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Correlation-Induced Resonances in Transport through Coupled Quantum Dots
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We investigate the effect of local electron correlations on transport through parallel quantum dots. The
linear conductance as a function of gate voltage is strongly affected by the interplay of the interaction U
and quantum interference. We find a pair of novel correlation-induced resonances separated by an energy
scale that depends exponentially on U. The effect is robust against a small detuning of the dot energy
levels and occurs for arbitrary generic tunnel couplings. It should be observable in experiments on the
basis of presently existing double-dot setups.
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FIG. 1. System of coupled quantum dots with common leads.
The theoretical and experimental research on electronic
transport through ultrasmall quantum dots has become a
very active field. Various fundamental physical phe-
nomena, such as quantum interference [1], Coulomb
blockade [2], and the Kondo effect [3,4], strongly affect
the transport properties. Currently, the focus is shifting
towards few-electron double-dot structures that are studied
as artificial molecules, interferometers, and for charge- and
spin-based quantum computing [5–13]. Investigations into
the role of correlations in systems of two or more coupled
quantum dots are still at the beginning and much remains
to be explored. In parallel quantum dots connected to
common leads, new physics is to be expected due to the
interplay of correlations and quantum interference.

In the present Letter, we investigate this problem for a
specific model of two parallel quantum dots coupled by an
electron interaction U (see Fig. 1). The effect of external
electrostatic potentials on two-path interference was
studied earlier (magnetoelectric Aharonov-Bohm effect)
[14]. We here investigate the role of interaction-induced
potentials. This is especially relevant for molecular trans-
port, as the interaction-induced potentials will be far larger
than the external potentials which are difficult to apply to
such small structures. We study how the linear conductance
G as a function of gate voltage Vg changes with increasing
U. Considering the entire parameter space, we find a very
rich generic behavior and predict the appearance of novel
correlation-induced resonances (CIRs) if U is larger than a
critical interaction Uc. The effect is robust: It appears for
almost arbitrary combinations of the four tunnel couplings
and also remains visible for a small detuning of the dot
level energies. The separation of the resonances in gate
voltage defines an energy scale that depends exponentially
on U and on a combination of the tunnel couplings. It is
argued that this new correlation effect is unrelated to
Kondo physics. We employ a powerful new method, the
functional renormalization group (FRG), to efficiently ob-
tain both numerical and analytical results for this many-
body problem, and we have confirmed all the essential
features using the numerical renormalization group
(NRG). Double-dot geometries that could form the basis
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to verify our predictions have been experimentally realized
in Refs. [7–10]. Our model is equally of relevance for
transport through two nearly degenerate levels of a single
dot, a subject that has attracted much attention recently in
attempts to understand the puzzling behavior of the trans-
mission phase [1].

We study a system of two quantum dots j � 1; 2 each
having a single level "j as sketched in Fig. 1. The dots are
coupled by a Coulomb interaction U � 0 and are con-
nected to two common leads l � L;R via tunnel barriers
tlj. The dot Hamiltonian is Hdot �

P
j"jd

y
j dj �U�n1 �

1=2��n2 � 1=2� and the dot-lead coupling is given by
HT � �

P
j;l�t

l
jc
y
0;ldj � H:c:�, where cy0;l denotes the crea-

tion operator at the end of the semi-infinite lead l. The
leads are modeled by Hl � �t

P
1
m�0�c

y
m;lcm�1;l � H:c:�.

The energy scale of the dot level broadening is given by
�lj � �jtljj

2�l, where �l denotes the local density of states
at the end of lead l. As usual, we later take �l to be energy
independent. The ring structure is pierced by a magnetic
flux � that we take into account by multiplying tR2 by a
phase factor ei�. For symmetry reasons, one only has to
consider 0 � � � �. The levels are shifted by a common
gate voltage Vg such that "1 � Vg � � and "2 � Vg, where
� denotes a detuning. For � � 0 due to the shift of nj in
Hdot, Vg � 0 corresponds to half-filled dots. We neglect the
spin of the electron and, thus, suppress the spin Kondo
effect. Experimentally, the contribution of spin physics
may be excluded by applying a sufficiently strong mag-
netic field [10]. We focus on temperature T � 0. The
spectral properties [15] and level occupancies [16,17] of
this model were investigated earlier.
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FIG. 2 (color online). Generic results for G�Vg�=�e2=h� (solid
lines), hn1i (dashed lines), and hn2i (dashed-dotted lines) at
different U obtained from the FRG with �L1 � 0:27�, �R1 �
0:33�, �L2 � 0:16�, �R2 � 0:24�, � � �, and � � 0. The two
novel correlation-induced resonances are visible in the lower
panels (large U), near Vg � 0.
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To compute G and the level occupancies hnji, we use
mainly a recently developed FRG scheme [18]. The start-
ing point is an exact hierarchy of differential flow equa-
tions for the self-energy �� and higher order vertex
functions, where � 2 �1; 0� denotes an infrared energy
cutoff which is the flow parameter. We truncate the hier-
archy by neglecting the flow of the two-particle vertex only
considering ��, which is then energy independent. This
approximation and variants of it were successfully used to
study quasi-one-dimensional wires of correlated electrons
(Tomonaga-Luttinger liquids) [19] and locally correlated
systems [20].

For the double dot, �� is a 2	 2 matrix in the dot label
j. The diagonal parts are real and V�

j � ��
j;j � Vg can be

considered as effective dot level positions. The (for arbi-
trary �) complex off-diagonal contribution t�d � ���

1;2 is
a hopping between the two dot states generated by the
interaction. The flow equations are

@�V�
j � �

U
2�

X
!�
�

G�
�j; �j�i!�;

@�t�d � �
U
2�

X
!�
�

G�
1;2�i!�;

(1)

with �j being the complement of j. The Green function is
G��i!� � �i!� h��i!���1, with

h��i!��
V�

1 � i�1sgn�!� �t�d � i�sgn�!�
��t�d �

�� i��sgn�!� V�
2 � i�2sgn�!�

 !
(2)

and �j �
P
l�
l
j, � �

������������
�L1 �L2

q
� ei�

������������
�R1 �R2

q
. The initial

conditions are V��1
1 � Vg � �, V��1

2 � Vg, and t��1d �

0. To obtain an approximation for � and thus G, one has to
solve the system (1) of four real coupled differential equa-
tions. This can easily be done numerically and for a spe-
cific class of parameters also analytically. The occupancies
hnji can directly be calculated from G. For the present
problem, the same holds forG as current vertex corrections
vanish. One can easily derive a lengthy expression for G in
terms of the parameters �lj; � and the renormalized level
positions Vj � V��0

j and hopping td � t��0
d not presented

here. Vj and td depend on �lj; � as well as on Vg, �, and U.
We use the NRG as a nonperturbative method to confirm

the essential validity of the physics discovered within the
FRG. To compute the conductance for arbitrary dot-lead
couplings, we apply the Kubo formula

ReG�!� �
�
!

X
f

jI0;fj
2��Ef�E0�!�; !> 0: (3)

The current operator I � e� _NR � _NL�=2 (with Nl �P
1
m�0 c

y
m;lcm;l and _Nl � i�H;Nl�) is expressed in terms of

lead and dot operators. Its matrix elements I0;f (with 0
indicating the ground state and f the excited states; E0 and
Ef are the respective energies) are evaluated in the NRG
basis and the !! 0 limit then provides the dc conduc-
tance G [21].
14680
We first consider the case of degenerate levels with � �
0. The behavior ofG�Vg;U� can be cast in four classes that
can already be identified at U � 0. (i) If two or more of the
�lj are 0 such that no closed path between the left and right
leads exists G�Vg;U�  0. (ii) �L1 �R1 � �L2 �R2 and � � �:
In this case, one can introduce new fermionic dot states
such that one couples only to the left lead and the other
only to the right lead, implyingG�Vg;U�  0. We note that
in this case (and only in this case) a conserved pseudospin
variable (left/right) exists [15]. (iii) A nonvanishing (but
nongeneric) conductance is found for �L1 �R2 � �R1 �L2 � 0
and � � 0. In this case, G�Vg;U � 0� is given by a
Lorentzian centered around 0. The U > 0 dependence of
G�Vg;U� can most easily be studied in the exactly solvable
case of equal �lj [15]. It is characterized by two Coulomb
blockade peaks located at �
U=2. (iv) For all other
�lj; �, that is, for generic parameters on which we focus
here, the peak in G�Vg;U � 0� at Vg � 0 [as in case (iii)]
is replaced by a dip with G�Vg;U � 0� � 0. For equal �lj,
� � 0, � > 0, andU � 0, the appearance of such dips was
discussed earlier and explained as a destructive interfer-
ence between path traversing dots 1 and 2, respectively
[22]. In the limit of a strong asymmetry of the transmission
probability via dots 1 and 2, e.g., for �l1 � �l2, the dip can
be viewed as a Fano antiresonance resulting from the
interference of a resonant path and a path with energy
independent transmission.

Figure 2 shows the generic evolution of G�Vg� for in-
creasingU at � � 0. Because of particle-hole symmetry,G
is symmetric around Vg � 0. Energies are given in units of
� �

P
j�j. Increasing U, the height of the two peaks

resulting from the dip at Vg � 0 increases and the maxi-
mum flattens. At a critical U � Uc�f�

l
jg; ��, each of the
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peaks splits into two. Further increasing U, the two outer-
most peaks move towards larger jVgj and become the
Coulomb blockade peaks located at Vg � 
U=2. The
other two peaks at
VCIR are the novel CIRs, where VCIR >
0 decreases with increasing U. Associated with G�Vg �
0� � 0 at U � 0 is a jump of the transmission phase by �.
As the phase evolves continuously with U and particle-
hole symmetry holds for anyU, the �-phase jump and thus
G�Vg � 0� � 0 must remain for all U. For U >Uc, the
height of all four peaks is equal to hmax�f�

l
jg; �� � e2=h

and does not change with U.
For equal �lj, � � �, and � � 0 [case (ii) above], the

conserved pseudospin leads to orbital Kondo physics [15].
Remnants of this effect were found in the vicinity of this
parameter point but die out quickly away from it. As our
correlation effect appears generically, in particular, for
parameters far away from the Kondo point, it is apparently
unrelated to Kondo physics.

In addition to G�Vg� in Fig. 2, we present the dot
occupancies. For small U, the Vg dependence of the occu-
pancies of dots 1 and 2 is monotonic. In the opposite limit
of large U, hnji depends nonmonotonically on Vg [16,17].
Starting at negative Vg, the level that is coupled more
strongly (here j � 1) is depopulated at the first Coulomb
blockade peak, while the occupancy of the other level stays
close to 1. Close to Vg � 0, we find an inversion of the
population followed by another depopulation of the more
strongly coupled dot across the second Coulomb blockade
peak at Vg � U=2. Note that the nonmonotonic behavior
of the hnji sets in for interactions smaller than Uc and is,
thus, not directly related to the appearance of the CIRs.
This is consistent with the observation that, in contrast to
the CIRs (see below), the nonmonotonicity of hnji can
already be observed within a self-consistent Hartree ap-
proximation [16].

The left part of Fig. 3 shows a comparison of FRG and
NRG data for G at Vg > 0 and for different U. To clearly
resolve the CIRs, we use a logarithmic scale. The NRG
data show all the features discussed in connection with
Fig. 2. In particular, for increasing U >Uc, VCIR becomes
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FIG. 3 (color online). Comparison of FRG (lines) and NRG
(symbols) results for the same parameters as in Fig. 2.
Left: G�Vg� for different U (U � 3:5�: solid line and circles;
U � 7�: dashed line and squares; U � 14�: dashed-dotted line
and diamonds). Right: The resonance position VCIR.
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small quickly (right part of Fig. 3). ForU sufficiently larger
than Uc, VCIR=� / exp��C�f�ljg; ��U=��, with C> 0. By
construction, the FRG works well up to intermediate U. At
largerU and for all �lj; �, we tested the FRG overestimates
the positions of the Coulomb blockade peaks and the CIRs.
As will be shown in an upcoming publication, this can
systematically be improved using a more elaborate FRG
truncation scheme. For a specific class of �lj; �, we next
analytically confirm the exponential dependence of VCIR

on U and derive an explicit expression for C using the
FRG. In the most general case, the dependence of C (and
Uc) on �lj is complex and requires further investigation.
Roughly speaking, C increases (Uc decreases) with in-
creasing asymmetry of the �lj [see also Eq. (4) below].
For fixed �lj and increasing 0 � � � �, C decreases while
Uc increases.

We now consider �L1 � �R1 , �L2 � �R2 , but �L1 � �L2 , and
� � �. In this case, � � 0 in Eq. (2) and the off-diagonal
elements of the Green function G� are proportional to t�d .
Initially (at � � 1), t�d vanishes and it will thus remain
zero during the FRG flow, which leads to a simplification
of the flow equation (1). For small V�

j , that is, small Vg,
these equations can be solved analytically, and in the limit
U� j�L1 � �L2 j we obtain

VCIR=� / exp
�
�
U
2�

ln��L1 =�L2 �

�L1 � �L2

�
: (4)

In Fig. 4, we show the renormalized level positions Vj as a
function of Vg for fixed U >Uc. For jVgj � U=2, V1 and
V2 become equal and are given by Vg � sgn�Vg�U=2. For
�U=2 & Vg < 0, the position of the level that is coupled
more weakly (here j � 2) is smaller than the chemical
potential � � 0, while the other level has energy larger
than �. For 0<Vg & U=2, the role of the two levels is
interchanged. This explains the observed Vg dependence of
the hnji discussed in connection with Fig. 2. Peaks in G are
found at V1V2 � �4�L1 �L2 . In particular, the crossings of
-5 0 5
Vg /Γ

-2

0

2

FIG. 4 (color online). Renormalized dot level positions V1=�
(dashed line) and V2=� (dashed-dotted line). The thick solid line
is the product V1V2=�2. The thin solid line lies at �4�L1 �L2 =�2,
and its intersections with the thick solid line determine the peak
positions of G. The two crossings indicated by the arrows are at
Vg � 
VCIR. The parameters are U � 10�, �L1 � �R1 � 0:3�,
�L2 � �R2 � 0:2�, � � �, and � � 0 (Uc=� � 5:05 from FRG).
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FIG. 5 (color online). Dependence of G�Vg� on the level
splitting �. The parameters are U � 3�, �L1 � 0:7�, �R1 �
0:2�, �L2 � 0:02�, �R2 � 0:08�, and � � 0 (Uc=� � 0:842
from FRG).
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V1V2 (thick solid line) and �4�L1 �L2 (thin solid line) at

VCIR occur because V1 and V2 continuously go through 0
at Vg � 0, one coming from above, the other from below.
This is not the case if the self-consistent Hartree-Fock
approximation is used to compute the effective level posi-
tions. Within this approach, V1V2 discontinuously jumps at
Vg � 0 leading to only two crossings at Vg � 
U=2 as-
sociated with the Coulomb blockade peaks. This shows
that, similar to the Kondo effect, more sophisticated meth-
ods than the Hartree-Fock approximation are required to
describe local correlation effects.

We now investigate the stability of the CIRs in the
presence of an initial level splitting � > 0. In Fig. 5, we
show FRG data for G�Vg� with different � at small jVgj.
For � > � and all parameter sets we studied, G shows only
the two Coulomb blockade peaks at Vg � �U=2� � and
Vg � U=2. The way this large � limit is reached depends
on the specific choice of parameters, but, common to all
cases, remnants of the CIRs were clearly observable for
�� �, as exemplified in Fig. 5. We found a similar �
dependence using NRG. A direct hopping between the two
dots induces a level splitting and has thus an effect similar
to that of � > 0.

To summarize, we found that the transport properties of
a double-dot interferometer are strongly affected by elec-
tron correlations. We discovered a novel pair of
correlation-induced resonances that should be measurable
in double dots of appropriate geometry [7–10] in the
presence of strong Zeeman splitting. Varying the tunnel
barriers (and thus U=�), it should be possible to study the
entire scenario discussed above. Apparently, this correla-
tion effect is unrelated to both spin [3] and orbital [15]
Kondo physics. Rather, it follows from the interplay of
local correlations and quantum interference. It is thus
likely that similar effects will appear in transport through
more complex systems as, e.g., ringlike molecules studied
in the context of molecular electronics. Besides revealing
interesting new physics, we showed that the FRG method is
a very promising tool to investigate problems with local
Coulomb correlations. In comparison to NRG, FRG is far
14680
superior in terms of the numerical effort required, e.g.,
enabling efficient analysis of parameter dependencies.
Furthermore, the FRG can easily be extended to more
complex systems with local electron correlations.
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