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Ihr müßt mal was zu Dots machen. (You should do something about dots.)
– Prof. Dr. Jörg P. Kotthaus

Science is like collecting and recycling garbage.
– Prof. Dr. Yuli V. Nazarov

The harder you work, the more trouble you have.
– Dr. Alexander V. Khaetskii



vi



Contents

Abstract xv

Kurzzusammenfassung xvi

Outline 1

I Introduction to qubits and quantum dots 3

1 Introduction to quantum computation and qubits 5

1.1 History and algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Hardware requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Elementary qubits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Solid-state qubits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Introduction to quantum dots 13

2.1 Definition of quantum dots . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Transport through a single quantum dot . . . . . . . . . . . . . . . . . . . 15

2.3 Photon-assisted tunneling . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Higher order tunneling through a quantum dot . . . . . . . . . . . . . . . . 20

2.5 Kondo effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6 Double quantum dots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.7 The double quantum dot charge qubit . . . . . . . . . . . . . . . . . . . . 28

2.8 Experimental realizations of double quantum dot charge qubits . . . . . . . 31

2.8.1 The experiment of Hayashi et al. . . . . . . . . . . . . . . . . . . . 31

2.8.2 The experiment of Petta et al. . . . . . . . . . . . . . . . . . . . . . 34

2.8.3 The experiment of Gorman et al. . . . . . . . . . . . . . . . . . . . 36

II Decoherence properties of the double quantum dot charge
qubit 39

3 Nonlinear cotunneling through an artificial molecule 41

3.1 Introductory remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Published paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42



viii CONTENTS

4 Nonequilibrium stabilization of charge states in double quantum dots 47

4.1 Introductory remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Published paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 Electron-phonon coupling of charge eigenstates 53

5.1 Introductory remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2.1 Weak inter-dot coupling . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2.2 Stronger inter-dot coupling . . . . . . . . . . . . . . . . . . . . . . . 57

5.3 Discussion of the results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6 Intrinsic phonon decoherence and quantum gates in coupled lateral quan-
tum dot charge qubits 63

6.1 Introductory remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.2 Preprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

III Measurement of charge states and back-action of the detec-
tor 77

7 Strong coupling of a qubit to shot noise 79

7.1 Introductory remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.2 Preprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

8 A quantum dot as a high-frequency shot noise detector 87

8.1 Introductory remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

8.2 Experimental discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

8.3 Theoretical considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

8.4 Comparison between experiment and theory . . . . . . . . . . . . . . . . . 94

8.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

IV Perspectives 97

9 Background charge fluctuations and 1/f noise 99

9.1 A microscopic model and basic properties . . . . . . . . . . . . . . . . . . . 99

9.2 Dynamical decoupling of the qubit from 1/f noise . . . . . . . . . . . . . . 101

9.3 Advanced analysis of 1/f noise . . . . . . . . . . . . . . . . . . . . . . . . 102

10 Charge qubits in other semiconducting nanostructures 105

10.1 Phonon cavities for lateral quantum dots . . . . . . . . . . . . . . . . . . . 105

10.2 Hybrid vertical-lateral double quantum dots . . . . . . . . . . . . . . . . . 106

10.3 Double quantum dots in carbon nanotubes . . . . . . . . . . . . . . . . . . 107

10.4 Quantum dots in nanowires . . . . . . . . . . . . . . . . . . . . . . . . . . 110



Table of Contents ix

Conclusions 113

Deutsche Zusammenfassung 115

A Bloch-Redfield formalism 119

B Schrieffer-Wolff transformation 123

C Charge eigenstates in a double-well potential 129
C.1 Symmetric potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
C.2 Asymmetric potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

D Ansatz, Polaron transformation and NIBA 135
D.1 Ansatz and Polaron transformation . . . . . . . . . . . . . . . . . . . . . . 135
D.2 Noninteracting blip approximation – NIBA . . . . . . . . . . . . . . . . . . 137

E Photon assisted tunneling in a dot induced by shot noise 141
E.1 Rate equations for photon-assisted tunneling . . . . . . . . . . . . . . . . . 141
E.2 Shot noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
E.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Bibliography 147

List of Publications 163

Acknowledgements 165

Curriculum vitae 169



x Table of Contents



List of Figures

1.1 Pictures for other qubits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 Josephson qubits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Semiconducting spin qubits . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 Semiconducting charge qubits . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 Electronically defined quantum dots . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Confinement in a GaAs/AlGaAs heterostructure . . . . . . . . . . . . . . . 14
2.3 Formation of a quantum dot . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Schematic diagrams for tunneling processes . . . . . . . . . . . . . . . . . . 17
2.5 Coulomb oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.6 A sample elastic cotunneling process . . . . . . . . . . . . . . . . . . . . . 21
2.7 A spin flip cotunneling process . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.8 Characteristics of the Kondo effect . . . . . . . . . . . . . . . . . . . . . . 23
2.9 Electrostatic network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.10 Stability diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.11 One stable charge configuration in detail . . . . . . . . . . . . . . . . . . . 27
2.12 Details of a “unit cell” in the stability diagram . . . . . . . . . . . . . . . . 28
2.13 Parallel double quantum dot configuration . . . . . . . . . . . . . . . . . . 29
2.14 Relevant energy levels for the charge qubit . . . . . . . . . . . . . . . . . . 31
2.15 Energy diagrams during initialization, coherent oscillation and measurement 32
2.16 Experimental current oscillations . . . . . . . . . . . . . . . . . . . . . . . 33
2.17 Experimental decoherence rates . . . . . . . . . . . . . . . . . . . . . . . . 33
2.18 Setup and a first measurement of Petta et al. . . . . . . . . . . . . . . . . . 34
2.19 Extraction of T1 and T2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.20 Setup of the isolated double qauntum dot charge qubit . . . . . . . . . . . 37
2.21 Coherent oscillations in an isolated Si charge qubit . . . . . . . . . . . . . 37

5.1 Sketch of the double quantum dot charge qubit . . . . . . . . . . . . . . . 56
5.2 Sketch of the double-well potential . . . . . . . . . . . . . . . . . . . . . . 59
5.3 Coupling vs. distance between the dots . . . . . . . . . . . . . . . . . . . . 61
5.4 Dephasing time vs. distance between the dots . . . . . . . . . . . . . . . . 62

8.1 SEM picture of the sample . . . . . . . . . . . . . . . . . . . . . . . . . . . 89



xii List of Figures

8.2 Measurements and schematic view of relevant processes . . . . . . . . . . . 91
8.3 Amplitude of the current vs. QPC transmission . . . . . . . . . . . . . . . 93
8.4 Amplitude of the current vs. QPC bias voltage . . . . . . . . . . . . . . . . 95

10.1 Phonon cavity for a single quantum dot . . . . . . . . . . . . . . . . . . . . 106
10.2 Hybrid vertical-lateral double quantum dot . . . . . . . . . . . . . . . . . . 107
10.3 A single quantum dot in a carbon nanotube . . . . . . . . . . . . . . . . . 108
10.4 Double quantum dot structure in a carbon nanotube . . . . . . . . . . . . 109
10.5 Coulomb blockade in quantum wires . . . . . . . . . . . . . . . . . . . . . 111

B.1 Relevant energy multiplets . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
B.2 Principle of a generalized Schrieffer-Wolff transformation . . . . . . . . . . 125

C.1 Symmetric quartic potential . . . . . . . . . . . . . . . . . . . . . . . . . . 129
C.2 Wavefunctions for the symmetric potential . . . . . . . . . . . . . . . . . . 132
C.3 Biased quartic potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
C.4 Wavefunctions for the biased potential . . . . . . . . . . . . . . . . . . . . 133

D.1 Schematic view on NIBA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
D.2 Bromwich contour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139



List of Tables

2.1 Comparison of the double quantum charge qubits . . . . . . . . . . . . . . 38



xiv List of Tables



Abstract xv

Abstract

In this thesis, theoretical studies of decoherence properties and the measurement process
of a charge qubit defined in a double quantum dot structure are summarized. There have
been three experimental realizations of charge qubits in double quantum dots already,
where the quality factors have been quite small. Therefore, the theoretical analysis of
possible decoherence mechanisms and how measurements can ideally be performed could
be beneficial for the further development in new experiments.

Part I of this thesis serves as an introduction into the field of quantum computing (with
a strong emphasis on solid-state devices) and quantum dots.

In the following Part II, we present four studies on decoherence properties of the double
quantum dot charge qubit. Two chapters deal with the influence of cotunneling processes
on the transport through the double dot and on the relaxation and dephasing times. We
find that cotunneling does not induce strong effects in tunneling through the structure and
it is also not the dominant source of decoherence, if it can be treated within perturbation
theory. Still, the tunability of the system leads to nonlinear features in the cotunneling
transport and the system can be stabilized in a nonequilibrium situation. The following
chapters describe the contribution of electron-phonon coupling to the decoherence of the
considered charge qubit. We find that for small coupling between the quantum dots, which
is usually related to the distance between the two dots, the dephasing times become larger.
This happens for a weak inter-dot coupling model as well as for a strong overlap of the dot
wavefunctions. This effect can also be used in the analysis of a controlled NOT operation
in two coupled double quantum dot charge qubits in order to reduce the error rate per
operation below the critical value of 10−4.

Theoretical and experimental works on the coupling of charge states in quantum dots
to a mesoscopic charge detector are presented in Part III. We start with a nonpertur-
bative, theoretical study on a qubit that is strongly coupled to the quantum shot noise
of its detector. We find that the coherent oscillations in the qubit decay or even disap-
pear due to a massive entanglement between both systems. This effect competes with
the “hot” electron shot noise. In the next step, the determination of the dimensionless
coupling strength between a quantum dot and a quantum point contact is described in
an experimental and theoretical study on a quantum dot as a high-frequency shot noise
detector. The model of photon-assisted tunneling can be successfully applied to explain
the experimental observations.

In Part IV of this work, future perspectives regarding the analysis of 1/f noise and the
use of alternative materials or designs are discussed.

The appendices provide technical details for the calculations presented in the chapters
before.



xvi Abstract

Kurzzusammenfassung

In dieser Dissertation sind mehrere theoretische Arbeiten über die Dekohärenzeigen-
schaften und den Meßprozeß eines Ladungsqubits zusammengefaßt, das in einer Doppel-
quantenpunktstruktur definiert ist. Da es bereits drei experimentelle Realisierungen der-
artiger Qubits gibt, deren Qualitätsfaktoren jedoch eher klein waren, ist eine theoretische
Analyse möglicher Dekohärenzmechanismen und eines idealen Meßprozesses entscheidend,
um die weitere Entwicklung neuer Experimente zu verbessern.

Teil I dieser Arbeit dient als Einführung zu Quantencomputern (mit Schwerpunkt auf
Festkörperbauelemente) und Quantenpunkten.

Im darauf folgenden Teil II präsentieren wir vier Arbeiten zu den Dekohärenzeigenschaf-
ten des Doppelquantenpunkt-Ladungsqubits. Zwei Kapitel behandeln den Einfluß von
Kotunnel-Prozessen auf den Transport durch den Doppelquantenpunkt und auf die Relaxa-
tions- und Dephasierungszeiten. Wir finden, daß Kotunneln keine starken Effekte im Tun-
neln durch die Struktur induziert, und daß es auch nicht die dominante Dekohärenzquel-
le ist, wenn es mithilfe von Störungstheorie beschrieben werden kann. Die guten Ein-
stellmöglichkeiten des Systems führen dennoch zu nicht-linearem Verhalten im Kotunnel-
strom und zu einer Stabilisierung des Systems im Nicht-Gleichgewicht. Die folgenden Kapi-
tel beschreiben den Anteil der Elektron-Phonon-Kopplung an der Dekohärenz im betrachte-
ten Ladungsqubit. Wir finden, daß eine kleine Kopplung zwischen den Quantenpunkten, die
üblicherweise mit einem größeren Abstand zwischen den beiden Quantenpunkten assoziiert
wird, zu längeren Dephasierungszeiten führt. Dies geschieht sowohl im Regime schwacher
Kopplung zwischen den Quantenpunkten als auch für einen starken Überlapp der Elektro-
nenwellenfunktionen. Diesen Effekt kann man ebenfalls in der Analyse einer kontrollierten
NOT-Operation in zwei gekoppelten Doppelquantenpunkt-Ladungsqubits ausnutzen, um
die Fehlerrate pro Operation unter den kritischen Wert von 10−4 zu senken.

Theoretische und experimentelle Arbeiten zur Kopplung von Ladungszuständen in
Quantenpunkten an einen Detektor werden in Teil III dieser Dissertation dargestellt. Wir
beginnen mit einer nicht-perturbativen, theoretischen Studie eines Qubits, das stark an
das Rauschen seines Detektors gekoppelt ist. Dabei finden wir, daß kohärente Oszillatio-
nen im Qubit gedämpft oder sogar vollständig unterdrückt werden können, wenn man
die Kopplung stark genug macht. Dieser Effekt konkurriert jedoch mit dem Schrotrau-
schen von

”
heißen“ Elektronen. Einen Weg, wie man die dimensionslose Kopplungsstärke

bestimmen kann, findet man in der folgenden experimentellen und theoretischen Arbeit
über einen Quantenpunkt als Detektor für hochfrequentes Schrotrauschen. Das Modell des
Photon-assistierten Tunnelns kann hier erfolgreich angewandt werden, um die experimen-
tellen Befunde zu erklären.

In Teil IV dieser Arbeit werden Perspektiven bezüglich der Analyse von 1/f -Rauschen
und die Verwendung von alternativen Materialien oder Konstruktionen diskutiert.

Die Anhänge bieten technische Details zu Berechnungen, die in den Kapiteln zuvor
gezeigt wurden.
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Outline

This thesis deals with the theory of hardware aspects of a solid-state quantum com-
puter. The properties of one specific proposal, the double quantum dot charge qubit, are
investigated and future perspectives are given. The first part of the work serves as introduc-
tion to the field, where Chapter 1 provides an overview on recent hardware developments
for quantum computing (the solid-state based devices are emphasized) and Chapter 2 in-
troduces the basic properties of single and double quantum dots as they are needed for the
rest of the thesis.

In the second part, decoherence properties of the double quantum dot charge qubit
are studied. We discuss the influence of cotunneling on transport through the qubit (in
Chapter 3) and on the relaxation and dephasing times (in Chapter 4). The effect of
electron-phonon coupling on the decoherence of a single charge qubit is stronger than the
cotunneling and an analysis of the classical limit (weakly overlapping wavefunctions) and
the quantum limit (strongly overlapping wavefunctions) can be found in Chapter 5. In
Chapter 6, we turn to two qubit systems and analyze the relaxation and dephasing rates
as well as gate quality factors for a controlled-NOT operation in two coupled charge qubits.

The third part of this work consists of two chapters that examine the measurement
process for charges in quantum dots. Chapter 7 describes how measurements with a strong
coupling to a mesoscopic charge detector can work theoretically in a classical and quantum
regime, whereas Chapter 8 shows experimentally and theoretically that a single quantum
dot can be used as a detector for high-frequency shot noise. This is a backaction measure-
ment that demonstrates the effect of the typical state-of-the-art measurement device on a
quantum dot.

In the fourth and last part, some future perspectives for double quantum dot charge
qubits are presented. Chapter 9 is an outlook on the influence of 1/f noise on charge
based devices in general. Other semiconductor structures, such as carbon nanotubes or
nanowires, also show characteristic transport properties of single and coupled quantum
dots, this is illustrated in Chapter 10.

Technical details are given in the appendices. In Appendix A, the basic ideas of the
Bloch-Redfield theory are presented. A special transformation applied to the double quan-
tum dot charge qubit is explained in Appendix B. How charge eigenstates in a double-well
potential can be determined can be found in Appendix C. In Appendix D, the method
and other important technical points for the analysis in Chapter 7 are elucidated. The
Appendix E illustrates a theoretical model based on master equations for occupation prob-
abilities, which has been used to analyze the experiment presented in Chapter 8.
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Part I

Introduction to qubits and quantum
dots
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Chapter 1

Introduction to quantum
computation and qubits

1.1 History and algorithms

Understanding the properties of objects and controlling them has always been the main
focus of physics. During the last centuries, the understanding and control of classical
objects advanced very much, whereas the basic theoretical works on quantum mechanical
objects have been developed only in the 1920s. The control of quantum mechanical objects,
however, is even today a nontrivial task. Quantum computation uses quantum objects to
encode and process information. This is only possible after understanding and control
of these objects have reached a high level. The quest for quantum computation only
started in the 1980s with the ideas of Feynman concerning the simulations of quantum
mechanical objects [1]. A few years later, Deutsch invented a first, elementary algorithm
[2] for quantum computers.

A real breakthrough, however, was the factoring algorithm of Shor [3]. This quantum
algorithm has proven to factor numbers exponentially faster than classical computers.
Therefore the security of public-key cryptography [4] could be compromised by the use of
Shor’s algorithm on a quantum computer. The other prominent example for a quantum
algorithm is the algorithm of Grover [5], which allows to find entries in a database much
faster than a classical computer could do it (speedup of

√
N , where N is the total number of

database entries). An application of Grover’s algorithm has been described by Hollenberg
[6] in the field of biophysics, namely a fast comparison of protein sequences. Another
application is a very recent quantum algorithm [7] that can be used for pattern recognition
in images.

The development of error-correcting codes for quantum computers [8, 9] is another
important software ingredient, which really allows reliable results of quantum mechanical
computations. Without efficient quantum error-correction, large-scale quantum informa-
tion processing would not be possible. Even with finite decoherence, a universal quantum
computer is realizable provided the error rate per operation is below a critical value of 10−4
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[10].
The main characteristics of the components, the so-called quantum bits or qubits of a

quantum computer are the following

• superpositions of the two states (|0〉 and |1〉) of a qubit can be created and used, e.g.
|ψ〉 = α|0〉 + β|1〉. Due to this, quantum parallelism emerges: calculations can have
a large number of results, but only one of them is read out.

• entanglement, i.e. a non-local correlation between two or more qubits (can e.g. be
used in quantum cryptography [11]).

A qubit is often illustrated as a spin vector on the Bloch sphere. |0〉 or | ↑〉 is then
situated at the north pole and |1〉 or | ↓〉 at the south pole of the sphere. All other super-
positions of the states can then be seen as points on this sphere. Much more information
concerning software issues and general questions of quantum information in general can be
found in the textbook Ref. [12].

Another branch of quantum information science is the quantum cryptography or quan-
tum key distribution. With the help of different protocols [11, 13, 14], one can distribute
secure keys, e.g. encoded in polarized photons, between different parties. First devices are
now commercially available. A review on the progress and security of quantum cryptogra-
phy can be found in Ref. [15].

1.2 Hardware requirements

For all the above quantum algorithms and to demonstrate the characteristics, one needs
reliable quantum hardware. The criteria, which have to be fulfilled in order to deal with a
promising candiate for a single qubit or even a register of these, have been summarized by
DiVincenzo [16, 17]:

1. Hilbert space control,

2. state preparation,

3. low decoherence,

4. controlled unitary transformations, and

5. state-specific quantum measurements.

Let us discuss these five requirements in more detail [17]:
Hilbert space control: the two-state system must be precisely known and characterized. It
should also be clear, which two-state system is meant in a specific context. The Hilbert
space should be extendable, i.e. one should be able to scale up to a larger number of
qubits.
State preparation: it should be possible to prepare the starting elements of the Hilbert
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spaces (the two-state systems) deterministically. Sometimes, it can be sufficient to initial-
ize the system in the ground state by relaxation at low temperatures.
Low decoherence: the coupling between the relevant Hilbert space (the two-state system)
and the rest of the universe should be sufficiently small, such that effective error-correcting
codes can be used. The criterion for this is that one should be able to perform at least 104

operations [10] before the coherence of a two-state system is completely lost. A very recent
theoretical analysis showed that this criterion can also be softened to 102 operations [18],
if one has sufficient resources, e.g. a large number of qubits available.
Controlled unitary transformations: the unitary operations of a quantum computer should
be well controlled. One should also be able to perform a huge number of such unitary trans-
formations before the coherence of the system will be gone. Therefore this requirement is
very closely related to the last issue. To make programming a bit more convenient, it is
desirable to implement all possible algorithms only with combinations of a set of universal
quantum gates. It turned out that one- and two-qubit operations are sufficient as these
universal gates [12].
State-specific quantum measurements: if possible, quantum measurements should be car-
ried out on specific, identified subsystems of the Hilbert space. In the ideal situation,
each qubit is measured separately. In the case that more identical copies of the quantum
computer are available, ensemble measurements can be adequate, but these still have to
be specific for the different subsystems.

To find two-state systems that can fulfill these requirements is the heart of research on
hardware for a quantum computer.

1.3 Elementary qubits

The first proposals to realize qubits came up in the fields of quantum optics [19] and
nuclear magnetic resonance (NMR) [20] research. Both proposals had a lot of successes in
the last few years: the Deutsch-Jozsa algorithm [21] has been implemented in both setups,
in an NMR experiment [22] and in an ion trap [23]. The controlled-NOT operation can
be implemented in ion traps [24] and even an experimental realization of quantum error
correction [25] has been demonstrated in these devices. The NMR community, on the other
hand, has presented the first implementation of Shor’s algorithm [3] by factorizing 15 [26].
While for the ion trap proposal the ideas for scaling up the number of qubits are progressing
[27] and leaning towards solid-state devices, it is still an open question, whether NMR
quantum computers can in principle also have a large numbers of qubits [28]. In any
case, NMR techniques already proved to be very useful as a testbed for a small number
of qubits. Especially the already developed pulse techniques [29] should be transferable to
other realizations of qubits (see e.g. Ref. [30]). Manipulations of single trapped ions [31] are
also quite well documented. The setup for a linear Paul trap is shown in Figure 1.1 (a) and
one characteristic molecule for NMR quantum computation can be found in Figure 1.1 (b).
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(a) (b)

Figure 1.1: (a) Setup for a linear ion trap [31] and (b) one molecule with five spins available
for NMR manipulation [29].

1.4 Solid-state qubits

When considering solid-state devices, the hope is that in particular the first DiVincenzo
criterion (Hilbert space control), regarding the scaling of the number of qubits, can be
satisfied in an easier way than in most other devices. And the integration of such qubits
into classical electronics should also be a straight-forward task. On the other hand, one
has to think more on the third DiVincenzo criterion (low decoherence), since in a solid-
state system, a huge number of degrees of freedom is available. And therefore, one would
expect a lot of interactions between prospective two-state systems and their environment,
which can consist of phonons, photons, electrical circuits, impurities, etc. Due to this, it
is very crucial to identify good two-state systems (or qubits) that couple weakly to their
environment, but can still be manipulated and read-out fast enough.

The different proposals for realizing qubits in solid-state devices can roughly be di-
vided into two large categories: superconducting and semiconducting devices, both usually
at very low (cryogenic) temperatures of about 100 mK or less. The proposals for supercon-
ducting structures, where the Josephson effect and the charging energies play important
roles, can in turn again be classified as charge qubits [32, 33], flux qubits [34–36] and phase
qubits [37, 38]. These designs are shown in Figure 1.2 (a)-(c).

The superconducting charge qubit [32] was the first solid-state device to show (decay-
ing) coherent oscillations. The qubit is defined as zero or one additional Cooper pair in a
Cooper Pair Box. The Cooper Pair Box is defined by a superconducting island separated
from the rest of the circuit by one or two (for SQUID geometry) Josephson junctions.
A Superconducting Quantum Interference Device (SQUID) is a loop of superconducting
material. A controlled-NOT operation in a coupled system of these charge qubits has also
been demonstrated [33], but the fidelity of the operation was, unfortunately, far from being
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(a) (b) (c)

Figure 1.2: (a) Cooper pair box of the first realization of a superconducting charge qubit
[32], (b) loop design for a superconducting flux qubit [36], and (c) picture of the Quantro-
nium, a superconducting phase qubit [37].

optimal.
Flux qubits [34] are designed in a very different way. Here, three Josephson junctions
are used in closed loop form. The persistent currents of Cooper pairs through this loop
(clockwise and counter-clockwise direction) defines then the qubit. Coherent oscillations
have also been demonstrated [36].
In these two qubits, only one energy out of the two characteristic energies EC (charging
energy) and EJ (Josephson energy) was dominating. For the charge qubit, it was EC and
for the flux qubit, it was EJ .
For the superconducting phase qubit, both energies can be in the same order of magni-
tude. There, one looks for another advantage of an optimal working point [37] that is not
dominated by either energy. In the two phase qubit approaches, coherent oscillations in
single qubits [37, 38] have been demonstrated.
The coupling of two qubits and the subsequent demonstration of a working controlled-NOT
gate are the next steps for superconducting flux [39] and phase qubits [40]. Theoretical
models for the description of these superconducting qubits and their measurements, espe-
cially for the charge qubits [41] and flux qubits [42], are already very advanced.

For semiconducting devices, one can distinguish between donor and dot setups, and
also between spin and charge qubits within these two setups. The dot setups can also be
classified into optically excited self-assembled quantum dots [43–45] (usually in InAs) and
electronically controlled lateral and vertical quantum dots [46](usually in GaAs). In the
following, we will only consider electronically defined quantum dots.

Both spin qubit proposals for donors [47] and electronically controlled lateral quantum
dots [48] appeared in 1998 on theoretical grounds. The two qubit states are defined as
spin up | ↑〉 or spin down | ↓〉. A spin system is of course a natural qubit, where all other
artificial, coherent two-state systems are pseudo-spin systems. Both designs are depicted in
Figure 1.3 (a) and (b). The main difference between these two spin qubits is that Kane [47]
proposed to use a nuclear spin, where DiVincenzo and Loss [48] envision to manipulate an
electron spin. Let us now consider the Kane proposal in more detail [47]. The nuclear spin
is located on a positively charged donor in a semiconductor host. The quantum computer
is then composed of an array of such donors beneath the surface of the semiconductor
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(a)

(b)

Figure 1.3: (a) the spin qubit proposal for GaAs quantum dots [48], here an array of those
qubits (from Refs. [46, 49]), (b) a nuclear spin qubit realized by 31P donors in silicon [47].

host. One needs three ingredients to control the external parameters: (1) gates above the
donor control the resonance frequency of the nuclear spins (‘A gates’ in Figure 1.3 (b)),
(2) ‘J gates’ to control the electron-mediated coupling between the nuclear spins, and (3)
a globally applied ac magnetic field to flip the nuclear spins at resonance. Measurements
should be performed by transferring the nuclear spin polarization to the electrons and
determining their spin state through spin-charge transduction [47, 50, 51]. To isolate the
nuclear spin qubits from decoherence due to an interaction with the host nuclear spins, it
would be desirable, if the host material has only nuclei with spin I = 0. Therefore, one has
to purify one material with an abundant spinless isotope. Silicon, of course, is the natural
choice, since Si nanofabrication has improved a lot in recent years due the progress in the
semiconductor industry. The donor material in Si could then be 31P. The purpose of the
electrons in this quantum computer setup is to mediate between nuclear spin interactions
and to faciliate an indirect measurement of the nuclear spins. The fabrication of such de-
vices has made large progress in the last few years, e.g. one can now really bury specified
donors at special positions, but the manipulation with the magnetic field still remains a
challenge.
Therefore, an alternative approach to realize qubits in the same structure with the charge
degree of freedom was presented recently [52]. This charge qubit can easily been manipu-
lated by pulsing gate voltages and read out via radio-frequency single electron transitors
(rf-SETs). On the other hand, this orbital degree of freedom is probably not as stable as
the real spin system. The charge qubit states are here given by the two lowest states of an
electron that is localized in the double well potential of two P+ ions [see Figure 1.4 (a)].

Let us return to the electron spin qubit of DiVincenzo and Loss [48] (see Figure 1.3 (a)
for a picture of an array of these qubits). Here, a natural qubit is defined again by using the
excess electron of a (single-electron) quantum dot. In the original work [48], auxiliary dots
should be used for manipulation and measurement, e.g. hopping to an auxiliary ferromag-
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(a) (b)

Figure 1.4: (a) Setup for a Si:P charge qubit as it can be found in Ref. [52]. The single
electron transistor (SET) can be used to read out and also to manipulate the charge states.
The other gates tune the double well potential and could also be used for manipulation
of the charge states. (b) Sample design for a double quantum dot charge qubit (from
Ref. [53]). The two quantum dots are labelled with L (left dot) and R (right dot). The
read-out works via a pulsed bias voltage between the two leads S (source) and D (drain).

netic dot could provide a method to perform single qubit operations and tunneling to an
auxiliary paramagnetic dot could be used to measure the spin of the electron coming from
the normal dot. The coupling between these spin qubits can be described by a Heisenberg
exchange coupling.
The first important step towards the realization of this kind of a qubit was the achievement
of a double quantum dot structure with only one electron in both dots [54]. Nowadays, how-
ever, the ideas to realize manipulation of the electron spin and its read-out have changed.
The manipulation scheme is supposed to be based on electron spin resonance (ESR) meth-
ods [46, 49] and two different single-shot measurements have already been realized: the
first encounters spin-to-charge conversion on an auxilary, but not paramagnetic dot [55]
and the second works via different tunneling rates for an electron being in different spin
states leaving a dot [56]. Although experiments are very advanced, coherent oscillations
of an electron spin in a quantum dots have not been observed yet. Recent experiments
hint on a substantial influence of the hyperfine interaction between the electron spin in
a quantum dot and the nuclei of the crystal on the spin coherence of the electron spin
[57, 58].
Also in the case of quantum dots, a charge qubit has been proposed [59–61], where the
qubit states are defined as the position of one electron in a double quantum dot system
(i.e. being on the left or the right dot) [see Figure 1.4 (b)]. In principle, this works in
a system with a small number of electrons, ideally, however, only one electron should be
in the double quantum dot structure, as it has been realized in Ref. [54]. Although, the
charge coherence is not too stable in this system, it was the first semiconducting system
to show (decaying) coherent oscillations [53]. The charge states can be manipulated by
pulsing the corresponding gates on top of the heterostructure. There are different read-out
schemes available for such a system: the easiest is to look at the tunnel current through the
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device itself [53], a more elegant way should be an indirect charge detection measurement
e.g. with a quantum point contact (QPC) [54, 62, 63] or a single electron transistor (SET)
[64]. These charge detection mechanisms can also be used to read out a spin qubit, if one
performs a spin-to-charge conversion before [55].
These double quantum dot charge qubits will be the focus of the whole thesis. In the
following chapters, we will present our theoretical considerations regarding decoherence of
these devices, coupling of two of such devices and the measurement of these charge qubits.
We will also address other contributions to these topics and how they are related with our
work. At the end of this thesis, some future directions will be discussed.
To get a better understanding for the quantum dot systems in general and our charge qubit
in particular, an introduction into the field of quantum dots, as far as it it required and
relevant for our work, is given in the next chapter.



Chapter 2

Introduction to quantum dots

This chapter serves as an introduction into the physics of electronically controlled and
defined quantum dots. We mostly follow the introductions of L.P. Kouwenhoven et al.
[65], J.M. Elzerman [46], and W.G. van der Wiel et al. [66]. Self-assembled quantum dots
are not described here, since we will not deal with them in the following chapters.

2.1 Definition of quantum dots

Quantum dots are small regions in a semiconductor heterostructure where the motion of
the electrons is confined in all three spatial dimensions. Therefore, the situation is similar
to particles confined in a box. When this size of the confinement region is comparable to
the wavelength of the electrons in the region, such a system shows the behavior of a discrete
energy spectrum, similar to normal atoms. Due to this, quantum dots are sometimes called
artificial atoms. Although it is nowadays feasible to attach leads to single molecules or
atoms, quantum dots still offer the key advantage that their energies can be tuned in situ.

One can distinguish between vertically and laterally confined quantum dots. Figure 2.1
shows both variants of electronically confined and controlled quantum dots. The dots are
here depicted by small discs between source and drain leads. In the following, we will focus
on lateral quantum dots, a review on vertical quantum dots can be found in Ref. [67].

The electrons in a quantum dot are usually confined by the means of the depletion of a
2-dimensional electron gas (2DEG). A 2DEG is a plane, in which electrons can move freely.
This can be realized in a semiconductor heterostructure like GaAs/AlGaAs. The creation
of a 2DEG is shown in Figure 2.2 (a). By combining layers of semiconducting materials,
one can create an edge in the bandstructure of the electrons, such that the electrons are
localized in this edge and confined in the z-direction of the structure, forming a 2DEG.
The depletion of the 2DEG works as depicted in Figure 2.2 (b): negative voltages are
applied to metal gates/contacts on top of the heterostructure. Due to the Schottky effect
[68, 69], direct tunneling of electrons from the gates into the semiconductor heterostructure
is not possible and a Schottky barrier is formed. However, due to the Coulomb interaction
between the electrons in the 2DEG and the electrons on the metal electrodes, the electrons
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Figure 2.1: From Refs. [46, 49]: (a) lateral quantum dot structure with the quantum dot
as the center island. Vg is the so-called gate-voltage of the quantum dot, VSD the bias or
source-drain voltage between source and drain over the dot, and I is the current through
the dot. (b) vertical quantum dot structure, where the island is sandwiched between the
source and the drain.

Figure 2.2: From Refs. [46, 49]: (a) 2DEG (white) in a GaAs/AlGaAs heterostructure,
approximately 100 nm below the surface. The electrons stem from Si donors in the n-
AlGaAs layer. (b) with the application of negative voltages on metal electrons on the
surface of the heterostructure, one can deplete the 2DEG below the surface.

in the 2DEG are confined even more. This confinement acts now also in x-y-direction,
depending on the gate geometry on the surface of the structure.

The heterostructures can be fabricated using molecular beam epitaxy (MBE). The
metallic gates are evaporated on the top of the structure. Experimental details can be
found in various theses and reviews, such as Refs. [46, 65].

Since we know now, how one can deplete regions in a 2DEG formed in a semiconductor
heterostructure, we can understand how a quantum dot with attached source and drain
leads is formed in such a structure. This is also illustrated in Figure 2.3, where the
formation of a double quantum dot is presented. The geometry of the metallic gates on
the top of the heterostructure is such that there are two islands between the gates. If one
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Figure 2.3: From Refs. [46, 49]: (a) Due to the application of negative voltages on the
metal gates (dark grey), specific regions (white) of the 2DEG (light grey) are depleted.
One can observe the formation of two quantum dots in the 2DEG. The Ohmic contacts
serve as bonding wires to make contact with the reservoirs (remaining 2DEG besides the
dots). (b) scanning electron miroscope image of a real device, where two dots are formed
(white) that are connected to two reservoirs (white), source (S) and drain (D) via tunneling
barriers. The two upper gates can used to form quantum point contacts (QPCs) to detect
charges on the two quantum dots.

now applies a negative voltage on all available gates, the regions below these gates will be
depleted. Below the islands, the electrons are not depleted and therefore, two dots in the
2DEG are defined.

As already mentioned above, transport measurements through quantum dots are the
main tools to characterize these structures. Two very important parameters were already
mentioned in the caption of Figure 2.1: the gate voltage Vg of the metallic gate (sometimes
called plunger gate) close to the quantum dot and the bias voltage VSD between source and
drain reservoirs in the 2DEG. In the next section, we will discuss, how transport through
a single quantum dot is determined by these and other parameters.

2.2 Transport through a single quantum dot

The easiest way to understand some basic experimental results of transport measurements
through single quantum dots is the constant-interaction (CI) model. Two important as-
sumptions have to be made to apply this model: (i) the Coulomb interactions between the
electrons in the dot are given by a single constant capacitance C, where C is defined as
the total capacitance to rest of the world C = CS +CD +Cg. CS is the capacitance of the
source, CD is that of the drain, and Cg that of the gate. (ii) the discrete energy spectrum
is independent of the number of electrons on the dot. Then, one can write the total energy
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U(N) of an N-electron quantum dot as

U(N) =
[−|e|(N −N0) + CSVSD + CgVg]

2

2 C
+

N
∑

n=1

En(B), (2.1)

where −|e| is the electron charge and N0 the number of electrons in the dot at zero gate
voltage. By tuning CSVSD and CgVg, one can adjust the the charge on the dot that is by
the gate voltage (via the capacitance Cg) or by the bias voltage (via the capacitance CS).
The last sum in Eq. (2.1) runs over the occupied single-particle energy levels En(B), which
are separated by a difference ∆En = En − En−1. The characteristics of the confinement
potential and of an eventually applied magnetic field are responsible for these energy levels.

Instead of using the total energy U(N) as given by Eq. (2.1), it is often convenient to use
the energy of the local dot level with N electrons, which is also called the electrochemical
potential µ(N) of the N -electron quantum dot. This is defined as the energy that is
required to add an electron to the dot, here from N − 1 to N electrons:

µ(N) ≡ U(N)− U(N − 1)

=

(

N −N0 −
1

2

)

EC −
EC

|e| (CSVSD + CgVg) + EN , (2.2)

where EC = e2/C is the charging energy of the dot. The so-called addition energy Eadd(N)
that separates the discrete levels in the dot is defined as

Eadd(N) = µ(N + 1)− µ(N) = EC + ∆E. (2.3)

∆E is the level spacing between two discrete quantum states. ∆E can be zero, if two
electrons are added to the same spin-degenerate level. The other term in the addition
energy is just a purely electrostatic part.

The necessary condition for transport through a quantum dot is, of course, energy
conservation, i.e. it must be favorable for an electron to leave the source, tunnel through
the dot and enter the drain. This can be achieved by tuning the local dot level (usually via
the gate voltage Vg, as long as the bias voltage VSD is fixed) of a specific number of electrons,
e.g. µ(N+1) in Figure 2.4 (a), into the bias window between the electrochemical potentials
of the source and the drain, i.e. µS ≥ µ(N + 1) ≥ µD. The bias voltage is then given by
the difference of the electrochemical potentials of source and drain: eVSD = µS − µD. In
such a situation, electrons can tunnel sequentially (one by one and incoherently) from the
source into the dot state with a local dot level µ(N + 1) and tunnel out into the drain.

Figure 2.4 (b) shows a different situation: here no local dot level µ(N) for a specific
number N of electrons is situated in the bias window. Therefore the tunneling through
both depicted states with N + 1 or N electrons is blocked. This phenomenon is called
Coulomb blockade, since the charging energy EC would have to be overcome, which is
energetically not possible in this case. The charging energy is the energy scale representing
the repulsion of electrons in a quantum dot.
Yet another situation can be found in Figure 2.4 (c). Here, the ground and excited states
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Figure 2.4: Similar to Ref. [46]: Schematic diagrams for tunneling processes through a
quantum dot (initially occupied by N electrons): (a) the state with N +1 electrons and an
electrochemical potential µ(N+1) is in the so-called bias window between the electrochem-
ical potentials of source µS and drain µD and therefore sequential (one electron) tunneling
through this state is allowed, and the dot is occupied by either N + 1 or N electrons.
(b) neither µ(N + 1) nor µ(N) is in the bias window, and therefore sequential tunneling
through one of the dot states is not possible. The dot now is in Coulomb blockade. (c) the
ground and excited states (separated by the level spacing ∆E) of a quantum dot filled with
N electrons are in the bias window and can contribute to sequential tunneling through the
quantum dot.

of the N -electron quantum dot are in the bias window defined by source and drain and
therefore both can contribute to sequential tunneling through the quantum dot. The energy
difference between the ground and the first excited state for N electrons is just the level
spacing ∆E as shown in the Figure.

As already mentioned above, the local dot levels of the states in the quantum dot can
be tuned via the gate voltage Vg and the bias voltage VSD. If one measures the Coulomb
blockade and the resulting oscillations in the current through the quantum dot, one usually
fixes the bias voltage VSD and only tunes the gate voltage Vg. By making Vg more negative,
more electrons are pushed out of the quantum dot and the number of electrons on the dot
decreases. This is illustrated in Figure 2.5 (a). The shown behavior is usually called
Coulomb oscillations, since the number of electrons on the dot changes from peak to peak.
In between the peaks, in the so-called Coulomb valley, the number of electrons on the
dot is fixed and sequential transport through the quantum dot is not possible. Sequential
transport is a first order process, consisting of uncorrelated one-electron tunnel events.
Even in the Coulomb blockade regime or a Coulomb valley, higher order processes still can
occur. We will discuss this issue later in more detail.

Figure 2.5 (b) depicts the Coulomb diamonds that show up, if one measures the current
or the differential conductance dI/dVSD dependent on the gate voltage Vg and the bias
voltage VSD. If one crosses the diamonds for a very small bias voltage (dotted line), one
would just find the Coulomb oscillation as in Figure 2.5 (a). For larger bias voltages, as
already explained for Figure 2.4 (c), a charge ground state and the next excited state can
be used for sequential transport. The onset of these excited state tunneling processes can
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Figure 2.5: From Refs. [46, 49]: (a) Coulomb peaks as a function of the applied gate
voltage Vg on the quantum dot. (b) Coulomb diamonds, i.e. the measured differential
conductance dI/dVSD through the quantum dot as a function of the gate voltage Vg and
the bias voltage VSD. The differential conductance is then usually color-coded, here one
can only see the most important lines. The black diamond-shaped lines represent the onset
of current through charge ground states, whereas the additional gray diagonal lines show
the beginning of transport through excited charge states (with a larger bias voltage).

also be found in Figure 2.5 (b).
To summarize again, the Coulomb blockade can be lifted by adjusting the gate voltage

in an appropriate way or by increasing the applied bias voltage over the quantum dot. By
means of a Coulomb diamond measurement, a single quantum dot can be well characterized,
because the charging energy EC and the level spacing ∆E can be determined by the
distances in the plot (see Figure 2.5 (b)). The constant interaction model explains these
effects successfully, but it is too simplified, if one wants to consider higher order processes
or spin effects as well.

The amplitude and line shape of the Coulomb oscillations (and the appearance of the
peaks at all) depend strongly on the interplay of the relevant energy scales in the system,
one can distinguish between three temperature regimes [65]:

1. e2/C ¿ kBT , where one cannot resolve the discreteness of charge.

2. ∆E ¿ kBT ¿ e2/C, the classical or metallic Coulomb blockade regime, where due
to the small level spacing ∆E many excited states can contribute.

3. kBT ¿ ∆E ¿ e2/C, the quantum Coulomb blockade regime, where just a few states
are available for transport processes.

The shape of the Coulomb peaks as a function of the temperature has been calculated in
the case of classical [70, 71] and quantum Coulomb blockade [71].

For the quantum dot charge qubit that we consider in this thesis, only the last regime
of a quantum Coulomb blockade is relevant, since the charge levels in the two dots that
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we would like to use should be well defined. Therefore, the level spacing should be quite
large and the dot itself rather small.

2.3 Photon-assisted tunneling

We now follow mostly the review in Ref. [72] to present the basic notions of photon-assisted
tunneling. As we have seen before, elastic sequential tunneling processes occur, if the en-
ergy state of the quantum dot is aligned with the electrochemical potentials of the leads
or if the state is in the bias window between both electrochemical potentials of the leads.
An additional time-varying potential Ṽ cos(2πft) can induce inelastic tunneling processes,
when electrons exchange energy with the photons of energy hf with the oscillating field.
This inelastic tunneling with discrete energy exchange is known as photon assisted tunnel-
ing (PAT). It has been firstly measured in single quantum dots in 1994 [73].

In the case of small quantum dots with a large level splitting ∆E À kBT , one has to
take into account the occupation probabilities of each discrete state. This has the advantage
that intra-dot excitation and relaxation processes can be included. In the following model,
we assume that Ec À ∆E, kBT, eVSD, nhf , such that we only need to consider two charge
states with electron numbers N and N + 1. One of these charge states is described by the
electron number N together with the particular occupation of the electrons in the single-
particle levels {εj}. The number of distinct configurations χ on the quantum dot is given
by
(

k
N

)

, if k is the number of available levels. The probability pN,χ for the state (N,χ) is
then calculated from a set of master equations

ṗN,χ =
∑

χ′

pN+1,χ′

(

Γout
l,jχ′

+ Γr,jχ′

)

− pN,χ

∑

j=empty

(

Γin
l,j + Γin

r,j

)

+

+
∑

χ′′ 6=χ

pN,χ′′Γχ′′→χ − pN,χ

∑

χ′′′ 6=χ

Γχ→χ′′′ , (2.4)

and one finds equivalent forms for the state (N + 1, χ′). In order to find a stationary
solution for these equations, one sets all derivations ṗ of the occupation probabilities of
the states to zero and solves the equations with the boundary condition

∑

χ

pN,χ +
∑

χ′

pN+1,χ′ = 1. (2.5)

The first and second sum in Eq. (2.4) give rise to changes in the dot occupation prob-
ability due to tunneling processes. In the first sum, an electron tunnels out of the dot.
Only rates that correspond to a tunneling process out of state jχ′ to the distribution (N,χ)
are taken into account. The second sum describes the tunneling onto the dot. Here, all
empty states j in the configuration χ have to be considered, because these processes are
responsible for the transition from state (N,χ) to state (N + 1, χ′). Γin

l/r,j and Γout
l/r,j are

then the tunnel rates through the left/right barrier in and out of the single-particle level j

Γin
l/r,j(εj) = Γl/r,j

∑

n

J2
n(αl/r)f

(

εj −
Cg

C
eVg − nhf + ηl/reVSD;Tl/r

)

(2.6)
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Γout
l/r,j(εj) = Γl/r,j

∑

n

J2
n(αl/r)

[

1− f
(

εj −
Cg

C
eVg − nhf + ηl/reVSD;Tl/r

)]

, (2.7)

where Γl/r,j is the energy-independent tunnel rate through the left/right barrier of the
energy level j. J2

n(αl/r) is the squared Bessel function of the first kind of the order n,
which describes the sidebands, i.e. integer multiples of the phonon energy hf . αl/r is the
parameter for the microwave field at the left/right barrier. Cg and C are gate capacitance
and total capacitance as before. ηl/r is a parameter for an asymmetry of the dc voltage
drop across the two barriers. f is the Fermi function of the respective lead describing the
filled states in this lead.

The last two sums in Eq. (2.4) include the effects of relaxation (i.e. intra-dot transistions
χ′′ → χ and χ → χ′′′, with a decrease of the total energy) and excitation (i.e. intra-dot
transitions with an increase of the total energy). The number of electrons on the dot
is fixed during these intra-dot transistions, but the distribution of the electrons over the
available states changes.

A current expression for the dc current through the left barrier can then be calculated
using the probabilities pN,χ and the tunnel rates for the left barrier as

I = e
∑

χ

∑

j=empty

pN,χΓin
l,j − e

∑

χ′

∑

j=full

pN+1,χ′Γout
l,j . (2.8)

With a stationary solution for the occupation probabilities, also this current is stationary.
If one would plot the stationary current I as a function of the gate voltage Vg, one would
find the usual Coulomb peak for the charge ground state and in addition peaks at the
positions of the excited charge states and at the energies of the sidebands.

We will use a simple version of the formal description above for the analysis of a
quantum dot as a high-frequency shot noise detector in Chapter 8 and Appendix E.

Recent progress on PAT spectroscopy in double quantum dots can be found in Refs. [66,
74–78].

2.4 Higher order tunneling through a quantum dot

In the last sections, we only considered sequential tunneling as a transport mechanism
through a quantum dot. This is quite accurate for very opaque tunnel barriers. If one
opens the dot, such that the resistance gets to a value close to the resistance quantum
RK = h/e2 = 25.8 kΩ, higher order processes will also contribute significantly to the
transport through the quantum dot. The number of electrons on a quantum dot can even
fluctuate due to these processes, if the dot is in the Coulomb blockade regime.

Figure 2.6 shows such a second order process, namely an elastic cotunneling process.
We consider only the lowest order of these higher order processes. This is usually called

cotunneling for correlated tunneling of two electrons, which is even a coherent process.
These processes are only allowed quantum mechanically, since they use the Heisenberg
uncertainty principle to violate the energy conservation very shortly, such that one electron
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Figure 2.6: Similar to Ref. [46]: A sample elastic cotunneling process: (a) initial state:
the dot is occupied by N electrons. (b) virtual intermediate state: one electron leaves the
quantum dot to the right lead and only N − 1 electrons are left. (c) final state: another
electron enters the dot from the left lead, leaving behind a hole in the lead. The quantum
dot is again occupied by N electrons. Effectively, one electron has tunneled through the
quantum dot via a correlated two-electron tunneling process without changing the state of
the dot. Therefore such a process is called elastic cotunneling.

can overcome the charging energy and tunnel out of the dot. Therefore the intermediate
state in Figure 2.6 (b) is only a virtual state. Another electron will tunnel into the quantum
dot immediately after the first electron has tunneled out.

The theoretical description of this transport mechanism has been pioneered by Averin
and Nazarov in 1990 [79, 80] for a metallic island. Such an analysis can also be done
for quantum dots. The main result is that the cotunneling rate Γcot is proportional to
the square of the sequential tunneling rates ΓL and ΓR, because two tunneling processes
happen for one cotunneling event. If the cotunneling process carries a current through the
dot, then Γcot ∝ ΓLΓR. Otherwise, if only an electron is exchanged with only one lead, one
can write Γcot ∝ Γ2

L or Γcot ∝ Γ2
R, depending on the lead that exchanged the electron.

The first experimental realization of cotunneling transport through a very small quan-
tum dot has been published in 2001 [81], where a small vertical dot structure has been
investigated. In this experiment, also an inelastic cotunneling contribution could be mea-
sured. The difference to the elastic cotunneling is that in the inelastic case, the initial
and final state could be an excited state of the quantum dot. Or in other words: elastic
cotunneling consists of virtual tunnel processes through a charge ground state, whereas for
inelastic cotunneling, also an excited state can be used.

We will discuss cotunneling within perturbation theory in Chapters 3 and 4.

2.5 Kondo effect

Although we do not plan to deal directly with a Kondo effect in quantum dots, it is
useful to know the concepts of this effect, because for low temperatures, it can show up
in the same structures that we would like to use for quantum computation. The Kondo
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effect only appears for a strong coupling between a quantum dot and its leads (serving as
the environment). Quantum computation on the other hand, needs a long coherent time
evolution and therefore only a weak coupling to the environment is acceptable. Only for
read-out purposes, one could think about going to a strong coupling regime, as done in
Chapter 7 of this thesis.

Until now, we avoided the spin degree of freedom of the electrons in the quantum dots
and the attached leads, but if we take it into account, one can observe a strongly correlated
effect in such a device. In analogy to the discussion of the previous section 2.4, one can
consider again cotunneling processes (see Figure 2.7) through the quantum dot. This time
the spin on the dot is flipped, and by this the electron spin on the dot and the electron spins
in the leads are strongly correlated or entangled. The whole system therefore develops a
new ground state, namely a spin singlet, which is energetically more favorable. This is
usually called Kondo screening, i.e. the electron spin on the dot is screened by the electron
spins in the leads.

(a)
ΓL ΓR

(N)µ

(N+1)µ

(N−1)µµS µD

ε0

(b)
ΓL ΓR

(N)µ

(N−1)µµS µD

(N+1)µ
EC

(c)
ΓL ΓR

(N)µ

(N+1)µ

(N−1)µµS µD

Figure 2.7: Similar to Ref. [46]: A spin flip cotunneling process (in analogy to Figure 2.6):
(a) initial state: spin down on the quantum dot. (b) virtual intermediate state: the spin
down electron leaves the dot to the right lead and one electron less is on the quantum dot.
(c) final state: a spin up electron tunnels into the dot and the spin of the quantum dot is
effectively flipped.

A similar effect has already been observed in 1934 in a totally different system, namely
in a metal with a small concentration of impurities [82]. There, one could observe that
the resistance of such a metal increased below a specific temperature. This could only be
explained 30 years later by Kondo [83], who stated that the spins of the electrons on the
conduction band of the metal are scattered on magnetic impurities. Therefore, a scattering
resonance occurs at the Fermi energy of the metal, which leads to an increased resistance
of the whole sample. The screening effect has been discovered some years later by Wilson
[84], who showed that a singlet is the ground state at low temperature.

The prediction that such an effect should also occur in quantum dots [85] also stated
that in quantum dots the screening would lead to the opposite effect, an increase of the
conductance through the quantum dot. This happens, because the scattering resonance
manifests itself in an increased probability for scattering from source to drain.

This screening effect can only appear, if the temperature is smaller than the so-called
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Kondo temperature TK , which is a measure for the binding energy of the above mentioned
singlet state. TK for a single level impurity is defined as [86]

TK =

√
ΓEC

2
e

πε0(ε0+EC )

ΓEC , (2.9)

where ε0 is distance of the dot energy level to the Fermi energy of the leads and Γ is the
tunneling rate into and out of the quantum dot. Compared to the metals mentioned before,
the quantum dot realization of the Kondo effect has the main advantage that the system
can be tuned easily. Another advantage is the opportunity to combine two or more dots
in order to observe even more exotic Kondo effects.

The first experimental realization [87] of the Kondo effect in a quantum dot system
happened 10 years after its prediction [85]. Since then, more advanced experiments have
demonstrated the unitary limit of conductance [88] and the Kondo effect with an integer
spin on the quantum dot [89], which can be explained by Hund’s rule coupling (i.e. one
has multilevel impurities in such a case).

Figure 2.8: From Ref. [46]: Characteristics of the Kondo effect in transport through a
quantum dot. (a) linear conductance G as a function of the gate voltage Vg. Three
different temperatures are shown: T ¿ TK (solid line), T ≤ TK (dotted line) and T À TK

(dashed line). (b) the conductance increases logarithmically for decreasing temperature in
the odd or Kondo valleys and it saturates at G0 = 2e2

h
. (c) a zero-bias resonance in the

differential conductance dI/dVSD appears due to the Kondo effect.

This is something special, because the usual Kondo effect appears only for an odd
number of electron spins on the quantum dot. Then the total spin is non-zero, in the
simplest case S = 1

2
, and can thus be screened by the electron spins in the reservoirs. For

an even number of electrons on the dot, however, all spins are paired and no “free” spin can
be screened. This asymmetry between even and odd situations results in a temperature
dependence of the conductance through the dot as shown in Figure 2.8 (a). In the odd
valleys, the conductance increases with lower temperature, where on the other hand, the
conductance is decreased with lower temperature for the even valleys. This decrease of the
conductance happens due to the smaller probability for thermally excited transport through
the dot. The temperature dependence of the odd valleys is depicted in Figure 2.8 (b), and
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one can observe a logarithmic increase of the conductance with decreasing temperature
[85]. The conductance saturates at a value G0 = 2e2

h
, the conductance quantum, at lowest

temperatures. The last characteristic behavior, shown in Figure 2.8 (c), is the Kondo
resonance in the differential conductance dI/dVSD at the Fermi energy of the leads at
zero bias voltage VSD. Here, the full width at half maximum of the resonance provides
an estimate for the Kondo temperature. Larger bias voltages, however, would destroy the
Kondo effect.

If one considers the history of the theoretical description of the Kondo effect, one
finds that usually the Anderson Hamiltonian [90] is used to describe electron states on
a quantum dot (we will use a similar Hamiltonian later on as well). With the help of a
canonical transformation [91], one can transfer this Hamiltonian to the Kondo Hamiltonian
[83]. Considering quantum dots, this transformation is only allowed, if the average number
of electrons on the dot remains constant. This transformation is named Schrieffer-Wolff
transformation and will be used in later chapters as well in a slightly different context.
In recent years, the theoretical approaches to decribe the Kondo effect and new more
exciting forms of it in quantum dots have made huge progress, e.g. it has been shown that
a double quantum dot has an SU(4) symmetry [92], or that one can find a quantum phase
transition with a 2-channel Kondo model [93]. The frequency-dependence of transport
through the dot in the Kondo regime [94] as well as charge oscillations [95] have been
investigated recently with the numerical renormalization group (NRG) invented by Wilson
[84]. A review of these NRG developments can be found in Ref. [96]. Yet another interesting
and potentially important direction of research related to the Kondo effect is the bias
dependence of the effect. The above mentioned NRG techniques only work for very small
bias voltage VSD, therefore one has to look for alternatives, if one considers non-equilibrium
effects in the Kondo regime [97–101]. A recent review of Pustilnik and Glazman [102] gives
an overview on the Kondo effect itself and the regimes around it.

2.6 Double quantum dots

In analogy to the properties of a single quantum dot, one characterizes the system by a
stability diagram. In the case of coupled quantum dots, however, the diagram will look
quite differently since one now has to combine two Coulomb diamond pictures to just one
common characteristical plot. In this section, we follow the review of van der Wiel et al.
[66] to explain how the honeycomb diagram is formed and which regimes exist.

The transport properties of a double quantum dot can be understood by analyzing
a network diagram (see Figure 2.9). Similar to the single quantum dot, one can define
electrochemical potentials µ1(N1, N2) and µ2(N1, N2) for dot 1 (left) and dot 2 (right) with
N1 electrons on dot 1 and N2 electrons on dot 2. Again, these potentials are defined by
the differences of electrostatic potentials U(N1, N2):

µ1(N1, N2) = U(N1, N2)− U(N1 − 1, N2)

=

(

N1 −
1

2

)

EC1 +N2ECm −
1

|e| (Cg1Vg1EC1 + Cg2Vg2ECm) (2.10)
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Figure 2.9: From Ref. [66]: Network of relevant capacitances and tunnel junctions for
a double quantum dot structure. The tunnel barriers are modeled by a resistor and a
capacitance in parallel as indicated in the upper right corner of this Figure.

µ2(N1, N2) = U(N1, N2)− U(N1, N2 − 1)

=

(

N2 −
1

2

)

EC2 +N1ECm −
1

|e| (Cg1Vg1ECm + Cg2Vg2EC2) , (2.11)

where EC1, EC2 and ECm are charging energies associated with the dots 1, 2 and with
change in energy of one dot when an electron is added to the other dot. Cg1, Cg2 and Cm

are the capacitances from gate 1 (with voltage Vg1) to dot 1, from gate 2 (with voltage Vg2)
to dot 2 and between the two quantum dots.

Again, as in the case of a single dot, two addition energies Eadd,1 and Eadd,2 in the
quantum regime can be defined as

Eadd,1 = µ1,`(N1 + 1, N2)− µ1,k(N1, N2) = EC1 + (E` − Ek) = EC1 + ∆E, (2.12)

where the (N1 +1)th electron is an discrete state ` and the N1th electron occupies the state
k. ∆E is again the level spacing between the discrete levels for one charging state. ∆E
can again also be zero, where one would then find the classical expression for the addition
energy Eadd,1 = EC1, which is only determined by the charging energy for dot 1. For dot
2, one finds in a similar way Eadd,2 = EC2 + ∆E in the quantum case.

The charge stability diagram can then be determined by the expressions for the elec-
trochemical energies µ1(N1, N2) and µ2(N1, N2) as depicted in Figure 2.10. One finds the
equilibrium electron numbers on dots 1 and 2 as N1, N2 as a function of the gate voltages
Vg1 and Vg2. The electrochemical potentials on the two leads S (source) and D (drain)
have been defined to be zero, if no bias voltage VSD is applied. Therefore, the equilib-
rium charges on the dots are the largest integers N1 and N2 for which both µ1(N1, N2)
and µ2(N1, N2) are less than zero. If either would be larger than zero, electrons would
escape to the leads. This creates the hexagonal shape of the regions of charge stability in
Figure 2.10.

Now, we will have a look on the different coupling regimes between the two quantum
dots. If the dots are completely decoupled [Figure 2.10 (a)], the gate voltages Vg1 and Vg2
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Figure 2.10: From Ref. [66]: Stability diagrams of the double quantum dot system with
different coupling strengths between the dots: (a) weak inter-dot coupling, (b) intermediate
inter-dot coupling and (c) strong inter-dot coupling. The triple points and their charge
transfer processes are depicted in (d). The electron transfer cycle (•) has a counterclockwise
orientation in the stability diagram, the hole transfer cycle (◦), however, is oriented in a
clockwise direction.

change the charge on dot 1 and 2 without affecting the charge on the other dot. For larger
couplings between the dots, the domains of stability become hexagonal [Figure 2.10 (b)].
The vertices in this diagram are now triple points. If one increases the coupling even more,
such that the capacitance Cm becomes the dominant capacitance of the system Cm

C1(2)
→ 1,

the double dot behaves as one large dot [Figure 2.10 (c)] with charge N1 +N2.
Such an analysis is only valid in the linear conductance or equilibrium regime, where the

bias voltage over the double quantum dot is very small or even vanishes VSD = µS−µD ≈ 0.
To obtain a measurable current, the tunnel barriers should be sufficiently transparent. But
they also need to be sufficiently opaque to ensure a fixed, well-defined electron number on
each dot. A conductance resonance can be found, when electrons can tunnel through both
dots. This happens, if three charge states are degenerate, i.e. their boundaries meet at
one point, the triple point. One can distinguish two of such triple points depending on the
charge transfer processes [Figure 2.10 (d)]. There is an electron transfer cycle [full circle
(•) in Figure 2.10 (d)]

(N1, N2)→ (N1 + 1, N2)→ (N1, N2 + 1)→ (N1, N2), (2.13)

which shuttles an electron through the double quantum dot and a hole transfer cycle [open
circle (◦) in Figure 2.10 (d)]

(N1 + 1, N2 + 1)→ (N1 + 1, N2)→ (N1, N2 + 1)→ (N1 + 1, N2 + 1), (2.14)

where a hole is tunneling through the double dot.
The distances in a single stability cell [Figure 2.11] of the full charge stability diagram

can be deduced by considering the electrochemical potentials of the two dots at the borders
between two charge domains as

∆Vg1(2) =
|e|

Cg1(2)

(

1 +
∆E

EC1(2)

)

(2.15)
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Figure 2.11: From Ref. [66]: one stable charge configuration in detail. By connecting
the triple points in an experimentally determined stability diagram, one can deduce the
spacings between the lines (see text) and thus, get more information on the capacitances
in the electrostatic network of this structure.

∆V m
g1(2) =

|e|Cm

Cg1(2)C2(1)

(

1 +
∆E

ECm

)

, (2.16)

where C1(2) is the sum of all capacitances attached to dot 1(2). Here, the level spacing ∆E
is the expression from the addition energies Eq. (2.12).

A more detailed picture of the hexagonal pattern of a single charge stability cell is
shown in Figure 2.12 (a). There one can see, where the dot levels of the two dots align or
how their positions are related with the electrochemical potentials of the leads.

If one now turns to the case of a finite bias voltage VSD applied over the double quantum
dot, the triple points are reshaped to triangular patterns, see Figure 2.12 (b).

We assume here that the right lead is grounded µD = 0 and that the bias voltage VSD

is only applied to the left lead µS = −|e|VSD. Now the condition −|e|VSD = µS ≥ µ1 ≥
µ2 ≥ µD = 0 gives rise to the boundaries of the trangular pattern in Figure 2.12 (b)

α1δVg1 =
Cg1

C1

|e|δVg1 = |eVSD| (2.17)

α2δVg2 =
Cg2

C2

|e|δVg2 = |eVSD|, (2.18)

where α1 and α2 are the conversion factors between gate voltages and energies. In addition
to the new triangular shape of the original triple points, the triangular region has some
lines in it, if one considers the discreteness of the levels and if excited states can contribute
to the nonlinear transport. The details can be found in Ref. [66]. Also more information
about resonant tunneling, magnetic field spectroscopy and microwave spectroscopy of the
double quantum dot system can be found in this review article. Since we are interested in
a charge qubit in a double quantum dot system, we will not need all of these insights into
the system.
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(a) (b)

Figure 2.12: From Ref. [66]: (a) a “unit cell” of the stability diagram [dotted square in
Figure 2.10 (b)]. One can distinguish four different charge configurations, separated by
solid lines. At most solid lines, the electrochemical potential of at least one dot is zero,
whereas at the solid line between the triple points, the two charge states (0, 1) and (1, 0) are
degenerate. The dashed lines are extensions of the solid lines within the hexagonal patterns.
(b) nonlinear (finite bias) transport in a “unit cell” of the stability diagram. The triple
points are then reshaped to triangular regions. The solid lines again separate the different
charge configurations. In the case of only one discrete level per dot, resonant tunneling
(aligning the two dot states) is only possible along the side of the triangles that coincides
with the line connecting the original triple points (• and ◦). Inelastic tunneling and
cotunneling processes can still contribute to finite current within the triangles. Additional
lines within the gray triangles could be observed, if one included more discrete levels for
both dots.

Another double quantum dot setup has been realized in Ref. [103]. There, the two
quantum dots were arranged in a parallel geometry, such that both dots were coupled to
both leads. Figure 2.13 shows the layout and an atomic force microcopy (AFM) picture of
the sample. The characteristic honeycomb pattern from Figure 2.10 (b) can be found for
this sample, but the main focus of the article is the probing of the bonding between the
two dots in the cotunneling regime. More details on the sample design can also be found
in Ref. [78].

2.7 The double quantum dot charge qubit

Again, in the same review, one can find a complete characterization of the double quantum
dot charge qubit (in section V.A of Ref. [66]) that has been proposed by three groups of
authors independently roughly at the same time [59–61]. The first experiments showing
coherent modes in a double quantum dot have been published in 1998 [104, 105].
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Figure 2.13: From Ref. [103]: (a) Experimental layout. An artificial molecule is formed
out of two quantum dots within a 2DEG 90 nm below the surface of an AlGaAs/GaAs
heterostructure. Valence electrons are exchanged between both dots and are detected by
measuring the system’s conductance through cotunneling events. Electrons tunnel via both
dots from source to drain. (b) Atomic force microscopy (AFM) picture of the sample. The
heights are color coded as indicated on the lower left lateral scale. In order to define the
two quantum dots, negative voltages are applied to Schottky gates A, B, 1, and 2, made
from gold. The electron gas is partially depleted and forms two quantum dots with roughly
20 electrons each. Both quantum dots are equally connected to drain and source contacts,
as it is essential for the presented spectroscopy.

To describe the charge qubit system, we consider only the two highest lying states for
the valence electron (i.e. the last electron) in the two quantum dots. This simple picture
has shown to work before [106, 107]. The ideal situation, however, would be a system with
only one electron in both quantum dots [54, 63].

We follow again the description of van der Wiel et al. [66] to characterize the system.
If the two dots are well-separated, the system can be described by a Hamiltonian H0 with
eigenenergies ε1 and ε2 for the two separated dot wavefunctions |φ1〉 and |φ2〉

H0|φ1〉 = ε1|φ1〉, (2.19)

H0|φ2〉 = ε2|φ2〉. (2.20)

To model the coupling between the two dots, we introduce next a new tunneling term
in the total Hamiltonian, which leads to a delocalization of the electron between the two
quantum dots. This can be written as a Hermitian matrix T , which, as an assumption,
should be purely nondiagonal

T =

(

0 t12
t21 0

)

, t12 = t?21, t21 = |t21| eiϕ. (2.21)

The new Hamiltonian for the double quantum dot then is H = H0 + T with the new,
delocalized eigenstates |ψB〉 (bonding state) and |ψA〉 (antibonding state) and the new
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eigenvalues EB and EA, such that

H|ψB〉 = EB|ψB〉, (2.22)

H|ψA〉 = EA|ψA〉. (2.23)

The eigenenergies in terms of the eigenvalues of the uncoupled double dot and the
tunnel matrix elements read

EB = EM −
√

1

4
ε2
as + |t12|2, (2.24)

EA = EM +

√

1

4
ε2
as + |t12|2, (2.25)

where EM = 1
2
(ε1 + ε2), εas = ε1− ε2 and |t12| = |t21|. The new eigenstates |ψB〉 and |ψA〉

can be written in the basis of the localized charge states |φ1〉 and |φ2〉 as

|ψB〉 = − sin

(

θ

2

)

e−i ϕ
2 |φ1〉+ cos

(

θ

2

)

ei ϕ
2 |φ2〉 (2.26)

|ψA〉 = cos

(

θ

2

)

e−i ϕ
2 |φ1〉+ sin

(

θ

2

)

ei ϕ
2 |φ2〉, (2.27)

where tan θ = 2|t12|
εas

. The new energy difference between the bonding and antibonding state
is

δε = EA − EB =
√

ε2
as + 4|t12|2. (2.28)

Please note that in other chapters, we use the different symbols γ and ∆ for |t12|.
An illustration of the relevant energies of this two-state system can be found in Fig-

ure 2.14.
As one can see in Figure 2.14, the effect of the coupling is stronger for small values

of the energy difference εas. Where the two single dot levels ε1 and ε2 cross (at εas = 0),
one finds in the coupled system an anti-crossing of the states EA and EB with an energy
difference of twice the coupling EA − EB = 2|t12|. For large εas, the eigenenergies of the
coupled dot system approach the eigenenergies for the uncoupled system again.

In order to understand, why one can directly find coherent charge oscillations in such
a structure, we write the general solution of the time-dependent Schrödinger equation as

|ψ(t)〉 = λAe
−iEAt/~|ψA〉+ λBe

−iEBt/~|ψB〉. (2.29)

With equations (2.26) and (2.27), one can express the |ψ(t)〉 in terms of the eigenfunctions
of the uncoupled quantum dots |φ1〉 and |φ2〉. If one now starts in state |φ1〉 at time t = 0
(|ψ(0)〉 = |φ1〉), then the probability P2(t) of finding the system in state |φ2〉 at time t is
given by

P2(t) = |〈φ2|ψ(t)〉|2 =
4|t12|2

4|t12|2 + εas

sin2

[

δεt

2~

]

, (2.30)

which describes a coherent oscillation of a charge in the double quantum dot system.
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Figure 2.14: Similar to Ref. [66]: (a) Relevant energy levels ε1 and ε2 in the case of two
uncoupled quantum dots and the for tunnel-coupled dots, where the bonding (EB) and
antibonding states (EA) are formed. (b) Energies EB and EA as functions of the energy
difference or asymmetry energy εas. For zero coupling between the two dots (|t12| ≈ 0),
the levels are just the original levels ε1 and ε2 that cross at the origin.

2.8 Experimental realizations of double quantum dot

charge qubits

Now, we will shortly discuss three recent experiments that demonstrate the coherence
of a double quantum dot charge qubit. The measurement setup is different in all three
cases. In one of them [53] a pulsed bias voltage with a direct read-out of an electron in
the second quantum dot is used. In the other two setups, however, indirect measurement
techniques like a quantum point contact (QPC) [62] or a single electron transistor (SET)
[108] near one of the dots are used. The last two measurement setups are again based on the
Coulomb interaction. If the quantum dot near a QPC or an SET is occupied in a specific
state, the current through them would be a bit smaller than without this occupation. The
measurement device plays a crucial role and has to be well-characterized. A part of this
thesis also deals with a strong measurement of the double quantum dot system with a
QPC, see Chapter 7 for details.

2.8.1 The experiment of Hayashi et al.

This experiment was the first demonstration of a working charge qubit in a semiconductor
device. Coherent oscillations have been shown and an upper bound for the dephasing time
T2 = 1 ns has been given. The sample design has already been shown in Figure 1.4 (b).
Here, the two states used as a qubit are the two states, where one excess electron occupies
either the left (|L〉) or the right (|R〉) quantum dot. During the manipulation of the
qubit, also the bonding and antibonding states are used. But since in this experiment the
coupling between the two dots is assumed to be weak, the two localized states are used
during initilization and measurement. With the gates in Figure 1.4 (b), one can tune the
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energy levels in both dots, the coupling to the leads and the coupling between the dots.
How the double quantum dot system is initialized, manipulated and measured can be seen
in Figure 2.15.

Figure 2.15: From Ref. [53]: The left picture shows, how the qubit is initialized. Because
the rate Γi is small, the excess electron will be localized in the left quantum dot. A large
bias voltage VSD = Vp is applied to achieve this. In the middle picture, the bias voltage is
pulsed to VSD = 0, such that the double quantum dot is in the Coulomb blockade regime
and the electron is delocalized (in the bonding and antibonding states) between both
dots. The right picture depicts the read-out of the double quantum dot qubit, namely
the occupation of the right quantum dot is probed, since the coupling between the dots is
small. The bias voltage is again VSD = Vp as during the initialization.

The initialization works with a large bias voltage VSD = Vp and a small coupling
between the dots (represented by the tunneling rate Γi), such that the excess electron in
the double quantum dot is always localized in the left dot. During the manipulation or the
coherent oscillation, the system is brought to the Coulomb blockade regime. This can be
achieved by pulsing the bias voltage to zero for a time duration tp. In the next step, the
measurement, the bias voltage is again pulsed back to its original value VSD = Vp. And
the electron can only tunnel out of the double quantum dot, if the excess electron happens
to be on the right dot (also due to the small coupling between the two dots).

Doing this, Hayashi et al. found the following results, shown in Figures 2.16 and 2.17.
Figure 2.16 (b) and (c) show the coherent oscillation of the occupation probability on the
right quantum dot. The oscillations in Figure 2.16 (c) can be fitted with

np(tp) ' A− 1

2
Be

− tp
T2 cos (Ωtp)− Γitp, (2.31)

where A is an offset and B the amplitude of the oscillations for the resonant level α. The
fitted parameters A ∼ 0.6 and B ∼ 0.3 are comparable to the ideal ones (A = 0.5 and
B = 1). At energy offset ε1 = 0, one then finds for the oscillation frequency Ω

2π
∼ 2.3 GHz

and for T2 ∼ 1 ns. Ω gives also rise to the coupling energy ∆.
In addition to these results, Hayashi et al. demonstrate, how the dephasing rate is

related to the energy offset ε1, the coupling energy ∆ and the lattice temperature Tlat



2.8 Experimental realizations of double quantum dot charge qubits 33

Figure 2.16: From Ref. [53]: (a) Current profile as a function of the gate voltage VR on the
right dot. Two resonant levels α and β lay in the bias window provided by Vp. (b) The
average number np of pulse-induced tunneling electrons as a function of VR and the pulse
period tp. (c) np as a function of the pulse period alone at ε1 = 0. The data can nicely be
fitted by Eq. (2.31), as depicted with the red lines. (d) Coupling energy ∆ as a function
of the gate voltage VC between the two dots.

Figure 2.17: From Ref. [53]: (a) Dephasing rate T−1
2 as a function of the energy offset ε1.

(b) Dephasing rate T−1
2 as a function of the coupling energy ∆. (c) Dephasing rate T−1

2 as
a function of the lattice temperature Tlat.

(see Figure 2.17). These findings have also been discussed by the authors of Ref. [53].
They name three probably relevant decoherence mechanisms: background charge fluctua-
tions [Figure 2.17 (a)], cotunneling [Figure 2.17 (b) and (c)] and electron-phonon coupling
[Figure 2.17 (b) and (c)]. Unfortunately, from the plots in Figure 2.17, one cannot single
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out one most important decoherence mechanism. In principle, all three mechanisms can
and will contribute to the dephasing rate T−1

2 . The formal expressions were simplified in
Ref. [53], but for an estimation of the order of magnitude of the effects, it should be suf-
ficient. The problem is that the mechanisms cannot be separated clearly from each other.
Due to the large tunneling amplitude between the leads and the dots, e.g., cotunneling
naturally plays an important role. Therefore one could probably increase the coherence
time by using an indirect measurement technique and another initilization scheme. If the
coupling to the leads is small, the cotunneling contribution is only a weak effect, as it will
be discussed in Chapters 3 and 4 of this thesis. We will also discuss the influence of the
electron-phonon interaction in Chapters 5 and 6. To analyse the influence of background
charge fluctuations and to apply the methods of Falci et al. [109, 110], one would need
more coherent oscillations and these ideally in a Ramsey fringe [111] experiment. A short
introduction to 1/f noise and useful methods to treat it can be found in Chapter 9.

2.8.2 The experiment of Petta et al.

The experiment done by Petta et al. [62] has a totally different focus. They extract
numbers for the relaxation time T1 and a lower bound for the dephasing time T2 by means
of photon-assisted tunneling (PAT) processes in a double quantum dot structure. Their
setup is shown in Figure 2.18 (a), where the double dot is designed in a very similar way
than in Ref. [54] in order to have only one electron in the whole double quantum dot
structure.

(a) (b)

Figure 2.18: From Ref. [62]: (a) SEM picture of the used sample. Gates 2-6 and t (tun-
neling) define the double dot. The depleting gates 1 and 7 form a QPC charge detector.
Gate 8 can be used to separate the QPC and the double dot conductance measurement
circuits. The gates 9-11 have not been energized at all. Ohmic contacts are depicted with
a •. (b) The number M of electrons in the upper dot as a function of the detuning ε
for several values of Vt. With increasing Vt the coupling between the dots is increased as
well. A typical detuning sweep is shown in the lower inset. Insets: plots of the differential
conductance dGS2/dV6 as a function of V2 and V6 for two different values of Vt.
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The first achievement demonstrated in the paper is the control of the tunnel coupling
t by the voltage Vt. For this, the number M of electrons in the upper dot is given as a
function of the detuning ε [see Figure 2.18 (b)]. These measurements have been done by
using the QPC as a charge detector. The data in Figure 2.18 (b) can be fitted with

M =
1

2

[

1− ε√
ε2 + 4t2

tanh

(√
ε2 + 4t2

2kBTe

)]

, (2.32)

where kB is Boltzmann’s constant and Te the electron temperature. By fitting the curves,
one can then extract the coupling strength t. This nicely shows that the single electron in
the double dot system can be controlled accurately be tuning ε and Vt.

A next step now includes the use of a microwave source to induce PAT processes.
PAT can occur, if the microwave frequency exceeds the energy separation between two
dot levels, such that an excited state can be used for transport, which would usually
be energetically forbidden. This technique can be used to gain information about the
relaxation and dephasing times.

For the relaxation time T1, one measures the resonance peak height as the microwaves
are chopped at varying periods τ [see Figure 2.19 (a)]. This can be modeled with a
saturated signal while microwaves are present, followed by an exponential decay with the
time scale T1, when the microwaves are turned off. With the time average, one expects

Mmax(τ)

Mmax(0)
=

1

2
+
T1(1− e−τ/(2T1))

τ
. (2.33)

With a τ = 5 ns, one can fit the curve with T1 = 16 ns.

To extract the dephasing time from the PAT data, one looks at the power dependence
of the resonance [see Figure 2.19 (b)]. The resonance peak width is a measure for the
inhomogenous decoherence time T ?

2 [112, 113]. A Gaussian fit to the low power 1γ (one
photon) peak is depicted in red in Figure 2.19 (b). Converting the half-width into a time,
one finds a lower bound of the dephasing time T ?

2 = 400 ps. This measured quantity is a
worst-case estimate, since the measurement of T ?

2 is sensitive to charge fluctuations, which
broaden the resonant feature, leading to a smaller value of the dephasing time.

If one compares the results of Petta et al. [62] with the results of other experiments,
namely the number for the dephasing time T2 ∼ 1 ns by Hayashi et al. [53] (in the previous
subsection) and for the relaxation time T1 ∼ 10 ns [114], one finds a good agreement
between these experiments.

On the other hand, since Petta et al. [62] did not use a direct measurement setup to
probe their double quantum dot, it really seems that their decoherence times T1 and T2 are
not influenced by a cotunneling contribution as it probably happened in the experiment of
Hayashi et al. [53]. Therefore, the electron-phonon interaction of the single electron and
the background charge fluctuations appear to be more important for a double quantum
dot charge qubit.
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Figure 2.19: From Ref. [62]: (a) Resonance amplitude, expressed as Mmax(τ)/Mmax for
τ = 5 ns. Inset: 1γ peak (only one photon involved) as a function of ε for two different
values of τ . (b) Power dependence of the resonance for f = 24 GHz. Multiple photon
processes occur at higher powers. Curves are offset for clarity.

2.8.3 The experiment of Gorman et al.

The third experiment that we would like to discuss shortly is the very recent experiment
done by Gorman et al. [108] with a double quantum dot system defined on a silicon-on-
insulator wafer with a phosphorus-doped active region. The wafer is patterned and etched
to form the wanted device elements. The two quantum dots are coupled by a 20 nm wide
constriction that is depleted of electrons and acts as a tunnel barrier. A scanning electron
micrograph of the qubit and the devices for manipulation, initialization and read-out is
shown in Figure 2.20. As already mentioned in the caption of Figure 2.20, the double
quantum dot system is not coupled to leads. This is a major difference to the other two
experiments we discussed before. Of course, the material, in which the whole structure is
defined, is a different one. Therefore not all properties of GaAs/AlGaAs-heterostructures
can be found here as well. The gates and the dots are here defined by an etching technique,
not by depleting regions in a 2DEG during the experiment. Due to this, the decoherence
time scales are also quite different. The frequency of the coherent oscillations is much
smaller than in the other two experiments, because the splitting of the two qubit states is
much smaller.

Figure 2.21 (a) shows damped coherent oscillations with the gate compensated method,
whereas Figure 2.21 (b) depicts the oscillations in a Ramsey interference experiment. From
this, a dephasing time T2 = 200 ns is deduced. This value is very large compared with
the values for the quantum dots in a GaAs/AlGaAs heterostructure. But on the other
hand, the oscillation frequency of the excess electron in the isolated double quantum dot
is much smaller. Gorman et al. [108] also comment on possible decoherence mechanisms.
Transport (e.g. cotunneling processes) does not matter, because no leads are available to
measure a direct current through the double quantum dot. They state that the isolated
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Figure 2.20: From Ref. [108]: SEM of the used sample. The double quantum dot is not
coupled to leads, therefore no tunneling through the double dot system can occur. The
gates for manipulation (in the upper part of the picture), for initialization (in the lower
part) and for measurement (left side) are only capacitively coupled to the double quantum
dot.

Figure 2.21: From Ref. [108]: (a) Coherent oscillations with the gate-compensated method,
where the SET operating point is maintained by sweeping Vg4 simultaneously with ∆t.
Inset: two SET conductance oscillations due to Coulomb blockade as a function of the gate
voltage Vg4. The arrow indicates the position, where the SET was used an electrometer. (b)
Ramsey-interference experiment [111] showing the free-evolution dephasing of the qubit.
The data can be fitted with an exponentially damped sine function (the red line), which
leads to a characteristic dephasing time of T2 = 200 ns.

qubit should only be weakly coupled to charge fluctuations on the surrounding gates. And
the effect of the electron-phonon coupling should also be smaller, since Silicon has no
piezoelectric coupling to the phonons. Only a deformation potential is important in this
material. The electromagnetic environment involving the gates is also very quiet and not
leading to unwanted voltage fluctuations in the structure.
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Again, similar to the experiment of Petta et al. [62], it seems that the two most impor-
tant decoherence mechanisms are the electron-phonon interaction and charge fluctuations.

Table 2.1 shows a short listing of decoherence times, mechanisms and measurement
techniques for the three presented charge qubits. The quality factor Q is defined as the
product of oscillation frequency ωδ and dephasing time T2, i.e. Q = ωδT2

π
. For the exper-

iment of Petta et al., an oscillation frequency ωδ = 2π · 2.4 · 109 1/s has been assumed in
accordance with typical values in their paper.

Hayashi et al. Petta et al. Gorman et al.
dephasing time T2 1 ns 400 ps (lower bound) 200 ns
quality factor Q ∼ 4.6 ∼ 1.92 ∼ 3.947

cotunneling yes unlikely no
electron-phonon yes yes probably weak

1/f noise yes yes yes
measurement technique direct (VSD) indirect (QPC) indirect (SET)

Table 2.1: Comparison of the three discussed experimental double quantum dot charge
qubit realizations.
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Chapter 3

Nonlinear cotunneling through an
artificial molecule

3.1 Introductory remarks

As already mentioned in Chapter 2, we consider how stable charge states in a double
quantum dot system can be, if different decoherence mechanisms act on them. We already
suspected that higher order tunneling probably is not really an important decoherence
mechanism, because the coupling to the leads can be tuned easily by the tunneling barriers
and additionally, the dots are brought into the Coulomb blockade regime. But since the
coupling usually is still finite, we decided that we should have a look on this mechanism
within a perturbation theory approach.

As a first step, the time evolution of the reduced density matrix of the two-state system
(TSS) in the eigenbasis of the system is calculated via the Bloch-Redfield approach [115]
(see also Appendix A). To achieve this, the Schrieffer-Wolff transformation [91] (see also
Appendix B, where all Schrieffer-Wolff amplitudes can be found) is applied to the usual
tunneling Hamiltonian from the leads into both dots and vice versa. This transformation
leads to an effective interaction Hamiltonian acting only on the two charge states in the
dots, where it is allowed to use Bloch-Redfield theory afterwards. Because the system is
ideally in the Coulomb blockade regime, only second or even higher order processes can
play a role in electron transport through the double dot structure. We restrict ourselves
to second order processes, because for a weak coupling between dots and leads even higher
orders would lead to even smaller contributions in the current through the double quantum
dot system and in decohering the system. From the Schrieffer-Wolff transformation, one
readily finds a Hamiltonian that is quadratic in the couplings to both leads. We simplify
our estimation by assuming that both leads are coupled with the same strength tc to the
two dots.

Having determined the time evolution of the electron in both used charge states of the
double dots, we apply a standard formula [116] to calculate the cotunneling current through
the double dot. We find that the cotunneling current is quite small (in the order of 10−16 A)
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and therefore hard to measure. On the other hand, if one tunes the internal energy scales
of the qubit (asymmetry energy εas and coupling γ between both dots) while the applied
bias voltage is fixed to a small value, one sees three different transport regimes that can
play a role here: no current through the double dot at all (atomic limit, when both dots
are not coupled γ = 0), an intermediate regime with around half of the maximum current
value (elastic cotunneling) and the regime of maximum current (inelastic cotunneling).

Cotunneling has already been introduced qualitatively in Chapter 2, but there, it was
focussed on elastic cotunneling. In the above described situation, two charge eigenstates
that are delocalized and distributed over both dots are available for transport. Therefore
the ground state and also the excited state can be used for current-carrying processes, if the
applied bias voltage provides enough energy to overcome the energy distance 2δ between
the two eigenstates. This leads to a maximum current that is twice as large as the current
that goes only through the ground state.

The crucial criterion for discriminating elastic or inelastic cotunneling is the comparison
between bias voltage VSD = V and the energy difference between the two charge eigenstates
2δ = 2

√

ε2
as + γ2: for V < 2δ, only the ground state can be used for transport. If V > 2δ,

then both states can be used to carry current, because the external voltage source provides
enough energy to leave the electron in the TSS in the excited state. The details can be
found in the paper that follows [117].

If one compares the results of the paper with the work of Hayashi et al. [53], one
immediately recognizes that our analysis gives only rise to a very small cotunneling current.
In our work, only a very small coupling between dots and leads and therefore also a very
small tunneling rate from the leads to the dots and back is assumed (Γ = 1 GHz), whereas
Hayashi et al. assume a quite large tunneling rate (Γ = 19.81 GHz or even Γ = 45.71 GHz).
These rates enter the final cotunneling rates in quadratic or higher even order. Assuming
only quadratic order, these rates would roughly give factors 400 or 2100 compared to our
squared rate. Cotunneling current itself has not been measured in the experiment, only the
sequential tunneling for a large bias voltage has been observed and oscillations have been
found. The effect on the dephasing time is discussed in the in Chapter 4. Our perturbation
theory would collapse, before we could reach these high values for Γ. This is actually one
of the nice features of the Bloch-Redfield approach, because this approach automatically
renormalizes the oscillation frequency of the coherent oscillations in the TSS. When the
renormalization is however much larger than the original value of the oscillation frequency,
the approach does not work anymore (see Appendix A).

Further details on the cotunneling contribution on the decoherence of the double quan-
tum dot charge qubit can be found in Chapter 4 and in Ref. [118].

3.2 Published paper

Below, one can find the published paper on nonlinear cotunneling through a double quan-
tum dot system.
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Nonlinear cotunneling through an artificial molecule

Udo Hartmann* and Frank K. Wilhelm
Sektion Physik and CeNS, Ludwig-Maximilians-Universität, Theresienstrasse 37, D-80333 München, Germany

~Received 3 December 2002; revised manuscript received 21 January 2003; published 30 April 2003!

We study electron transport through a system of two lateral quantum dots coupled in series. We consider the
case of weak coupling to the leads and a bias point in the Coulomb blockade. After a generalized Schrieffer-
Wolff transformation, cotunneling through this system is described using methods from lowest-order pertur-
bation theory. We study the system for arbitrary bias voltages below the Coulomb energy. We observe a rich,
non-monotonic behavior of the stationary current depending on the internal degrees of freedom. In particular,
it turns out that at fixed transport voltage, the current through the system is largest at weak-to-intermediate
interdot coupling.

DOI: 10.1103/PhysRevB.67.161307 PACS number~s!: 73.63.Kv, 73.23.Hk, 72.10.2d, 03.67.Lx

Quantum dots are prototype systems for studying the
properties of discrete levels embedded in a solid-state envi-
ronment. Single dots ~‘‘artificial atoms’’1! can be coupled
through quantum point contacts, leading to ‘‘artificial mol-
ecules.’’ Indeed it has been shown experimentally2–4 that the
eigenstates of double-dot systems are coherent molecular su-
perpositions of single dot ~atomic! states. Unlike real mol-
ecules, these dots are readily contacted and tunable in situ,
making them a natural test bed for molecular transport.
Double dots have also been proposed as charge quantum
bits.5,6

This raises the question, which information on the energy
spectrum and the wave functions of the dot can be probed by
transport measurements. This is only possible if artifacts in-
duced by the coupling to the leads can be sorted out and the
double-dot is disturbed as little as possible. This is the case
when the coupling to the outside leads is weak ~see Fig. 1!
and the gates are tuned to the Coulomb blockade regime.7,8

In that regime, only states with a fixed number of electrons
are energetically permissible and hence sequential tunneling
is suppressed. The leading transport mechanism in this case
is cotunneling,11 the coherent transfer of two electrons via
virtual levels in the dots. Our work stands between studies
focusing on sequential tunneling9 and work on linear re-
sponse in the Kondo regime.10 The properties of cotunneling
currents as a spectroscopic tool for the spectrum of quantum
dot system have recently been studied in exquisitely con-
trolled experiments on systems similar to ours.4,12

In this paper, we analyze a serial configuration of lateral
quantum dots in the cotunneling regime. We study finite volt-
ages up to the order of the charging energy, i.e., do not re-
strict ourselves to linear response. We find a rich nonmono-
tonic structure in the current as a function of the dot
parameters. In particular, we find a pronounced crossover
indicating the opening of an inelastic transport channel,
which leads to the surprising result, that a too strong interdot
coupling actually inhibits charge transport. We analyze the
influence of the asymmetry of the dots on the current.

In the Coulomb blockade regime,7,8 the relevant Hilbert
space is spanned by four basis states ui , j&, i , jP$0,1%, which
denotes i and j additional electrons ~as compared to an ap-
propriate neutral state! on the left and right dots, respec-
tively. We study the situation where the gate voltages of the

single dots are very close to each other and the interdot cou-
pling is, although appreciable, much smaller than the single-
dot addition energy. Thus, the subspace spanned by the two
states u1,0& and u0,1& is energetically most favorable. The
next closest states uv0&5u0,0& and uv2&5u1,1& are outside
the transport window and serve as virtual states.11 States with
higher dipolar moment are energetically even less favorable
due to the high charging energy of the individual dots.

The Hamiltonian of this system can be written as

H5H01H1 , ~1!

H05Hsys1H res , ~2!
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Note that the sum over dot states n only runs over the re-
stricted Hilbert space described above. H0 describes the iso-
lated double-dot (Hsys) and the leads (H res), whereas the
tunneling part H1 describes the coupling of each dot to its

FIG. 1. Sketch of the considered artificial molecule, where 2d is
the level splitting and V is the bias voltage. The coupling to the
outside leads ~hatched areas! is assumed to be small whereas the
interdot coupling ~dotted line! can be strong.
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lead and will be treated as a perturbation. n̂ l/r are the number
operators counting additional electrons on either dot. The
asymmetry energy «as5(« l2«r)/2 describes half of the dif-
ference between the energy level for the additional electron
in left dot (« l) and the corresponding energy level in the
right dot («r), which can be tuned through the gate voltages.
«b and «a are the charging energies towards the higher level
uv2& and the lower level uv0& , respectively. g is the tunable
interdot coupling strength. The a (†)s and b (†)s denote elec-
tron creation/annihilation operators in the dots and leads. In
H1, the symbol tc represents the tunnel matrix element be-
tween the dots and the leads. It is independent of the energies
in the double-dot system and the corresponding sequential
tunneling rate \G52ptc

2N(«F) should be small compared to
the internal energies. N(«F) is the density of states in the
leads taken at the Fermi energy. We restrict our analysis to
spin-polarized electrons, these can be polarized by an appro-
priate in-plane magnetic field. Figure 1 shows a sketch of the
system. In Fig. 1, V5mR2mL is the bias voltage between
the two leads ~hatched! and 2d52A«as

2
1g2 is the level

splitting in the molecular two-state system.
Pursuing our aforementioned objective, we take the inter-

dot coupling g into account to all orders by diagonalizing
Hsys and transforming H1 into the new basis. Already now,
there is no simple selection rule or symmetry of the coupling
of the states to the leads anymore. We want to use well-
established tools of lowest-order perturbation theory for both
finding the density matrix of the system and evaluating the
current. In order to capture cotunneling by this approach, we
perform a Schrieffer-Wolff transformation13 up to second or-
der, i.e., we take into account all indirect transitions between
arbitrary final and initial states of the dot which involve only
a single intermediate state. This takes the transformed
Hamiltonian into the generic form

H̃ I5(
c ,d

ac
†adF (

Y ,Y8,kW ,k8W

H
kW ,k8W ,c ,d

Y ,Y8
bkW

Y†
b

k8W
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1 (
Y ,Y8,kW ,k8W

H
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Y ,Y8
bkW

Y
b

k8W
Y8†G , ~6!

where the H
kW ,k8W ,c ,d

Y ,Y8
are Schrieffer-Wolff amplitudes and c ,d

56 denote the two molecular levels, ac/d
(†) the associated

molecular operators, and Y ,Y 8 the position of the electrons
involved in these processes. Due to the molecular nature of
the double-dot eigenstates, all the amplitudes are finite and
composed of a huge number of contributions with no particu-
lar symmetry. The perturbation-theory formula for this gen-
eral case can be found, e.g., in Ref. 14 and is worked out in
more detail in Refs. 6 and 15. In Eq. ~6!, we have taken
matrix elements in the double-dot eigenbasis only whereas
we stick to second-quantized notation in the leads, because
this notation readily connects to the formalism used later on.

The stationary density matrix is found using the well-
established and controlled Bloch-Redfield theory.16 This is a
systematic technique for deriving generalized master equa-
tions within Born approximation in H̃ I , Eq. ~6!, which in-

cludes all relevant non-Markovian parts. This approach has
been shown17 to be numerically equivalent to formally exact
path-integral methods for the spin-boson model in the weak-
coupling limit. The Redfield equations18 for the elements of
the reduced density matrix r in the molecular basis read

ṙnm~ t !52ivnm~ t !rnm~ t !2(
k ,l

Rnmklrkl~ t !, ~7!

where vnm5(En2Em)/\ are the appropriate energy split-
tings and Rnmkl are the elements of the Redfield tensor. They
are composed of golden rule rates involving H̃ I from Eq. ~6!.
n, m, k, and l can be either 1 ~molecular excited state! or
2 ~molecular ground state!. The E’s are the eigenenergies of
the two molecular states. Due to the lack of symmetry, this
leads to a huge number of processes contributing to each
term.15 We are only interested in stationary solutions here. A
full treatment of the simple case with g50 can be found in
Ref. 6.

The current is derived from the standard formula19

I~ t !52e
i

\
E

2`

t

dt8^@ṄL~ t !,H̃ I~ t8!#&, ~8!

where NL is the particle number operator on the left dot in
the interaction representation and the transformed interaction
Hamiltonian H̃ I from Eq. ~6! is also taken in the interaction
picture. Carrying out the integration in Eq. ~8! and rotating
back to the Schrödinger picture, we get a time-independent
expression for the current I. Using the stationary occupation
probability of the molecular ground (r22 ,st) or excited state
(r11 ,st), we obtain for the expectation value of the station-
ary current

Ist5tr~rstI !5r11 ,stI111r22 ,stI22 , ~9!

where we find from balancing relaxation processes in the
Bloch-Redfield equation, Eq. ~7!,

r11 ,st5
R1122

R11222R1111

, r22 ,st5
R2211

R22112R2222

.

~10!

The current amplitudes I11 and I22 in Eq. ~9! are of the
same form as the contributions to the Redfield tensor. We
emphasize that the choice of processes from all possibilities
is very distinct. As an example, Fig. 2 displays a variety of
possible processes in such a double-dot system. Processes of
the type displayed in Fig. 2~a! contribute to the relaxation but
do not carry current, ~b! shows a process which carries cur-
rent but does not relax the state, and ~c! relaxes and carries

FIG. 2. Examples for relevant processes: ~a! a relaxation process
without current, ~b! current without relaxation ~only dephasing!,
and ~c! a process that carries current and also relaxes the system.
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current. The phase information of the quantum state is lost in
all three pictures of Fig. 2. Consequently, one must not con-
fuse cotunneling rates with relaxation rates.

We now turn to the discussion of the results. All internal
energies «as and g are normalized in units of the bias voltage
V, the stationary current Ist in terms of I05eG .

In Fig. 3, the current at fixed bias voltage as a function of
the interdot coupling is shown. The sign of «as plays a role,
as one can see above, for an intermediate «as regime. This
effect is more pronounced in I(V), see Ref. 15. Close to g
50, the curves all turn to zero because at that point the dots
are disconnected and no current can flow. However, a num-
ber of curves, the ones with «as /V,1, exhibit an intermedi-
ate maximum at low g next to a very sharp minimum at g
50, which sometimes is hardly resolved. At high g*V , the
stationary current saturates into a value, which for our pa-
rameters turns out to be about I0,st /I057.531027. Remark-
ably, this is half the value of the current at the aforemen-
tioned low-g maximum. This is the central result of this
paper.

These regimes can be classified in terms of the level split-
ting 2d:20 At V,2d , the energy V supplied from the leads is
only sufficient to use one of the molecular states for transport
~elastic cotunneling! whereas at V.2d , both states partici-
pate and also inelastic processes contribute, i.e., there is a
second current channel, which carries the same contribution
of I0. The crossover naturally occurs at g5AV2/42«as

2 ,
which can only be reached if «as /V,1/2. As long as g is not
too low, the coupling to the leads is the limiting element for
the current flow. Only if g,«as , the double-dot eigenstates
become localized and the interdot coupling becomes the cur-
rent bottleneck. Consequently, associated dips have a half-
width of «as for low temperatures and bias voltages and can
thus be extremely narrow. We would like to remark that the
notion of transport ‘‘channels’’ is appropriate here because
cotunneling is a coherent transport process.

Figure 4 shows the dependence of the stationary current

on «as /V . It confirms the interpretation of Fig. 3. The plot is
only weakly asymmetric to «as /V50. At zero asymmetry,
«as /V50, the condition for charge transport is ideal,
AV2/42«as

2 has its maximum and therefore the current is
only governed by the interdot coupling g/V , resulting in a
zero-asymmetry maximum.

Still, all three transport regimes can be recognized in Fig.
4. The g/V50 curve shows that the stationary current Ist /I0
is exactly zero as expected. For growing, but small values of
g/V , the maximum at «as /V50 reaches the highest value
Ist /I052I0,st /I0 at about 1.531026 ~like in Fig. 3!, corre-
sponding to two open transport channels ~elastic and inelas-
tic!. If we raise g/V further, the height of the peak goes
down again and saturates at Ist /I05I0,st /I0'7.531027, cor-
responding to only the elastic channel being open.

The three transport regimes are summarized in Fig. 5: ~i!

FIG. 3. Stationary current Ist /I0 for different «as /V as a function
of the coupling g/V ~with T5140 mK, V55.170 mV and mav

5(mR1mL)/2575.832 meV and G51 GHz).

FIG. 4. Stationary current Ist /I0 for different values of g/V as a
function of the asymmetry energy «as /V ~with T5140 mK, V
55.170 mV and mav575.832 meV and G51 GHz).

FIG. 5. Limits for the three transport regimes with V
55.170 mV.
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the atomic limit ~no transport! g,«as , ~ii! the two-channel
case ~inelastic cotunneling! «as,g,AV2/42«as

2 , and ~iii!
the one-channel case ~elastic cotunneling! g.AV2/42«as

2 .
These conditions show that indeed cotunneling can be

used as a tool for investigating the energy spectrum of an
undisturbed artificial molecule.4 The crossover between the
elastic and the inelastic cotunneling in dependence of the
applied bias voltage has recently been observed.12 A similar
conclusion was found in Ref. 20.

Although the notion of ~elastic and inelastic! cotunneling
was already introduced very early,11 its consequences for re-
alistic quantum dot systems have only been discussed very
recently,20 along with detailed and accurate experiments on
small semiconductor quantum dots4,12 becoming available.
The sharp crossover between elastic and inelastic cotunnel-
ing, which we discuss, has been identified in a vertical quan-
tum dot12 by changing the transport voltage. Reference 4
studies cotunneling in a parallel double-dot topology, using
again cotunneling and the elastic-to-inelastic crossover as a
spectroscopic tool and tuning the interdot coupling in situ. In
both cases, the narrow regime of decoupled dots would not
have been accessible through a conductance measurement.
Some of the experimental issues have been theoretically ad-
dressed in Ref. 20. In that case, however, the behavior of a
single multilevel dot system was modeled with phenomeno-
logical couplings to the leads, whereas we take a realistic
model and only by this manage to predict effects which, e.g.,
depend on the serial dot topology of the sample. Note that

parts of the double-dot literature focus on phonon/photon
assisted transport ~see, e.g., Refs. 21 and 22 for experiments
and Refs. 23 and 24 for theory!. Unlike Ref. 25, we concen-
trate on the Coulomb blockade regime and do not consider
cotunneling at resonance. In Ref. 26, a different approach to
the problem was developed, in which the master equation is
carried to second order instead of using a Schrieffer-Wolff
transformation, and a few setups simpler than ours are stud-
ied. Our approach does not require the molecule to be artifi-
cial, in principle, it can be applied to ‘‘real’’ molecules.27 In
contrast to the approach in Ref. 28, it permits to take into
account charging effects, however, the Schrieffer-Wolff
transformation is clearly a laborious step for larger systems.

To conclude, we analyzed the stationary coherent cotun-
neling current Ist through a double quantum dot system or
artificial molecule. As a function of the interdot coupling
strength it displays a rich, nonmonotonic structure, which
enables us to perform ‘‘molecular cotunneling spectros-
copy.’’ Strikingly, we have shown that at fixed bias voltage,
the current is highest, if the dots are weakly to intermediately
connected, such that the interdot coupling is at least as strong
as the coupling to the leads, but the splitting of the molecular
wave functions is still smaller than the transport voltage.
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Chapter 4

Nonequilibrium stabilization of
charge states in double quantum dots

4.1 Introductory remarks

In the last Chapter, we presented an analysis of the cotunneling current through a double
quantum dot in the Coulomb blockade regime. Because we found quite small currents
through the structure, we already suspect that the time evolution of the two-states system
(TSS) or charge qubit is not disturbed too much, if the cotunneling contribution can be
treated within perturbation theory.

Here, we would like to concentrate on the time evolution of the reduced density matrix
for the TSS and how the internal energies (asymmetry energy εas and coupling γ between
the dots) and the external energy scale (bias voltage VSD = V ) influence the coherence
properties of the system.

In order to derive the Bloch-Redfield equations (see Appendix A) like in Chapter 3,
we apply the same Schrieffer-Wolff transformation [91] (see also in Appendix B) to obtain
an effective interaction Hamiltonian. This Hamiltonian acts only on the eigenstates of the
TSS and describes the interaction of these states with the leads. The virtual states that are
needed for cotunneling processes to happen are systematically used for this transformation
[119].

From the Bloch-Redfield equations, one can deduce the two relevant time scales for
quantum computation: the relaxation time τr (= T1 in NMR language) and the dephasing
time τφ (= T2 in NMR). The Bloch-Redfield form for these times can be found in the
following paper [120] or in Appendix A.

An easier analysis showing already similar analytical results in the case of decoupled
dots can be found in Ref. [121].

Again, similar as in Chapter 3, we find an interesting interplay of the asymmetry energy
εas, the coupling γ between the dots and the applied bias voltage V . The counter-intuitive
result is that by applying an appropriate bias voltage, one can stabilize the TSS consid-
ering only the cotunneling contribution to decoherence. This is against the usual physical
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intuition, because with a bias voltage, one drives a current and creates a nonequilibrium
situation and usually by this a system is perturbed and not stabilized.

Actually, we find two different working points for quantum mechanical calculations,
when the dephasing time should be large, and for the measurement of the TSS or charge
qubit, where the relaxation time should be large enough. To obtain a long dephasing time,
one could go to the unbiased situation V = 0, whereas V = ±2δ leads to a long relaxation
time due to cotunneling processes. 2δ = 2

√

ε2
as + γ2 is again the energy difference between

the two charge eigenstates in the double quantum dot system.
We explain these findings with phase space arguments for the contributing tunneling

rates. The effect is reduced for higher temperatures, but it should still be observable in
a realistic situation, if one can make the cotunneling the most dominant source of deco-
herence. This is unlikely in the present experimental situation. Maybe different systems
also showing dot physics (see Chapter 10) or coupling to (phonon) cavities [122–124] could
solve this problem.

As already mentioned in Chapter 3, a full analysis of the cotunneling contribution
to decoherence with more details e.g. on the temperature dependence can be found in
Ref. [118].

Let us again compare the results from the following paper [120] with the experimental
findings of Hayashi et al. [53]. First of all, the assumed coupling from the dots to the leads
is again much smaller (see Chapter 3 for detailed numbers). Therefore our perturbation
theory would not work properly. On the other hand, the bias voltage V is pulsed in the
experiment between zero and Vp. By this, the system is switched from Coulomb blockade
regime to the sequential tunneling regime and back. Our approach, however, is only valid
in the Coulomb blockade, i.e. by applying a small bias voltage V , we will not leave the
Coulomb blockade. This explains the discrepancies between our results for the relaxation
and dephasing times that are in the order of ms and the experimental value in the order
of ns. Even for the cotunneling contribution, Hayashi et al. got this order of magnitude,
because the tunneling rates between dots and leads enter quadratically or in higher even
orders in the dephasing and relaxation rates. The additional factors in comparison to our
assumption (of the orders discussed in Chapter 3), however, are not sufficient to extrapolate
from our model to the experimentally found values for the dephasing time of τφ ∼ 1 ns.
Higher orders in the tunneling rates should become important then.

A different initialization scheme could probably fix a part of this problem. One could
e.g. wait for a specific period at the beginning of the manipulation to ensure that the
electron is in the ground eigenstate of the double dot system. The other proposal would
be a change from the direct measurement technique to an indirect similar to [62] and [108].

4.2 Published paper

Below, one can find the published paper on nonequilibrium stabilization of charge states
in a double quantum dot (charge qubit).
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We analyze the decoherence of charge states in double quantum dots due to cotunneling. The system is
treated using the Bloch-Redfield generalized master equation for the Schrieffer-Wolff transformed Hamil-
tonian. We show that the decoherence, characterized through a relaxation tr and a dephasing time tf , can be
controlled through the external voltage and that the optimum point, where these times are maximum, is not
necessarily in equilibrium. We outline the mechanism of this nonequilibrium-induced enhancement of lifetime
and coherence. We discuss the relevance of our results for recent charge qubit experiments.
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The loss of quantum coherence is a central paradigm of
modern physics. It not only governs the transition between
the quantum-mechanical and the classical world, but has re-
cently also gained practical importance in the context of en-
gineering quantum computing devices. Decoherence natu-
rally occurs in small quantum systems coupled to
macroscopic heat baths. A huge class of such baths generates
Gaussian noise and can hence be mapped on an ensemble of
harmonic oscillators as in the spin-boson model.1 This can
even apply, if the fundamental degrees of freedom of the
bath are fermions, as it is, e.g., the case if the bath is a linear
electrical circuit,2,3 which is producing Gaussian Johnson-
Nyquist noise.

In this Rapid Communication, we study a generically dif-
ferent system: a double quantum dot coupled to electronic
leads. Such systems are studied as realizations of quantum
bits.4–6 The position ~either left or right dot! of an additional
spin-polarized electron is used as the computational basis of
a charge qubit as realized in Ref. 6. For another proposal of
a charge qubit in semiconductors, see Ref. 7.

Our system simultaneously couples to two distinct reser-
voirs of real fermions. Other than oscillator bath models, this
allows for the application of a voltage between these reser-
voirs as a new parameter for controlling decoherence. The
voltage creates nonequilibrium between the baths, which to
the best of our knowledge has not been studied yet in the
literature on open quantum systems.

We study the dynamics of the reduced density matrix and
identify the usual two modes of decoherence, dephasing and
relaxation: Dephasing is the loss of phase information, mani-
fest as the decay of coherent oscillations. This corresponds to
the time evolution of the off-diagonal elements of the re-
duced density matrix in the energy basis. Relaxation is the
process during which a quantum system exchanges energy
with the environment and ends up in a stationary state. This
is described through the evolution of the diagonal density
matrix elements. We are going to show that, surprisingly, the
charge states can be stabilized by external nonequilibrium,
i.e., the relaxation time is longest at a well-defined finite
voltage. We will show, that this working point is also very
favorable in terms of dephasing but competes with another
local maximum at zero voltage. Our theory should also have
applications in other systems.

We consider a double quantum dot system with an appre-
ciable tunnel coupling between the dots allowing for coher-
ent molecular states in these systems.8 The computational
basis is formed by the position states of an additional spin-
polarized electron.6,7 A superposition can be created by
variation of the interdot coupling. In order to stabilize the
charge, the coupling of the dots to the two leads is driven to
weak values and the dot is tuned to the Coulomb blockade
regime9 where sequential tunneling is suppressed through the
addition energy. Even then, the system couples to the envi-
ronment through cotunneling,10 the correlated exchange of
two electrons with the external leads which ends up in a state
with the same total charge as the initial one.

The relevant Hilbert space is spanned by four states writ-
ten ui , j& denoting i , j additional electrons on the left and
right dot, respectively. u1,0& and u0,1& define the computa-
tional basis as they are energetically accessible, the closest
virtual intermediate states for cotunneling are uv0&5u0,0&
and uv2&5u1,1& . This model applies if all relevant energy
scales of the system («as and g , see below! are much smaller
than the charging energies to the next virtual levels («

v2
and

«
v0

, also below!, which in turn have to be smaller than the
orbital excitation of the individual dots. This can be realized
in small dots.

The total Hamiltonian of this system can be written as
H5H01H1 where H05Hsys1H res describes the energy
spectrum of the isolated double-dot through Hsys

5«as(aL†aL
2aR†aR)2«

v0
n̂

v0
1«

v2
n̂

v2
1g (aL†aR

1aR†aL)

and the two electronic leads H res5(kW«kW
L
bkW

L†
bkW

L

1(k8W«
k8W
R

b
k8W
R†

b
k8W
R

. The sum over the dot states only runs over

the restricted Hilbert space described above, the aL/R act on
the lowest additional electron state on either dot. The double-
dot is characterized by the asymmetry energy «as5« l2«r
between the individual dots and the interdot tunnel coupling
g . The virtual states uv2& and uv0& are separated from
the system by energy differences «

v2
~upper virtual level!

and «
v0

~lower virtual level!. The tunneling part

H15tc(kW ,n(an
L†bkW

L
1an

LbkW
L†)1tc(k8W ,m(am

R†b
k8W
R

1am
R b

k8W
R†

) de-

scribes the coupling of each dot to its lead and will be treated
as a perturbation. tc represents the tunnel matrix elements
between the dots and the leads. It can be absorbed in a tun-
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50 4. Nonequilibrium stabilization of charge states in double quantum dots

neling rate \G52ptc
2N(eF). This has to be chosen small

such that the Kondo temperature is low TK!T and perturba-
tion theory holds, e.g., G5109 Hz. Figure 1 shows a sketch
of the setup.

From now on, we use the basis of molecular states ob-
tained by diagonalizing Hsys with splitting 2d52A«as

2
1g2.

In order to treat cotunneling by leading-order perturbation
theory, we rewrite H1 using a Schrieffer-Wolff trans-
formation.11 This removes the transitions to the virtual states
and generates an effective Hamiltonian containing indirect
transition terms between the molecular states. A more de-
tailed description of our calculation is given in Refs. 5 and
12. The final Hamiltonian is of the form H5H01H18 where

H185(
c ,d

ac
†adF (

Y ,Y8,kW ,k8W

H
kW ,k8W ,c ,d

Y ,Y8
bkW

Y†
b

k8W
Y8

1 (
Y ,Y8,kW ,k8W

H
kW ,k8W ,c ,d

Y ,Y8
bkW

Y
b

k8W
Y8†G , ~1!

where Y and Y 8 denote right or left lead, the as describe

molecular states and the H
kW ,k8W ,c ,d

Y ,Y8
are given through 2nd or-

der perturbation theory, i.e., they are of O(G2). Note, that
H18 conserves the particle number because it acts upon the
double-dot by injecting and extracting an electron in a single
step. The terms with YÞY 8 transfer charge between different
reservoirs. Note that Eq. ~1! is a simple and generic Hamil-
tonian connecting a quantum system to two distinct particle
reservoirs and is potentially relevant for systems other than
quantum dots as well.

We study the open system dynamics in the case of a time-
independent Hamiltonian with a fully general initial reduced
density matrix. We use the well-established and controlled
Bloch-Redfield,13 which has been demonstrated to work
down to low temperature for certain models.14 It involves a
Born approximation in H18 , i.e., it captures all cotunneling
processes in lowest nonvanishing order. The Redfield
equations15 for the elements of the reduced density matrix r
in the eigenstate basis of Hsys ~i.e., the molecular basis! read

ṙnm~ t !52ivnmrnm~ t !2(
k ,l

Rnmklrkl~ t !, ~2!

where vnm5(En2Em)/\ and the Redfield tensor elements
Rnmkl are composed of golden rule rates describing different
cotunneling processes, which are essentially independent due
to the low symmetry of the system. Each contribution has a
typical cotunneling structure.5,12 An overview of the most
important processes is given below. n, m, k and l can be
either 1 ~excited molecular state! or 2 ~molecular ground
state! with according energies E6 . This type of perturbative
analysis is only valid above the Kondo temperature TK ,16

which can be easily driven to low values by pinching off the
tunneling barrier to the leads.

From the formal solution of Eq. ~2! we can identify the
relaxation and dephasing rates as

Gr5Re~R11111R2222!5

1

tr
, ~3!

Gf5Re~R1212!5Re~R2121!5

1

tf
. ~4!

The transition frequencies vnm are weakly shifted.
Figure 2 shows a choice of processes entering the Red-

field tensor. All processes contribute to dephasing, because
the phase of an electron, which is injected from the reser-
voirs, is always random. Figures ~a! and ~b! illustrate relax-
ation processes. Only ~b! contributes to the current, i.e., in
general the relaxation rate must not be confused with the
cotunneling current. In ~c! and ~d! two pure dephasing pro-
cesses are presented; only ~d! contributes to the current flow.
In general, processes without current can emerge, if the co-
tunneling processes take place between a single lead and the
two-state system ~TSS!. The observable current is then given
by the difference of current-carrying processes in forward
and backward direction. We have evaluated the rates entering

Eqs. ~3! and ~4! using H
kW ,k8W ,c ,d

Y ,Y8
. Due to the high number of

terms, details are not shown and will be given elsewhere.12

We now turn to the discussion of our results, starting with
the relaxation time tr . We observe in Fig. 3 that for an

FIG. 1. ~Color online! Sketch of the considered artificial mol-
ecule in the Coulomb blockade regime, where 2d is the level split-
ting and V5mR2mL the bias voltage, that is applied between the
two leads ~hatched!. The virtual states uv2& and uv0& are outside the
plotted energy range.

FIG. 2. Examples for relevant processes in the system: ~a! a
relaxation process that carries no current, ~b! a relaxation process
with current, ~c! a pure dephasing process without current flow, and
~d! a current-carrying dephasing process.
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asymmetric TSS, i.e., for «asÞ0, there is a pronounced peak
of the relaxation time at V52sgn(«as)2d , where V5mR
2mL , i.e., the sign has to be chosen with opposite polarity to
the asymmetry energy. This means in particular that the re-
laxation is minimal far away from equilibrium. This is the
central result of our paper. It is most clearly visible for T
!2d , but obviously still dominates the calculated result for
temperatures T'2d , as it can be seen in the insets of Figs. 3
and 4. In order to remain in the cotunneling regime, the
voltages are still quite small as compared to the excitation
energy to the next charge states «

v2
and «

v0
, but on the order

of the molecular level splitting, i.e. uVu'2d!«
v2

,«
v0

. For
quantum computation, achieving a maximum relaxation time
is, e.g., appreciable during read out.2

Although surprising, it can be understood from the analy-
sis of the different rates, that V50 does not necessarily im-
ply the lowest relaxation rate. At V50 there is no net cur-
rent, i.e., no net exchange of particles in the ensemble
average, however, this is achieved by the cancellation of fi-
nite currents of equal size in forward and backward direction.
These currents are rather small5 such that current heating is
reduced to a minimum. To t r , Eq. ~3!, such current-carrying
processes contribute with equal sign—the system relaxes no
matter to which reservoir. On top of this, one also has to take
into account the aforementioned current-less relaxation chan-
nels.

The appearance of the peaks as preferred stable points in
Fig. 3 can be understood based on the analysis of the current-
carrying processes, @e.g. Figs. 2~b! and 2~d!# as schematically
shown in Fig. 5. At low voltages, uVu,2d , the system re-
laxes into a thermal state close to the ground state. Relax-
ation takes place by spontaneous emission of energy into the
environment and creation of an electron-hole pair in the
leads. This pair can recombine through the electrical circuit
which fixes the electrochemical potentials. This leads to elec-

trical current. As the voltage is increased away from V50,
emission processes which lead to a current against the polar-
ity of the source are suppressed, the others are enhanced, see
Figs. 5~I! and 5~II!. Depending on the asymmetry of the
double dot, i.e., on the weight of the excited state on the left
and the right dot, this leads to an enhancement or a suppres-
sion of the rate. At uVu>2d , the emission processes against
the source are completely blocked: the dot relaxation does
not provide enough energy to overcome the electromotive
force. The rate vanishes linearily as a function of voltage
reflecting the size of the available phase space for cotunnel-
ing, see Fig. 5.

At higher voltages, uVu>2d , inelastic cotunneling17 sets
in, see Figs. 5~III! and 5~IV!: The source provides enough
energy to even excite the double dot, creating a nonequilib-
rium steady-state population of the molecular levels. Hence,
inelastic cotunneling provides a way for the dot to absorb
energy from the environment even at low temperature. This
process can be experimentally identified by a sharp increase
of the current.5,17

FIG. 3. ~Color online! Relaxation time tr in units of Td

52p\/2d , the period of coherent oscillations between the two mo-
lecular states. Different values of «as and g are taken, when the bias
voltage V/2d is varied @with mav5(mR1mL)/2575.832 meV and
kBT/mav51.13631023]; inset: kBT/mav50.159.

FIG. 4. ~Color online! Dephasing time tf in the same units as in
the previous figure for different values of «as and g , when the bias
voltage V/2d is varied @with mav5(mR1mL)/2575.832 meV and
kBT/mav51.13631023]; inset: kBT/mav50.159.

FIG. 5. Qualitative voltage dependence of the rates of emission
@~I!, ~II!# and absorption @~III!, ~IV!# processes; see text; these rates
do not correspond to the processes in Fig. 2.
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52 4. Nonequilibrium stabilization of charge states in double quantum dots

Hence, at V562d , three of the four processes depicted
in Fig. 5 vanish at low temperatures, whereas at V50 only
two vanish. The linear voltage dependence of the rates leads
to the rather sharp cusps seen in Fig. 3. This behavior is
smeared out at higher temperatures by thermal fluctuations.
The peak height is set by the remaining processes: Energy
emission with the source and currentless relaxation, Fig. 2
~a!. As explained above, the relative weight of the former
strongly depends on the weight of the excited molecular state
on the individual dots and thus is responsible for the strong
asymmetry of the peaks in Fig. 3 for different asymmetry
energies.

Finally, we analyze the properties of the dephasing time
tf as a function of the bias voltage. The total dephasing rate
contains relaxing as well as flipless ~‘‘elastic’’! processes.
We hence observe in Fig. 4 a peak structure at V
52sgn(«as)2d as in the relaxation time, Fig. 3, and a simi-
lar peak at V50. The latter can be understood from the sup-
pression of flipless processes ~energy exchange 0! in an
analogous way to the relaxation peak in Fig. 3 ~energy ex-
change 2d). At low asymmetry energy eas,g , the dephasing
time at V50 is longest. At high asymmetry eas.g and at the
nonequilibrium working point V52sgn(eas)2d , tf is even
longer. In general, this indicates the existence of two prefer-
able working points for quantum computation: One in equi-
librium, the other again far from equilibrium. As also already
seen in the inset of Fig. 3, the voltage dependence at higher
temperature is here smeared out and the peaks merge.

A measurement of the relaxation and dephasing times

should be feasible either by a time-resolved measurement of
^sz(t)&, e.g., through a single-electron transistor or point
contact,18 the saturation broadening method19 or resonance
schemes such as proposed in Ref. 20 for spins.

Note that parts of the double-dot literature focus on deco-
herence through phonons or photons ~see Refs. 8,21–23!,
whereas we focus on the cotunneling, which becomes rel-
evant when phonons are suppressed by a cavity.24 If the spin
in a dot is used as qubit,18,25 cotunneling serves as an indirect
contribution to decoherence.

To conclude, we have studied the decoherence of charge
states in a double quantum dot due to cotunneling. We have
shown that decoherence can be controlled through a bias
voltage V ~and thus creating a nonequilibrium situation! be-
tween the two fermionic baths. In particular, the optimum
working point for read out and potentially also for operation
of the qubit can be in an out-of-equilibrium situation at a
voltage V52sgn(«as)2d . We have given a consistent physi-
cal interpretation of our findings in terms of stability and
phase space. This effect of stabilization through nonequilib-
rium should potentially be significant for other qubit candi-
dates as well.
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5.1 Introductory remarks

Recent experiments [53] demonstrate the feasibility of a working charge qubit in laterally
defined quantum dots. As the dominant intrinsic decoherence mechanism, we assume
electron-phonon coupling. In order to treat the case of finite coupling between the two
dots, we determine the true eigenstates of an electron in the double dot structure. In order
to define qubits in lateral quantum dot structures, the two degrees of freedom spin and
charge are usually used. For spin qubits [17], the information lies in the spin of a single
electron in one quantum dot, whereas for the charge qubit [59–61] the position of a single
electron in a double dot system is crucial. Similar ideas can also be applied to charge states
in Silicon donors [52].

In recent years, the experimental progress in analyzing transport properties in double
quantum dots [66] has lead to the fabrication of double dot structures with only one electron
in the whole system [54, 63]. The first realization of a charge qubit [53], however, has been
demonstrated with a valence electron in a filled double dot structure.

The experimental break-through for charge qubits [53], where for the first time coherent
oscillations in a quantum dot qubit have been shown, names three decoherence mechanisms
that could be relevant for these charge qubits: a cotunneling contribution, the electron-
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phonon coupling and 1/f noise or charge noise in the heterostructure defining the dots.
Recent theoretical results [120] show that the cotunneling contribution to decoherence

can be very small, providing a small coupling between the dots and the connected leads
is given. This would mean that different initialization and measurement mechanisms com-
pared to Ref. [53] might be used.

Other theoretical works [125–129] already describe the electron-phonon interaction for a
single charge qubit in a GaAs/AlGaAs heterostructure. Most of these use a weak coupling
model for the inter-dot coupling similar to the one we present below. Ref. [128] provides
a numerical calculation of the charge eigenstates of a double-well potential. We will also
provide an analysis of the electron-phonon interaction in the regime of relatively large cou-
pling between the two dots (applying a similar scheme to determine the charge eigenstates
as in Ref. [128]), which seems an important regime, because it has been shown recently that
a single-electron with a large coupling between the dots and a smaller distance between
the dot centers can be realized [63, 130].

In other words, we determine the eigenfunctions of the quartic potential [131]

V (x, y) =
mω2

0

2

[

1

4r2
(x2 − r2)2 + y2

]

(5.1)

in analogy to the linear combination of atomic orbitals (LCAO) in quantum chemistry [132]
and use these functions for the bonding and anti-bonding molecular states of the coupled
quantum dot system. We compare this approach with the well-established weak coupling
method [133], where only a weak overlap of the wavefunctions in the left and right dot is
allowed.

5.2 Models

Due to the similarity of the temperature dependence of the dephasing rate in the experiment
[53] with the Spin-Boson model [134], we assume that the dominant decoherence mechanism
is the electron-phonon coupling. To determine decoherence properties of the system, we
first write down the corresponding Hamiltonian. As a second step, we then use the Bloch-
Redfield theory [115] to calculate the Golden Rule rates that construct the Redfield tensor
[135]. We now study the dynamics of the reduced density matrix (RDM) in the eigenbasis of
dot Hamiltonian Hd (see below). We identify the usual modes of decoherence: i) dephasing,
the loss of phase information, manifest as the decay of the off-diagonal matrix elements
and ii) relaxation, the exchange of energy with the environment, manifest through the time
evolution of the diagonal elements. We use the Bloch-Redfield equations for the reduced
density matrix [135]

ρ̇nm(t) = −iωnmρnm(t)−
∑

k,`

Rnmk`ρk`(t) . (5.2)

All indices run over the eigenstates of the two-state system (TSS). These equations are
obtained within Born approximation in the effective system-bath coupling and a subtle
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Markov approximation which takes into account the most relevant bath correlations. It
has been shown [136] that in the case of the Spin-Boson model the Bloch-Redfield theory
is numerically equivalent to the full non-Markovian path-integral method. The Redfield
tensor

Rnmk` = δ`m
∑

r

Γ
(+)
nrrk + δnk

∑

r

Γ
(−)
`rrm − Γ

(+)
`mnk − Γ

(−)
`mnk. (5.3)

consists of Golden-Rule rates

Γ
(+)
`mnk = ~

−2

∞
∫

0

dt e−iωnkt〈H̃el−ph,`m(t)H̃el−ph,nk(0)〉bath (5.4)

and its time-reversed counterpart Γ(−). Hel−ph, the electron-phonon interaction, appears
in the interaction representation.

5.2.1 Weak inter-dot coupling

Now, we shortly present the approach developed by Brandes et al. [133, 137] to model
the piezo-electronic interaction between electrons and phonons in lateral quantum dots
in GaAs. We then use this model for the Bloch-Redfield theory. A different approach
to calculate the transport through a double dot structure with spontaneous emission of
phonons has been published recently [138]. We start from the standard electron-phonon
Hamiltonian of a solid [139], introduce the confinement of electrons into the double dot
and project it down on the relevant subspace, the position of an extra electron on one of
the dots. The projected Hamiltonian still has the form Htotal = Hd +Hph +He−ph where
the dot part Hd = εl|l〉〈l|+εr|r〉〈r|+∆ (|l〉〈r|+ |r〉〈l|) = ε01̂+εasσ̂z +∆σ̂x, the free phonon
bath is described by Hph =

∑

q

~ωqc
†
qcq with linear dispersion, ωq = csq = cs|~q|, and the

electron-phonon interaction term has the form

He−ph =
∑

q

[

αq|l〉〈l|+ βq|r〉〈r|+
γq

2
(|l〉〈r|+ |r〉〈l|)

]

√

2mωq

~
Xq

=
∑

q

[

αq + βq

2
1̂ +

αq − βq

2
σ̂z +

γq

2
σ̂x

]

√

2mωq

~
Xq.

(5.5)

with
√

2mωq

~
Xq = c−q +c†q. Henceforth, the irrelevant terms containing the unit matrix will

be dropped. The matrix elements αq, βq and γq of the electron phonon-coupling for the left
dot (αq), the the right dot (βq) and the transition between the dots (γq) can be expressed
through the wave functions |l/r〉 of the electrons in the respective dots, αq = λq〈l|ei~q~x|l〉,
βq = λq〈r|ei~q~x|r〉, and γq = λq〈l|ei~q~x|r〉, where λq = 1

V
λ2csq, q = |~q| [133, 137, 138], cs

is the longitudinal velocity of sound in GaAs and λ itself consists of material parameters
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for GaAs. We assume that the wave functions for the ground states of the individual,
non-overlapping dots are two-dimensional Gaussians centered in the respective dot [138]

〈x|l/r〉 =

(

1

πσ2

)
3
4

e−
(~x−~xl(r))

2

2σ2 . (5.6)

Thus, the matrix elements can be expressed as

αq = λqe
i~q ~xle−

1
4
q2σ2

= λqe
i~q~xle−

c2sq2

4D2 (5.7)

βq = λqe
i~q~xre−

c2sq2

4D2 (5.8)

γq = λqe
i

~q(~xl+~xr)

2 e−
c2sq2

4D2 e−
d2

4σ2 . (5.9)

Here, D = cs

σ
is the frequency scale, at which the phonon wave length becomes compa-

rable to the dot size σ and at which the effective electron-phonon interaction is ultimately
cut off. d = |~xl − ~xr| is the distance between the centers of the two dots, thus the last
exponential function in Eq. (5.9) describes the overlap of the individual dot wave functions.

d
σ σ

charge qubit

Figure 5.1: (Color online) Sketch of the considered system: two coupled quantum dots
realizing a position charge qubit. d is the distance of the dot centers in one qubit, σ is
width of the Gaussian wavefunction of an electron in each dot.

In the typical transport case as considered in Refs. [133, 137], this overlapp is a small
parameter and γQ ∼ 0. Figure 5.1 shows a sketch of the double quantum dot charge qubit
system. Similar to the simple Spin-Boson model, one can introduce spectral densities of
the bath by integrating out the phonon directions and one finds

J(ω) =
gπ~ω

4

(

1− ωd

ω
sin

(

ω

ωd

))

e
− ω2

2ω2
c , (5.10)

where g ≈ 0.05 is a dimensionless coupling [133], ωd = cs

d
is the frequency that corresponds

to the distance between the dot centers and ωc = cs

σ
= D is the cut-off frequency given by

the dot size.
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Using now standard relations [140] for the Spin-Boson model, we find for the real-parts
of the Golden-Rule rates [Eq. (5.4)] in the Bloch-Redfield theory

<
(

Γ
(+)
`mnk

)

=
J(ωnk)

2~

(

coth

(

~ωnk

2kBT

)

− 1

)

(5.11)

<
(

Γ
(−)
`mnk

)

=
J(ω`m)

2~

(

coth

(

~ω`m

2kBT

)

+ 1

)

(5.12)

In the secular approximation, we thus get the following relaxation and dephasing rates
[120] similar to the known Spin-Boson results [135]

1

τr
= Γr = <(R++++ +R−−−−)

= 2 sin2(θ)S(ω+−) (5.13)
1

τφ
= Γφ = <(R+−+−) = <(R−+−+)

=
Γr

2
, (5.14)

where ω+− = 2δ
~

=
2
√

ε2
as+∆2

~
is the level splitting in the TSS and S(ω) = J(ω)

~
coth

(

~ω
2kBT

)

.

θ is defined by θ = arctan
(

∆
εas

)

. There is also a weak renormalization of ωnm due to the

imaginary parts of the Golden Rule rates Γ
(+)
`mnk and Γ

(−)
`mnk, which can be neglected. The

dephasing rate τφ in Eq. (5.14) has only a relaxation contribution and no pure dephasing
contribution. This is due to the super-Ohmic spectral density J(ω) ∝ ω3 for small frequen-
cies. The spectral density is usually [134] written as J(ω) ∝ ωs, where J(ω) is sub-Ohmic
for s < 1, Ohmic for s = 1 and super-Ohmic for s > 1. For simplicity, we assume in the
following that we work at charge degeneracy εas = 0.

5.2.2 Stronger inter-dot coupling

As already mentioned in the introduction, we now present another approach to describe
the double dot potential as a symmetric double-well potential, namely a quartic potential
[131] [Eq. (5.1)] as depicted in Figure 5.2. In this case, the qubit is only described by the
coupling between the two dots. In the localized basis of the charge qubit (electron on the
left or right dot), the dot Hamiltonian would read

Hd =
~∆

2
σ̂x . (5.15)

We, on the other hand, start from the microscopic single-particle Hamiltonian

Hd =
p2

2m
+ V (x, y) . (5.16)
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Therefore, we use a microscopic derivation of the inter-dot coupling ∆ by determining
the charge eigenstates of this HamiltonianHd. This should work as long as the dots are well-

defined, i.e. the Bohr radius of the single dots aB =
√

~

mω0
should be much smaller than the

distance [131] r from Eq. (5.1). We will use the characteristic distance a = aB/
√

2 in the
following. ~ω0 is the energy scale for this parabolic confinement potential andm = 0.067me

is the effective mass of an electron in GaAs. Since the Bloch-Redfield approach only works
in the eigenbasis of the considered system, we calculate the two lowest eigenfunctions of
(5.16). For this, we consider p and x in Hd as quantum mechanical operators acting on
the eigenfunctions of single harmonic oscillators (details see Appendix C). The oscillator
wavefunctions are chosen as a complete basis and the exact wavefunctions for the charge
eigenstates will be superpositions of these. The resulting eigenfunctions only depend on
the confinement frequency ω0, the half distance between the dot centers r and the number
N of the excited levels of the harmonic oscillators that we allow to be populated. One then
finds the generic forms

ψgs(x, y, z) =
N
∑

n=1

a2nΦ2n(x)Φ0(y)δ(z) (5.17)

ψes(x, y, z) =
N
∑

n=1

a2n−1Φ2n−1(x)Φ0(y)δ(z) , (5.18)

where ψgs denotes the symmetric ground state of the artificial molecule and ψes the asym-
metric first excited state of the coupled system. Φn(x) is the nth eigenfunction of a one-
dimensional harmonic oscillator in x-direction. a2n and a2n+1 are the coefficients for the
harmonic oscillator states |2n〉 and |2n + 1〉. In y-direction only the lowest eigenfunction
plays a role, because in this direction, we only have a usual harmonic oscillator. Since we
consider electrons in a 2DEG in a GaAs/AlGaAs heterostructure, we assume that there is
no significant contribution of electrons that are not in the x-y-plane. More details on the
charge eigenstates and the potential can be found in Appendix C.

The electron-phonon interaction, taking only the piezoelectric contribution into ac-
count, here looks as follows [141, 142]

He−ph =
∑

~q,α

√

~

2ρV ω~q,α

eA~q,αe
i~q~r
(

b†~q,α + b−~q,α

)

, (5.19)

where ρ is the crystal mass density and A~q,α is an effective piezoelectric modulus

A~q,α = ξiξkβikje
j
~q,α. (5.20)

Here ~ξ = ~q/q is the phonon wave vector, ~e is the phonon unit polarization vector and βikj

is the piezotensor. These tensor elements are only nonzero for this kind of crystals, if all
three indices are different, βxyz = βxzy = ... = h14 = 1.2 · 109 eV/m (for GaAs) [141].
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Figure 5.2: (Color online) Sketch of the considered system: two coupled quantum dots
realizing a position charge qubit. 2r is the distance of the dot centers in one qubit. One
can see the localized states and the molecular states.

In order to calculate the Golden Rule rates like Eq. (5.4), we need to determine the
matrix elements of He−ph in the eigenbasis of the system, i.e. in terms of ψ+ and ψ−. But
since these functions consist of Hermite polynoms, we have to calculate the matrix elements
between two eigenfunctions of the harmonic oscillator and then add all contributions in the
functions ψ+ and ψ− according to their weight. To do this, we determine only the matrix
elements 〈`|eiκxx̂|n〉, with |`〉 and |n〉 being two Eigenfunctions of the harmonic oscilla-
tor. κx = aqx is a dimensionless prefactor describing the spatial quantities involved here,
namely the x-component of the wavevector of the phonons qx and the distance a = aB/

√
2

representing the confinement potential. The exponential function in this matrix element is
the only point, where the position of the electron enters the Hamiltonian He−ph, Eq. (5.19).
We also evaluate the three spatial directions separately, i.e. we only treat one-dimensional
problems that are combined again later on. The above mentioned matrix element describes
only the x-direction, which is also the most interesting one due to the form of the poten-
tial V (x, y), Eq. (5.1). To use the relations for the harmonic oscillator, we furthermore
substitute the spatial x by the harmonic oscillator operator x̂ that acts on the states |n〉
and |l〉. The matrix element for this exponential function (see above) in x-direction can
be determined by identifying eiκxx̂ with the displacement operator D̂(α) = exp(αâ†−α∗â)
for the harmonic oscillators with α = iκx. â

† and â operate on the eigenfunctions of the
harmonic oscillators. For the displacement operator, one can use the following relation
[143] for ` ≥ n

〈`|D̂(α)|n〉 =

√

n!

`!
α`−ne−

|α|2

2 L(`−n)
n (|α|2) , (5.21)

where L(`−n)
n is an associated Laguerre polynom.

Combining all these expressions for the contributions to the Eigenfunctions ψ+ and ψ−,
one can also find spectral densities J`mnk(ω) similar to Eq. (5.10). Due to the non-trivial
contributions of all considered harmonic oscillator states (we usually use N = 40) and the
anisotropy factors A~q,α, the J(ω) is in general different for all combinations of ψ+ and ψ−.
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The real parts of the Golden Rule rates for this model then read

<
(

Γ
(+)
`mnk

)

=
J`mnk(ωnk)

2~

(

coth

(

~ωnk

2kBT

)

− 1

)

(5.22)

<
(

Γ
(−)
`mnk

)

=
J`mnk(ω`m)

2~

(

coth

(

~ω`m

2kBT

)

+ 1

)

. (5.23)

Also in this case, we apply the secular approximation and get the same definition for the
relaxation rate [Eq. (5.13)] and the dephasing rate [Eq. (5.14)]. The secular approximation
is actually exact here to the selection rules for the J`mnk(ω). In this approach, one again
finds no significant pure dephasing contribution to dephasing, because the most important
parts of the spectral functions J`mnk(ω) are again super-Ohmic.

5.3 Discussion of the results

Before using the Golden-Rule rates to determine the time evolution of an electron coupled
to phonons in a double quantum dot, let us shortly discuss how the coupling ∆ between the
two dots behaves in the weak coupling case and for the double-well potential as a function
of the distance d = 2r between the quantum dot centers. We now fix the parameters
such that an experimentally observed value of ∆ ' 6.3 µeV [53] is reached for a distance
d = 2r between the dot centers of d = 2r ≈ 240 nm. For the weak inter-dot coupling, we

assume that the coupling ∆ can be written as ∆ = ΩA exp
(

− d2

4σ2

)

, where the exponential

function represents the overlapp of two Gaussian wavefunctions with a width σ. ΩA =
187.244 · 1012 1/s is the attempt frequency for a radius of the wavefunctions σ = 38.18 nm.
For stronger coupling between the dots, we determine ∆ numerically as the energy distance
between the two lowest eigenstates. A comparison of both methods to calculate ∆ can be
found in Figure 5.3. There, we fixed the parameters such that an experimentally observed
value of ∆ ' 6.3 µeV [53] is reached for a distance d = 2r between the dot centers of
d = 2r ≈ 240 nm. The behavior of the coupling ∆ (which is also the level splitting in
the qubit, because we consider only the symmetric case with εas = 0) for both models
is quite different and they only meet at one point, which was the fixed point from our
original assumption. For small distances d, the weak coupling approach leads to much
larger couplings ∆ and for larger d to much smaller ∆ than the double-well approach. It
seems that the assumption of Gaussian wavefunctions (for weak coupling) overestimates
the coupling ∆ for small d and underestimates ∆ for larger d. On the other hand, the
weak coupling model treats the averaging over the spatial dimensions (i.e. the influence of
the anisotropy factors) in a quite different way, which could also lead to large deviations
for large d = 2r. The changes in the numerically determined curve for the double-well
potential look quite smooth compared to the other case. Therefore, we can also expect a
different quantitative behavior for the dephasing times, which we will discuss next.

Let us now compare the results for the dephasing times of the two used models. We
analyze the dependence of these times on the distance between the dot centers [d in the weak
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Figure 5.3: (Color online) Inter-dot coupling ∆ in units of the confinement frequency
ω0 = 1.181 · 1012 1/s for weak inter-dot coupling and stronger coupling (double-well) as
a function of the distance 2r between the dot centers. The distance a for the single dots
is here set to a = σ/

√
2 = 27 nm and T = 0.1 K. The dashed line depicts a distance

of d = 2r ≈ 200 nm similar to Ref. [63] and the dotted line stands for a distance of
d = 2r ≈ 240 nm as guessed from Ref. [53].

coupling model, 2r for the quartic potential, Eq. (5.1)] with a fixed width σ of the Gaussian
wavefunction for the weak inter-dot coupling and a fixed distance a = aB/

√
2 representing

the Bohr radius aB for stronger coupling. We find in Figure 5.4 that for large distances 2r,
both models lead to the same qualitative behavior, i.e. the dephasing times are larger for
increasing 2r = d, but quantitatively both curves are quite different. For smaller distances
(and therefore larger couplings between the dots), not even the qualitative behavior is
similar. This can be explained by the diverging coupling ∆ for the weak coupling model
for small distances (see Figure 5.3). Also the dephasing time τφ seems to be monotonic for
the double-well potential in comparison to the weak coupling model.

5.4 Conclusion

Due to recent progess in the fabrication of small single-electron double quantum dots [63],
it is important to extend the theoretical analysis of electron-phonon coupling in double
quantum dots also to the regime of larger overlap between the dot wavefunctions or a
smaller distance between the dot centers. Since we suspected that the Gaussian approx-
imation is not always valid for the wavefunctions of the charge eigenstates in the double
quantum dot, we combined the true eigenfunctions from harmonic oscillator eigenfunctions
for a symmetric quartic double-well potential. Indeed we find that the coupling between
the dots in the weak coupling case and for the double-well potential behaves quite differ-
ently as a function of the distance between the dot centers. This also leads to a quite
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Figure 5.4: (Color online) Dephasing times in units of τ0 = 1 ns for weak inter-dot coupling
and stronger coupling (double-well) as a function of the distance 2r between the dot centers.
The distance a for the single dots is here set as a = σ/

√
2 = 27 nm and T = 0.1 K. The

dashed line depicts a distance of d = 2r ≈ 200 nm similar to Ref. [63] and the dotted line
stands for a distance of d = 2r ≈ 240 nm as guessed from Ref. [53].

different qualitative and quantitative behavior for the dephasing time as a function of this
distance. The result for the dephasing time τφ in the weak coupling model seems to be
unphysical, because the dephasing time diverges for small distances d = 2r. There should
still be a finite contribution to decoherence, even for smaller distances.

Whether electron-phonon coupling can explain the dephasing time of τφ = 1 ns that
has been observed experimentally, is not fully clear from this analysis (see Figure 5.4). On
first glance, it seems that the dephasing time due to electron-phonon coupling is larger
than originally thought. The problem is that the distances d = 2r and a = aB/

√
2 are

very crucial parameters for both models. Unfortunately, d = 2r has been guessed from
the sample figures in Refs. [53, 63]. Maybe the real distance between the dot centers is
smaller than assumed. This would probably again lead to a significant contribution of
electron-phonon coupling to the decoherence of the double quantum dot charge qubit.



Chapter 6

Intrinsic phonon decoherence and
quantum gates in coupled lateral
quantum dot charge qubits

More is different. – P.W. Anderson [144]

6.1 Introductory remarks

One important part of this thesis is dedicated to the decoherence properties of single charge
qubits in double quantum dot structures. As we found in Chapters 3 and 4, the influence
of cotunneling processes is rather small, provided that the tunneling rates between dots
and leads are small. The electron-phonon interaction, however, could still contribute to
the small dephasing time of τφ = 1 ns as we found it in Chapter 5.

This chapter deals with the influence of the electron-phonon coupling on two coupled
double quantum dot charge qubits. The decoherence properties and the gate quality factors
of quantum gates in (at least) two coupled qubits are most important, because the universal
quantum gates that are needed for quantum computation consist of one- and two-qubit
gates [12].

Our model is based on the work of Brandes et al. [122, 124, 133, 137], which has
originally been developed to explain an experiment by Fujisawa et al. [145], where spon-
taneous emission in double quantum dots has been observed. Another theoretical study of
this effect was given by Keil and Schoeller [138] using a real-time renormalization group
technique. Because these models only work for small couplings or large distances within a
charge qubit, we consider this case in our following work. A large distance between the two
dots forming one charge qubit means that the distance between the two dot centers should
be much larger than the width of the electron wavefunction in one dot. We assume that
these widths are identical for both dots in one charge qubit. The wavefunctions themselves
are assumed to be Gaussians.

The other ingredient for our work is the experience with coupled qubits in super-
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conducting designs [140, 146]. Similar numerical routines have been used for a different
physical system (with another Hamiltonian). The behavior of coupled solid state qubits is
a very crucial topic for the development of solid state quantum computation. The feasi-
bility of general concepts like quantum error correction [9] and decoherence-free subspaces
(DFS) [147, 148] should therefore be analyzed for condensed matter systems. The recent
application of DFS coding in superconducting flux qubits [149] is very promising.

The article firstly presents the model that is used. Here, we distinguish between one
common bath of phonons (one collective bath) to which both charge qubits couple and
two distinct (local, non-collective) baths of phonons, such that each charge qubit has an
own phononic bath. The two different spectral densities can be found due to symmetries
in the system. These spectral functions can be represented in terms of different order
multipole contributions. Then the calculation of Golden Rule transition rates is shown
with the result that most relaxation and dephasing rates are a bit larger than in the single
qubit case. An explanation of the gate quality factors fidelity, purity, quantum degree
and entanglement capability and also an analytical expression for the purity decay is given
next. In case of one common phononic bath, the decoherence properties and also the gate
quality factors for a controlled-NOT operation show better results than in the two-bath
case. In the end, we show that by reducing the coupling ∆ within the charge qubits, we
can reach the threshold of 10−4 deviation from the ideal gate quality factors, such that
efficient quantum error correction should be feasible [10]. This happens, because this type
of bath coupling is diagonal in the eigenbasis of the system Hamiltonian and phonons have
super-Ohmic spectral densities. Therefore, the gate quality of controlled-NOT operation
is only limited by the single-qubit Hadamard gates. This is an important result, because
the electron-phonon interaction is intrinsic to the setup and the material system.

6.2 Preprint

Below, the submitted preprint is attached.
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Intrinsic phonon decoherence and quantum gates in coupled lateral quantum dot

charge qubits

Markus J. Storcz,1, ∗ Udo Hartmann,1, † Sigmund Kohler,2 and Frank K. Wilhelm1
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Recent experiments by Hayashi et al. [Phys. Rev. Lett. 91, 226804 (2003)] demonstrate coherent
oscillations of a charge quantum bit (qubit) in laterally defined quantum dots. We study the intrinsic
electron-phonon decoherence and gate performance for the next step: a system of two coupled charge
qubits. The effective decoherence model contains properties of local as well as collective decoherence.
Decoherence channels can be classified by their multipole moments, which leads to different low-
energy spectra. It is shown that due to the super-Ohmic spectrum, the gate quality is limited by
the single-qubit Hadamard gates. It can be significantly improved, by using double-dots with weak
tunnel coupling.

PACS numbers: 03.67.Lx, 03.65.Yz, 73.21.La, 71.38.-k

I. INTRODUCTION

In recent years, the experimental progress in analyz-
ing transport properties in double quantum dots1 has
lead to the fabrication of double dot structures with only
one electron in the whole system2,3. This well-defined
situation permits, although it is strictly speaking not
necessary4, to use quantum dot systems as quantum bits
(qubits). In order to define qubits in lateral quantum
dot (QD) structures, the two degrees of freedom, spin
and charge, are naturally used. For spin qubits5, the in-
formation is encoded in the spin of a single electron in
one quantum dot, whereas for the charge qubit6,7,8 the
position of a single electron in a double dot system de-
fines the logical states. Similar ideas can also be applied
to charge states in Silicon donors9. Both realizations are
interconnected: interaction and read-out2 of spin qubits
are envisioned5 to be all-electrical and to make use of the
charge degree of freedom.

Although the promises of spin coherence in theory10

and in bulk measurements11 are tremendous in the long
run, it was the good accessibility of the charge degrees of
freedom which lead to a recent break-through4, namely
the demonstration of coherent oscillations in a quantum
dot charge qubit. In this experiment, three relevant de-
coherence mechanisms for these charge qubits have been
pointed out: a cotunneling contribution, the electron-
phonon coupling, and 1/f -noise or charge noise in the
heterostructure defining the dots.

Recent theoretical results12 predict that the cotunnel-
ing contribution can be very small, provided that the cou-
pling between the dots and the connected leads is small.
Thus, cotunneling is not a fundamental limitation. This,
however, means that initialization and measurement pro-
tocols different from those of Ref. [4] are favorable2.

Other theoretical works13,14,15,16,17 already describe
the electron-phonon interaction for a single charge qubit
in a GaAs/AlGaAs heterostructure. Moreover, also elec-
tronic Nyquist noise in the gate voltages affects the qubit

system18. Note that the physics of the electron-phonon
coupling is different and less limiting in the unpolar ma-
terial Si19, where the piezo-electric interaction is absent.

II. MODEL

In this article, we analyze the decoherence due to the
electron-phonon coupling in GaAs, which is generally as-
sumed to be the dominant decoherence mechanism in a
coupled quantum-dot setting. The recent experimental
analysis shows that the temperature dependence of the
dephasing rate in the experiment4 can be modeled with
the Spin-Boson model and hence is compatible with this
assumption20. We develop a model along the lines of
Brandes et al.21,22 to describe the piezo-electric interac-
tion between electrons and phonons in lateral quantum
dots. Thereby, we assume the distance between the two
dots to be sufficiently large and the tunnel coupling ∆ to
be relatively small, which is a prerequisite for the validity
of the model. The Hamiltonian for a system of two dou-
ble dots with a tunnel-coupling within the double dots
and electrostatic coupling between them, see Fig. 1, can
be expressed as22

Ĥtotal = Ĥsys + Ĥbath + Ĥint, (1)

where

Ĥsys = −
∑

i=1,2

1

2
(εiσ̂z,i + ∆iσ̂x,i) − kσ̂z,1 ⊗ σ̂z,2 (2)

Ĥbath =
∑

q

h̄ωqc
†
qcq (3)

refer to the qubits and the heat bath, respectively. q is
the phonon wave number. The system-bath interaction
Hamiltonian Ĥint depends on details of the setup such as
the crystalline structure of the host semiconductor and
the dot wave functions. We will distinguish between the
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2

two extreme cases of long correlation length phonons re-
sulting in coupling of both qubits to a single phonon bath,
or two distinct phonon baths for short phonon correla-
tion length. The former case is more likely23 and ap-
plies to crystals which can be regarded as perfect and
linear over the size of the sample, whereas the latter
case describes systems that are vstrained or disordered
and double quantum dots in large geometrical separa-
tion. The correlation length has to be distinguished from
the wave length: The former indicates, over which dis-
tances the phase of the phonon wave is maintained,i.e.,
over which distance the description as a genuine stand-
ing wave applies at all, whereas the latter indicates the
internal length scale of the wave.

A. One common phonon bath

In the case of a single phononic bath with a very long
correlation length coupling to both charge qubits, Ĥint

can be written as

Ĥint =
∑

q

1

2

[

(αq,1 + βq,1 + αq,2 + βq,2)1̂1 ⊗ 1̂2 +

+(αq,1 − βq,1)σ̂z,1 ⊗ 1̂2 +

+(αq,2 − βq,2)1̂1 ⊗ σ̂z,2

]

(c†q + c−q) . (4)

The coefficients αq,i and βq,i describe the coupling of a
localized electron (one in each of the two double dot sys-
tems) to the phonon modes. They are given by

αq,i = λq〈l, i|ei~q~x|l, i〉, (5)

βq,i = λq〈r, i|ei~q~x|r, i〉, (6)

where the |l, i〉 and |r, i〉 denote the wavefunctions of
the electrons in the left or right dot of qubit i. We as-
sume these wavefunctions to be two-dimensional Gaus-
sians centered at the center of the dot, as sketched in
Figure 1. These states approximate the ground state in
the case of a parabolic potential and small overlap be-
tween the wavefunctions in adjacent dots. The coefficient
λq is derived from the crystal properties22.

Henceforth, we investigate the case of two identical
qubits. Due to the fact that the relevant distances are
arranged along the x-direction, we obtain the coupling
coefficients

αq,1 = λqe
iq(−l/2−d)e−q2σ2/4, (7)

βq,1 = λqe
−iql/2e−q2σ2/4, (8)

αq,2 = λqe
iql/2e−q2σ2/4, (9)

βq,2 = λqe
iq(l/2+d)e−q2σ2/4 . (10)

Here, q is the absolute value of the wavevector ~q. The
second exponential function in each line is the overlap
between the two Gaussian wavefunctions.

This two-qubit bath coupling Hamiltonian is quite
remarkable, as it does not fall into the two standard

glV
(1)

grV
(1)

glV
(2)

grV
(2)

QD
(1)

rQD
(1)

l QD
(2)

l QD
(2)

rdd l
σ σ σ σ

qubit 1 qubit 2

0

FIG. 1: (Colour online) Sketch of the two coupled identical
charge qubits realized in a lateral quantum dot structure. d =
100 nm is the distance of the dot centers in one qubit, l =
200 nm is the distance between the right dot center of qubit 1
and the left dot center of qubit 2. The width of the Gaussian
wavefunction of an electron in each dot is σ = 5 nm. The
values chosen for the distances d and l are slightly smaller
than in experimental realizations2,4 in order to provide a lower
bound for the decoherence times. In principle, there could be
tunneling processes between both qubits, i.e., the QDs two
and three in the chain, but we assume that the coupling is
pinched off by applying appropriate gate voltages. The gray
box between the qubits indicates that there is no tunneling
between the qubits.

categories usually treated in literature (see, e.g., Refs.
[24,25,26] and references therein): On the one hand,
there is clearly only one bath and each qubit couples
to the bath modes with matrix elements of the same
modulus, so the noise between the qubits is fully corre-
lated. On the other hand, the Hamiltonian does not obey
the familiar factorizing collective noise form ĤSB,coll =

X̂system ⊗ X̂bath. Such a form would lead to a high de-
gree of symmetry and thus protection from the noise
coupling24,25, however, the Hamiltonian Hint, eq. 4, can-
not be factorized in such a bilinear form. It is hence
intriguing to explore where in between these cases the
physics ends up to be. This is in particular important
for finally finding strategies to protect the qubits against
decoherence, and for estimating the scaling of decoher-
ence in macroscopic quantum computers.

In order to obtain the dynamics of the reduced density
matrix ρ for the coupled qubits, i.e., for the degrees of
freedom that remain after the environment is traced out,
we apply Bloch-Redfield theory27,28,29. It starts out from
the Liouville-von Neumann equation ih̄ρ̇ = [Ĥ, ρtot] for
the total density operator. A perturbational treatment
of the system-bath coupling Hamiltonian Ĥint results in
the master equation

ρ̇ = − i

h̄
[Ĥsys, ρ]−

1

h̄2

∫ ∞

0

dτ trB[Ĥint, [H̃int(−τ), ρ⊗ρB ]],

(11)

where ρB = exp(−βĤB)/Z denotes the equilibrium den-
sity matrix of the bath. Evaluating the trace over all
bath variables, trB, and decomposing the reduced density
operator into the eigenbasis of the unperturbed system
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Hamiltonian, we obtain28,30

ρ̇nm = −iωnmρnm −
∑

k,`

Rnmk`ρk`, (12)

where ωnm = En −Em. The first term on the right hand
side describes the unitary evolution and the Redfield re-
laxation tensor Rnmk` incorporates the decoherence ef-
fects. It is given by

Rnmk` = δ`m
∑

r

Γ
(+)
nrrk + δnk

∑

r

Γ
(−)
`rrm − Γ

(−)
`mnk −Γ

(+)
`mnk,

(13)
where the rates Γ(±) are determined by Golden Rule
expressions28,30, see Eqs. (20) and (21), below. The
Redfield tensor and the time evolution of the reduced
density matrix are evaluated numerically to determine
the decoherence properties of the system due to a weak
electron-phonon coupling. Note that in addition, Ohmic
electronic noise can be taken into account by employ-
ing the spectral function31 JΣ(ω) = JOhmic(ω) + J(ω),
where J(ω) contains only the phonon contribution. It
is also possible to take 1/f -noise in the quantum dot
system into account in the same way. The 1/f -noise
essentially determines the magnitude of the dephasing
part of the decoherence. Thus, it is in turn possible to
impose for the zero frequency component J(0) the ex-
perimental value of the dephasing rates or a value from
a microscopic model32. However, in many cases it turns
out to be non-Markovian and/or non-Gaussian, leading
to non-exponential decay, which can neither be described
by Bloch-Redfield theory nor parameterized by a single
rate.

In order to compute the rates, the electron-phonon in-
teraction Hamiltonian has first to be taken from the lo-
calized representation to the computational basis, which
is straightforward. To compute Bloch-Redfield rates, it
is necessary to rotate into the eigenbasis of the system.
After this basis change, the spectral densities J`mnk(ω)
are calculated along the lines of Ref. [22] as

J`mnk(ω) = 〈
(

B−1CB
)

`m

(

B−1CB
)

nk
〉q, (14)

where B is the matrix for the basis transformation from
the computational basis {|00〉, |01〉, |10〉, |11〉} to the
eigenbasis of the system and 〈·〉q denotes an averaging
over all phonon modes q with frequency ω. The matrix
C is diagonal in the computational basis, C = diag(αq,1−
βq,1 + αq,2 − βq,2, αq,1 − βq,1 + αq,2 − βq,2, αq,1 − βq,1 +
αq,2 − βq,2, αq,1 − βq,1 + αq,2 − βq,2).

The explicit derivation shows that it is most convenient
to split the total spectral function J`mnk(ω) [see Eq. (14)]
into odd and even components

J`mnk(ω) = e`mnkJe(ω) + o`mnkJo(ω) , (15)

where the prefactors e`mnk and o`mnk of the even/odd
part of the spectral function are matrix elements coming
from the basis change from the computational basis to
the eigenbasis of the system and

Je/o(ω) =
π

4

∑

q

|αq,1−βq,1±αq,2∓βq,2|2δ(ω−ωq). (16)

They evaluate to

Je,o(ω) =
πh̄ωg

4

[

2 − 2
ωd

ω
sin

(

ω

ωd

)

∓ ωl

ω
sin

(

ω

ωl

)

± 2
ωl+d

ω
sin

(

ω

ωl+d

)

∓ ωl+2d

ω
sin

(

ω

ωl+2d

)

]

e−ω2/2ω2

c , (17)

where g = 0.05 is the dimensionless electron-phonon cou-
pling strength for the commonly used material GaAs21,22

and cS the speed of sound. The different frequen-
cies represent the distances in the system: ωd = cs/d,
ωl = cs/l, ωd+l = cs/(d + l) and ω2d+l = cs/(2d + l),
and ωc = cs/σ. This structure can be understood as fol-
lows: The electron-phonon interaction averages out if the
phonons are rapidly oscillating within a dot, i.e. if the
wavelength is much shorter than the dot size — this pro-
vides the high-frequency cutoff at ωc. On the other hand,
long-wavelength phonons do not contribute to decoher-
ence between dots i and j, if the wavelength is much
longer than their separation because then, the energy
shift induced by the phonon displacement will only lead
to a global phase. Furthermore, we can approximate the

leading order at low frequencies as

Je(ω) =
2πh̄gd2

3c2s
ω3 + O(ω5), (18)

Jo(ω) =
πh̄g(l2d2 + 2ld3 + d4)

10c4s
ω5 + O(ω7). (19)

This different power-laws ω3 to ω5 can be understood
physically as illustrated in Figure 2. “Even” terms are
the natural extension of the one-qubit electron-phonon
coupling, adding up coherently between the two dots.
In the “odd” channel, the energy offset induced in one
qubit is, for long wavelengths, cancelled by the offset in-
duced in the other qubit. Thus, shorter wavelenghts are
required for finding a remaining net effect. An alterna-
tive point of view is the following: The distribution of
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qubit 1 qubit 2

qubit 2qubit 1

even contribution

odd contribution

FIG. 2: Illustration of the even (top) and odd (bottom) con-
tributions to the total rates. Filled circles indicate occupied
dots. For long-wavelength modes, the energy shifts induced
by underlying phonons in the two dots add up coherently in
the even case but cancel in the odd case. Note, that moving
charges from the black to the white dots changes the dipole
moment in the even but not in the odd case.
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FIG. 3: (Colour online) Spectral functions Je,o(ω) in the case
of one common phonon bath for the fixed parameters cs =
5000 m/s, g = 0.05, d = 100 nm, l = 200 nm and σ = 5 nm.
Inset: zoom for small frequencies.

the two charges can be parameterized by a dipole and
a quadrupole moment. The “even” channel couples to
the dipole moment of the charge configuration similar to
the one-qubit case. The “odd” channel couples to the
quadrupole moment alone (see Figure 2). Thus, it re-
quires shorter wavelengths and consequently is strongly
supressed at low frequencies. This explains the different
low-frequency behavior illustrated for realistic parame-
ters in Figure 3. Thus, we can conclude that for small
frequencies the odd processes are suppressed by symme-
try — even beyond the single-dot supression and the sup-
pression of asymmetric processes.

With these expressions for the spectral densities, one
can proceed as in Ref. [26] and determine the rates that
constitute the Redfield tensor to read

Γ
(+)
`mnk =

J`mnk(ωnk)

2h̄

[

coth

(

h̄ωnk

2kBT

)

− 1

]

, (20)

Γ
(−)
`mnk =

J`mnk(ω`m)

2h̄

[

coth

(

h̄ω`m

2kBT

)

+ 1

]

. (21)

For ωij → 0, these rates vanish due to the super-Ohmic
form of the bath spectral function. From this, we find the
time evolution of the coupled qubit system and finally
also the gate quality factors.

B. Two distinct phonon baths

When each qubit is coupled to its own phononic bath,
the part of the Hamiltonian that describes the interaction
with the environment Hint is given by

Ĥint =
∑

q1

1

2

[

(αq1
+ βq1

)1̂1 + (αq1
− βq1

)σ̂z,1

]

×(c†q1
+ c−q1

) ⊗ 1̂2 +

+
∑

q2

1

2

[

(αq2
+ βq2

)1̂2 + (αq2
− βq2

)σ̂z,2

]

×(c†q2
+ c−q2

) ⊗ 1̂1 . (22)

This scenario can be realized in different ways: One can
split the crystal into two pieces by an etched trench. Al-
ternatively, if there is lattice disorder and/or strong non-
linear effects, the phonons between the dots may become
uncorrelated.

The calculation of the coupling coefficients works in a
similar way, but there are two different indices q1 and q2
to represent the phononic baths of each qubit

αq1
= λq1

eiq1(−l/2−d)e−q2

1
σ2/4, (23)

βq1
= λq1

e−iq1l/2e−q2

1
σ2/4, (24)

αq2
= λq2

eiq2l/2e−q2

2
σ2/4, (25)

βq2
= λq2

eiq2(l/2+d)e−q2

2
σ2/4 . (26)

The expression for the spectral functions J`mnk(ω)
turns out to be exactly the same as the one in the last
section with the only difference that instead of αq,i, the
coupling between electrons and phonons is now expressed
as αqi

(with i = 1, 2 for both qubits). Therefore, in or-
der to obtain the spectral density J`mnk(ω), one has to
average over two distinct baths, i.e.

J`mnk(ω) = 〈
(

B−1CB
)

`m

(

B−1CB
)

nk
〉q1,q2

. (27)

Again, we find two different functions that we name in
the same way as in the previous section, Je(ω) and Jo(ω),
which are given by
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Je,o(ω) =
πh̄ωg

4

[

2 − 2
ωd

ω
sin

(

ω

ωd

)

∓ 2

(

ω l
2

ω
sin

(

ω

ω l
2

)

−
ωd+ l

2

ω
sin

(

ω

ωd+ l
2

))2 ]

e−ω2/2ω2

c . (28)
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FIG. 4: (Colour online) Spectral functions Je,o(ω) in the case
of two distinct phonon baths for the fixed parameters cs =
5000 m/s, g = 0.05, d = 100 nm, l = 200 nm and σ = 5 nm.
Inset: magnification for small frequencies.

The prefactors from the basis change also enter the ex-
pressions for the rates in the same way as in the last
section. The spectral functions Je,o(ω) are plotted in
Figure 4; the inset depicts the proportionality to ω3 for
small frequencies.

III. GOLDEN RULE RATES

We proceed as in Ref. [26] and determine the Golden
rule rates that govern the Redfield tensor. Thereby, we
find both the time evolution of the coupled system and
the gate quality factors.

Let us first discuss the impact of this particular bath
coupling on the dephasing and relaxation rates. The de-
coherence rates, i.e., the relaxation and dephasing rates,
are defined according to ΓR = −

∑

n Λn, where Λn are
the eigenvalues of the matrix composed of the elements
Rn,n,m,m, n,m = 1, . . . , 4, and Γϕnm

= −ReRn,m,n,m

for non-degenerate levels |ωnm| > |Rn,m,n,m| and in
the absence of Liouvillian degeneracy, |ωnm − ωkl| >
|Ra,b,c,d| a, b, c, d,∈ {k, l,m, n}, respectively31.

As a reference point, we study the rates in the uncou-
pled case. In this case, and in the absence of degeneracies
between the qubits, there is a clear selection rule that the
environment only leads to single-qubit processes, i.e., de-
coherence can be treated at completely separate footing.
As a result, all rates are identical between the qubits. To
make this obvious, we rewrite the original Hamiltonian in

the one-bath case, combining Eq. (4) with eqs. (7)–(10)
as

Ĥint =
∑

q

[

− 2ie−q2σ2/4 sin

(

qd

2

)

(

e−iq(l+d)/2σ̂z,1 +

+eiq(l+d)/2σ̂z,2

)

+ E01̂

]

(

c†q + c−q

)

(29)

which — besides a phase factor which is meaningless for
single-qubit transitions — is identical to the standard
electron-phonon Hamiltonian for double dots22.

Figure 5 shows the temperature dependence of the en-
ergy relaxation rate ΓR and the two dephasing rates Γφ13

and Γφ24
compared to the single qubit relaxation and de-

phasing rates. In this notation, Γφij
is the rate at which a

superposition of energy eigenstates i and j is decays into
a classical mixture. We considered the following three
cases, characterized by values on the matrix element rel-
ative to a characteristic system energy scale Es: (a)
large difference of the εi and ∆i (i = 1, 2) between both
qubits and no coupling between the qubits (ε1 = ∆1 =
(1/40)Es, ε2 = ∆2 = −(21/40)Es and coupling energy
K = 0), (b) small asymmetry between the parameters
for both qubits and no coupling (ε1 = ∆1 = −(1/2)Es,
ε2 = ∆2 = −(21/40)Es and K = 0), and (c) with-
out asymmetry between the qubits and a rather strong
coupling between the qubits (ε1 = ∆1 = −(1/2)Es,
ε2 = ∆2 = −(1/2)Es and K = 10Es). One generally
would expect a different value of the distance between
the dot centers in the qubits d, when the tunneling cou-
pling is varied. However, in our case of the dot wave-
functions which overlap only in their Gaussian tails, this
effect is very small (below 1 nm for a change in the tun-
neling amplitude ∆ of approximately ∼ (1/2)Es) for the
lengthscales that we are considering. Note, that in Ref.
3 a substantial change of ∆ over more than an order of
magnitude was obtained experimentally by a rather mild
adjustment of the gate voltage, so it is consistent that a
small change of ∆ can be achieved by a tiny adjustment.
Therefore the value d = 100 nm is used for the electron-
phonon coupling encoded in Je and Jo in all cases.

For case (a), we find that all rates are for all temper-
atures larger than the single qubit rates, as one would
expect33. In more detail, for the single bath case, the
ratio of the relaxation rates is approximately 1.9, the ra-
tio of the single-qubit dephasing rate and the two-qubit
dephasing rate Γφ24

is around 0.9 and for the dephasing
rate Γφ13

, the ratio is 1.0. The behaviour of the even
and odd parts of the spectral function in the single bath
case can be explained from the spectral function Fig. 3,
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FIG. 5: (Colour online) Temperature dependence of the relaxation and dephasing rates normalized by the single-qubit relaxation
and dephasing rates. The two-qubit relaxation rate is given by the trace of the relaxation part of the Redfield tensor in secular
approximation. The energy scales for the two-qubit transitions 1 ↔ 3 and 2 ↔ 4 are comparable to the single qubit energy scale,
the characteristic qubit energies are Es = (1/8) GHz. The different cases are (a) ε1 = ∆1 = (1/40)Es, ε2 = ∆2 = −(21/40)Es,
and coupling energy K = 0, (b) ε1 = ∆1 = −(1/2)Es, ε2 = ∆2 = −(21/40)Es, and K = 0), and (c) ε1 = ∆1 = −(1/2)Es,
ε2 = ∆2 = −(1/2)Es and K = 10Es. Note that cases (a) and (b) model uncoupled qubits, especially for case (a) the
overall relaxation rate for the two-qubit system is approximately twice the single-qubit relaxation rate when calculated for the
dominating larger energy scale of the two-qubit system (ε2 = ∆2 = −(21/40)Es).

for small ω one finds that Jo < Je. For the case of large
frequencies, however, the even part of the spectral func-
tionincreases and even dominate beyond the threshold
ω >∼ ωd. Overall, it is found that in the case of a single-
bath the decoherence effects are significantly suppressed
compared to the two-bath scenario. For the two-bath
case, the ratios are for the relaxation rates approximately
3.9, for the dephasing rate Γφ24

around 1.9 and for the
dephasing rate Γφ13

it is 2.0. Note that for the two-bath
case Je < Jo always and for the case where both tun-
nel matrix elements in the Hamiltonian vanish, the rate
vanishes, too.

After decreasing the asymmetry between the two
qubits as in case (b), the rates decreased but are still
comparable with the single qubit rates, besides the last
dephasing rate Γφ24

. This can be understood, if one con-
siders the energy spectrum of the eigenvalues of the sys-
tem Hamiltonian. In cases (a) and (b) there is signifi-
cant difference between the qubits, so it is straightfor-
ward to map the two-qubit rates onto the corresponding
single qubit rates and they are largely determined by
single-qubit physics. In case (c), we consider a fully sym-
metric case in the qubit parameters, but with a finite
and large coupling between the qubits. This coupling
lifts the degeneracy but makes the rate a generic two-
qubit rate which belongs to a relatively robust transition
with small transition matrix elements for the single bath

case. At high temperatures, these symmetry-related ef-
fects wash out as discussed in Ref. [34]. However, the
high-temperature rates do not coincide with the single-
qubit rates, as the underlying energy scales are still dif-
ferent and in generally larger for the two-qubit situation.

Overall, the ratio of the two-qubit and single-qubit re-
laxation rates decreases for increasing temperature due
to the reduction of correlation effects in the double dot
system, besides case c), where a symmetry based on the
underlying Hamiltonian becomes important.

IV. QUANTUM GATE PERFORMANCE

For the characterization of the quantum gate perfor-
mance of this two-qubit system, it is necesssary to intro-
duce suitable quantifiers. Commonly, one employs the
four gate quality factors introduced in Ref. [35]; fidelity
F , purity P , quantum degree Q, and entanglement capa-
bility C to chararcterize a gate operation within a hostile
enviroment.

The fidelity, i.e., the overlap between the ideal prop-
agator and the simulated time evolution including the
decoherence effects, is defined as

F = 〈Ψin| Û †ρoutÛ |Ψin〉, (30)
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where the bar indicates an average over a set of 36 unen-
tangled input states |Ψin〉 = |ψi〉 |ψj〉, with i, j = 1, . . . , 6.
The 6 single-qubit states |ψi〉 are chosen such that they
are symmetrically distributed over the Bloch sphere,

|ψ1〉 = |0〉 , |ψ2〉 = |1〉 , |ψ3,...,6〉 =
|0〉 + eiφ |1〉√

2
(31)

where φ = 0, π/2, π, 3π/2. Here, Û is the ideal unitary
time evolution for the given gate, and ρ̂out is the reduced
density matrix resulting from the simulated time evolu-
tion. A perfect gate reaches a fidelity of unity. The purity
P measures the strength of the decoherence effects,

P = tr(ρ2
out). (32)

Again, the bar indicates the ensemble average. A pure
state returns unity and for a mixed state the purity can
drop to a minimum given by the inverse of the dimension
of the system Hilbert space, i.e. 1/4 in our case.

If the density operator ρ describes an almost pure
state, i.e., if the purity is always close to the ideal value
1, it is possible to estimate the purity loss during the gate
operation from its decay rate along the lines of Ref. [36].
Thereby, one first evaluates the decay of (d/dt)trρ2 for
an arbitrary pure qubit state ρ = |ψ〉〈ψ|. From the basis-
free version of the master equation (11), follows straight-
forwardly

d

dt
trρ2 = − 2

h̄2

∫ ∞

0

dτ trS+B[Ĥint, [H̃int(−τ), ρ⊗ ρB]]ρ.

(33)
By tracing out the bath variables, we obtain an expres-
sion that contains only qubit operators and bath corre-
lation functions. This depends on the state |ψ〉 via the
density operator. Performing the ensemble average over
all pure states as described in the Appendix A, we obtain

Ṗ =
2

h̄2(N + 1)

∫ ∞

0

dτ tr〈[Ĥint, H̃int(−τ)]+〉B,eq, (34)

where N = 4 denotes the dimension of the system Hilbert
space of the two qubits. We have used the fact that
trĤint = 0. Although the discrete and set of states em-
ployed in the numerical computation is obviously differ-
ent from the set of all pure states, we find that both
ensembles provide essentially the same results for the pu-
rity.

If the bath couples to a good quantum number, i.e.,
for [Ĥsys, Ĥint] = 0, the system operator contained in

the interaction picture operator H̃int(−τ) remains time-
independent. Then, the τ -integration in (34) is effectively
the Fourier transformation of the symmetrically ordered
bath correlation function in the limit of zero frequency.
Thus, we obtain

Ṗ = − 2

N + 1
lim
ω→0

∑

i

Ji(ω) coth
h̄ω

2kT
, (35)

where

Ji(ω) =
π

4

∑

q

|αq,i − βq,i|2δ(ω − ωq) (36)

denotes the spectral density of the coupling between
qubit i and the heat bath(s).

In the present case of a super-Ohmic bath, the limit
ω → 0 results for the coupling to a good quantum num-
ber in Ṗ = 0. This means that whenever the tunnel
coupling in the Hamiltonian (2) is switched off, i.e. for
∆1 = ∆2 = 0, the purity decay rate vanishes. Thus,
we can conclude that the significant purity loss for the
cnot operation studied below [cf. Eq. (41)], stems from
the Hadamard operation. This is remarkably different
from cases with other bath spectra: For an ohmic bath,
for which Ji(ω) ∝ ω, expresion (35) converges in the
limit ω → 0 to a finite value. By contrast, for a sub-
ohmic bath, this limit does not exist and, consequently,
the purity decay cannot be estimated by its decay rate.
During the stage of the Hadamard operation, ∆2 = ∆
while ∆1 = 0. Then, the interaction picture versions of
the qubit-bath coupling operators read

σ̃z,1(−τ) = σ̂z,1, (37)

σ̃z,2(−τ) = σ̂z,2 cos(∆τ/h̄) − σ̂y,2 sin(∆τ/h̄). (38)

In the case where both qubits couple to individual en-
vironments, the expression for the change of the purity
can be evaluated for each qubit separately. For qubit
2, we still have a coupling to a good quantum number,
while for qubit 1, the appearence of cos(∆τ/h̄) results in
a Fourier integral evaluated at the frequency ∆/h̄. Thus,
we finally obtain

Ṗ = −4kT

5
lim
ω→0

J1(ω)

h̄ω
− 1

5
J2(∆/h̄) coth

∆

2kT
. (39)

For the super-Ohmic bath under consideration [see eqs.
(18) and (19)], the first term in Eqn. (39) vanishes.

In the case of one common heat bath, the estimate of
the purity decay is calculated in the same way. The only
difference is that we have to consider, in addition, cross
terms of the type σ̂1,z ⊗ σ̂2,z , i.e. terms that contain
operators of different qubits. The contribution of these
terms, however, vanishes when performing the trace over
the bath variables in Eq. (34). Thus, we can conclude
that within this analytical estimate, the purity decay rate
is identical for both the individual bath model and the
common bath model.

The so-called quantum degree

Q = max
ρout,|Ψme〉

〈Ψme| ρout |Ψme〉 (40)

is the overlap of the state obtained after the simulated
gate operation and the maximally entangled Bell states.
Finally the entanglement capability C is defined as the
smallest eigenvalue of the density matrix resulting from
transposing the partial density matrix of one qubit. As
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FIG. 6: (Colour online) Temperature dependence of the deviation of the four gate quality factors from their ideal values for the
cnot gate. The decoherence due to phonons is taken into account. The black line shows the results for a single phonon bath
and the red line is for two phononic baths. The characteristic qubit energies are Es = 1/4 GHz and the tunnel amplitudes are
∆i = Es (i = 1, 2) due to the spacing of the double dots. In the curves for the deviation of the purity, we included lines for the
analytical expressions 1 from Eq. (34) and 2 from Eq. (39).

shown in Ref. [37], the non-negativity of this smallest
eigenvalue is a necessary condition for the separability of
the density matrix into two unentangled systems. The
entanglement capability approaches −0.5 for the ideal
cnot gate.

It has been shown that the controlled-NOT (cnot)
gate together with single-qubit operations is sufficient
for universal quantum computation. Here, we investi-
gate the decoherence during a cnot gate which generates
maximally entangled Bell states from unentangled input
states. In Figures 6 and 7 the simulated gate evolution in
the presence of phonon baths is shown. Using the system
Hamiltonian, the cnot gate can be implemented through
the following sequence of elementary quantum gates26,38

UCNOT = U
(2)
H exp

(

−iπ
4
σ̂z,1

)

exp
(

−iπ
4
σ̂z,2

)

×

× exp
(

−iπ
4
σ̂z,1σ̂z,2

)

exp
(

−iπ
2
σ̂z,1

)

U
(2)
H ,

(41)

where U
(2)
H denotes the Hadamard gate operation per-

formed on the second qubit. This gate sequence just
involves one two-qubit operation at step three. The pa-
rameters for the numerical calculations are given below

Figs. 6 and 7.

In Fig. 6, the gate quality factors for the case of a single
or two distinct phononic baths are shown. It is observed
that for the case of a single phonon bath they achieve
better values. This offset is due to the larger number
of non-vanishing matrix elements in the coupling of the
noise to the spin components for the two bath case. Here,
due to several non-commuting terms in the coupling to
the bath and the different Hamiltonians needed to per-
form the individual steps of the quantum gate, the gate
quality factors saturate when the temperature T is de-
creased. This happens at around T = Ts = 12mK corre-
sponding to Es = 1/4 GHz as the characteristic energy
scale.

Figure 7, depicts the same behaviour of the gate qual-
ity factors as in Figure 6 with the only difference that the
tunnel coupling ∆2 is smaller by a factor of 4 during the
Hadamard operation. The qualitative behavior is very
similar to that in Figure 6, but the deviation from the
ideal values for the gate quality factors is much smaller
and already fulfills the criterion of an allowed deviation of
10−4. The reduction of the tunnel amplitudes by a factor
4 corresponds to a very small change of the distance d in
the two qubits (namely, from 100.0 nm to 100.3 nm) ow-
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FIG. 7: (Colour online) Temperature dependence of the deviation of the four gate quality factors from their ideal values for
the cnot gate. The decoherence due to phonons is taken into account. The black line shows the results for a single phonon
bath and the red line is for two phonon baths. The characteristic qubit energies are Es = 1/4 GHz and the tunnel amplitude
during the Hadamard operation on the second qubit is ∆2 = 1/4Es, i.e., a factor 4 smaller than in Figure 6. In the curves for
the deviation of the purity, we included lines for the analytical expressions 1 from Eq. (34) and 2 from Eq. (39).

ing to the Gaussian shape of the electron wavefunctions,
provided their distance is sufficiently large22.

We have already mentioned that the phonon contri-
bution to decoherence still allows for the fidelity values
below the threshold 1 − F < 10−4 from Ref. [39]. For a
reliable quantum computer, however, such intrinsic de-
coherence mechanisms should beat the threshold at least
by an order of magnitude. This can be achieved as fol-
lows: As we have seen, the Hadamard gate is the step
limiting the performance as during the Hadamard the
system is vulnerable against spontaneous emission at a
rate γ ∝ E3, where E is the typical energy splitting of the
single qubit. The duration of the Hadamard, on the other
hand, scales as τ ∝ 1/E. Thus, the error probability and
the purity decay reduces to 1 − e−γτ ' γτ ∝ E2. Thus,
by making the Hadamard slower, i.e., by working with
small tunnel couplings between the dots, the gate perfor-
mance can be increased. This works until Ohmic noise
sources, electromagnetic noise on the gates and controls,
takes over. This is demonstrated nicely in Fig. 7, where
the cnot gate for a modified Hadamard opertation (on
the second qubit) with ∆2 = ε2 = (1/4)Es is depicted. It
is clearly observed that by decreasing the tunnel matrix
element and by increasing the evolution time the deco-

herence is reduced and the threshold for the gate quality
factors to allow universal quantum computation40 can be
achieved.

The gate quality of a CNOT under decoherence has
been studied in Refs. [26,38] for standard collective
and/or single-qubit noise in Ohmic environments. The
single-qubit case for charge qubits in GaAs has been stud-
ied in Ref. [17] with emphasis on non-Markovian effects.
Even in view of this, and in view of the emphasis of the
strong tunneling regime, that work arrives at the related
conclusion that intrinsic phonon decoherence in this sys-
tem can be limited. Please note, that the approximations
in the microscopic model give an upper bound of valid-
ity for the validity of effective Hamiltonians as studied
in Ref. [17] as descibed in Refs. [7,15,21,22]. The work
presented here is not affected by this restriction due to
the emphasis of the case of small tunnel coupling.

V. CONCLUSIONS

We have analyzed the influence of a phononic environ-
ment on four coupled quantum dots which represent two
charge qubits. The effective error model resulting from
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the microscopic Hamiltonian does not belong to the fa-
miliar classes of local or collective decoherence. It con-
tains a dipolar and quadrupolar contribution with super-
ohmic spectra at low frequencies, ω3 and ω5 respectively.
The resulting decoherence is an intrinsic limitation of any
gate performance. In particular, we have investigated
within a Bloch-Redfield theory the relevant rates and
the quality of a cnot gate operation. The two employed
models of coupling the qubits to individual heat baths
versus a common heat bath, respectively, yield quantita-
tive differences for the gate qualifiers. Still the qualitative
behavior is the same for both cases.

Within an analytical estimate for the purity loss, we
have found that the decoherence plays its role mainly
during the stage of the Hadamard operation. The physics
behind this is that during all the other stages, the bath
couples to the qubits via a good quantum number. Con-
sequently, during these stages, the decoherence rates are
dominated by the spectral density of the bath in the
limit of zero frequency which for the present case of a
super-ohmic bath vanishes. The results of our analyti-
cal estimate compare favorably with the results from a
numerical propagation.

The fact that on the one hand, the bath spectrum is
super-ohmic, while on the other hand, the Hadamard op-
eration is the part that is most sensitive to decoherence,
suggests to slow down the Hadamard operation by us-
ing a rather small tunnel coupling. Then, decoherence is
reduced by a factor that is larger than the extension of
the operation time. This finally results for the complete
gate operation in a reduced coherence loss. Thus, the
gate quality is significantly improved for dots with weak
tunnel coupling and can intrinsically meet the threshold
for quantum error correction.
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APPENDIX A: AVERAGE OVER ALL PURE

STATES

In this appendix, we derive formulas for the evalu-
ation of expressions of the type tr(ρA) and tr(ρAρB)
in an ensemble average over all pure states ρ = |ψ〉〈ψ|.
The state |ψ〉 is an element of an N -dimensional Hilbert
space. Decomposed into an arbitrary orthonormal basis
set {|n〉}n=1...N , it reads

|ψ〉 =
∑

n

cn|n〉, (A1)

where the only restriction imposed on the coefficients cn
is the normalization 〈ψ|ψ〉 =

∑

n |cn|2 = 1. Hence the
ensemble of pure states is fully described by the distri-

bution

P (c1, . . . , cN ) = γNδ(1 −
∑

n

|cn|2). (A2)

We emphasize that P (c1, . . . , cN ) is invariant under uni-
tary transformations of the state |ψ〉. The prefactor γN

is determined by the normalization
∫

d2c1 . . . d
2cN P (c1, . . . , cN ) = 1 (A3)

of the distribution, where
∫

d2c denotes integration over
the real and the imaginary part of c.

The computation of the ensemble averages of the coef-
ficients with the distribution (A2) is straightforward and
yields

cmc∗n =
1

N
δmn (A4)

cmc∗ncm′c∗n′ =
1

N(N + 1)
(δmnδm′n′ + δmn′δnm′). (A5)

Using these expressions, we consequently find for the en-
semble averages of the expressions tr(ρA) and tr(ρAρB)
the results

tr(ρA) = 〈ψ|A|ψ〉 =
trA

N
, (A6)

tr(ρAρB) = 〈ψ|A|ψ〉〈ψ|B|ψ〉 =
tr(A)tr(B) + tr(AB)

N(N + 1)
(A7)

which have been used for deriving the purity decay (33)
from Eq. (34).

While this averaging procedure is very convenient for
analytical calculations, the numerical propagation can be
performed with only a finite set of initial states. In the
present case, the averages are computed with the set of
36 states given after Eq. (30). In the present case, we
have justified numerically that both averaging procedures
yield the same results. Thus, it is interesting whether this
correspondence is exact.

For the case of one qubit, N = 2, the discrete set of
states is given by the states |ψ〉 = c1|1〉 + c2|2〉 where
(c1, c2) is chosen from the set of 6 vectors

(

1
0

)

,

(

0
1

)

,
1√
2

(

1
eiφ

)

, (A8)

where φ = 0, π/2, π, 3π/2. Computing the averages for
the states (A8) is now staightforward and shows that
this discrete sample also fulfills the relations (A4) and
(A5). Thus, we can conclude that for the computation of
averages, both the discrete and the continuous sample.

For more than one qubit, however, arises a difference:
While the sample of all pure states also contains entan-
gled states, these are by construction excluded from set
of direct products of the 6 one-qubit states (A8). Still
our numerical results indicate that the different samples
practically result in the same averages.
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Chapter 7

Strong coupling of a qubit to shot
noise

7.1 Introductory remarks

As already stated in the DiVincenzo criteria [16, 17], a state-specific measurement is needed
for quantum computation. Single shot measurements that determine the state of a qubit in
just one measurement are very desirable, because one does not need to extract information
from the statistics of a whole set of measurements.

To realize such a measurement, usually a strong interaction between the qubit and
its detector is needed [150, 151]. For the case of the double quantum dot charge qubit,
already a lot of work has been done [152–156]. These articles, however, deal mostly with
the continuous measurement of charges in a (double) quantum dot, which are only weakly
coupled to a detector. The detector should be very sensitive to small variations of charges,
i.e. a change in the occupation of electrons on a quantum dot should be observable. This
requirement is fulfilled by measurement devices based on quantum point contacts (QPCs)
[54, 63] or radio-frequency single electron transistors (rf-SETs) [157].

In contrast to the earlier works mentioned above, we apply a nonperturbative approach
in the coupling between the qubit and its detector, therefore a description of a strong
measurement process should in principle be realizable by this. We must, however, be careful
about the key assumptions that we use, namely: i) the fluctuations in the detector can be
described by a Gaussian spectral function and ii) the noninteracting blip approximation
(NIBA) [134, 135] has to be valid. In diagrammatic terms, NIBA only sums up the diagrams
with one loop or less. It is furthermore perturbative in the correlation, but not in the
coupling. It has been shown that NIBA works very successfully in the Spin-Boson model
[134, 135].

The noise spectrum of the detector is of central importance, because the fluctuations
in the detector lead to a decay of coherent oscillations in the charge qubit. We assume
for the QPC the non-symmetrized noise spectrum as it has been determined by Aguado
and Kouwenhoven [158] via a scattering state approach. For the rf-SET, we took the
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“orthodox” SET theory expression [157, 159].
An important parameter is the coupling between the qubit and its detector. A tran-

simpedance |Z|2 ' κ2R2
K between a double quantum dot and QPC can be found in

Ref. [158] from an approximation of a circuit analysis. κ is a dimensionless parameter
that controls the strength of the coupling in units of the quantum resistance RK . The cou-
pling strength κ for an experimental setup can be found by a backaction measurement as
it is presented in Chapter 8, where noise in the QPC induces additional transitions in the
stationary current through a single quantum dot. From fits of a theoretical model (based
on photon assisted tunneling) to the experimental data, one can find the transition rates
for higher discrete states in the dot and the strength of the coupling between the quantum
dot and the QPC. This coupling strength can be enhanced by increasing the magnetic field
that is applied perpendicular to the sample (see Chapter 8). An even larger coupling be-
tween the qubit and its detector seems to be more likely in the case of an rf-SET, therefore
we also introduced the dimensionless coupling κ there.

In our preprint, we discuss the strong coupling of a charge qubit to shot noise in the
QPC in a classical regime for low frequencies and in a quantum regime for low temperatures.
In the classical case, we find the full dynamics of the expectation value of σ̂z of the qubit
(i.e. the position of the electron in the double quantum dot). In the quantum case, we
restrict ourselves to the coherent part of the dynamics. For the rf-SET, only the classical
case is considered with a similar qualitative result than in the classical case of a QPC
coupled to the qubit. In the classical case, one always finds decaying oscillations, whereas
in the quantum case, the oscillations can completely vanish for a certain regime of QPC
transmissions. This can also be understood as the onset of the dissipative quantum phase
transition from a coherently oscillating to a fully localized system. The dissipative quantum
phase transition has been discovered in the beginning of the 1980s by several authors in
the field of macroscopic quantum tunneling [160–163]. In the unbiased case (ε = 0), one
finds for an Ohmic Spin-Boson model with a dimensionless coupling α to the environment
and zero temperature the following regimes [134]: 0 < α < 1/2 damped oscillations with
an incoherent background, α = 1/2 exponential decay (Toulouse limit), 1/2 < α < 1
incoherent relaxation, and α > 1 localization. The quantum phase transition occurs there
at α = 1, for smaller α coherent or incoherent decay happens, whereas for α > 1 the
state is fully localized. This point can also be understood as the vanishing of the effective
coupling ∆eff → 0 [151]. A similar behavior is also found in our work, where the decay
rate for the exponential decay vanishes for large coupling κ between qubit and QPC. This
behavior competes with the effect of the “hot” noise temperature that is regulated by the
QPC bias voltage.

Some technical details that are not available in the preprint are presented in Ap-
pendix D.

7.2 Preprint

Below, the submitted preprint can be found.
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Strong coupling of a qubit to shot noise

Udo Hartmann∗ and Frank K. Wilhelm
Physics Department, Arnold Sommerfeld Center for Theoretical Physics, and Center for NanoScience,

Ludwig-Maximilians-Universität München, Theresienstr. 37, D-80333 München, Germany

We perform a nonperturbative analysis of a charge qubit in a double quantum dot structure
coupled to its detector. We show that strong detector-dot interaction tends to slow down and halt
coherent oscillations. The transitions to a classical and a low-temperature quantum overdamping
(Zeno) regime are studied. In the latter, the physics of the dissipative phase transition competes
with the effective shot noise.

PACS numbers: 03.67.Lx, 05.40.-a,73.21.La,72.70.+m

The study of fluctuations and noise provide deep in-
sights into quantum processes in systems with many de-
grees of freedom. If coupled to a few-level system such
as a qubit, fluctuations usually lead to destabilization of
general qubit states and induce decoherence and energy
relaxation. One important manifestation is the back-
action of detection on qubits [1]. This topic has been
extensively studied in the regime of weak coupling be-
tween qubit and noise source [2]. It has been shown that
the qubit dephases into a mixture of qubit eigenstates
(dephasing), whose classical probabilities thermalize to
the noise temperature at a longer time scale. Meso-
scopic charge detectors such as quantum point contacts
(QPCs) [3] and radio-frequency single electron transistors
(rf-SETs) [4], whose low-temperature noise is shot noise
[5, 6], are particular powerful detectors as they provide
high resolution [7] and potentially reach the quantum
limit. A particular attractive regime for qubit applica-
tions is the QND regime, realized if the qubit Hamilto-
nian and the qubit-detector coupling commute [1, 8].

We study a quantum point contact potentially strongly
coupled to the coordinate (left/right) of a double quan-
tum dot charge qubit [9, 10] by a nonperturbative ap-
proach involving the Gaussian and noninteracting blip
approximations. We analyze the qubit at the charge de-
generacy point, where the two lowest energy eigenstates
are delocalized between the qubits. In the weak coupling
regime, low-temperature relaxation would thus always
delocalize charge. We show that, in strong coupling, the
qubit state gets localized in one of the dots. Localization
is manifest by a suppression of both the coherent oscilla-
tions and the incoherent tunneling rate. This “freezing”
of the state also applies a high bias and can e.g. lock an
excited state. Thus, in the strong coupling regime, the
environment naturally pushes the physics to the QND
limit even if the bare Hamiltonian is not QND. We point
out the analogy of this physics to the case of the dissipa-
tive phase transition in oscillator bath models [11], which
in the QPC competes with the nonequilibrium induced
by the voltage driving the shot noise.

We consider the case of a degenerate two-state system
(TSS), realized by the charge states in a double quantum
dot structure (see Figure 1). These charge can be read

QPC

Dot Dot

rf−SET

FIG. 1: Schematic view of the double dot system analyzed
see e.g. Refs. [3, 4]. The QPC and rf-SET detectors can be
used alternatively, both options are discussed in the paper.

out by the current through a nearby quantum point con-
tact. The Hamiltonian for the TSS with time-dependent
fluctuation ε̃(t) reads

Hsys =
h̄

2

(

ε̃(t) ∆
∆ −ε̃(t)

)

→ H̃sys =
h̄∆

2

(

0 eiφ

e−iφ 0

)

.

(1)
In the last step of eq. (1), we applied a Polaron trans-
formation [12] introducing the fluctuating phase φ =
∫ t

dt′ε̃(t′), with ε̃(t) = ε+δε(t), for the tunneling matrix
elements in the qubit. The microscopic foundation of the
noise term δε(t) for a QPC is given in Refs. [5, 13] and
for an SET in Refs. [14, 15, 16, 17].

Without loss of generality, we assume 〈σ̂z(0)〉 = 1. We
can now formally solve the Liouville equation. The ex-
pectation value of σ̂z , the difference of occupation prob-
abilities of the dots, satisfies a closed equation

〈 ˙̂σz(t)〉 = −∆2

t
∫

0

dt′ cos [ε(t − t′)] 〈eiδφ(t)e−iδφ(t′)〉〈σ̂z(t′)〉

= −∆2

t
∫

0

dt′ cos [ε(t − t′)] eJ(t−t′)〈σ̂z(t
′)〉, (2)

where the second line of eq. (2) has been derived by as-
suming that the noise represented by J(t− t′) is station-
ary. This procedure is analogous to the noninteracting
blip approximation (NIBA) of the path-integral solution
of the Spin-Boson model [11, 18]. This automatically in-
cludes a Gaussian approximation to the shot noise [5].
This approach is nonperturbative in φ and a good ap-
proximation in the two cases ε = 0 and |ε| � |∆|.
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2

We start with the charge-degeneracy case ε = 0. Here,
we can solve eq. (2) in Laplace space and find

L [〈σ̂z(t)〉] =
1

s + Ξ(s)
, (3)

with the Laplace-transformed self-energy Ξ(s) =

∆2
∞
∫

0

dte−steJ(t). The phase correlation function J(t) as

seen by the dots reads [5]

J(t) =
2π

h̄RK

∞
∫

−∞

dω
|Z(ω)|2

ω2
SI(ω)

(

eiωt − 1
)

, (4)

where SI(ω) is the full current noise in the QPC that for
sufficient environmental impedance is given [5] by

SI(ω) =
4

RK

N
∑

m

Dm(1 − Dm)

{

h̄ω + eV

1 − eβ(h̄ω+eV )
+

+
h̄ω − eV

1 − e−β(h̄ω−eV )

}

+
4

RK

N
∑

m

D2
m

2h̄ω

1 − e−βh̄ω

(5)

and the transimpedance Z(ω) between qubit and point
contact. In eq. (5), V is the bias voltage of the QPC, RK

is the quantum resistance, and Dm is the transmission
eigenvalue of the mth conductance channel.

Semiclassical limit: We now discuss the resulting dy-
namics in a number of limiting cases. We start by
first taking the limit ω → 0. This corresponds to
h̄∆, h̄ε � eV, kBT , i.e. the qubit probes the shot
noise at energy scales much lower than its internal ones.
Here, the noise expression [eq. (5)] becomes frequency
independent [6]. We can then compute the semiclas-
sical spectral function Jc(t) = −γct. Here, we have
assumed a frequency-independent transimpedance con-
trolled by a dimensionless parameter κ, |Z(ω)|2 ≈ κ2R2

K

and γc = 2π2κ2RKSI(0) with SI(0) = 4
RK

N
∑

m
Dm(1 −

Dm)eV coth
(

βeV
2

)

+ 4
RK

N
∑

m
D2

m
2
β . The self-energy is then

readily calculated and analytical, so we can go back from
Laplace to real time and obtain

〈σ̂z(t)〉 =

[

cos (ωeff,ct) +
γc

2ωeff,c
sin (ωeff,ct)

]

e−
γc
2

t, (6)

where ωeff,c =

√

∆2 −
γ2

c

4 . We observe that the coher-

ent oscillations of the qubit decay on a scale γ−1
c and

get slowed down. At γc = 2∆, the damping becomes
critical and the oscillations disappear, ending up with a
purely exponential overdamped regime at γc > 2∆. This
crossover corresponds to the classical overdamping of a
harmonic oscillator. Even in the overdamped regime, the

qubit decays exponentially to 〈σ̂z(t)〉 → 0 at long times,
e.g. it gets completely mixed by the shot noise, whose
noise temperature is high kBTnoise ' max{eV, kBT } �
h̄∆. Note that it is possible to discuss the overdamped
regime, where γc is not a small parameter and our theory
is also non-Markovian, see eq. (2), capturing the neces-
sary time-correlations arising in strong coupling.

0 1 2 3 4 5

∆ t

-1

-0.5

0

0.5

1

<
σ z(t

)>

eV/h∆ = 1
eV/h∆ = 10
eV/h∆ = 100
eV/h∆ = 1000

0 1 2 3 4 5
-1

-0.5

0

0.5

1

D = 0.1
D = 0.2
D = 0.3
D = 0.4
D = 0.5

^

FIG. 2: Semiclassical limit: expectation value 〈σ̂z(t)〉 as a
function of time and varied bias voltages V at ε = 0. The
other parameters are T = 0.1 K, D = 0.1, ∆ = 1.524 ·109 1/s,
and κ = 0.02. Inset: as a function of time and the QPC
transmission D with fixed QPC bias voltage eV = 100 h̄∆.

Figure 2 shows the resulting dynamics in the one-
channel case. With increasing bias voltage V over the
QPC, the expectation value 〈σ̂z(t)〉 drops down quite
fast. The transmission D of the QPC has also an impor-
tant impact on the stability of the oscillations of 〈σ̂z(t)〉
(see inset of Figure 2). At D = 0.5, the expression for
SI(0) has a maximum, therefore the oscillations are there
maximally suppressed. SI(0) represents the shot noise of
the QPC in the low frequency regime [19]. The more
noise the QPC provides, the quicker the oscillations de-
cay. Note that changes in the QPC transmissions (and
therefore the Fano factor) do not play any role other than
entering the total noise level.

Quantum limit: Now, we let T → 0 and leave ω arbi-
trary. SI(ω) reads in this limit

SI(ω) =
4

RK

[

N
∑

m

Dm(1 − Dm)
{

(h̄ω + eV ) θ(h̄ω + eV ) +

+ (h̄ω − eV ) θ(h̄ω − eV )
}

+

N
∑

m

D2
m2h̄ωθ(h̄ω)

]

.

(7)

This shape is dominated by two terms, which resem-
ble the Ohmic spectrum at low T , SΩ ∝ ωθ(ω) with
shifted origins of energy. For computing the quantum
correlation function Jq(t), an ultraviolet cutoff ωc has



7.2 Preprint 83

3

to be introduced, which physically originates either from
the finite bandwidth of the electronic bands in the mi-
croscopic Hamiltonian or from the high-frequency limi-
tations of the transimpedance Z(ω). We end up with the
long-time limit for Jq(t) applicable at h̄∆ � eV

Jq(t) = −α1 +α2 ln

[

(

eV

h̄

)F
1

ωc
tF−1

]

−γqt+ iα3. (8)

This holds for any number of channels, for simplicity we
concentrate on the single-channel case with a Fano factor
then is given by F = 1 − D, which we use from now on.
Here, we can introduce α2 = g = 16πκ2D, the dimen-
sionless conductance as seen by the qubit, α1 = gγD,
α3 = πg/2 and γq = πg(1 − D)eV/2h̄. The resulting
self-energy is now non-analytical

Ξ(s) = ∆2
eff

(s + γq)
gD−1

(

eV
h̄

)gD
eiπg/2, (9)

where we have introduced the effective tunnel splitting

∆2
eff = ∆2e−γgD

(

eV
h̄ωc

)g

Γ (−gD + 1). In our regime,

ωc � eV/h̄ � 1/t ' ∆, this expression resembles the
renormalized ∆ of the Spin-Boson model [18] and we
have ∆eff � ∆. This is a sign of massive entanglement
between system and detector [20, 21]. Note that simi-
lar to the adiabatic scaling treatment in Ref. [11], the
NIBA is compatible with forming entangled states be-
tween system and bath. This has been numerically con-
firmed, for the Spin-Boson model, in Ref. [20]. An elegant
approach to this system reflecting entanglement and use
of the measurement result in the perturbative regime has
been given in Ref. [22]. The main difference in our shot
noise case is that the infrared cutoff entering the renor-
malization and controlling the final expressions appears
to be V instead of ∆. In particular, ∆eff grows with eV ,
which indicates that nonequilibrium shot noise competes
with the Spin-Boson-like suppression.

The self-energy is analytical only at F = 1, which
corresponds to the no-noise case D = 0. Due to the
generally non-analytic self-energy, it is difficult to com-
pute the full real-time dynamics by back-transformation
to the time domain. The structure of the result will be
〈σ̂z(t)〉 = Pcut(t) + Pcoh(t) + Pincoh(t) [18]. For our case
of ε = 0, there is no incoherent exponential decay Pincoh.
Pcut is a nonexponential branch cut contribution. In the
following, we concentrate on the coherent part Pcoh(t),
given through the poles si = −γeff ± iωeff of Ξ with finite
imaginary part, and hence this leads to damped harmonic
oscillations with frequency ωeff and decay rate γeff .

Close to D = 0, we can characterize these poles per-
turbatively. We find a renormalized oscillation frequency

ωeff , namely ωeff = Re

(

√

∆2
p

(

1 + iπ
2 g

)

−
γ2

q

4

)

whereas

γeff =
γq

2 ∓ Im

(

√

∆2
p

(

1 + iπ
2 g

)

−
γ2

q

4

)

. Here, ∆2
p is de-

fined as ∆2
p = ∆2

(

1 + g ln
(

eV
h̄ωc

))

. For arbitrary F

or D, we can solve the pole equation numerically, see
Fig. 3. With the numerical results from Figure 3, one can
again calculate the Laplace back-transformation, where

the two residues of the kind a−1 =
esit(si+γq)

si(2−gD)+γq
have to

be summed up. This leads finally again to decaying os-
cillations as already mentioned above.

We see that at sufficiently strong coupling to the de-
tector, a finite Fano factor can lead to a complete sup-
pression of the coherent oscillations, whereas the decay
rate increases. Both these tendencies together show that
a finite Fano factor brings the system closer to charge
localization. In fact, for sufficient damping, we can tune
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∆

FIG. 3: Quantum limit: imaginary parts of the numerically
determined poles as a function of the QPC transmission D.
The other parameters are eV = 102

h̄∆, ωc = 1012 ∆. Inset:
real parts of the poles as a function of the QPC transmission
D.

the tunneling frequency all the way to zero by increasing
D. On the other hand, also γeff can become very small —
in these points the detector completely localizes the par-
ticle up to nonexponential contributions. At other values
of D, unlike the dissipative phase transition in the Spin-
Boson model, the hot electrons driving the shot noise
again drive the relaxation rate close to its bare value,
and thus this resembles the classical overdamping case.

This scenario is not limited to ε = 0. NIBA permits
to reliably study the opposite regime ε � ∆ as well. As
already shown in Refs. [11, 23], the resulting dynamics
is dominated by incoherent exponential relaxation dom-
inating over Pcoh and Pcut. The relaxation rate is

Γr = 2Re [Ξ(iε + 0)] = 2∆2
effRe

[

(iε + γq)
gD−1

(eV )gD
eiπg/2

]

.

(10)
This again demonstrates the slowdown (through ∆eff) of
the decay to the other dot due to the interaction with the
detector. Notably, this rate does not display standard
detailed balance at T = 0, rather, around ε = 0, the rate
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is smeared out on a scale of γq, reflecting the role of the
nonequilibrium shot noise temperature. We have plotted
this result in Figure 4.
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FIG. 4: Quantum limit: relaxation rate Γr as a function of the
QPC transmission D. The other parameters are ε = 10 ∆,
∆ = 1.524 · 109 1/s, eV = 102

h̄∆, ωc = 1012 ∆. Inset:
relaxation rate Γr as a function of the qubit bias ε. Other
parameters as above, but with D = 0.5.

Another view on this is that the effective size of the
noncommuting term between qubit and detector, given
by ∆eff , is reduced, hence the strong interaction brings
the effective Hamiltonian closer to a QND situation.

On the other hand, such dynamics is known as
the quantum Zeno effect. Note that unlike standard
derivations[1, 8, 24], this has been derived in a nonpertur-
bative way, which is consistent with the necessary strong
coupling and which retains the non-Markovian structure.

Summarizing the QPC results, we can observe that, on
the one hand, the system shows traces of the physics of
environment-induced localization, which competes with
classical overdamping by effectively ”hot” electrons at fi-
nite voltage and somewhat reinforced at finite Fano fac-
tor. This can be understood as follows: the dissipative
phase transition occurs when the environmental noise is
highly asymmetric in frequency and when the full band-
width plays a role. At high voltage, the asymmetry of
the shot noise spectrum is reduced [5]. In fact, the γqt
contribution in the correlation function Jq(t) resembles
the finite temperature term in the correlation function
of the Ohmic Spin-Boson model — both terms originate
from the zero-frequency part of the noise.

A similar analysis on back-action by strong coupling
of a QPC to a quantum device — there an Aharonov-
Bohm experiment [25] — has been done in Ref. [26]. That
work concentrates on a stationary situation and weak
hopping into the dot, whereas in our case the dots are not
connected to leads. The inter-dot interaction however is
strong and we concentrate on the real-time dynamics.

These results can be extended to shot noise sources

other than QPCs. In fact, it may today be quite challeng-
ing to reach κ-values high enough, such that slowdown
and localization can be observed, when the noise source
has only a few open channels. An attractive alternative
is given by readout using metallic SETs fabricated on an-
other sample layer [4], see Fig. 1. In these devices, there
is a number of rather opaque conductance channels.

In that case, we use the expression [14, 15, 16, 17] of the
voltage noise of the SET (only valid for small frequencies)

SV (ω, ωI) = 4
E2

SET

e2

4ωI

ω2 + 16ω2
I

, (11)

where ESET = e2

2CSET
is the charging energy of the SET

and ωI = I/e is the tunneling rate through the SET.
Then the final result for 〈σ̂z(t)〉 is again the same as in
eq.(6). The difference, of course, is that γc is now defined

as γc =
2π2κ2E2

SET

h̄RKe2ωI
. The full quantum mechanical analysis

in the low-temperature regime works along the same lines
as the QPC case but goes beyond the scope of this Letter.

We performed a nonperturbative analysis of the quan-
tum dynamics of a double quantum dot coupled to shot
noise. We analyze the crossover from under- to over-
damped oscillations in the classical case. In the quan-
tum case, we show that at strong coupling the oscillations
show the same behavior, competing with a critical slow-
down similar to the dissipative phase transition. This
can be interpreted as the onset of a Zeno effect.
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Chapter 8

A quantum dot as a high-frequency
shot noise detector

in collaboration with: Eugen Onac1, Franck Balestro1,2,
Laurens H. Willems van Beveren1, Yuli V. Nazarov1 and Leo P. Kouwenhoven1

1 Kavli Institute of NanoScience Delft, Delft University of Technology,
P.O. Box 5046, 2600 GA Delft, The Netherlands

2 Laboratoire de Magnétisme Louis Néel, CNRS, BP 166,
38042 Grenoble Cedex 9, France

8.1 Introductory remarks

We present an experimental realization of a quantum dot (QD), operated as a high-
frequency noise detector. This is demonstrated by measuring shot noise produced in a
nearby quantum point contact (QPC). Current fluctuations in the QPC ionize the QD
and are detected thereby. We investigate the dependence of detector signal on the QPC
transmission and voltage bias and observe that results are consistent with previous low-
frequency measurements. We also observe and explain a quantum threshold feature and a
saturation in the detector signal. This experimental and theoretical study is also relevant
in understanding the backaction of a QPC used as a charge detector. Older experimental
measurements of the noise of a QPC have been carried out with classical electronics and
only for low frequencies [164, 165], whereas we present a high-frequency measurement with
a quantum detector (a QD in this case).

8.2 Experimental discussion

On-chip noise detection schemes, where the device and the detector are capacitively cou-
pled using an on-chip circuit, can benefit from large bandwidths and the possibility of using
quantum detectors that are sensitive separately to the emission or absorption part of the
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spectrum [158, 166]. A larger bandwidth results in a better sensitivity and allows one to
study the quantum limit of noise. Here, the asymmetry between the occurrence probabil-
ity of emission and absorption processes becomes significant and leads to an asymmetric
spectrum. In this chapter, we investigate the transport through a QD under the influence
of high-frequency irradiation generated by a nearby QPC. The QPC current fluctuations
induce photo-ionization [74], taking the QD out of Coulomb blockade, and allowing there-
fore sequential tunneling through the excited state. By studying the transient current [167]
while changing the QPC parameters, we show that we can perform high-frequency shot
noise detection in the 20 to 250 GHz frequency range.

One can view the QPC as a charge detector [168] and in this context the experiment
provides information regarding the backaction [156, 169, 170] of the QPC when used as
an electrometer for QD devices. Here, we consider the QPC as a well-known noise source.
Indeed the granularity of the electrons and the stochastic nature of their transport lead to
unavoidable temporal fluctuations in the electrical current, i.e. shot noise [171], when the
QPC is driven out of equilibrium by applying an external bias. For un-correlated systems,
like vacuum diodes [172], noise is characterized by a Poissonian value of the power spectral
density, SI = 2eIdc. In the case of a QPC, correlations in the transport can be introduced
by the Pauli exclusion principle. This results in a suppression of noise and a spectral density
SI that is reduced below the Poissonian value. When the QPC is driven out of equilibrium,
i.e. by applying an electrochemical potential difference between the source and the drain
of the QPC, a net current will flow, if the QPC is not pinched off. At zero temperature
(kBT ¿ eVQPC) the stream of incident electrons is noiseless and shot noise, due to the
quantum partition, dominates. The electrons are either transmitted or reflected, depending
on the QPC transmission T , and SI = 2eIdcF , where F =

∑N
i=0 Ti(1− Ti)/

∑N
i=0 Ti is the

Fano factor and the summation is over transport channels with transmissions Ti. Shot
noise vanishes, if all the 1D quantum channels either fully transmit (Ti = 1) or reflect
(Ti = 0).

The QD and the QPC are defined in a GaAs/AlGaAs heterostructure, containing a
2DEG at 90 nm below the surface, with an electron density ns = 2.9 × 1011 cm−2. We
apply appropriate gate voltages such that we form a QD on the left and a QPC on the
right [Figure 8.1 (a)]. The lithographic size of the QD is about 250×250 nm2. Its charging
energy, derived from the spacing between Coulomb conductance peaks [Figure 8.1 (b)],
is EC = 1.3 meV. With the change of the gate voltage, the QPC manifests conductance
quantization [173] [Figure 8.1 (c)] that can be understood in terms of the Landauer formula
Gqpc = (2e2/h)

∑N
i=1 Ti.

We regard the QPC as a noise generator that can be ’switched’ ON or OFF by apply-
ing a voltage bias VQPC = VS1D1 and/or changing the QPC transmissions Ti. We measure
transport through the QD as a function of the plunger gate voltage under the influence
of the noise generator. Where mentioned, a magnetic field was applied, perpendicular to
the 2DEG. Stray capacitances in the measurement leads act as short circuits for the high
frequency signals and we use the impedance of the edge states as an insulation between
the source-detector part and the leads. In this way, the magnetic field enhances the cou-
pling between the source and the detector. We present in this chapter only measurements
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Figure 8.1: (a) Scanning electron micrograph of the gate structure defined on top of the
semiconductor heterostructure. The white dotted lines indicate the gates used in the
present experiment, defining a quantum dot on the left, and a quantum point contact on
the right. All the other gates are grounded. (b) Dot current as a function of the plunger
gate voltage for a voltage bias VS2D2 = 30 µV and at a B = 1.35 T magnetic field. (c)
QPC conductance, G, as a function of the gate voltage at B = 0 T. The gate voltage on
the separation gate is kept constant. The QPC is used as a noise generator and the QD as
a detector.
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performed using the configuration of Figure 8.1 (a). Measurements were also performed
using the opposite configuration, i.e. defining the QD on the right, and the QPC on the
left, with identical results. The experiment was performed in a dilution refrigerator, with
an effective electron temperature of 200 mK.

The measurements we present are done on a QD containing 10 electrons. This number
was measured using the QPC as a charge detector for the QD [168]. The voltage bias
across the QD (VS2D2 = 30 µV) is much smaller than the level spacing between the ground
state and the excited states of the QD. For the configuration in which we use the QD, these
energies are larger than 200 µeV. When the high-frequency noise generator is ’switched’
OFF (i.e. VS1D1 = 0 or the total QPC transmission T =

∑

i Ti has an integer value),
we measure current due to resonant tunneling through the ground state of the QD (see
Figure 8.1 (b) or Figure 8.2 (a) for T = 0). In this situation, current can only flow through
the QD when a charge state is positioned between the Fermi energies of the leads. When
the last occupied QD level is below both electrochemical potentials of the leads, first order
tunnel processes and the associated current are blocked by the Coulomb interaction.

However, if the noise generator is ’switched’ ON (i.e. when the QPC is set out of
equilibrium by applying a bias voltage), additional current peaks emerge in the Coulomb
blockade region. The amplitude of these peaks [labelled “1st es” and “2nd es” in Fig-
ure 8.2 (a)] depends on the QPC transmission and on the voltage applied to the QPC
[Figure 8.4 (a)]. Note that we also measured this effect when the QPC was current biased.

The additional peaks in the Coulomb blockade regime correspond, in energy, to the
excited states of the QD. These energies were determined from spectroscopy measurements
using a large QD bias voltage. The energy differences between the excited states (1st and
2nd) and the ground state [see Figure 8.2 (c)] are equal to ε01 = 245 µeV, respectively
ε02 = 580 µeV. The QPC gate voltage is adjusted during the QD measurement in order
to compensate for the capacitive coupling of the plunger gate to the QPC. This allows us
to have a well defined transmission T for the QPC, while measuring the QD. We detect a
current flowing through the 1st excited state of the QD for total QPC transmission going
from 0 to 2, and through the 2nd excited state when only the first QPC channel is open
for transport (0 < T < 1).

The data can be explained as follows. In the absence of noise, transport through the
excited state is blocked since Coulomb blockade prevents having electrons in both the
ground state and the excited state simultaneously. The appearance of transport peaks in
the Coulomb blockade region is due to a photo-ionization process induced by the high-
frequency shot noise generated by the QPC. Here, an electron in the ground state absorbs
enough energy such that it can leave the dot. Subsequently, a transient current flows
through the excited state, as long as the ground state stays empty [Figure 8.2 (c)]. This
results in the appearance of conductance peaks, whenever an excited state is between the
Fermi levels of the leads. This way, the current fluctuations through the QPC are converted
directly into a dc current, flowing through the excited state of the QD. The transient current
can be analyzed in order to obtain information regarding the high-frequency fluctuations.
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Figure 8.2: (a) Current through the QD, as a function of the plunger gate voltage, under
the influence of shot noise generated by the QPC. Measurements are presented for VS2D2 =
30 µV, VS1D1 = 1.27 mV and for different QPC transmissions. (b) QPC conductance versus
gate voltage. (c) Schematic representation of the processes that can lead to transport
through the first excited state of the QD. Measurements are performed in a perpendicular
magnetic field with B = 1.35 T.
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8.3 Theoretical considerations

For a theoretical description of our results, we first address the question of how the
noise couples to the QD. The conversion of QPC current fluctuations into voltage fluc-
tuations on the QD side is described by a circuit transimpedance [158] defined as |Z(ω)| =
√

SV (ω)/SI(ω), where SI(ω) is the spectral current density of noise generated by the QPC
and SV (ω) the power spectral density of voltage fluctuations at one barrier of the QD.
This can be expressed as |Z(ω)| ≈ |Z(0)| = κRK , where RK = e2/h = 25.8 kΩ is the
quantum resistance and κ is a dimensionless parameter describing the coupling between
different QPC channels and QD barriers. In the theory, we define four different κ coeffi-
cients depending on the channel involved in the QPC, and the barrier of the QD: κL,1 and
κL,2 are the coupling coefficients between the first respectively the second channel of the
QPC and the left barrier of the QD, and κR,1 and κR,2 describe the coupling of the QPC
channels to the right barrier. Experimentally, we can adjust the QD barriers in order to
have symmetric escape rates to the left and the right reservoirs. The absence of pumping
effects close to the Coulomb peaks [see Figure 8.2 (a)] indicates symmetric coupling for the
QD barriers κR = κL = κ. Thus, the only independent coupling parameters are κ1C 6= κ2C

corresponding to the first 2 QPC channels. As already discussed, a perpendicular magnetic
field can be used to increase the coupling parameter κ.

The second question we address is what kind of energies and cut-off frequencies are
involved in the photo-ionization process. In the low temperature limit, two energy scales
are important for the detection mechanism. First, the energy difference ε0i (i = 1, 2)
between the ground and the excited states of the QD is relevant, as the photo-ionization
process pumps an electron out from the ground state. This level spacing [see Figure 8.2 (c)]
sets a detector cut-off frequency νQD = ε0i/h, representing the minimum frequency that
can induce photo-ionization (the minimum energy that can be detected, assuming single
photon assisted tunneling (PAT) processes). The second relevant energy is the one provided
by the QPC bias. This gives the cut-off frequency for the noise generator νQPC = eVS1D1/h,
corresponding to the maximum frequency that can be emitted (for independent tunneling
events in the QPC). Thus, the frequencies contributing to the PAT process are in the
range [νQD,νQPC ]. For the measurements in Figure 8.2 (a), VS1D1 = 1.268 mV, which
corresponds to νQPC = 317 GHz, and, depending on the 1st or 2nd excited states, νQD is
equal to ε01/h = 59 GHz or ε02/h = 140 GHz. These set two different detection bandwidths
for the 1st and the 2nd excited state, leading to different amplitudes for the detector signal
(i.e. the transient current).

The theory considers PAT in a QD. Noise generated by the QPC induces potential
fluctuations between the QD energy levels and the electrochemical potentials in the leads.
These fluctuations modify the tunneling rates ΓL, ΓR between the QD and its source S2

and drain D2 leads. This change can be described using the theory of energy exchange with
the environment [174], where the photo-ionization probability can be written as P (E) =
1

πw
1

1+E2/w2 . This Lorentzian dependence on energy has a width (for the first transmission

channel) w = 8π2κ2T (1 − T )eVS1D1 [158] that includes the coupling coefficient as well as
the noise power emitted by the QPC.
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Figure 8.3: Amplitude of the current through the excited state of the QD as a function of
the QPC transmission. Measurements are performed at B = 1.35 T with VS2D2 = 30 µV
and VS1D1 = 1.268 mV. The current amplitude through the 2nd excited state (ε02 = 580
µeV) for 0 < T < 1, and through the 1st excited state (ε01 = 245 µeV) for 1 < T < 2 have
been multiplied by a factor of 5 for clarity. Inset: QD current as a function of the QD
energy for a QPC transmission T = 0.5. Experimental points are in good agreement with
the solid, theoretical curve. Note that we converted the plunger gate value in QD energy
for clarity.
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Using this theoretical model, we can fit the experimental results and obtain the param-
eters that characterize our system. We first extract the tunneling rate through the ground
state of the QD by fitting the Coulomb peak when the noise generator is ’switched’ OFF
(no additional peaks in the Coulomb blockade regime). We tune the system, by applying
appropriate gate voltages on the electrodes, in order to have a symmetric QD: the two
tunneling rates from QD to source (ΓL) and drain (ΓR) are equal. From the fit results a
value of ΓL = ΓR = 0.575 GHz. The electron temperature, the voltage across the QD and
across the QPC are known parameters, and are respectively equal to 200 mK, 30 µV, and
1.268 mV. In order to explain the additional peaks in the Coulomb blockade regime, and
the modulation of these peaks as a function of the QPC transmission, we introduce one
set of fitting parameters: the escape rates Γes

1 and Γes
2 of the first and the second excited

state, the coupling coefficients κ1C and κ2C to the first and the second channel of the QPC.
By using this set of four fitting parameters, we are able to obtain a good theoretical fit
for QD current dependence on the plunger gate voltage, in the presence of noise (see inset
of Figure 8.3). The resulting values for the excited states escape rates Γes

1 = 5.75 GHz,
Γes

2 = 4.035 GHz, and for the coupling coefficients κ1C = 1.67 × 10−2, κ2C = 4.83 × 10−3

are reasonable. The values for the escape rates of the excited states are in accordance with
previous experimental measurements [175]. The coupling coefficients are more difficult to
estimate and they depend strongly on the details of the electromagnetic environment (e.g.
on the geometry of the sample). There is one order of magnitude difference between the
coupling to the first and the second channel of the QPC. Indeed, the coupling from the
second channel is suppressed due to shunting provided by the first, conducting channel.

8.4 Comparison between experiment and theory

In Figure 8.3, we plot the current flowing through the 1st (black square) and the 2nd (gray
square) excited state of the QD as a function of the QPC transmission T . The points
represent the current amplitude of transport through excited states and are extracted
from measurements presented on Figure 8.2 (a). The QD detector signal is modulated by
changing the QPC transmission: shot noise vanishes for integer values (T = 1 or T = 2)
and is maximal for T = 0.5 and close to T = 1.4. The solid lines represent theoretical
calculated values by making use of the previous determined parameters. We note that one
set of fitting parameters can be used to describe the PAT signal dependence on both the
QD energy and the QPC noise power. In Figure 8.3, a factor 5 has been introduced in the
vertical scaling for the 2nd excited state, and also for the 1st excited state from T = 1 to 2,
for clarity. The suppression of the detector signal for these two cases was already discussed:
low amplitude of the 2nd excited state current is due to a smaller detection bandwidth,
while the noise generated by the second QPC channel is partly screened by the electrons
flowing through the first, ballistic channel. This is also the reason why it is less efficient to
use the QPC as an electrometer in this transmission range.

In Figure 8.4, we measure and theoretically compute the saturation of the current
through the first excited state as a function of VS1D1 . The plot presents the current am-
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Figure 8.4: (a) Theoretical dependence of the normalized amplitude for the current flow-
ing through the ground state and the first excited state of the QD as a function of the
QPC voltage bias. We use the parameters from the measurements at B = 1.35 T. (b)
Experimental values for the normalized amplitude of current flowing through the ground
and excited state as a function of the QPC current. Measurements performed at B = 2.6
T, with the QPC current biased at half transmission T = 0.5.
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plitude for the ground and the excited state, normalized to the amplitude of the Coulomb
peak in the absence of noise. We clearly see that the amplitude of the excited state in-
creases as a function of the QPC cut-off frequency νQPC , while the amplitude of the ground
state decreases.

A distinct quantum feature present in the experimental measurements is the existence
of a cut-off in the values of the QPC voltage bias [see Figure 8.4 (b)]. This corresponds to
the condition νQPC = νQD and represents the minimum QPC voltage bias for which the
detection bandwidth [νQD, νQPC ] exists. For smaller bias voltages, the emission side of the
QPC noise is zero at the frequencies ν > νQD where the QD detector is sensitive. The
theoretical results are obtained from a “classical”, frequency independent, expression for
shot noise and, subsequently, they do not show this cut-off. The noise cut-off frequency
associated with the bias ν = eVbias/h was already measured for the symmetric noise spec-
trum [176]. Here, we use a quantum detector that allows us to measure, for the first time,
the cut-off in the negative part of the spectrum.

At higher noise power, we measure a saturation for both amplitudes of current through
the excited and the ground state. This phenomenon can be understood as an equilibrium
that is reached in the system between PAT and QD relaxation processes.

8.5 Conclusion

In conclusion, we used a QD as an on-chip quantum detector to achieve, for the first time,
very high frequency (in the range [20-250] GHz) shot noise measurements. The measure-
ment process involves photo-ionization of the QD due to broadband noise, generated by
a nearby QPC. The detector signal shows a noise modulation as a function of the QPC
transmission, and is fully understood in the context of a PAT theory. Using this detection
technique, we measured the cut-off frequency eVQPC/h in the noise emitted by the QPC.
This was done by measuring a threshold frequency for the photo-ionization process, for a
specific QD excited state energy. The process can also be viewed as a backaction of the
QPC when used as a QD electrometer and could be an explanation of the dark count in
the single-shot readout of an individual electron spin in a quantum dot [175].
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Chapter 9

Background charge fluctuations and
1/f noise

As already mentioned in Chapter 2, the 1/f noise or charge noise due to impurities in a
bulk semiconductor seems to be very important to determine the decoherence properties
of the double quantum dot charge qubit. This was also a suggestion of Hayashi et al. in
their experimental paper [53].

The approaches that we will present in this chapter have been originally developed for
superconducting charge [32] and phase qubits [37]. But this does not imply a restriction on
the description of 1/f noise, because this kind of noise can also show up in semiconductor
structures as we discuss them in this thesis. We will mostly follow the recent review of
Paladino et al. [177] to present the basic ideas, dynamical decoupling and more advanced
techniques.

9.1 A microscopic model and basic properties

The 1/f noise or charge noise is assumed to be originated in the switching of so-called
quantum bistable fluctuators. These charge traps or background charges (BC) are impuri-
ties in a substrate or oxide layer that can trap and release an electron or hole and therefore
fluctuate between these two states (charge trapped or charge released).

The first description of such a background charge has been given by Bauernschmitt and
Nazarov in 1993 [178]. According to this and Ref. [177], we write the full Hamiltonian of
a charge qubit coupled to one impurity as

Htotal = Hqb +Himp +Hint, (9.1)

where Hqb is the qubit Hamiltonian

Hqb = −1

2
(εas σ̂z + ∆ σ̂x) , (9.2)
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Himp describes solely the impurity

Himp = εcb
†b+

∑

k

[

Tkc
†
kb+ h.c.

]

+
∑

k

εkc
†
kck, (9.3)

and Hint gives the interaction between impurity and qubit

Hint = −v
2
b†b σ̂z. (9.4)

The operators b† and b act on the localized level εc and create and destroy an electron
there. σ̂z and σ̂x are the Pauli matrix operators describing the qubit. The electron in the
impurity can also couple with an amplitude Tk to a band of electrons with energies εk, on
which the operators c†k and ck act. Another important scale is the so-called switching rate
γ of the impurity, which is defined as γ = 2πN (εc)|T |2, where |Tk|2 ≈ |T |2 and N is the
density of states in the band. The effect of the interaction between the charge qubit and
the impurity is an additional energy bias v.

For a whole set of impurities, the above equations can be generalized to

Htotal = Hqb +
∑

i

Himp,i −
1

2
Ê σ̂z, (9.5)

where Ê =
∑

i vib
†
ibi.

The standard way [179] to reproduce 1/f noise is to assume a distribution of the
switching rates γi via P (γi) ∝ 1

γi
for γi ∈ [γm, γM ], where γm is a minimum and γM a

maximum switching rate. In the relaxation regime of the BC, the total extra polarization
given by Ê is a classical stochastic process with a typical power spectral S(ω) =

∑

i Si(ω),
where

Si(ω) =
1

2
v2

i

(

1− δp2
) γi

γ2
i + ω2

. (9.6)

δp is here the thermal average of the difference in the populations of the two states of the
BC.

Since we are interested in the time evolution of the qubit with an influence from the
BC, one would usually write down a reduced density matrix for the qubit in the weak
coupling limit [135]. This would, however, only give rise to low order contributions in the
couplings vi, if one applies the Bloch-Redfield formalism. Heuristically, it is clear that the
dephasing rate Γ2 diverges for ω → 0 and a 1/f spectrum S(ω), because Γ2 ∝ S(0) (see
also below) [135], therefore also stronger coupled fluctuators should play an important role
for the dephasing rate Γ2. This has been formally shown in Ref. [109]. The standard weak
coupling approach is only valid, if vi ¿ γi, because the 1/f noise includes fluctuators that
are very slow [177], and therefore do not match the motional narrowing condition (see
Appendix A). Still, master equations for the reduced density matrix of the qubit can be
derived, if one enlarges the system and considers only the bands as environment. By this,
one can obtain results in all orders of vi. The system that one deals with, however, will be
larger due to this.
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The ratio gi = vi/γi turned out to be a useful expression to characterize two different
regimes of the coupling between qubit and the BCs [109]. One can distinguish between
weakly coupled BCs (gi ¿ 1) and strongly coupled BCs (gi À 1). Weakly coupled BCs
behave as set of harmonic oscillators with a power spectrum [see Eq. (9.6)] and they
lead to homogeneous broadening of the signal. On the other hand, strongly coupled BCs
lead to memory effects and to inhomogeneous broadening of the signal. In their case,
higher cumulants than the second play a role to describe the deviations from an oscillator
environment.

As an example, one can consider single weakly coupled BCs that act as sources of Gaus-
sian noise, and their effect is completely described by the power spectrum of unperturbed
equilibrium fluctuations [109], given by

Si(ω) =
v2

i

2 cosh (βεc,i/2)

γi

γ2
i + ω2

. (9.7)

In the case of pure dephasing, where ∆ = 0, the total Hamiltonian Ĥtotal commutes
with σ̂z. This means that no relaxation can occur. If the qubit, however, is prepared in a
superposition, the qubit system will loose its phase information. This dephasing effect can
be determined with the help of Bloch-Redfield equations [177] or path-integrals [109], and
one finally finds for the dephasing rate Γ2 the following relation

Γ2 t =

∞
∫

0

dω

π
S(ω)

1− cos (ωt)

ω2
. (9.8)

This is also similar to very recent results obtained by Wilhelm [180]. The power spec-
trum [Eq. (9.7)] of the noise determines the dephasing rate for weakly coupled BCs. For
strongly coupled BCs, such a relation is not valid, because they show pronounced features
of the discrete character of the noise like saturation effects and the dependence on initial
conditions [109, 177].

9.2 Dynamical decoupling of the qubit from 1/f noise

In recent years, there have been generic proposals to get rid of noise affecting two-state
systems or qubits [181–183]. These are very similar to spin-echo or refocussing experiments
performed in NMR systems [113]. The basic idea of dynamical decoupling or Bang-bang
(BB) control of a qubit is to apply fast π-pulses on it to refocus the (pseudo-) spin that
characterizes the qubit. If the time ∆t between the pulses is very small ∆t → 0, a
full decoupling from unwanted interactions can be achieved [181, 182]. In practical life,
however, ∆t is finite and should be compared to the typical timescales of the environment
(in the 1/f case the reciprocal value of the switching rate γ−1) to determine whether the
condition ∆t¿ γ−1 is still satisfied.

One can consider the influence of only one fluctuator, which leads to random telegraph
noise (RTN), as it has been done before [184]. However, it seems to be more realistic
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to consider again a larger number of fluctuators with individual switching rates γi and
additional biases vi. Such an analysis for RTN and 1/f noise can be found in Ref. [185].
We will only shortly present the main results of this paper [185], without contemplating
technical details. First, we consider the RTN case for the pure dephasing (coupling ∆ = 0
in the charge qubit) limit. With the application of N pulses with a time ∆t between
the pulses, the dephasing rate Γ2(t), where t = 2N∆t, decreases monotonically, when
the pulse frequency 1/∆t is increased. This shows that BB effectively suppresses RTN.
Away from the pure dephasing point ∆ 6= 0, the decoupling still works for a fast impurity
g = v/γ < 1. For a slow impurity g > 1, a large number N of pulses is required to achieve
this. It can happen that for too small N the qubit looses its phase information even faster
than without pulses. To consider the compensation of 1/f noise, one has to combine a
number of fluctuators with individual properties γi and vi. Frequent pulses work here in
a similar way than for RTN. The dephasing rate Γ2(t) changes its time dependence from
∝ t2 to ∝ t under pulsed control. Away from the pure dephasing point, the behavior gets
again more complicated and the compensation of 1/f noise is nonmonotonic for decreasing
∆t, similar to the RTN case.

The purpose of this section was to present that 1/f noise can, in principle, be suppressed
by applying an appropriate scheme of sufficiently fast pulses. Bang-bang strategies can
work, if they are carefully elaborated according to the findings explained above.

9.3 Advanced analysis of 1/f noise

In this section, some very recent ideas from the article of Falci et al. [110] will be presented.
The total model Hamiltonian Htotal looks now a bit different than before

Htotal = Hqb −
1

2
ξ(t) σ̂z, (9.9)

where Ĥqb = −1
2
~Ω~σ. Ω =

√

ε2
as + ∆2 is the splitting in the qubit and θ (see below) will be

the angle between the z axis and ~Ω. ξ(t) describes a classical stochastic process.
For weak coupling, one can find the expression for the dephasing rate as [41, 135]

Γ2 =
1

4
S(Ω) sin2 θ +

1

2
S(0) cos2 θ, (9.10)

If θ = π/2, the pure dephasing or adiabatic part of Γ2 vanishes. By this, part of the effect
of slow noise is eliminated. This is called the optimal working point. Such a system has
been realized experimentally [37] for a superconducting phase qubit (“Quantronium”).

In Ref. [110], the behavior of about NBF = 2000 bistable fluctuators has been simulated
with a stochastic Schrödinger equation. ξ(t) is generated as a sum of NBF RTN processes.
This represents experimental data showing decaying coherent oscillations. Then, different
techniques are used to determine the envelope function of these decaying oscillations.

For slow noise, ξ(t) can be treated in the adiabatic approximation. Observables are
then given by path integrals over a weight P [ξ(t)]. Within the static-path approximation
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ξ(t) = ξ0, which accounts for the lack of control on the environment preparation, one can
obtain the following expression for the phase Φ(t)

− iΦ(t) = −1

2

(cos θ σξt)
2

1 + i sin2 θ σ2
ξ t/Ω

− 1

2
ln

(

1 + i sin2 θ
σ2

ξ t

Ω

)

, (9.11)

where σξ = v̄2NBF/4 is the variance of ξ0. This approximation [Eq. (9.11)] is valid close
to θ = 0 and θ = π/2. The resulting suppression factor exp(=Φ) gives a exp

(

−1
2
σ2

ξ t
2
)

behavior for θ = 0 and a power law
[

1 +
(

σ2
ξ t/Ω

)2
]−1/4

behavior for θ = π/2.

If slow and fast fluctuators are mixed, one can study the interplay between both by a
two-stage elimination [110]. One decomposes ξ(t)→ ξ(t)+ξf (t), where ξ(t) represents slow
fluctuations that can be treated with the adiabatic approximation. ξf (t) stands for the
fast fluctuations, whose influence can be determined within weak coupling theory, which
is the next step. Then, the static-path approximation for θ = π/2 leads to the decay of
coherences

exp

[

−1

4
Sf (Ω)t− 1

2
ln

∣

∣

∣

∣

1 +

(

iΩ + Sf (0)−
1

2
Sf (Ω)

)

σ2
ξ t

Ω2

∣

∣

∣

∣

]

, (9.12)

where Sf (ω) refers to the set of fast bistable fluctuators (BFs), whereas σ2
ξ refers to the

set of slow BFs. This result is very generic and can e.g. be applied, when slow impurity
noise is combined with fast electromagnetic noise. It is quite remarkable that Eq. (9.12)
describes both exponential decay (coming from the fast BFs), which could also be derived
by a weak coupling approach like Bloch-Redfield theory [115], and non-exponential decay
(coming from the slow BFs), which cannot be obtained by weak coupling methods.

Ref. [110] and the ideas in it are important to understand and analyze experiments,
whether and how they depend on 1/f noise. The critical aspect is that one needs enough
coherent oscillations (or a large quality factor) of the qubit in order to determine the
envelope function for the decay. But once this behavior is characterized, one could think
about schemes to compensate this RTN or 1/f noise. Ideally, the oscillations should be
measured in a Ramsey-fringe experiment [111]. Unfortunately, the current implementations
of charge qubits in double quantum dots did not show enough coherent oscillations to
perform such an analysis along the lines of Ref. [110]. This is also the reason, why this
chapter is in the part “Perspectives” of this thesis. The only experiment until now that
could be analyzed with these methods was the already mentioned measurement on the
Quantronium circuit, done by Vion et al. [37].
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Chapter 10

Charge qubits in other
semiconducting nanostructures

The main challenge for improving the intrinsic quantum coherence of charge states in
semiconductors is to further reduce the impact of phonons. Within the present design, this
can be accomplished by phonon cavities [123].

Besides the well-established way of defining double quantum dots in a 2DEG later-
ally next to each other, alternative designs have become feasible in recent years. The
first, very recent approach is a mixture of vertical and lateral quantum dot design in a
GaAs/AlGaAs/InGaAs heterostructure [186]. Another recently proposed way to a double
quantum dot structure is using confined electrons in a carbon nanotube [187]. Semicon-
ducting nanowires [188] also show the characteristic Coulomb blockade behavior and might
be a promising design as well. In the following, we will shortly present these three alter-
natives to the lateral design of a double quantum dot.

10.1 Phonon cavities for lateral quantum dots

From theoretical considerations [122, 124], one expects a smaller dephasing rate due to the
electron-phonon interaction in double quantum dot charge qubit, if the double dot could
be realized in a phonon cavity. Unfortunately, a working underetched double quantum dot
charge qubit has not been demonstrated yet. For single quantum dots, however, the first
transport experiment [123] of a quantum dot in a phonon cavity looks very promising. A
phonon blockade has been found in the sequential transport through the quantum dot.
Figure 10.1 (a) shows a picture of the sample and Figure 10.1 (b) provides level diagrams
to illustrate the phonon blockade phenomenon. Further improvements in the fabrication
of similar structures should lead to a working laterally coupled double quantum dot charge
qubit in a phonon cavity. Further details on the fabrication of these devices can be found
in Refs. [189, 190].
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Figure 10.1: From Ref. [123]: (a) suspended quantum dot cavity and in-plane gate formed
in the 130 nm thin GaAs/AlGaAs membrane. The inset shows the blocked differential con-
ductance in the linear transport regime. (b) Level diagrams for single electron tunneling
including phonon blockade (upper row: tunneling processes into the dot; lower row: tun-
neling processes out of the dot): (i) electrons can tunnel sequentially through the dot, if the
local dot level µ(N + 1) is aligned between the reservoirs. (ii) Tunneling into the phonon
cavity results in the excitation of a cavity phonon with energy ~Ωph, leading to a level
mismatch ε0 and thus to phonon blockade. (iii) Single electron tunneling is reestablished
by a resonant higher electronic state µ∗(N + 1) which is enabled to coherently reabsorb
the phonon and to hereby replace the ground state.

10.2 Hybrid vertical-lateral double quantum dots

In the introduction to quantum dots, we skipped a part on vertical quantum dots, because it
was not fully clear, how one could couple double quantum dots to each other to implement
coupled charge qubits in these structures. A review on these designs can be found in
Ref. [67]. The recent work of Hatano et al. [186] demonstrated that vertical dots can be
coupled laterally. Thus the dots themselves look very similar to coupled laterally defined
quantum dots. The details of the confinement are, however, quite different. A schematic
view on the design of this new kind of double quantum dots is depicted in Figure 10.2 (a).

The structure shows the usual behavior for double quantum dots, if one tunes the
side-gate voltages in Figure 10.2 (a). These gates play here the role of the gate voltages
for the single quantum dots. Therefore, one would expect a honeycomb pattern as in
Figure 2.10 (b) for intermediate inter-dot coupling, and indeed, this has been observed [see
Figure 10.2 (b)].

When implementing charge qubits in such structures, it could be of advantage that only
small pillars of the heterostructure (with one dot formed in each pillar) are coupled to each
other. The electrons in these pillars have only a part of the heterostructure directly coupled
to them. Therefore, one can expect that the electron-phonon coupling is not as strong in
these devices as in laterally defined quantums dots, where the electrons can directly couple
to phonons of the full semiconductor crystal. A careful theoretical analysis of the electron-
phonon coupling for this hybrid device could provide deeper insights. Of course, a Ramsey
fringe experiment [111] on such a charge qubit should also give orders of magnitude for
relaxation and dephasing times of the charge degree of freedom of the electrons. Such an
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(a) (b)

Figure 10.2: From Ref. [186]: (a) schematic view of a hybrid vertical-lateral double dot
device. The dots re vertically confined in the quantum well, which is made from a Al-
GaAs/InGaAs/AlGaAs heterostructure. The lateral confinement is provided by the har-
monic potential, which is made of the depletion layer. (b) Charging diagram as functions
of the two side-gate voltages VsL and VsR. The source-drain voltage VSD = 8 µV is fixed
and the center-gate voltage Vc = −2.4 V as well.

experiment could also single out the influence of 1/f noise (as described in Chapter 9).

10.3 Double quantum dots in carbon nanotubes

Since the discovery of carbon nanotubes in 1991 [191], their electrical and mechanical
properties have been intensely studied. It turned out that these nanotubes are very useful
when contemplating fundamental properties of one-dimensional systems [192]. Therefore,
such 1D systems can be restricted furthermore to implement zero-dimensional systems like
quantum dots. To form the quantum dots, one had to attach tunnel barriers at the metal-
nanotube interface [193], or to exploit intrinsic [194] or artificially induced [195] defects
along the nanotube. Unfortunately, all these methods suffer from the lack of independent
control over the device parameters as well as geometric constraints on the device design.
The very recent studies of Biercuk et al. [187], however, rely on lithographically defined
gates and transport contacts to the nanotube. This allows the formation of single or
multiple quantum dots positioned along a tube, where the tunnel barriers and dot charges
can be controlled independently. Also, a backgate can be utilized to reduce the intrinsic
scattering due to impurities and defects along the nanotube and to set the overall carrier
density.

Single quantum dots can be formed in such a carbon nanotube device using an effective
three-gate configuration [see Figure 10.3 (a)], where the outer gates act as tunneling barriers
(denoted with “Barrier 1” and “Barrier 2”) defining the dot by locally depleting carriers
beneath them. The center gate (“Plunger”) shifts the local electron level in the dot relative
to the electrochemical potentials of the leads and to the segments of the tube far away from
the gates. Figure 10.3 (b) shows a very clean Coulomb diamond measurement of a quantum
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(a) (b)

Figure 10.3: From Ref. [187]: (a) schematic view of a gate-defined carbon nanotube quan-
tum dot showing vertically integrated geometry and Ohmic contacts. (b) Measured differ-
ential conductance dI/dV (in units of e2/h) as a function of the plunger gate voltage and
source drain voltage VSD, for VBarrier 1 = 1200 mV and VBarrier 2 = 880 mV. Coulomb dia-
monds are formed in this diagram, where the charge configuration is fixed along VSD ≈ 0.

dot defined in the above mentioned carbon nanotube setup, similar to Figure 2.5 (b) in
Chapter 2. Thus, a full characterization of the formed single dot is possible by this kind
of measurement.

As a natural next step, one can also implement a double dot structure by using five
gates: two as left and right barriers, a middle barrier to tune the coupling between the
two formed dots and two independent plunger gates to vary the energies of both quantum
dots [see Figure 10.4 (a)]. The transport measurements through this double quantum dot
in the weak [Figure 10.4 (b)], intermediate [Figure 10.4 (c)] and strong coupling regime
[Figure 10.4 (d)] are fully compatible with the general description for double quantum dots
as it was given in Chapter 2 [see Figure 2.10 (a), (b) and (c) for the corresponding plots].
Resonant tunneling occurs only, when all energy levels (in the dots and the leads) align. The
alignment in the weak coupling regime happens at the intersections of the Coulomb peaks,
which leads to a rectangular pattern of resonant conduction peaks. With a larger coupling,
the honeycomb pattern shows up in the intermediate coupling regime due a splitting of the
high conductance points of degeneracy between different charge configurations. For even
larger coupling, one find a series of diagonal lines as a function of the two plunger gates.
This corresponds to the situation that both dots merge effectively into one large quantum
dot.

Since in the linear transport regime all characteristics of the double dot systems as
described in Ref. [66] can be found, an implementation of a single charge qubit in such
a nanotube double quantum dot structure seems feasible. Tuning the device into the
Coulomb blockade regime, the number of electrons in both dots is fixed and one could
manipulate the last available (valence) electron as it has been done in the experiments of
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Figure 10.4: From Ref. [187]: (a) Colored SEM image of a five-gate carbon nanotube
device. Visible at top and bottom are Pd contacts to a nanotube (not visible) under
SiO2. Gates that are used to form dots are red, while the plunger gates that tune the
dot energies are yellow. The scale bar is 2µm long. (b) dI/dV as a function of the two
plunger gate voltages. VBarrier 1 = 389 mV, V = 1077 mV, the middle gate voltage is
indicated on the figure. For the weak coupling case, high conductance point appear on
a regular array corresponding to resonant alignment of the energy levels of the two dots
with the Fermi levels of the leads. (c) Intermediate coupling between the dots, formation
of the characteristic honeycomb pattern. (d) Strongly coupled double dots behave as one
large single dot, where both plunger gates couple equally to the single-particle states and
produce a series of diagonal lines. The white dotted lines in (c) and (d) serve as guides to
the eye.

Hayashi et al. [53]. Due to recent progress in the production of of long carbon nanotubes
[196], the scaling to a larger number of charge qubits defined by gates should in principle
be doable. By tuning the two barrier gates that are coupled to the leads (and to the rest of
the nanotube) into a regime with a small coupling between the dots and the leads, one can
again suppress cotunneling processes that inevitably will show up in the Coulomb blockade
regime. The electron-phonon coupling between the relevant electron in the nanotube charge
qubit and the surrounding phonons could, however, be important for the decoherence
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properties of the charge qubit. The expectation would be that the carbon nanotube forms
a phonon cavity, such that the decoherence times should be much longer than in a regular
laterally defined double quantum dot in a GaAs/AlGaAs heterostructure. Whether the
two-dimensional graphite sheet that defines the carbon nanotube really provides cavity
properties for the phonons, is an open question, but the electron can probably only couple
directly to phonons in the graphite sheet. At low temperatures, only a certain number
of phononic modes should be available for electron-phonon coupling, because the graphite
sheet is finite and the electron is spatially separated from the rest of the nanotube. A
detailed analysis of the electron-phonon coupling of an electron to the phonons in the
nanotube is required to quantify the occuring effects. For a characterization of the effect
of 1/f noise, one would need a Ramsey fringe experiment [111] with a large number of
oscillations to be able to use the methods described in Chapter 9.

10.4 Quantum dots in nanowires

In recent years, the fabrication of semiconductor nanowires in different materials made huge
progress. In 2001, single electron tunneling has been observed in Si nanowires [197, 198].
The characteristic Coulomb diamond measurement for a single quantum dot has been
done two years later in a InP nanowire as depicted in Figure 10.5 (c). One can clearly
identify the diamond pattern, however, the lines are not as regular as in the previous
examples for quantum dots in a 2DEG or a carbon nanotube. Very recently, another
publication [199] demonstrated that nice, regular patterns can be observed in a Si nanowire
[see Figure 10.5 (a) and (b)].

This means that the characteristics of a single quantum dot can be found in semicon-
ductor nanowires, if these are connected with gates. To realize a double quantum dot, one
would probably need longer nanowires such that a middle gate can be introduced similar
to the setup for carbon nanotubes. This middle gate could then separate two dots and
tune the coupling between them.

Such a setup could have similar properties concerning electron-phonon coupling than
the carbon nanotubes, because one uses only a small portion of a semiconducting material
and not a whole crystal. The influence of the electron-phonon coupling on the decoherence
of a charge qubit could therefore be reduced, but this is again a simplistic view on this
topic. A detailed analysis could provide a deeper understanding of the stability of charge
states in a semiconductor nanowire.

Inspired by the talks of L.P. Kouwenhoven and the work of Mariantoni et al. [200]
(more details can be found in Ref. [201]), one could also think about an interface between
a charge qubit and quantum optical implementations of quantum information processing.
The generation of single photons, as it has been realized in nitrogen-vacancy centers in a
diamond structure [202], can be used for quantum cryptography or quantum key distribu-
tion in fibers [203] and free space [204]. One could think of generating a small number of
photons by a STIRAP process [205] applied on three charge levels in a double quantum
dot structure. Probably quantum dots defined in nanowires possess the best properties for
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Figure 10.5: (a) From Ref. [199]: Coulomb blockade oscillations in a Si nanowire observed
at 4.2 K with Vsd = 0.5 mV. Inset: scanning electron microscopy (SEM) image of the
device. Scale bar is 500 nm. (b) From Ref. [199]: Gray scale plot of dI/dVsd versus Vsd and
Vg recorded at 4.2 K; the light (dark) regions correspond to low (high) values of dI/dVsd;
the dark color corresponds to 3000 nS. (c) From Ref. [188]: Coulomb diamond measurement
[differential conductance dI/dVsd versus Vsd and Vg] of an InP nanowire. dI/dVsd increases
when going from dark to light gray. The measurement was taken at 0.35 K. Inset: scanning
electron micrograph of the device.

such a photon-generation device, because it has already been demonstrated that nanowires
can act as Fabry-Perot cavities [206]. Whether such a device is really feasible, remains to
be seen.
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Conclusions

In the context of qubits and quantum dots, we analyzed decoherence properties and the
measurement process of double quantum dot charge qubits with the goal of understanding
the involved mechanisms and eliminating their influence if necessary.

The effect of cotunneling processes in the experimentally accessible perturbative regime
is necessarily weak both in the transport through the double quantum dot and also as a
decoherence mechanism. By tuning the internal energies of the double quantum dot charge
qubit, namely the asymmetry energy and the coupling between the dots, one can observe
a transition between elastic, inelastic and no cotunneling at all. The transition between
elastic and inelastic cotunneling can also be identified by adjusting the bias voltage over
the double quantum dot. The relaxation and dephasing times due to cotunneling are also
affected by the bias voltage. An ideal working point for quantum measurements (long
relaxation time) can be reached, if the bias voltage is tuned to the value of the level
splitting between the two charge eigenstates. On the other hand, for zero bias voltage, the
dephasing time is maximal and therefore quantum coherent calculations or manipulations
are preferably done there. The cotunneling contribution to the decoherence of the system,
as determined in this work, is rather small compared to experimental data that hint on a
10−6 times smaller dephasing time. Our approach only works if the double dot is weakly
coupled to the neighboring leads. Cotunneling processes can, however, play an important
role for stronger couplings and higher orders in the tunneling rates. This has also been
observed in a recent experiment.

Electron-phonon coupling of the electron in the double dot charge qubit leads in our
approach to dephasing times that are comparable to the experimental values or even a bit
larger. The form of the charge eigenstates really matters in these calculations. In fact, the
usual assumption of Gaussian wavefunctions for the electron in the left or the right dot
leads to a diverging dephasing time for a large coupling between the two dots. Therefore
we compute the true microscopic eigenstates of a real (quartic) double-well potential as
eigenfunctions for the coupled dot system. The newly computed dephasing time remains
finite for larger inter-dot couplings. In general, we expect that it is more favorable to work
with a small coupling between the two dots (associated with a larger distance between the
dot centers), because the relaxation and dephasing times are larger then. On the other
hand, if the size of the system gets larger, the level spacing to excited states will become
smaller and therefore, the charge qubit will not be well-defined anymore at some point.
Finding a good compromise between these effects can help to optimize the decoherence
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properties due to electron-phonon coupling.
For small inter-dot coupling, we also demonstrated the feasibility of the controlled NOT

operation on two coupled quantum dot charge qubits. The error rate per operation was
even below 10−4 for low temperatures, which beats the threshold for universal quantum
computation. This worked, because we used the counter-intuitive approach of making the
inter-dot coupling smaller and by this the gate operation slower. Since the phononic baths
are super-Ohmic, the intrinsic decoherence due to electron-phonon coupling can efficiently
be reduced by this approach.

The regime of strong coupling between the charge qubit and its detector has been
analyzed nonperturbatively. Such an analysis leads to decaying coherent oscillations or
critical damping of the expectation value of σ̂z in the classical case (low frequency). In
the quantum case (low temperature), the coherent oscillations can disappear completely
and reappear again for lower shot noise, which can be adjusted by the transmission of the
quantum point contact. This can be viewed as the onset of the dissipative quantum phase
transition leading to a localization of the electron in the charge qubit for a strong coupling
between detector and qubit. On the other hand, this effect competes with the shot noise
of “hot” electrons with an effective noise temperature that is regulated by the bias voltage
over the detector.

The experimental realization of a backaction measurement between a single quantum
dot and a quantum point contact provides the dimensionless coupling strength between
both devices as a fitting parameter, if the experiment is described by a photon-assisted
tunneling master equation approach invoking the theory of energy exchange with the en-
vironment (P (E) theory).

Fighting the influence of decoherence from 1/f noise in a charge based qubit might
be possible with a dynamical decoupling scheme, if the 1/f noise has been analyzed and
characterized appropriately. Numerical and analytical tools are available for this task, pro-
vided a double quantum dot charge qubit experiment with a large quality factor (Q ≥ 104)
can be implemented. Other semiconductor structures that show the transport characteris-
tics of single and double quantum dots may help to fulfill this quality factor requirement,
because electron-phonon coupling can probably be efficiently suppressed by using different
materials, such as carbon nanotube and nanowires, and/or geometries, such as under-
etched lateral quantum dots and laterally coupled vertical quantum dots. By this, differ-
ent electron-phonon coupling mechanisms or a reduction to a certain number of phononic
modes could help to realize longer dephasing and relaxation times.



Deutsche Zusammenfassung

Im Zusammenhang von Qubits und Quantenpunkten haben wir die Dekohärenzeigenschaf-
ten und den Meßprozeß von Doppelquantenpunkt-Ladungsqubits analysiert, um die De-
kohärenzmechanismen zu verstehen und möglicherweise eliminieren zu können.

Der Effekt von Kotunnel-Prozessen im experimentell erreichbaren, perturbativen Re-
gime ist schwach sowohl für den Transport durch die Doppelquantenpunkt-Struktur als
auch als Dekohärenzmechanismus. Durch das Einstellen der internen Energien des Doppel-
quantenpunkt-Ladungsqubits, genauer gesagt durch Verändern der Asymmetrieenergie und
der Kopplung zwischen den beiden Quantenpunkten, kann man einen Übergang zwischen
elastischem, inelastischem und gar keinem Kotunneln beobachten. Der Übergang zwischen
elastischem und inelastischem Kotunneln kann jedoch auch durch Einstellen der Spannung
über den Doppelquantenpunkt erreicht werden. Die Relaxations- und Dephasierungszei-
ten aufgrund von Kotunnel-Prozessen werden auch von dieser Spannung beeinflußt. Einen
idealen Arbeitspunkt für Quantenmessungen (lange Relaxationszeit wünschenswert) kann
man dadurch erreichen, daß man die Spannung über die Struktur genau auf den Wert der
Energiedifferenz zwischen den beiden Ladungseigenzuständen des Doppelquantenpunkts
einstellt. Andererseits kann man ohne angelegte Spannung die Dephasierungszeit im Ver-
gleich zu endlichen Werten der Spannung maximieren, deshalb kann man dann idealerweise
quantenkohärente Rechnungen mit dem Qubit durchführen. Der Beitrag des Kotunnelns
zur Dekohärenz des Systems, wie er in dieser Arbeit berechnet wurde, ist ziemlich klein,
wenn man ihn mit experimentellen Daten vergleicht, die auf eine 10−6-mal kleinere De-
phasierungszeit hinweisen. Unser Ansatz funktioniert nämlich nur, wenn der Doppelquan-
tenpunkt nur schwach an die beiden benachbarten Kontakte koppelt. Generell können
Kotunnel-Prozesse sehr wohl eine wichtige Rolle spielen, wenn die Kopplungen zu den
Kontakten größer und die Ordnungen in den Tunnelraten höher sind. Dies konnte man
auch in einem aktuellen Experiment beobachten.

Die Elektron-Phonon-Kopplung vom Elektron im Doppelquantenpunkt-Ladungsqubit
an die Phononen des Halbleiter-Kristalls führt in unserer Rechnung zu Dephasierungs-
und Relaxationszeiten, die vergleichbar mit den experimentellen Werten oder sogar noch
etwas größer sind. Die Form der Ladungseigenzustände spielt eine wichtige Rolle. Denn die
übliche Annahme von Gaußschen Wellenfunktionen für das Elektron im linken oder rech-
ten Quantenpunkt führt zu einer Dephasierungszeit, die für große Kopplungen zwischen
den beiden Quantenpunkten divergiert. Deshalb berechnen wir anstatt dessen die mikro-
skopischen Eigenzustände eines (quartischen) Doppelmuldenpotentials als Eigenzustände
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für das gekopplte Doppelquantenpunktsystem. Die dann neu berechnete Dephasierungszeit
bleibt auch für große Kopplungen zwischen den beiden Quantenpunkten endlich. Im All-
gemeinen erwarten wir, daß es besser ist, mit einer kleinen Kopplung zwischen den beiden
Quantenpunkten zu arbeiten, da Relaxations- und Dephasierungzeiten für kleine Kopp-
lungen größer und die längeren Berechnungszeiten für die Gatter damit überkompensiert
werden. Mit dieser kleinen Kopplung würde man typischerweise auch den Abstand zwi-
schen den beiden Quantenpunkten vergrößern, was dazu führen würde, daß das System
insgesamt größer werden und somit der Abstand zwischen Ladungsgrundzustand und an-
geregten Zuständen kleiner würde. Das hieße allerdings, daß das System irgendwann nicht
mehr wohldefiniert wäre. Daher sollte man versuchen, einen Kompromiß zwischen diesen
Effekten zu finden und somit die Dekohärenz aufgrund von Elektron-Phonon-Kopplung zu
optimieren.

Für eine kleine Kopplung zwischen den Quantenpunkten haben wir ebenfalls die Mach-
barkeit einer kontrollierten NOT-Operation auf zwei gekoppelten Doppelquantenpunkt-
ladungsqubits demonstriert. Die Fehlerrate pro Operation war dabei kleiner als 10−4 für
kleine Temperaturen, was das Kriterium für universelle Quanteninformationsverarbeitung
erfüllt. Dies funktionierte insbesondere wegen des Tricks, die Kopplung zwischen den Quan-
tenpunkten klein und damit die Operation langsamer zu machen. Aufgrund der Tatsache,
daß Phononen eine superohmsche spektrale Dichte haben, kann man die intrinsische De-
kohärenz aufgrund der Elektron-Phonon-Kopplung dadurch effizient reduzieren.

Die nicht-perturbative Behandlung von dem Ladungsqubit und seinem Detektor im Re-
gime starker Kopplung zwischen diesen liefert gedämpfte kohärente Oszillationen oder so-
gar kritische Dämpfung des Erwartungswertes von σ̂z im klassischen Fall kleiner Frequenz.
Im quantenmechanischen Fall (bei niedriger Temperatur) können die kohärenten Oszilla-
tionen ganz verschwinden und bei weniger Rauschen wieder auftauchen. Dies kann im Falle
eines Quantenpunktkontakts als Detektor durch die Transmission gesteuert werden. Dies
kann man als den Beginn des dissipativen Quantenphasenüberganges ansehen, der für star-
ke Kopplungen zwischen Qubit und seinem Detektor zu einer Lokalisierung des Elektrons
im Ladungsqubit führt. Andererseits konkurriert dieser Effekt mit dem Schrotrauschen
von

”
heißen“ Elektronen, deren effektive Rauschtemperatur durch die Vorspannung des

Detektors gesteuert wird.
Die experimentelle Realisierung einer Messung, die die Auswirkung des Meßdetektors

auf das zu messende Objekt mißt, kann die dimensionslose Kopplungsstärke zwischen ei-
nem einzelnen Quantenpunkt und einem Quantenpunktkontakt liefern. Die Kopplungstärke
erhält man als Fit-Parameter, wenn das Experiment durch Mastergleichungen beschrieben
wird, wie sie auch beim Photon-assistierten Tunneln verwendet werden, und man außerdem
die Theorie des Energieaustausches mit der Umgebung (P (E)-Theorie) verwendet.

Den Einfluß der Dekohärenz von 1/f -Rauschen in ladungsbasierten Qubits kann man
möglicherweise mit Hilfe von dynamischen Entkopplungsmethoden mindern, wenn man das
1/f -Rauschen ausreichend charakterisiert und analysiert hat. Numerische und analytische
Methoden stehen hierfür zur Verfügung, wenn man die Güte der Oszillationen in einem
Ladungsqubit-Experiment hoch genug (Q ≥ 104) steigern können sollte. Andere Halbleiter-
strukturen, die auch die Transporteigenschaften von einzelnen und gekoppelten Quanten-
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punkten zeigen, könnten bei der Erfüllung dieser Bedingung hilfreich sein, da die Elektron-
Phonon-Kopplung vermutlich effizient durch verschiedene Materialien (Kohlenstoff-Nano-
röhren und Nanodrähte) und/oder Geometrien (unterätzte laterale Quantenpunkte und
lateral gekoppelte, vertikale Quantenpunkte) unterdrückt werden kann. Andere Elektron-
Phonon-Kopplungsmechanismen oder die Reduzierung der Anzahl der phononischen Mo-
den könnten so bei der Realisierung von längeren Dephasierungs- und Relaxationszeiten
helfen.
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Appendix A

Bloch-Redfield formalism

Ref. [119] gives an example from classical physics, before deriving the Bloch-Redfield type
master equations. The example is the Brownian motion (for a recent review see Ref. [207])
of a heavy particle in a liquid of light particles, where constantly collisions take place.
Since the difference in mass is large, a huger number of collisions is needed to change
the velocity of the heavy particle remarkably. These processes can be described with a
Langevin equation, where the effect of the fluid on the heavy particle is determined by
two kinds of forces: a friction force, which damps the velocity of the heavy particle on
a characteristic timescale TR and a Langevin force, which describes fluctuations of the
instantaneous force about its average value, and it varies with the collision time τc, which
is much shorter than TR. Another classical approach is to derive an evolution equation
of the statistical distribution function, describing position and momentum of the heavy
particle. The resulting equation is a Fokker-Planck equation for a timescale ∆t that is
much smaller than TR, but also much larger than τc.

The example above should only make clear that the evolution of a particle can be simple,
if two distinct timescales exist for the evolution of the particle itself and for collisions with
other, lighter particles. A similar situation can be found in a dissipative two-state system
or in a qubit coupled to its environment: the time evolution of the qubit should be slow
in comparison with the interaction time with the environment. Then an averaging process
over a timescale between the other two timescales can lead to simple evolution equations,
the so-called Bloch-Redfield equations [115]. The derivation in Ref. [119] follows this
inspiration. The necessary condition for the simple result is there the motional narrowing
condition

λτc
~
¿ 1 , (A.1)

where λ is the coupling strength between the system and its environment.
With these arguments, one would also find the Bloch-Redfield equations, but we will

follow the derivation of Weiss [135], which is more inspired by a chemical physics point of
view.

As a starting point for the derivation of the Bloch-Redfield equations (A.9), one usually
[135] takes the Liouville equation of motion for the density matrix of the whole systemW (t)
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(describing the time evolution of the system)

Ẇ (t) = − i
~

[Htotal,W (t)] = LtotalW (t) , (A.2)

where Htotal is the total Hamiltonian and Ltotal the total Liouvillian of the whole sys-
tem, each consisting of parts for the relevant subsystem, the reservoir and the interaction
between these

Htotal = Hsys +Hres +HI (A.3)

Ltotal = Lsys + Lres + LI . (A.4)

Hsys is the Hamiltonian which describes the system (in our case: the double-dot sys-
tem), Hres stands for the reservoirs (the leads or the phonons) and HI is the interaction
Hamiltonian between system and reservoirs.
Projecting the density matrix of the whole system W (t) on the relevant part of the system
(which means only the two-state system), one finally gets the reduced density matrix ρ

ρ(t) = PW (t) , (A.5)

where P is the projector on the relevant sub-system. Putting (A.5) in equation (A.2) one
gets the Nakajima-Zwanzig equation [208, 209]

ρ̇(t) = PLtotalρ(t) +

t
∫

0

dt′PLtotale
(1−P )Ltotalt

′

(1− P )Ltotalρ(t− t′) +

+PLtotale
(1−P )Ltotalt(1− P )W (0). (A.6)

The dependence on the initial value of the irrelevant part of the density operator (1 −
P )W (0) is dropped, if the projection operator is chosen appropriately. Assuming that P
commutes with Lsys, one finds

ρ̇ = P (Lsys + LI)ρ(t) +

t
∫

0

dt′PLIe
(1−P )Ltotalt

′

(1− P )LIρ(t− t′). (A.7)

The reversible motion of the relevant system is described by the first (instantaneous) term
of Eq. (A.7), while the irreversibility is given by the second (time-retarded) term. The
integral kernel in Eq. (A.7) still consists of all powers in LI and the dynamics of the
reduced density operator ρ of the relevant system depends on its own whole history. To
overcome these difficulties in determining Eq. (A.7), one can consider the kernel only up
to second order in LI and disregard retardation effects. If one does this, one arrives at the
Born-Markov master equation

ρ̇(t) = P (Lsys + LI)ρ(t) +

t
∫

0

dt′PLIe
(1−P )(Lsys+Lres)t′(1− P )LIρ(t). (A.8)
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Due to the truncation of the Born series at the second order in the interaction LI , the
application of the above equation is effectively restricted to weakly damped systems.

The Bloch-Redfield equations for the reduced density matrix ρ in the eigenstate basis
of Hsys then read [135]

ρ̇nm(t) = −iωnmρnm(t)−
∑

k,`

Rnmk`ρk`(t) , (A.9)

where Rnmk` are the elements of the Redfield tensor and the ρnm are the elements of the
reduced density matrix. These equations of motion for the reduced density matrix ρ are
obtained within Born approximation in the effective system-reservoir coupling.

The Bloch-Redfield equations are of Markovian form, however, by properly using the
free time evolution of the system (back-propagation), they take into account all bath
correlations which are relevant within the Born approximation [136]. In [136], it has also
been shown that in the bosonic case the Bloch-Redfield theory is numerically equivalent
to the path-integral method.

The Redfield tensor has the form [135]

Rnmk` = δ`m
∑

r

Γ
(+)
nrrk + δnk

∑

r

Γ
(−)
`rrm − Γ

(+)
`mnk − Γ

(−)
`mnk. (A.10)

The rates entering the Redfield tensor elements are given by the following Golden-Rule
expressions [135]

Γ
(+)
`mnk = ~

−2

∞
∫

0

dt e−iωnkt〈H̃I,`m(t)H̃I,nk(0)〉 (A.11)

Γ
(−)
`mnk = ~

−2

∞
∫

0

dt e−iω`mt〈H̃I,`m(0)H̃I,nk(t)〉 , (A.12)

where HI appears in the interaction representation

H̃I(t) = exp(iHrest/~) HI exp(−iHrest/~). (A.13)

In the interaction picture, one has to replace all operators in second quantization by time-
dependent operators. In a two-state system, the coefficients `, m, n and k can be either +
or − representing the upper and lower eigenstates. ωnk is defined as ωnk = (En − Ek)/~.
The possible values of ωnk in a TSS case are ω++ = ω−− = 0, ω+− = 2δ

~
and ω−+ = −2δ

~
,

where 2δ is the energy distance between the two charge eigenstates with 2δ = 2
√

ε2
as + γ2.

Sometimes we also call the coupling between the dots ∆ instead of γ, which is the notation
of Ref. [118].

In the secular approxmation, which we normally use to determine the decoherence
properties of the charge qubit, the relaxation rate Γr and the dephasing rate Γφ are given
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as

Γr =
∑

n

Rnnnn = R++++ +R−−−− (A.14)

Γφ = <(Rnmnm) = <(R+−+−) = <(R−+−+). (A.15)

The relaxation rate is given by the time evolution of the diagonal elements, and the de-
phasing rate by the off-diagonal elements of the reduced density matrix ρ. If one likes
to avoid this approximation, one could also take all elements of the Redfield tensor into
account, which can make it a bit more difficult to determine the rates. Then the Redfield
tensor, written as a 4× 4-matrix in the basis of the elements of the reduced density matrix
ρ, has to be diagonalized numerically.

The imaginary parts of the Redfield tensor elements that are relevant for the dephasing
rate Γφ, =(R+−+−) and =(R−+−+) provide a renormalization of the coherent oscillation
frequencies ω+− and ω−+. If the renormalization of the oscillation frequency gets larger
than the oscillation frequency itself, the Bloch-Redfield approach with its weak-coupling
approximations does not work anymore. By this, we have a direct criterion for the validity
of our calculation.

A different kind of derivation with the help of the diagrammatic technique of Keldysh
[210] for the specific case of an single-electron transistor (SET) can be found in the Ap-
pendix of Ref. [41].

Very recent results [211] show additionally that Bloch-Redfield theory only in the pure
dephasing case (with vanishing coupling ∆ = γ = 0 between the qubit states) can preserve
complete positivity. Thus this particular Markovian approximation is of Lindblad type
[212], which has nice mathematical properties regarding the dynamics of open quantum
systems. In all other regimes, however, the complete positivity for the Bloch-Redfield
theory is not preserved and therefore Bloch-Redfield theory is in general not of Lindblad
type.
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Schrieffer-Wolff transformation

The Schrieffer-Wolff transformation [91] has to be carried out in a way which generalizes
the transformation of the standard Anderson model. This transformation is also known
under different names in other fields such as atomic physics [119] (“adiabatic elimination”)
and chemical physics [213, 214].

We follow here the way the transformation is described in Ref. [119]. Since we would
like to derive an effective Hamiltonian that acts only on the qubit system, we have to
consider what other energy levels play a role here. Due to our assumption of being in
the Coulomb blockade with large level spacings to the next orbital excited states in the
dots, the next accessible levels of the dots are the states |α〉 (the next lowest lying charge
state with zero additional electrons) and |β〉 (the next highest lying charge states with two
additional electrons, one on each dot). The energies can be sorted in three multiplets α, β
and γ as depicted in Figure B.1.

|α>

|γ,−>

|γ,+>

|β>

2δ

ε

ε

β

α

Figure B.1: Energy multiplets of the double quantum dot system in the Coulomb blockade
regime with zero (|α〉), one (|γ,+〉 and |γ,−〉) and two (|β〉) additional electrons within the
two dots. |γ,+〉 and |γ,−〉 are the eigenstates of the qubit system with a finite coupling γ
between the two quantum dots.

The necessary assumption for the applicability of the following transformation is that
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the energy difference within the relevant multiplet is much smaller than the difference
between two multiplets, i.e. in our system

2δ ¿ |εβ − δ| (B.1)

2δ ¿ |εα − δ|, (B.2)

which is easily fulfilled by choosing the energies appropriately.
If one writes the transformation of the original Hamiltonian HI as HI,eff = eiSHIe

−iS,
this can be expanded into

HI,eff = HI + [iS,HI ] +
1

2!
[iS, [iS,HI ]] +

1

3!
[iS, [iS, [iS,HI ]]] + . . . (B.3)

After some algebra (see Ref. [119] for details), one finally finds up to second order the
matrix elements of the effective interaction Hamiltonian as

〈γ, i|HI,eff |γ, j〉 = 〈γ, i|HI |γ, j〉+
1

2

∑

k,φ6=γ

〈γ, i|HI |k, φ〉〈φ, k|HI |γ, j〉 ×

×
[

1

Eγ,i − Eφ,k

+
1

Eγ,j − Eφ,k

]

, (B.4)

where the virtual intermediate state |φ, k〉 can be defined only as |α〉 or |β〉. i and j
can be either + or − for the upper or lower molecular state. The energies Eγ,i and Eφ,k

belong to the the states |γ, i〉 and |φ, k〉. The first term on the right hand side in Eq. (B.4)
corresponds to direct interactions between dots and leads, if we use a tunneling Hamiltonian
as the interaction Hamiltonian HI . But since we assumed to be in the Coulomb blockade
regime, these direct interactions do not contribute in our further analysis. The second term
in Eq. (B.4) describes indirect coupling between the multiplet γ and the other multiplets α
and β. This indirect influence can be interpreted as cotunneling processes, where correlated
two-eletron processes occur that connect the dots only virtually (for a short time given by
the uncertainty relation) via another dot occupation |α〉 or |β〉 with the leads.

We can illustrate the action of the Schrieffer-Wolff transformation in the following way:
the Schrieffer-Wolff transformation transforms indirect processes between the multiplets
into direct transitions in the molecular basis (see Figure B.2): one starts from one eigenstate
(|γ,+〉 or |γ,−〉) in the two-state system, then goes via a virtual process to one of the two
other levels (|β〉 or |α〉). From there, one goes back to the two-state system again using a
virtual process, but not necessarily to the starting state. And all possible processes must
be summed up. This is the way how the four elements of HI,eff are determined. The above
mentioned procedure is captured in the expression

〈γ, i|HI,eff |γ, j〉 =
1

2

∑

φ6=γ

〈γ, i|HI |φ〉〈φ|HI |γ, j〉
[

1

Eγ,i − Eφ ± εL/R
s

+
1

Eγ,j − Eφ ∓ εL/R
s

]

,

(B.5)
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virtual state final state

=

initial state effective process

|γ,+>

|γ,−>

|α>

|β>

|β>

Figure B.2: From Ref. [118]: Principle of the generalized Schrieffer-Wolff transformation

where γ and φ are labels for different multiplets in the spectrum of the problem. γ denotes
the molecular two-state system and φ can here be either β (i.e. the upper virtual state
|β〉 or α (i.e. the lower virtual state |α〉). i and j can be either + or − (for the molecular
states |γ,+〉 and |γ,−〉). The Es are the eigenenergies of the corresponding states.
If one now compares Eq. (B.4) with eq (B.5), one has to realize that the leads change their

energies as well, hence ±εL/R
s and ∓εL/R

s in the denominators show up. This generalizes
standard second order perturbation theory, where only diagonal matrix elements are cal-
culated.

In short, the new interaction Hamiltonian H̃I can be written as

H̃I =
∑

c,d

α†
cαd

[

∑

Y,Y ′,~k,~k′

HY,Y ′

~k,~k′,c,d
bY †
~k
bY

′

~k′ +
∑

Y,Y ′,~k,~k′

HY,Y ′

~k,~k′,c,d
bY~k b

Y ′†
~k′

]

, (B.6)

where the HY,Y ′

~k,~k′,c,d
are Schrieffer-Wolff amplitudes and c, d = ± denote the two molecular

levels, α
(†)
c/d the associated molecular operators and Y, Y ′ the position of the electrons in-

volved in these processes. Due to the molecular nature of the double dot eigenstates, all
the amplitudes are finite and composed out of a huge number of contributions with no
particular symmetry.

The + and − signs represent the molecular states |γ,+〉 and |γ,−〉. By applying
equation (B.5), one can find all Schrieffer-Wolff amplitudes.

The coupling between the dots is denoted as tc and SN =
√

1 + γ2

(δ+εas)2
is a normalization

constant.
The Schrieffer-Wolff amplitudes for the first sum in Eq. (B.6) are explicitly given by

HR,R
~k,~k′,+,+

=
t2c

2S2
N

[

1

εR
~k
− (−δ + εβ)

+
−1

εR
~k′
− (δ − εβ)

]

(B.7)

HR,L
~k,~k′,+,+

=
t2c

2S2
N

[

1

εR
~k
− (−δ + εβ)

+
−1

εL
~k′
− (δ − εβ)

]

γ

δ + εas

(B.8)
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HL,R
~k,~k′,+,+

=
t2c

2S2
N

[

1

εL
~k
− (−δ + εβ)

+
−1

εR
~k′
− (δ − εβ)

]

γ

δ + εas

(B.9)

HL,L
~k,~k′,+,+

=
t2c

2S2
N

[

1

εL
~k
− (−δ + εβ)

+
−1

εL
~k′
− (δ − εβ)

]

γ2

(δ + εas)2
(B.10)

HR,R
~k,~k′,−,− =

t2c
2S2

N

[

1

εR
~k
− (δ + εβ)

+
−1

εR
~k′
− (−δ − εβ)

]

γ2

(δ + εas)2
(B.11)

HR,L
~k,~k′,−,− =

t2c
2S2

N

[

1

εR
~k
− (δ + εβ)

+
−1

εL
~k′
− (−δ − εβ)

] −γ
δ + εas

(B.12)

HL,R
~k,~k′,−,− =

t2c
2S2

N

[

1

εL
~k
− (δ + εβ)

+
−1

εR
~k′
− (−δ − εβ)

] −γ
δ + εas

(B.13)

HL,L
~k,~k′,−,− =

t2c
2S2

N

[

1

εL
~k
− (δ + εβ)

+
−1

εL
~k′
− (−δ − εβ)

]

(B.14)

HR,R
~k,~k′,+,− =

t2c
2S2

N

[

1

εR
~k
− (−δ + εβ)

+
−1

εR
~k′
− (−δ − εβ)

] −γ
δ + εas

(B.15)

HR,L
~k,~k′,+,− =

t2c
2S2

N

[

1

εR
~k
− (−δ + εβ)

+
−1

εL
~k′
− (−δ − εβ)

]

(B.16)

HL,R
~k,~k′,+,− =

t2c
2S2

N

[

1

εL
~k
− (−δ + εβ)

+
−1

εR
~k′
− (−δ − εβ)

] −γ2

(δ + εas)2
(B.17)

HL,L
~k,~k′,+,− =

t2c
2S2

N

[

1

εL
~k
− (−δ + εβ)

+
−1

εL
~k′
− (−δ − εβ)

]

γ

δ + εas

(B.18)

HR,R
~k,~k′,−,+

=
t2c

2S2
N

[

1

εR
~k
− (δ + εβ)

+
−1

εR
~k′
− (δ − εβ)

] −γ
δ + εas

(B.19)

HR,L
~k,~k′,−,+

=
t2c

2S2
N

[

1

εR
~k
− (δ + εβ)

+
−1

εL
~k′
− (δ − εβ)

] −γ2

(δ + εas)2
(B.20)

HL,R
~k,~k′,−,+

=
t2c

2S2
N

[

1

εL
~k
− (δ + εβ)

+
−1

εR
~k′
− (δ − εβ)

]

(B.21)

HL,L
~k,~k′,−,+

=
t2c

2S2
N

[

1

εL
~k
− (δ + εβ)

+
−1

εL
~k′
− (δ − εβ)

]

γ

δ + εas

. (B.22)

For the second sum, the amplitudes read

HL,L
~k,~k′,+,+

=
t2c

2S2
N

[ −1

εL
~k
− (δ + εα)

+
1

εL
~k′
− (−δ − εα)

]

(B.23)

HL,R
~k,~k′,+,+

=
t2c

2S2
N

[ −1

εL
~k
− (δ + εα)

+
1

εR
~k′
− (−δ − εα)

]

γ

δ + εas

(B.24)

HR,L
~k,~k′,+,+

=
t2c

2S2
N

[ −1

εR
~k
− (δ + εα)

+
1

εL
~k′
− (−δ − εα)

]

γ

δ + εas

(B.25)
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HR,R
~k,~k′,+,+

=
t2c

2S2
N

[ −1

εR
~k
− (δ + εα)

+
1

εR
~k′
− (−δ − εα)

]

γ2

(δ + εas)2
(B.26)

HL,L
~k,~k′,−,− =

t2c
2S2

N

[ −1

εL
~k
− (−δ + εα)

+
1

εL
~k′
− (δ − εα)

]

γ2

(δ + εas)2
(B.27)

HL,R
~k,~k′,−,− =

t2c
2S2

N

[ −1

εL
~k
− (−δ + εα)

+
1

εR
~k′
− (δ − εα)

] −γ
δ + εas

(B.28)

HR,L
~k,~k′,−,− =

t2c
2S2

N

[ −1

εR
~k
− (−δ + εα)

+
1

εL
~k′
− (δ − εα)

] −γ
δ + εas

(B.29)

HR,R
~k,~k′,−,− =

t2c
2S2

N

[ −1

εR
~k
− (−δ + εα)

+
1

εR
~k′
− (δ − εα)

]

(B.30)

HL,L
~k,~k′,+,− =

t2c
2S2

N

[ −1

εL
~k
− (δ + εα)

+
1

εL
~k′
− (δ − εα)

] −γ
δ + εas

(B.31)

HL,R
~k,~k′,+,− =

t2c
2S2

N

[ −1

εL
~k
− (δ + εα)

+
1

εR
~k′
− (δ − εα)

]

(B.32)

HR,L
~k,~k′,+,− =

t2c
2S2

N

[ −1

εR
~k
− (δ + εα)

+
1

εL
~k′
− (δ − εα)

] −γ2

(δ + εas)2
(B.33)

HR,R
~k,~k′,+,− =

t2c
2S2

N

[ −1

εR
~k
− (δ + εα)

+
1

εR
~k′
− (δ − εα)

]

γ

δ + εas

(B.34)

HL,L
~k,~k′,−,+

=
t2c

2S2
N

[ −1

εL
~k
− (−δ + εα)

+
1

εL
~k′
− (−δ − εα)

] −γ
δ + εas

(B.35)

HL,R
~k,~k′,−,+

=
t2c

2S2
N

[ −1

εL
~k
− (−δ + εα)

+
1

εR
~k′
− (−δ − εα)

] −γ2

(δ + εas)2
(B.36)

HR,L
~k,~k′,−,+

=
t2c

2S2
N

[ −1

εR
~k
− (−δ + εα)

+
1

εL
~k′
− (−δ − εα)

]

(B.37)

HR,R
~k,~k′,−,+

=
t2c

2S2
N

[ −1

εR
~k
− (−δ + εα)

+
1

εR
~k′
− (−δ − εα)

]

γ

δ + εas

. (B.38)
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Appendix C

Charge eigenstates in a double-well
potential

C.1 Symmetric potential

From Ref. [131], we use the quartic potential V (x, y) as a confinement potential in x- and
y-direction for a single electron in a 2DEG. We already assume a confinement in z-direction
due to this. The assumption of such a potential should be valid as long as the distance

between the dot centers 2r is larger than twice the effective Bohr radius aB =
√

~

mω0

of a single isolated harmonic well. In the following, we will for practical reasons use the
distance a = aB√

2
in order to characterize our system. The used quartic potential is depicted

in Figure C.1.
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Figure C.1: Symmetric quartic potential V (x, y) in units of the confinement potential
(given by ~ω0) as a function of the coordinates x and y in units of the half distance r
between the two dot centers. r = 120 nm and a = 27 nm.
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The Hamiltonian for two dimensions can then be written as

H =
p2

2m
+
mω2

0

2

[

1

4r2

(

x2 − r2
)2

+ y2

]

=
p2

2m
+
mω2

0

2

[

1

4r2

(

x4 − 2x2r2 + r4
)

+ y2

]

. (C.1)

We use a product ansatz for the wavefunctions as ψ(x, y, z) = ϕ(x)ϕ(y)δ(z). Such a
method works analogous to the linear combination of atomic orbitals (LCAO) in quantum
chemistry [132]. Because the y-direction has only a normal harmonic oscillator potential
as confinement potential, whose eigenfunctions we know, namely [215]

|n〉 = Φn(x) =
(mω0

~π

)1/4 1√
2nn!

e−
mω0 x2

2~ Hn

(
√

mω0

~
x

)

, (C.2)

we concentrate in the following only on the x-direction. Hn is a Hermite polynom of order
n. The lowest eigenstate for the y-direction is defined for n = 0, therefore ϕ(y) = φ0(y).
With the convention from Ref. [215], we write x and p with creation b† and annihilation b
operators as for the harmonic oscillator

x =

√

~

2mω0

(

b† + b
)

(C.3)

p = i

√

~mω0

2

(

b† − b
)

. (C.4)

Then, the Hamiltonian for the x-direction is

Hx = −~ω0

4

(

b† − b
)2

+
~

2

32mr2

(

b† + b
)4 − ~ ω0

8

(

b† + b
)

+
mω2

0

8
r2 (C.5)

=
~

2

32 m r2
(b†b†b†b† + b†b†b†b+ b†b†bb† + b†b†bb+ b†bb†b† + b†bb†b+ b†bbb† + b†bbb+

+bb†b†b† + bb†b†b+ bb†bb† + bb†bb+ bbb†b† + bbb†b+ bbbb† + bbbb)−

−~ω0

8

(

3b†b† + 3bb− b†b− bb†
)

+
mω2

0r
2

8
. (C.6)

Using the application rules of the creation and annihilation operators on the eigenfunc-
tions of the harmonic oscillators

b|n〉 =
√
n|n− 1〉 (C.7)

b†|n〉 =
√
n+ 1|n+ 1〉 , (C.8)

we find for the application of Hx on the eigenfunctions |n〉

Hx|n〉 = cn+4|n+ 4〉+ cn+2|n+ 2〉+ cn|n〉+ cn−2|n− 2〉+ cn−4|n− 4〉 , (C.9)
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with

cn+4 =
~

2

32mr2

√
n+ 4

√
n+ 3

√
n+ 2

√
n+ 1 (C.10)

cn+2 =
√
n+ 2

√
n+ 1

[

−3~ω0

8
+

~
2

16mr2
(2n+ 3)

]

(C.11)

cn =
mω2

0r
2

8
+

~ω0

8
(2n+ 1) +

~
2

32mr2

(

6n2 + 6n+ 3
)

(C.12)

cn−2 =
√
n
√
n− 1

[

−3~ω0

8
+

~
2

16mr2
(2n+ 3)

]

(C.13)

cn−4 =
~

2

32mr2

√
n
√
n− 1

√
n− 2

√
n− 3 . (C.14)

Because the distance in the order of the eigenfunctions of the harmonic oscillator is
always an even number, one can construct the wavefunction of the ground state of the
double-well potential only from the even eigenfunctions of the harmonic oscillator and the
wavefunction of the first excited state by the odd eigenfunctions. The relative weight of
each eigenfunction |n〉 can be found by diagonalizing Hx in the basis of the eigenfunctions
of the harmonic oscillator, i.e. the matrix constructed from the coefficients ci (with i =
n + 4, n + 2, n, n − 2, n − 4). The finite number N for the number of used even or odd
functions has to be chosen, such that no functions of higher order have any weight for a
given set of parameters. In our case, usually 40 even and 40 odd functions have been used
(i.e. the first 80 eigenfunctions of the harmonic oscillator have to be taken into account).

The final result for the two lowest charge eigenstates (ground and first excited state of
the double-well potential) is

ψgs(x, y, z) =
N
∑

n=1

v2nΦ2n(x)Φ0(y)δ(z) (C.15)

ψes(x, y, z) =
N
∑

n=1

v2n−1Φ2n−1(x)Φ0(y)δ(z) , (C.16)

where the coefficients v2n and v2n−1 give the weight of the even and odd eigenfunctions
of the harmonic oscillator. They stem from the diagonalization process mentioned above.
The wavefunctions are illustrated in Figure C.2 for x- and y-direction.

C.2 Asymmetric potential

To include an energy bias in the double-well potential, one has to introduce a linear term
in the Hamiltonian H

H =
p2

2m
+
mω2

0

2

[

1

4r2

(

x2 − r2
)2

+ y2

]

+
ε

2r
x. (C.17)
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Figure C.2: Wavefunctions for the symmetric potential with r = 120 nm and a = 27 nm.
(a) symmetric ground state ψgs. (b) asymmetric excited state ψes.
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Figure C.3: Biased quartic potential V (x, y) in units of the confinement potential (given
by ~ω0) as a function of the coordinates x and y in units of the half distance r between
the two dot centers. The asymmetry was chosen to be ε = 0.2 ~ω0. r = 120 nm and
a = 27 nm.

This leads to an asymmetry in the potential as it can be found in Figure C.3.
Repeating the steps in the last subsection, one finds for the Hamiltonian Hx for the

energy in x-direction

Hx|n〉 = cn+4|n+4〉+cn+2|n+2〉+cn+1|n+1〉+cn|n〉+cn−1|n−1〉+cn−2|n−2〉+cn−4|n−4〉 ,
(C.18)

where the two additional prefactors are defined as

cn+1 =

√

~

2mω0

ε

2r

√
n+ 1 (C.19)
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cn−1 =

√

~

2mω0

ε

2r

√
n. (C.20)

In order to use the matrix diagonalization of Hx to determine the weights for the eigen-
functions, we have to include some additional zero coefficients for the functions |n+3〉 and
|n− 3〉, because now all eigenfunctions are needed.

The result for the charge eigenstates of the asymmetric double-well potential can then
be written as

ψgs(x, y, z) =
N−1
∑

n=0

vgs,nΦn(x)Φ0(y)δ(z) (C.21)

ψes(x, y, z) =
N
∑

n=1

ves,nΦn(x)Φ0(y)δ(z) , (C.22)

where vgs,n and ves,n are the coefficients for all n eigenfunctions of the harmonic oscillator.
The eigenfunctions are illustrated in Figure C.4.
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Figure C.4: Wavefunctions for the biased quartic potential with r = 120 nm, a = 27 nm
and ε = 0.2 ~ω0. (a) ground state ψgs. (b) excited state ψes.
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Appendix D

Ansatz, Polaron transformation and
NIBA

D.1 Ansatz and Polaron transformation

Our aim is the derivation of an expression for the expectation value of the σ̂z-operator
of the charge qubit system depending on time, when the qubit is strongly coupled to a
detector. With a Liouville equation, one can determine the time dependence of σ̂z

˙̂σz = − i
~

[σ̂z, Hsys] . (D.1)

The same kind of equations hold for σ̂x and σ̂y.
In order to work with an appropriate Hamiltonian, we start with the usual Hamiltonian

for the two-state system (TSS) or qubit

Hsys =
~

2

(

ε̃(t) ∆
∆ −ε̃(t)

)

=
~

2

[

ε(t)
(

c†LcL − c†RcR
)

+ ∆
(

c†LcR + c†RcL

)]

. (D.2)

Here, we introduced the parts of Hsys with fermionic creation and annihilation operators

in second quantization for the left quantum dot (c†L and cL) and for the right quantum dot
(c†R and cR).

Applying the so-called Polaron transformation [216–218], this Hamiltonian can be
brought to a purely non-diagonal form in the TSS. This transformation is a unitary one
and it is defined as

H̃sys = UHsysU
† + i~

∂U

∂t
U †, (D.3)

where

U = exp

[

i
φ

2
c†LcL

]

exp

[

−iφ
2
c†RcR

]

= exp

[

i
φ

2
σ̂z

]

. (D.4)

The fluctuating phase φ is defined as φ =
∫ t
dt′ε̃(t′), where ε̃(t) = ε + δε(t). δε(t) is a

noise term coming from the coupling of the qubit to its detector. If one now calculates the
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second term from the right hand side of Eq. (D.3), one finds

i~
∂U

∂t
U † = −ε̃(t)c†LcL + ε̃(t)c†RcR = −ε̃(t)σ̂z, (D.5)

and therefore one cancels with this the time-dependent diagonal parts of Hsys. The off-
diagonal parts, however, obtain a fluctuating phase φ. This happens in analogy with the
cancellation of Bz in an NMR experiment in the co-rotating frame [113]. Here, we use a
co-fluctuating frame.

The transformed Hamiltonian now reads

H̃sys =
~∆

2

(

0 eiφ

e−iφ 0

)

. (D.6)

With this transformed Hamiltonian, we can now determine the time evolution of the
operator σ̂x, σ̂y and σ̂z as

˙̂σx(t) =
i∆

2

(

eiφ − e−iφ
)

σ̂z(t), (D.7)

˙̂σy(t) = −∆

2

(

eiφ + e−iφ
)

σ̂z(t), (D.8)

˙̂σz(t) =
∆

2

[

1

i

(

eiφ − e−iφ
)

σ̂x(t) +
(

eiφ + e−iφ
)

σ̂y(t)

]

. (D.9)

Equations (D.7) and (D.8) can be formally integrated

σ̂x(t) =
i∆

2

t
∫

0

dt′
(

eiφ − e−iφ
)

σ̂z(t
′) (D.10)

σ̂y(t) = −∆

2

t
∫

0

dt′
(

eiφ + e−iφ
)

σ̂z(t
′). (D.11)

These two equations can then be inserted into Eq. (D.9). If one additionally also traces
out the environment at the same point (written as 〈·〉B), one obtains

〈 ˙̂σz(t)〉B = −∆2

4

{

−
t
∫

0

dt′〈
(

eiφ(t) − e−iφ(t)
)

(

eiφ(t′) − e−iφ(t′)
)

〉B〈σ̂z(t
′)〉B +

+

t
∫

0

dt′〈
(

eiφ(t) + e−iφ(t)
)

(

eiφ(t′) + e−iφ(t′)
)

〉B〈σ̂z(t
′)〉B

}

(D.12)

= −∆2

2

t
∫

0

dt′
[

〈eiφ(t)e−iφ(t′)〉B + 〈e−iφ(t)eiφ(t′)〉B
]

〈σ̂z(t
′)〉B (D.13)
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If one now reintroduces the previous expression for the phase φ(t) =
∫ t
dt′ε̃(t′) = εt +

δφ(t) and realizes that after this, both expectation values over the exponential functions
[depending only on the phase differences δφ(t) and δφ(t′)] are the same [174], one finds

〈 ˙̂σz(t)〉B = −∆2

2

t
∫

0

[

〈eiδφ(t)e−iδφ(t′)〉Beiε(t−t′) + 〈e−iδφ(t)eiδφ(t′)〉Be−iε(t−t′)
]

〈σ̂(t′)〉B

= −∆2

2

t
∫

0

dt′〈eiδφ(t)e−iδφ(t′)〉B
(

eiε(t−t′) + e−iε(t−t′)
)

〈σ̂z(t
′)〉B (D.14)

= −∆2

t
∫

0

dt′ cos [ε(t− t′)] 〈eiδφ(t)e−iδφ(t′)〉B〈σ̂z(t
′)〉B (D.15)

= −∆2

t
∫

0

dt′ cos [ε(t− t′)] eJ(t−t′)〈σ̂z(t
′)〉B, (D.16)

where the phase correlation function J(t − t′) represents the stationary noise by the fluc-
tuations δε(t) in the energy of the TSS. A similar derivation can be found in [216].

D.2 Noninteracting blip approximation – NIBA

The whole procedure described above is analogous to the noninteraction blip approximation
(NIBA) of the path-integral solution of the Spin-Boson model [134, 135]. Automatically, a
stationary Gaussian approximation is being done by putting the expectation value in the
exponent in Eq. (D.16) and by assuming that the correlation function J(t − t′) depends
only on the time difference t− t′. The noise correlation function J(t) comes here from the
detector that is strongly coupled to the double quantum dot charge qubit.
NIBA is a good approximation for the two cases i) ε = 0 and ii) |ε| À |∆|. The dynamics of
a two-state systems is usually determined within a path integral approach [134, 135, 219].
The term

∆2eiδφ(t1)e−iδφ(t2) ∼ ∆2eδφ(0)[δφ(t1−t2)−δφ(0)] (D.17)

similar to Eq. (D.15) represents a tunnel amplitude from a diagonal reduced density matrix
state (provided by 〈σ̂z〉) to an off-diagonal density matrix element at time t1 and a backward
propagation at time t2. Such forward and backward propagation is then called a blip in
comparison to remaining in a diagonal state, which is called a soujourn. This is also
illustrated in Figure D.1.

The two limits can be understood as follows: in case i) the interblip correlations are
of second order in the coupling, while the intrablip correlations are linear in the coupling
[134, 135]. Therefore NIBA is correct for vanishing energy bias ε = 0 and small coupling.
But also for large coupling good results can be obtained [220, 221] in analogy to other
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one-loop expansions, even if this is a priori not clear. In case ii), long blips are suppressed
for very large bias (see Figure D.1 for an illustration of soujourns and blips), therefore the
approximation works well [134, 135].

The estimation of the integral in Eq. (D.16) can only provide insights concerning the
second moment in the interblip correlation. Higher orders in the interblip correlation
should also include the Full Counting Statistics (FCS) [222–224], but they are expected
to only give rise to a quantitative change of our analysis and not to a qualitative change,
because the form of all higher order correlations will be similar.

t 1 t 2

d

soujourns

blips

t

o

ρ  =|σ><σ|

ρ  =|σ><−σ|

Figure D.1: Soujourns associated with a time evolution in diagonal elements of the reduced
density matrix ρd of the system and blips associated with an evolution in off-diagonal
elements ρo.

For case i), the time evolution of the expectation value 〈σ̂z(t)〉B can be determined,
whereas for case ii), the relaxation rate Γr is a valid quantity to be calculated [220].

In case i), we can solve Eq. (D.16) in Laplace space, assuming that 〈σ̂z(0)〉B = 1 (i.e.
the electron is in the left dot) and find

L [〈σ̂z(t)〉B] =
1

s+ Ξ(s)
, (D.18)

with the Laplace-transformed self-energy

Ξ(s) = ∆2

∞
∫

0

dte−steJ(t) . (D.19)

Now, in order to determine the phase correlation function J(t), we have to consider the
noise spectrum of the detector. This has been done in the preprint in Chapter 7 for a
quantum point contact (QPC) and in principle also for a radio-frequency single electron
transistor (rf-SET). To receive the full time evolution of 〈σ̂z(t)〉B, one needs to calculate the
inverse Laplace transformation [225, 226] of Eq. (D.18), i.e. the effect of the coherent parts
of the evolution [given by the poles of Eq. (D.18)] and the incoherent part [in general given
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by a branch cut contribution of Eq. (D.18) around the branch point s = 0]. Figure D.2
shows a typical Bromwich contour for the inverse Laplace transformation. In Chapter 7,
only the exponentially decaying parts of the evolution are considered, which originate from
the isolated singularities.

Re(s)

Im(s)
poles

branch point

Figure D.2: Bromwich contour in the complex s-plane for the Spin-Boson case [134]. Two
complex poles and one branch point can usually be found [135].

In case ii), where the asymmetry in the charge qubit states is much larger than the
coupling between them, we can find the relaxation rate as [220]

Γr = 2< [Ξ(iε+ 0)] . (D.20)

Again, the analysis for a QPC can be found in Chapter 7.
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Appendix E

Photon assisted tunneling in a dot
induced by shot noise

This appendix deals with a system that is similar to the one discussed in Appendix D. The
main difference is that we now consider the backaction of the detector on one quantum
dot.

E.1 Rate equations for photon-assisted tunneling

We consider photon assisted tunneling through a quantum dot [72, 75], therefore we use the
rate equations that were already available in this reference and also presented in Chapter 8.
We only apply them to a simple special case, where the source of the irradiation is not a
microwave generator but (shot) noise in nearby quantum point contact (QPC). The spin
effects [going from a spin doublet to a spin singlet (for the ground state) or a spin triplet
(for the excited states)] are already included in the following equations, they give rise to
the prefactors 2 and 3

2
, which represent the number of available states.

In the case of three levels and one electron, we have

ṗ0 = −p0

(

Γin
0→1 +

3

2
Γin

0→2 +
3

2
Γin

0→3

)

+ p1 2 Γout
1→0 + p2Γ

out
2→0 + p3Γ

out
3→0

ṗ1 = p0Γ
in
0→1 − p1(2 Γout

1→0 + Γ1→2 + Γ1→3) + p2Γ2→1 + p3Γ3→1

ṗ2 = p0
3

2
Γin

0→2 + p1Γ1→2 − p2(Γ
out
2→0 + Γ2→1 + Γ2→3) + p3Γ3→2

ṗ3 = p0
3

2
Γin

0→3 + p1Γ1→3 + p2Γ2→3 − p3(Γ
out
3→0 + Γ3→1 + Γ3→2), (E.1)

where p0 is the occupation probability of no electron on either of the three levels, p1 means
occupation probability of state 1 (the ground state), p2 of state 2 (first excited state) and
p3 of state 3 (second excited state). Γi→j with i, j = 1, 2, 3 are excitation resp. relaxation
rates between the three states 1, 2, and 3. The states 2 and 3 are orbital excitations of
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state 1. Γ
in/out
i→j with i, j = 0, 1, 2, 3 stands for tunneling rates into or out of the dot (coming

from state i going to state j).
We neglect in the following the six internal relaxation and excitation rates, because

these are usually not known from the experiment and they would just increase the number
of fitting parameters. Therefore, our rate equations only are

ṗ0 = −p0

(

Γin
0→1 +

3

2
Γin

0→2 +
3

2
Γin

0→3

)

+ p1 2 Γout
1→0 + p2Γ

out
2→0 + p3Γ

out
3→0

ṗ1 = p0Γ
in
0→1 − p1 2 Γout

1→0

ṗ2 = p0
3

2
Γin

0→2 − p2Γ
out
2→0

ṗ3 = p0
3

2
Γin

0→3 − p3Γ
out
3→0. (E.2)

In the stationary case, this can be solved easily by the following set of equations:

p0 =
2 Γout

1→0Γ
out
2→0Γ

out
3→0

denom

p1 =
Γin

0→1Γ
out
2→0Γ

out
3→0

denom

p2 =
3 Γin

0→2Γ
out
1→0Γ

out
3→0

denom

p3 =
3 Γin

0→3Γ
out
1→0Γ

out
2→0

denom
denom = 2 Γout

1→0Γ
out
2→0Γ

out
3→0 + Γin

0→1Γ
out
2→0Γ

out
3→0 + 3 Γin

0→2Γ
out
1→0Γ

out
3→0 + 3 Γin

0→3Γ
out
1→0Γ

out
2→0 .

. (E.3)

These solutions can then be used to calculate the current through one of the two
junctions. We calculate by this only first order processes, the influence of cotunneling is
not included. The expressions for the sequential current through both junctions (in the
rates marked with “; 1” for the first junction or “; 2” for the second junction) read:

I1 = e

[

p0

(

Γin
0→1;1 +

3

2
Γin

0→2;1 +
3

2
Γin

0→3;1

)

− p12 Γout
1→0;1 − p2Γ

out
2→0;1 − p3Γ

out
3→0;1

]

I2 = e

[

p0

(

Γin
0→1;2 +

3

2
Γin

0→2;2 +
3

2
Γin

0→3;2

)

− p12 Γout
1→0;2 − p2Γ

out
2→0;2 − p3Γ

out
3→0;2

]

.(E.4)

The tunneling rates are given by a combination of forward (
−→
Γ i) and backward (

←−
Γ i)

rates of both junctions (i = 1, 2),

Γin
0→1 =

−→
Γ 1(E) +

←−
Γ 2(E)

Γin
0→2 =

−→
Γ 1(E + ε01) +

←−
Γ 2(E + ε01)
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Γin
0→3 =

−→
Γ 1(E + ε02) +

←−
Γ 2(E + ε02)

Γout
1→0 =

←−
Γ 1(E) +

−→
Γ 2(E)

Γout
2→0 =

←−
Γ 1(E + ε01) +

−→
Γ 2(E + ε01)

Γout
3→0 =

←−
Γ 1(E + ε02) +

−→
Γ 2(E + ε02), (E.5)

where ε01 and ε02 are the positions of the first and second excited states seen from the
ground state.

One can calculate these forward and backward tunneling rates by P (E)-theory [174] in
order to include the influence of the electromagnetic environment, in this special case the
noise of the QPC:

−→
Γ 1 = Γ1

∞
∫

−∞

P1(E − E ′)f(E ′)dE ′ (E.6)

←−
Γ 1 = Γ1

∞
∫

−∞

P1(E
′ − E) [1− f(E ′)] dE ′ (E.7)

−→
Γ 2 = Γ2

∞
∫

−∞

P2(E − E ′) [1− f(E ′)] dE ′ (E.8)

←−
Γ 2 = Γ2

∞
∫

−∞

P2(E
′ − E)f(E ′)dE ′, (E.9)

where Γi, i = 1, 2 are prefactors for the two junctions that are given by fits of the exper-
imental data. We assume that Pi(E) is given by the general definition [174]. In our later
attempts to fit the experimental data, it turned out to be useful, if one assumes that the
tunneling rates Γi through both junctions are identical for each state one uses for transport.
But for the different states (ground state, first excited state and second excited state), we
assumed three different tunneling rates Γgs, Γ1es, and Γ2es.

E.2 Shot noise

For small frequencies ω, one can approximate the current noise of the QPC [158] as

SI =
4

RK

[

T (1− T )eVQPC coth

(

βeVQPC

2

)

+ T 2 2

β

]

, (E.10)

where T is the transmission probability through the QPC (for only one transmission chan-
nel), VQPC is the (positive) bias voltage that is applied over the QPC, and RK is the
quantum resistance. β−1 = kBTe is the inverse effective electron temperature. For more
than one transmission channel, we would have to introduce the Fano factor. For simplicity,
we write down the behavior for only one transmission channel of the QPC.
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In this case of white shot noise, P (E) is a Lorentzian,

Pi(E) =
1

2π~

∞
∫

−∞

eJ(t)+iEt/~dt

=
1

πwi

1

1 + E2

w2
i

, (E.11)

where the peak width wi can be calculated via equation (8) for J(t→∞) in Ref. [158] for
Te = 0,

wi = 8π2κ2
iT (1− T )eVQPC, (E.12)

and for finite temperature wi reads

wi = 8π2κ2
i

[

T (1− T )eVQPC coth

(

βeVQPC

2

)

+ T 2 2

β

]

, (E.13)

β leads to the temperature dependence, but for simplicity we used only the expression
(E.12). The deviation between the temperature-dependent and the temperature-indepen-
dent expression was around 3 per cent, therefore our approximation seems to be justified.
The temperature of the two leads is still included in the Fermi functions in equations (E.6-
E.9). The peak width wi really represents the shot noise of the QPC. κi is the fitting
parameter in our model, but it is still comparable to the numerical value in Ref. [158]. The
physical meaning of κi is the coupling strength between QPC and junction i (i = 1, 2). In
the following, we assume that κ1 = κ2. For different κ’s, we would also observe a pumping
effect.
With the parameters Γgs = 0.575 GHz, Γ1es = 5.75 GHz, Γ2es = 4.035 GHz, Te = 0.2 K,
Vdot = 30 µV, VQPC = 1268 µeV, ε01 = 245 µeV, and ε01 = 580 µeV (see Figure 8.3),
we find the desired behavior. The rate tunneling rate for the ground state Γgs has been
determined by a fit of the ground state peak (Coulomb oscillation peak) without noise
from the QPC. For the two excited states, we fitted the rates Γ1es and Γ2es to match the
experimental curve with noise from the QPC. For only one transmission channel through
the QPC, we find a κ2

1C = 2.80 · 10−4 at D = 0.5. For the second transmission channel in
Figure 8.3, we fit with a different κ2

2C = 2.33 · 10−5 at the maximum of the transmission
probability for the second transmission channel at D2 =

√
2− 1. This reduction of the κ2C

could probably be explained by an additional impedance in the circuit. This impedance
would depend on the detailed circuit and also on the higher conductance through the QPC
when using more than one channel.
Figure 8.4 (a) was simulated with the fitted κ2

1C for the first transmission channel of the
QPC at D = 0.5. All other parameters have been used as they are defined above (besides
VQPC, of course, which is tuned here).

Finally, we would like to present only one technical remark on the calculation. Since
the integrals in equations (E.6-E.9) are numerically hard to do, we generated this data
separately on a cluster of computers. We then used this data to determine the currents as
described above.
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E.3 Conclusion

To conclude, we modeled the sequential current through the quantum dot with rate equa-
tions for photon assisted tunneling, where the energy of the irradiation is here provided
by the noise of a nearby QPC and not by a microwave source. Our model shows a good
qualitative and quantitative agreement with the experiment. Unfortunately, we cannot
reproduce the saturation effect in the peak amplitudes as a function of the bias voltage of
the QPC that is seen in the experimental data. But this is probably due to our description
with only frequency-independent (white) shot noise.
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Kondo Dot in a Magnetic Field: Perturbation Theory and Poor Man’s Scaling. Phys.
Rev. Lett. 90, 076804 (2003).

[100] J. Paaske, A. Rosch, J. Kroha and P. Wölfle. Nonequilibrium transport through a
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[171] Ya. M. Blanter and M. Büttiker. Shot noise in mesoscopic conductors. Phys. Rep.
336, 1–166 (2000).
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and Prof. Dr. Ulrich Zülicke for all the discussions and the good atmosphere in our
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LMU Munich: Dr. Andreas K. Hüttel, Dr. Alexander W. Holleitner, Prof. Dr. Robert
H. Blick, Dr. Stefan Ludwig, Dr. Eva M. Weig, Dr. Udo Beierlein, Dr. Vadim Khrapay,



167
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