

the flux qubit-SQUID combination, as in the Delft setup of
refs. [1,19], the SQUID behaves like a harmonic oscillator.
Its inductive coupling to the flux qubit leads to a frequency
shift depending on the qubit state Ω↑,↓ =

√
Ω2±∆2. Here,

Ω is the bare oscillator frequency and ∆ is the quadratic
frequency shift. A measurement of the SQUID resonance
frequency provides information of the qubit state. While
the manipulation of the qubit is usually performed at
the optimum working point [3], the readout can and should
be performed in quantum nondemolition measurement,
i.e. in the pure dephasing limit.
In this letter we study the decoherence of a qubit due

to the dispersive coupling to a damped harmonic oscil-
lator, taking the Delft setup as an example though our
results may be adapted to several physical systems. In the
Purcell effect a narrow oscillator linewidth enhances the
absorption of the resonant photon emitted by the two-
level atom and thus the energy relaxation of the latter.
In the weak qubit-oscillator coupling regime (WQOC),
we explain the behavior of dephasing in terms of a simi-
lar process, the phase Purcell effect. This regime is char-
acterized, as we will be show later, by ∆/Ω<

√
κ/Ω/

(1+n(Ω))1/4, where n(Ω) is the Bose function at the
frequency Ω and environment temperature T . The main
result of this work lays beyond the WQOC, in a regime
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where fast qubit-oscillator entanglement plays the domi-
nant role. We find a qualitatively different behavior of the
dephasing rate. The divergence of the qubit dephasing rate
1/τφ ∝ 1/κ when the oscillator decay rate κ→ 0 is lifted
by the onset of the strong-coupling regime.
The Hamiltonian describing the Delft setup [19] can be

written as

Ĥ =
E

2
σ̂z + �Ω

(
â†â+

1

2

)
+
�∆2

4Ω
(â+ â†)2σ̂z︸ ︷︷ ︸

ĤS

+ĤD. (1)

Here, â and â† are the annihilation and creation operators
of the harmonic oscillator, σ̂z acts in the Hilbert space of
the qubit and ĤD describes the damping of the oscillator.
A full-length derivation of Hamiltonian (1) and discussion
of the approximations used is given in ref. [20]. It basically
derives the Hamiltonian from the equations of motion of
the Josephson phases across the junctions and truncates
the SQUID potential to the second order.
We will show that key experiments [1,2] are performed

outside the WQOC. Moreover, a very recent experi-
ment [21] explicitly relies on the use of a strong dispersive
coupling regime. We demonstrate that the dephasing rate
1/τφ ∝ 1/κ for WQOC, and 1/τφ ∝ κ at strong coupling.
We discuss the crossover between these regimes and its
dependence on κ and temperature T . We provide physical
interpretations of both regimes, the former as a phase
Purcell effect and the latter as the onset of qubit-oscillator
entanglement. The results of the present study may be
extended straightforwardly to any system with similar
dispersive qubit-oscillator coupling: the charge-qubit–
coplanar wave guide system (see Yale setup [2]), trapped
ions [22] and 3D microwave cavity QED [23], quantum
dots [24], among others.

Method. – In studying the qubit dephasing we are
facing the challenge of a complex non-Markovian environ-
ment consisting in the main oscillator (i.e. SQUID) and
the ohmic bath. Moreover, the qubit couples to a non-
Gaussian variable of its environment. Therefore the tools
developed for Gaussian baths [25] cannot be applied in this
system for arbitrary strong coupling between the qubit
and the oscillator.
We study the qubit dynamics under the Hamiltonian (1)

for arbitrary ∆/Ω, assuming essentially the dimensionless
oscillator decay rate κ/Ω as the only small parameter. In
this regime we avoid over-damping of the oscillator and the
strong backaction on the system which this would cause.
We give in the following a brief description of the crucial
steps and approximations of the calculation. We model the
damping, associated with the oscillator decay rate κ, in the
Caldeira-Leggett way by a bath of harmonic oscillators

ĤD =
∑
j

�ωj

(
b̂†j b̂j +

1

2

)
︸ ︷︷ ︸

ĤB

+
∑
j

�(â+ â†)
2
√
mΩ

λj(b̂
†
j + b̂j)√
mj ωj︸ ︷︷ ︸

ĤI

+Ĥc,

(2)

with J(ω)=
∑
j λ
2
j�/(2mjωj)δ(ω−ωj) =m�κωΘ(ω−ωc)/π

and Ĥc the counter term [26–28], where Θ is the Heaviside
step function and ωc an intrinsic high-frequency cut-off.
Our starting point is the Born-Markov master equation in
the weak coupling to the bath limit for the reduced density
matrix ρ̂S in the qubit-oscillator Hilbert space

˙̂ρS(t) =
1

i�

[
ĤS , ρ̂S(t)

]

+

∫ t
0

dt′

(i�)2
TrB

[
ĤI , [ĤI(t, t

′), ρ̂S(t)⊗ρ̂B0]
]
.

This approach is valid at finite temperatures kBT � �κ,
for times t� 1/ωc [28,29], which is the limit we will discuss
henceforth. We start from a standard factorized initial
state for all subsystems. We express ρ̂S(t) in the qubit
basis and represent its elements, which are still oscillator
operators, in phase space as

ρ̂S =

(
ρ̂↑↑ ρ̂↑↓
ρ̂↓↑ ρ̂↓↓

)
, ρ̂σσ′ =

∫
d2α

π
χσσ′(α, α

∗, t)D̂(−α),

where χσσ′ is the characteristic Wigner function and
D̂= exp (αâ†−α∗â) the displacement operator [30]. Inde-
pendent of our work, ref. [31] has used a different phase-
space representation to calculate the qubit dephasing
rate. We characterize the qubit coherence by C(t) =〈
σ̂x⊗ �̂

〉
= 2Re Trρ̂↑↓(t) which can be easily shown to be

C(t) = 8πReχ↑↓(0, 0, t). After a rather long but essentially
straightforward calculation, one obtains for χ↑↓ a general-
ized Fokker-Planck equation

χ̇↑↓(α, α∗, t)=
(
(α(k1+ iΩ)+α

∗k1) ∂α

+(α∗(k2−iΩ)+αk2) ∂α∗ − i∆
2

2Ω
(∂α−∂α∗)2

+p(α+α∗)2
)
χ↑↓(α, α∗, t), (3)

where

k1,2 =−κ
4

(
2∓ Ω↑
Ω
(1+2n↑)± Ω↓

Ω
(1+2n↓)

)
, (4)

p=− κ
8Ω
(Ω↑(1+2n↑)+Ω↓(1+2n↓))− i∆

2

8Ω
(5)

and nσ = n(Ωσ) is the Bose function. To solve eq. (3) we
make a Gaussian ansatz for χ↑↓:

χ↑↓ =A(t) exp(−M(t)α2−N(t)α∗2−Q(t)αα∗). (6)

This ansatz includes coherent and thermal states. In
the following we assume the oscillator to be initially in
a thermal state, in equilibrium with its environment.
This implies Q(0) = 1/2+n(Ω) and M(0) =N(0) = 0.
Due to the quadratic (pure dephasing) form of the
Hamiltonian (1), obtain a closed system of ordinary
differential equations for the parameters of the Gaussian
ansatz, see also ref. [20]. This system can be easily
solved perturbatively in ∆ in the weak-coupling regime,
or numerically (for arbitrarily strong coupling) and we
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can extract the dephasing time τφ from the strictly
exponential long-time tail of C(t) = 8πReA(t).

Weak qubit-oscillator coupling. – Before solving
eq. (3) in a general manner, we revisit the case of small ∆.
Up to the lowest non-vanishing order ∆4, the analytically
calculated WQOC dephasing rate is

1

τφ
=∆4

n(Ω) (n(Ω)+1)

Ω2

(
κ

κ2m
+
1

κ

)
, (7)

where κm =
√
2kBTΩ/(�(1+2n(Ω))). The term 1/κ

exactly reproduces the Golden Rule dephasing rate of
ref. [19], and is similar to the result of ref. [32]. These
previous results have been obtained considering only
the two-point correlator of the fluctuating observable
(a+ a†)2, i.e. assuming an Gaussian environment. The
crossover point κm from 1/κ to κ in eq. (7) is, at the
Delft parameters [1], comparable to Ω, i.e., κ would
dominate over 1/κ only in a regime where the Born
approximation fails. Nevertheless, since the golden rule
limit limκ→∞ 1/τφ = 0 is unphysical, such a term was to
be expected.
In the WQOC regime, the enhancement of dephasing

by weak coupling to the environment is analogous to
the enhancement of spontaneous emission by the narrow
cavity lines in the resonant Purcell effect, see refs. [33,34].
In the pure dephasing case we have no energy exchange
between the qubit and the oscillator. Qubit decoherence
is caused by fluctuations of (â+ â†)2. Since we are in
the WQOC regime, the stronger coupling between the
oscillator and the environment causes equilibrium between
the oscillator and the bath on a shorter time scale than
the qubit dephasing. In equilibrium, the main contribu-
tion to the fluctuations of (â+ â†)2 is the exchange of
photons between oscillator and bath. The process is anal-
ogous to equilibrium fluctuations in canonical thermody-
namics. A virtual photon returning from the environment
is at resonance with the oscillator. The absorbtion of this
photon, like in the resonant Purcell effect will be enhanced
by narrow oscillator lines. Therefore, the entire dephasing
process will be enhanced when the coupling to the envi-
ronment is weak and this mechanism can be viewed as a
phase Purcell effect. We give a more detailed discussion of
this effect in the appendix.

Strong qubit-oscillator coupling. – The dephasing
rate (7) obtained in the small κ and WQOC limit diverges
for κ→ 0, i.e., in the absence of an environment. The
solution to this apparent contradiction lies beyond the
WQOC, therefore we solve eq. (3) numerically using again
the Gaussian ansatz for χ↑↓.
Figure 1 shows the dependence of the dephasing rate on,

∆ for various values of κ. The dimensionless parameter
�Ω/kBT is 2, similar to the Delft and Yale setups. As
predicted by eq. (7) for κ� κm and small ∆, the dephasing
rate is proportional to ∆4/κ. Further increasing ∆, we
observe a saturation of the dephasing rate which marks
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Fig. 1: Dephasing rate 1/τφ as a function of ∆ for different
values of κ. Power law ∆4 growth at low ∆ crosses over to
∆-independence at strong coupling. Inset: Dephasing rate as
a function of κ in the weak-coupling regime (∆/Ω= 10−3)
showing 1/τφ ∝∆4/κ and the strong-coupling regime (∆/Ω=
10−1) with 1/τφ ∝ κ dependence. Here �Ω/kBT = 2 similar to
experiments.

the onset of the strong coupling regime. This regime is
analogous to the strong coupling in linear cavity QED.
Here 1/τφ is proportional to κ.
At strong qubit-oscillator coupling the oscillator couples

to the qubit stronger than it couples to the heat bath, such
that one cannot use the effective bath concept of WQOC.
As the qubit-oscillator system becomes entangled, a funda-
mentally different dephasing mechanism emerges. The
eigenstates of the Hamiltonian (1) at κ= 0 are the dressed
states {|σ,mσ〉}, where |mσ〉 are the number states of the
oscillator with frequency Ωσ. Opposed to WQOC, these
dressed states are built in the strong coupling regime on a
shorter time scale than the re-thermalization of the oscil-
lator. In the evolution from thermal state of oscillator with
frequency Ω to an equilibrium between the new oscillator
with Ωσ and the bath, the state in the narrower poten-
tial tends to absorb and the one in the wider potential to
emit photons to the bath in an incoherent manner, causing
fluctuations of (â+ â†)2 and thus qubit decoherence. Thus
we expect 1/τφ ∝ κn(Ω). This simple picture is confirmed
by numerical results in fig. 2, for a wide range of values
of κ. The inset of fig. 2 shows the crossover from strong
coupling rate κ to WQOC rate 1/κ. This indicates that,
for fixed ∆, as κ decreases, ∆ stops being “small” and the
WQOC limit breaks down. Thus, approaching κ= 0 for
any given ∆ we eventually leave the domain of validity
for eq. (7) avoiding the divergence at κ→ 0. As expected,
dephasing will vanish as we go to a finite quantum system
(qubit⊗ single oscillator) at κ= 0. We observe that the
criterion of “small” ∆ in WQOC is valid only relative to κ.
Using 1/τφ = κn(Ω) in the strong-coupling regime and the
1/κ term of 1/τφ in eq. (7) in the weak-coupling regime,
we determine the position of the crossover ∆c between the
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Fig. 2: Scaling plot of the dephasing rate 1/τφ as a function of
temperature. For ∆/Ω= 0.3, i.e. in the strong-coupling regime
(see fig. 1), for a wide range of κ’s we show that 1/(τφκ)
is proportional to the Bose function n(Ω). Inset: dephasing
rate 1/τφ as a function of κ for different values of ∆ and
�Ω/kBT = 2. Continuous lines correspond to κn(Ω), dashed
lines correspond to n(Ω)(n(Ω)+1)∆4/(Ω2κ).

two regimes

∆c
Ω
=

√
κ

Ω

1

(1+n(Ω))1/4
. (8)

The position of the cross-over is controlled by the ratio
of the coupling strengths between the three subsys-
tems i.e. ∆2/Ω and κ. Note that, with the in situ tuning
of the qubit-SQUID coupling, available in the Delft
experiment, the position of the cross-over could be tested
experimentally. Using the parameters from ref. [1,2] one
finds (∆/∆c)Yale ≈ 1.4 and (∆/∆c)Delft ≈ 1.3 i.e., the
strong-coupling regime finds application in both setups.
If the oscillator is weakly driven off-resonance, as is

the case in the dispersive measurement, the qualitative
behavior remains the same as in fig. 1, as shown in ref. [20].
In general a tunneling σ̂x term may occur in eq. (1) and
lead to energy relaxation as well as further reducing the
matrix elements containing the dephasing rate. We expect
that, as long as the energy splitting E of the qubit is off-
resonance with the oscillator, which in our case means
|E− 2Ω| � κ, the effect of the relaxation is rather weak
and dephasing still dominates. On resonance, we expect
a similar Purcell to strong coupling crossover as for the
dephasing channel.
Our results have applications in other systems with

similar dispersive qubit-oscillator coupling, e.g., the Yale
setup [2], in the off-resonant dispersive regime. There,
the system is described by a similar (eq. (12) in ref. [32])
quadratic coupling â†â between qubit and cavity and
a pure dephasing Hamiltonian. In particular, a strong
dispersive regime of this system has been utilized to
resolve number states of the electromagnetic field in
ref. [21]. The terms â2 and â†2 in eq. (1) do not play
a central role for our physical predictions, as confirmed

by the numerical simulations. We expect our results,
with minor adaptations, to be applicable to various
cavity systems, e.g. quantum dot or atom-based quantum
optical schemes [23,24]. The dispersive coupling of
Hamiltonian (1) could have implications for the genera-
tion of squeezed states, quantum memory in the frame
of quantum information processing, measurement and
post-selection of the number states of the cavity.

Conclusion. – We have presented a concise theory
of the dephasing of a qubit coupled to a dispersive dete-
ctor spanning both strong and weak coupling. The
phase-space method applied is based on treating the
oscillator on the same level of accuracy as the qubit.
We have discussed the dominating decoherence mech-
anism at weak qubit-oscillator coupling, where the
linewidth of the damped oscillator plays the main role,
analogous to the Purcell effect. At strong qubit-oscillator
coupling we have identified a qualitatively different
behavior of the qubit dephasing and discussed it in terms
of the onset of the qubit-oscillator entanglement. We have
provided a criterion delimitating the parameter range at
which these processes dominate the qubit dephasing.
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Appendix. – Assuming the WQOC limit we use
Fermi’s golden rule in an otherwise exact manner to prove
the analogy between the weak qubit-oscillartor coupling
regime and the Purcell effect. One can map the damped
oscillator by an exact normal mode transformation [35]
onto an effective heat bath of decoupled oscillators denoted
by ĉj , ĉ

†
j and with a spectral density

Jeff(ω) =
2κω

(ω2−Ω2)2+κ2ω2 . (A.1)

Jeff corresponds to the effective density of electromagnetic
modes in the cavity introduced in regular linear cavity
QED for describing the Purcell effect. The WQOC deco-
herence rate is proportional to the two-point correlation
function of the environmental operator coupling to the
qubit [28,36], in our case

S2(ω) =
〈
X̂2(t)X̂2(0)

〉
ω
−
(
〈X̂2〉

)2
, (A.2)

where X̂ is the sum of the effective bath coordinates
X̂ =

∑
j

√
�/(2mjωj)(ĉj + ĉ

†
j). For the pure dephasing

situation described by the Hamiltonian (1) we only need
to study 1/τφ ∝ S2(ω→ 0+) because the qubit energy
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conservation implies energy conservation within its
effective environment. The last term of eq. (A.2) removes
the noise bias. This is important since dephasing is caused
only by processes that leave a trace in the bath [37], i.e. the
exchanged boson spends a finite time in the environment.

Terms of the structure
〈
ĉ†i (t)ĉ

†
j(t)ĉk ĉl

〉
,
〈
ĉi(t)ĉj(t)ĉ

†
k ĉ
†
l

〉
contribute to S2(0) only when ωi = ωj = 0, which are
modes with density Jeff � 2κω/Ω4 each, leading to terms
are of order κ2. Up to linear order in κ, the only terms in
S2(ω→ 0+) that fulfill the energy conservation and leave
a trace in the bath are of the structure

〈
ĉ†l (t)ĉj(t)ĉ

†
j ĉl

〉
,

including the permutations among the operators taken at
time t and those taken at time 0. The terms contributing
to S2(ω→ 0+) satisfy the condition |ωl−ωj | → 0+. Phys-
ically this corresponds to infinitesimal energy fluctuations
which leave a trace in the bath. Or, in other words, the
photon absorbed at t= 0, ĉl, should spend finite time in
the bath and be emitted back only at the later time t, but
at the same time the energy change in the environment
e.g. caused by ĉ†j ĉl should remain undetectable within
the energy-time uncertainty at every time, therefore in
the Golden Rule (long time) limit ωl ≈ ωj . Taking the
continuum limit we thus have

1/τφ ∝
∫ ∞
0

dω Jeff(ω)(1+n(ω))Jeff(ω)n(ω). (A.3)

The integral in eq. (A.3) can be rewritten as the convo-
lution K(ω′) =

∫
dωJeff(ω)n(ω)Jeff(ω

′−ω)n(ω′−ω) for
ω′→ 0. Using eq. (A.1), K(ω′) becomes a function with
resonances at ω′ = 0 and ω′ = 2Ω. The the height of
these resonances and consequently 1/τφ ∝ S2(0) increases
with decreasing κ, thus matching the behavior of the
dephasing rate (7). At the same time, the tail of the peak
at 2Ω enhances S2(0) when κ increases. This corresponds
to the κ term in eq. (7). Analogous to 1/τφ in eq. (7),
S2(ω→ 0+) vanishes for T → 0.
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