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Recent experiments on superconducting flux qubits, consisting of a superconducting loop interrupted by
Josephson junctions, have demonstrated quantum coherence between two different quantum states. The state of
the qubit is measured with a superconducting quantum interference device �SQUID�. Such measurements
require the SQUID to have high resolution while exerting minimal backaction on the qubit. By designing
shunts across the SQUID junctions appropriately, one can improve the measurement resolution without in-
creasing the backaction significantly. Using a path-integral approach to analyze the Caldeira-Leggett model, we
calculate the narrowing of the distribution of the switching events from the zero-voltage state of the SQUID for
arbitrary shunt admittances, focusing on shunts consisting of a capacitance Cs and resistance Rs in series. To
test this model, we fabricated a dc SQUID in which each junction is shunted with a thin-film interdigitated
capacitor in series with a resistor, and measured the switching distribution as a function of temperature and
applied magnetic flux. After accounting for the damping due to the SQUID leads, we found good agreement
between the measured escape rates and the predictions of our model. We analyze the backaction of a shunted
symmetric SQUID on a flux qubit. For the given parameters of our SQUID and realistic parameters for a flux
qubit, at the degeneracy point we find a relaxation time of 113 �s, which limits the decoherence time to
226 �s. Based on our analysis of the escape process, we determine that a SQUID with purely capacitive shunts
should have narrow switching distributions and no dissipation.
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I. INTRODUCTION

Superconducting devices are attractive candidates for
quantum bits �qubits� because of their manufacturability,
controllability, and scalability. As with any qubit, strong in-
teraction is necessary to control its state and to measure the
outcome of a computation; however, the quantum properties
are very fragile and only become manifest in almost total
isolation. Reconciling these contradictory requirements is the
fundamental challenge in building a quantum computer.

Quantum coherent behavior has been demonstrated in de-
vices based on the flux in a superconducting ring interrupted
by Josephson junctions.1–6 With an applied flux bias of �0 /2,
where �0�h /2e is the flux quantum, the qubit has two de-
generate states corresponding to its screening flux being ori-
ented parallel or antiparallel to the applied flux. The detector
used to measure the qubit must have sufficient sensitivity to
distinguish between the two states of the qubit efficiently, but
must not cause excessive decoherence during the quantum
evolution of the system. A conventional, resistively shunted
dc superconducting quantum interference device �SQUID� is
an excellent linear flux detector with high sensitivity when
operated in a flux-locked loop,7 but noise currents generated
by the shunt resistors induce qubit decoherence, rendering it
unsuitable.

Because the qubit is only a two-state system, a linear
detector provides more information than necessary. An un-
shunted SQUID is widely used as a flux comparator1 to dis-
tinguish the two states of the qubit, and furthermore has neg-
ligible dissipation in the superconducting state, making it an

attractive candidate for a qubit meter. For a given bias cur-
rent, one value of flux causes the SQUID to switch, generat-
ing an easily detectable voltage, while for another flux the
SQUID remains in the supercurrent state. By properly engi-
neering the appropriate parameters, one can use this device
to discriminate between the two states of the qubit.

While the unshunted SQUID has minimal inherent dissi-
pation, the leads coupling it to external measurement elec-
tronics can drive noise currents around the loop, causing de-
coherence in the qubit, particularly if the SQUID has typical
fabrication asymmetries.8 This decoherence can be mitigated
by reducing the mutual inductance between the SQUID and
the qubit; however, the concomitant reduction in the qubit
signal coupled to the SQUID makes it important to optimize
its resolution.

The switching of the SQUID out of the zero-voltage state
is not necessarily sharp. Switching occurs when the phase
particle representing the state of the SQUID escapes from the
effective tilted washboard potential; the distribution of
switching probabilities is governed by thermal activation
over and quantum tunneling through a barrier. At high tem-
peratures, the thermal escape rate dominates and the distri-
bution narrows as the temperature is lowered; however, be-
low a crossover temperature T*, the quantum rate dominates
and the distribution width is constant with decreasing tem-
perature, limiting the resolution of unshunted SQUIDs at low
temperature. The crossover temperature T* is determined by
the plasma frequency of the SQUID.9 Appropriately engi-
neered shunts in parallel with the SQUID junctions can
renormalize the plasma frequency, depressing the crossover
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temperature, and leading to narrower switching distribution
widths and improved SQUID resolution at low temperatures.
Indeed, in an early experiment that provided spectroscopic
evidence for quantum coherence in a flux qubit1 the authors
placed a discrete capacitor across their SQUID.

In this paper we consider the escape from the supercurrent
state of a dc SQUID with arbitrary shunts across the junc-
tions, with emphasis on a shunt that consists of a resistor Rs
in series with a capacitor Cs. In Sec. II, we calculate the
switching current distribution widths for such a device, and
in Sec. III fit this model to the measured escape width as a
function of temperature for an experimental device. In Sec.
IV, we treat the problem of decoherence of a flux qubit
coupled to an arbitrarily shunted SQUID using the spin-
boson model. Using the parameters for the experimental RC-
shunted SQUID as a case study, we describe a set of qubit
parameters which lead to very low relaxation and dephasing
rates for the qubit due to the RC shunts, while allowing
single-shot resolution of the qubit state. In Sec. V we con-
clude that a SQUID with purely capacitive shunts provides
the ideal combination of narrow switching distributions with-
out contributing additional decoherence.

II. CALCULATIONS OF ESCAPE RATES

We consider a flux qubit coupled to a dc SQUID with a
mutual inductance MQS, shown in Fig. 1. The SQUID con-
sists of a superconducting loop of inductance LS containing
two Josephson junctions, each with thermodynamic critical
current I0, capacitance Cj, and shunt admittance Y. The dy-
namics of the SQUID are described by the phase differences
across the junctions �1,2.10 Leads attached to the SQUID
loop can be used to drive a bias current Ib through the
SQUID and to measure the voltage across it. The SQUID is
biased with an externally applied flux �S=�0�S /2�, and the
qubit couples an additional flux ��Q= ±MQSJQ depending
on the sense of its circulating current JQ. A variation in the
total flux coupled to the SQUID changes the circulating cur-
rent JS flowing around the SQUID loop and the value of Ib at
which the SQUID has a probability p of switching out of the
zero-voltage state, Is

�p�. This flux response Is
50%��S� /2I0 is

governed by the screening parameter �L=2LSI0 /�0. A
square pulse of bias current, with height Ib and duration tb,

causes the SQUID to switch with a probability depending on
these parameters, the qubit state and temperature. Our goal is
to design a SQUID and shunts so that we can distinguish the
two states of the qubit in a single shot, with well character-
ized and small backaction from the SQUID to the qubit.
Single shot implies that when the qubit is in one state, a
particular value of Ib causes the SQUID to switch with a
small probability, while when the qubit is in the other state,
the same Ib causes the SQUID to switch with a probability
approaching unity.

A useful metric for characterizing the sensitivity of a par-
ticular SQUID readout scheme is the resolution � which we
can express in terms of the switching distribution width 	Is
and the slope of the flux modulation curve dIs

50%/d�S
through the equation

���p� � 	Is
��p�/�dIs

50%/d�S� . �1�

Here, �p is a parameter that indicates how much of the
switching distribution is to be included �Fig. 2�. Thus, the
criterion for single-shot readout with a confidence level of
�p is ���p�
2��Q.

Equation �1� shows that the resolution of a readout
SQUID can be improved either by increasing �dIs

50%/d�S� or
by narrowing 	Is

��p�. The flux modulation characteristics,
which are determined by the critical current and loop induc-
tance, are often constrained by considerations related to the
qubit. In particular, designing a readout SQUID which can
also function as a controllable qubit coupler leads to the
regime �L�1.11 In this paper we focus on optimizing � by
minimizing 	Is

��p�.
The switching distribution width of the readout SQUID is

determined by two stochastic processes, thermal activation
and quantum tunneling. Switching from the supercurrent to
the voltage state occurs when the phase particle, representing
the state of the SQUID, escapes from a metastable local
minimum of the potential energy to a running state. In the
thermal regime, the rate at which the SQUID switches is
given by the Arrhenius expression12

�th�T� = �r/2��exp�− U0/kBT� , �2�

where r is the frequency of small oscillation aligned with
the direction of escape, renormalized by coupling to environ-
mental degrees of freedom, and U0 is the height of the barrier
blocking escape.

FIG. 1. Schematic of flux qubit coupled to readout SQUID.

FIG. 2. Idealized SQUID switching distribution. As Ib is in-
creased, the probability of the SQUID switching increases from 0 to
1 over a characteristic width 	Is

��p�.
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An intuitive model of this escape process is provided by
the one-dimensional dynamics of a single, undamped Jo-

sephson junction with critical current Î0 and capacitance Ĉj.

In this case, for Ib� Î0, we can write closed form approxima-

tions for the barrier height Û0 and the frequency of small
oscillation ̂0 as13

Û0 � �4�2Î0�0/6���1 − Ib/Î0�3/2 �3�

and

̂0 � �2�Î0/�0Ĉj�1 − Ib
2/Î0

2�1/4. �4�

We rewrite Eqs. �2� and �3� in the scaling form

�̂th�T� =
̂0

2�
exp − �	1 −

Ib

Î0

	 Û0

kBT

2/3�3/2

, �5�

to see that the distribution width in Ib scales as T2/3.
In the thermal regime, the switching distributions narrow

with decreasing temperature so that if the readout SQUID
remained in this regime one could resolve arbitrarily small
fluxes by cooling to sufficiently low temperatures. However,
as the thermal fluctuations diminish, they leave behind quan-
tum fluctuations which cause the junction to switch through
tunneling and saturate the switching width to a limiting value
at low temperatures. Below T*, the switching rate saturates
towards the constant value

�q = �th�T*� = �r/2��exp�− U0/kBT*�, T � T*. �6�

Thus, the problem of making a sensitive readout SQUID can
be recast as one of suppressing the crossover temperature,
given by12

T* = �r/2�kB. �7�

For a SQUID with given �L, � is determined at low tem-
peratures by T*, and hence by r. As we shall see, r can be
engineered with a properly designed shunt. Previous experi-
ments have measured the crossover temperature for un-
shunted dc SQUIDs.14,15

We now calculate the crossover temperature for a SQUID
with arbitrary loop inductance, critical current, shunt admit-
tance, flux bias, and current bias. We use the appropriate
nonohmic Caldeira-Leggett model, which contains terms
renormalizing the capacitance as well as dissipative terms,
and solve for the escape rates using the path-integral repre-
sentation of the imaginary part of the free energy. We apply
this formalism to a single, shunted Josephson junction to find
an analytical formula for T* that depends on the shunt, the
plasma frequency, and the barrier height. We numerically
extract these parameters from the full SQUID potential,
which we shall see gives good agreement with experimental
data. Thus, we reduce the SQUID with each junction shunted
by an admittance Y to a single junction shunted by an effec-

tive admittance Ŷ =2Y �Fig. 3�. The equivalent junction has a

capacitance Ĉj =2Cj, a critical current Î0 which depends on
�S with a maximum value 2I0, and a bare plasma frequency
̂0 that is derived from the SQUID plasma frequency
0��S , Ib ,�L�. This approximation neglects the SQUID loop

inductance LS, but is valid because the Josephson inductance
of the junctions diverges near the escape point.

To compute the escape rates from Eqs. �2� and �6� for a
SQUID with arbitrary �L and �S, we need to consider the
full two-dimensional potential energy surface for the dc

SQUID. We replace the single junction quantities Û0 and ̂0
with those calculated from the full SQUID potential, U0 and
0, which we use to treat the escape process in one dimen-
sion along a cut through the full SQUID potential.

The junction potential energy Û is replaced with the
SQUID potential energy U=UJ+UL, where

UL = �LS/4���Ib/2� − JS�2 + �Ib/2� + JS�2� �8�

is the inductive energy, and

UJ = −
�0

2�
�I0�cos �1 + cos �2� + Ib

�1 + �2

2
� �9�

is the Josephson energy. Here, JS and �1,2 are connected
through the fluxoid condition

�1 − �2 = 2�LSJS/�0 + �S. �10�

The observable static solutions of this potential correspond
to metastable minima along the valley of minimum UL at
points xi. The junction switches to the voltage state when the
state of the system moves from x0 to x1 through a barrier of
height U0 at the saddle point x01 between the two minima.
From this we see that U0=U�x01�−U�x0�, and that 0 is re-
lated to the curvature of U at x0.

To find x0 and x01 we use previously derived analytical
approximations10 as starting points for exact numerical solu-
tions. First, we find the critical point xc where the saddle
point disappears by solving the system of three equations

�U

��1
=

�U

��2
=

�2U

��1
2

�2U

��2
2 − 	 �2U

��1��2

2

= 0 �11�

in three unknown parameters �1, �2, and Ib. We then use the
third-order expressions given in Eqs. �12� and �13� of Ref. 10
to find starting points sufficiently close to the location of the
true minimum and saddle point, so that numerical methods
converge. This allows us to find U0 and 0 with an efficient,
automated procedure. The results are displayed graphically
in Fig. 4.

We derive the effective Lagrangian16 using a method pio-
neered by Leggett based upon the classical equation of mo-
tion. Current conservation for the single junction can be ex-

FIG. 3. Transformation from SQUID with shunt admittances Y
to equivalent single Josephson junction.
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pressed in terms of the inverse Fourier transform F−1 of the

effective shunt admittance Ŷ�� as

Ib = Î0 sin �̂ + F−1���0/2��i�̂Ŷ�� + 2iCj�� , �12�

where �̂ is the phase difference across the junction. The Fou-
rier transform of this equation yields

K���̂ = − F��Û/��̂� , �13�

where Û= ��0 /2�� �Ib�̂− Î0 cos �̂� is the single junction po-
tential and

K�� = ��0/2��iŶ�� + 2iCj� �14�

is the frequency-dependent linear dynamical operator.16

To determine the tunneling rate using the free energy
method, we need to find the effective action of the system in
imaginary time �. At finite temperature, the partition function
is a path integral over all periodic paths q��� with
q�ih /kBT�=q�0�. We Fourier expand these paths as q���
=�nq�n�exp�−in��, where n=2�nkBT /h are the Bose-
Matsubara frequencies, to find the effective action

Seffq��� = �1/2���
n

K�− i�n���q�n��2 + SU. �15�

Here, SU is the contribution of the potential energy and the

analytically continued dynamical operator is given by K̄��
�K�−i���.

If the barrier is not too low, it is sufficient to evaluate the
contributions to the partition function around the classical
solutions: the periodic paths which make Seff stationary. The
escape can be driven by thermal or quantum fluctuations.
These mechanisms can be distinguished by two classes of
stationary solutions: thermal escape corresponds to constant
paths, q��=0 for �0; quantum tunneling corresponds to

nontrivial periodic paths �instantons�. The highest tempera-
ture with an instanton solution is T*.

The instanton appears as a small-amplitude oscillation
around the minimum of the inverted potential described by

K̄�r� − 2Cĵ0
2 = 0. �16�

This equation for r yields T* through Eq. �7�.

III. EXPERIMENTAL RESULTS

To design a SQUID to measure a flux qubit, one wants to
minimize � while exerting a weak backaction on the qubit
due to the shunts. One choice for a shunt which satisfies this
compromise is an admittance Y �Fig. 1� which consists of a
capacitor Cs in series with a resistor Rs. The relevant fre-
quency for the SQUID damping is the plasma frequency ̂0
of the equivalent single junction.17 We design the SQUID
and qubit so that ̂0 /2� is more than an order of magnitude
greater than the qubit level splitting frequency �. We choose
Rs and Cs such that 1 /2�RsCs is larger than �. At ̂0 /2�, the
capacitor has a negligible reactance and the resistor damps
the SQUID; in contrast, at � the shunt capacitor has an im-
pedance greater than that of free space.

We fabricated an RC-shunted SQUID with Al-AlOx-Al
tunnel junctions on an oxidized Si substrate using electron-
beam lithography and double-angle evaporation �Fig. 5�. The
junction areas were 350�260 nm2, corresponding to a ca-
pacitance Cj =9.3 fF determined from separate measure-
ments on similar junctions. The shunt capacitors were depos-
ited in the same Al-AlOx -Al layer as the tunnel junctions in
an interdigitated style, with 0.6 �m wide fingers spaced by
0.8 �m. We estimate each capacitor to have a value Cs
=20 fF, using the simple design rule that when the gap is
equal to the width, and larger than the oxide thickness, the
capacitance of interdigitated capacitors fabricated on silicon
wafers is C �fF��0.1�N�L ��m�, where N is the number
of fingers in each electrode, and L is the length of each
finger.18,19 The shunt resistors were patterned in a 42 nm
thick AuCu film to yield Rs=40 �, based on the measured
resistor area and separate measurements of the sheet resis-
tance. The device was cooled in a dilution refrigerator with
all electrical leads to the sample heavily filtered at several
different temperatures with a combination of lumped circuit
and copper powder low-pass filters.13 The sample was en-
closed in a Pb-plated cavity to eliminate external magnetic
field fluctuations.

Measurements of Is
50% were made by adjusting the ampli-

tude of a 4 �s long trapezoidal bias current pulse until the
voltage state was detected 50% of the time out of 5000 av-
erages. The flux applied to the SQUID was varied to produce
the modulation curve shown in Fig. 6�a�. By fitting the shape
of the flux modulation curve to calculations based on the
SQUID potential we estimated �L=0.95; with the computed
value LS=500 pH we find I0=1.96 �A. The rise in Is

50% near
�S= ±�0 /2 is due to the switching from the LSCj-resonance
of the SQUID, which produces a step in the current-voltage
characteristic of the SQUID. This step modulates with flux
with period �0, �0 /2 out of phase with the modulation of
Is

50%.20

FIG. 4. SQUID potential energy. Contour plot showing the criti-
cal point xc, the minimum x0 and the saddle point x01. Open circles
show the starting point for search taken from analytic approxima-
tions. White broken lines show contours where �U /���1−�2�=0
�dotted� and �U /���1+�2�=0 �dashed�. SQUID parameters are:
�S=0.05 �0, I0=1.96 �A, Ib=1.49 �A, and LS=500 pH, corre-
sponding to �L=0.95.
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By successively measuring the switching probability as a
function of the amplitude of the applied bias current pulse
we acquired the curve shown schematically in Fig. 2 to de-
termine 	Is

90% versus �S Fig. 6�b��. From these measure-
ments, we compute the resolution �90% as a function of �S.
The results Fig. 6�c�� show that the resolution is roughly
constant at 15m�0 for �p=90% and 28m�0 for �p=99%
over a range 0.2�0� ��S��0.4�0, with the resolution de-
generating near �S=n�0 /2 �n is an integer�.

We measured 	Is
90% for several values of �S at tempera-

tures between 24 and 500 mK, as shown in Fig. 7. The width
remains constant below T�200 mK, indicating the quantum
tunneling regime, and increases as a power law in the ther-
mal regime. The fractional width increases as the flux bias
moves away from n�0.

To determine the effect of the RC-shunt, we compare
these data to the model described in Sec. II. A nuance in this
calculation is that, because T* depends on the plasma fre-
quency, which in turn is a function of the bias current, one
must solve self-consistently for the escape point at T*.

For a SQUID with each junction shunted by Rs and Cs in
series, the effective shunt admittance across the equivalent
single Josephson junction �Fig. 3� is

Ŷ�� = 2Csc/� − ic� , �17�

where c=1/RsCs. Using Eq. �13� and applying the linear
response formalism as described by Leggett,16 we find that
r is the real root of the cubic equation

r
3 + c�1 + ��r

2 − 0
2r − c0

2 = 0, �18�

where ��Cs /Cj. This root can be found in closed form us-
ing Cardano’s formula.21 The parametric dependence of T* is
shown in Fig. 8. We can identify a number of limits:

�1� Very small rolloff frequency, c→0: r=0. This re-
covers the result for an unshunted junction.

�2� Small rolloff frequency, c→0, �c arbitrary �corre-
sponds to the rolloff frequency with the junction capacitance
of appreciable size�: r=�c�1+ �20 /�c�2�1/2−1� /2. This
describes a light particle with damping.

�3� High rolloff frequency, c�0: r=0 / ��+1�1/2.
The capacitor renormalizes the plasma frequency of the
junction.
For a set of RC-shunted SQUIDs with fixed Cs and variable
Rs, the first limit corresponds to Rs→�, so that the shunt has
no effect on the system. As Rs is decreased, the enhanced
damping suppresses T*. As Rs is further decreased, the domi-
nant effect is that the shunt capacitance renormalizes the
plasma frequency, suppressing T* by a factor asymptotically

FIG. 5. Micrographs of RC-SQUID. �a� Overview showing flux
bias line; leads and pads for applying bias current and detecting
voltage are labeled at top. The pulse current is split symmetrically
between pads “SQUID A” and “SQUID B” so that fluxes generated
by this current do not couple to the qubit. �b� Enlarged view show-
ing Josephson junctions, interdigitated capacitors, and AuCu resis-
tors, indicated by the ellipse. �c� Capacitor detail. �d� Junction
detail.

FIG. 6. �a� Is
50% vs �S for an RC-shunted SQUID. Thick line

shows data, thin lines show calculated modulation curves for �L

=1.05 �top�, �L=0.95 �middle�, and �L=0.86 �bottom�. �b� Switch-
ing width 	Is

��p�p / Is
50% vs �S. �c� Resolution ���p� vs �S. Measure-

ments made at 24 mK.
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approaching �1+��−1/2. Thus, one can reduce T* by either
decreasing Rs, increasing Cs, or both.

Using the parameters for our RC-shunted SQUID, we ob-
tain escape widths that are much larger than our measured
values. By treating the shunt capacitance Cs as a free param-
eter while keeping the rest of the device parameters un-
changed, we find good agreement between theory and ex-
periment with Cs=153 fF, which yields T*=171 mK at �S
=0.01�0. However, this value of Cs, which we shall refer to
as case A, is a factor of 8 greater than the estimated value of
20 fF. In fact, we believe that a major contribution to the
narrow escape widths is the shunt admittance 1/Rl across the
SQUID arising from the 50 � coaxial line carrying the bias
current pulses. Using the estimated value, Cs=20 fF, and in-
cluding the term 1/Rl in Eq. �14� to give

K�� = ��0/2��iŶ�� + 2iCj + 1/Rl� , �19�

we obtain a good fit to our data with Rl=52 �, which agrees
well with the known cable impedance; we shall refer to this
scenario, with small Cs and small Rl as case B. This fit, and
fits for other values of �S, are shown in Fig. 7.

To quantify the effect of RC-shunts on a SQUID when Rl
is included, we note that a calculation for a SQUID with
identical parameters, including Rl but with no RC-shunts,
yields T*=222 mK for �S=0.01�0 and a saturated 90%
switching width of 	Is

90%/ Is
50%=0.0149.

The damping effects of the SQUID bias leads led us to
include on-chip series resistors in subsequent designs. We
fabricated similar SQUIDs using 250 � on-chip resistors in
series with the bias lines and with no RC-shunts. Using the
theory developed in this paper, we fitted the low-temperature
switching widths for one such device to obtain an effective
lead impedance Rl=234 �, which can be compared to the
expected value of 300 � when the 50 � line impedance is
included. Through separate experiments,22 we verified that
the power dissipated in this series resistance during the bias
current pulses does not lead to appreciable heating.23

IV. CALCULATIONS OF DECOHERENCE
DUE TO RC-SHUNTS

In order for the enhanced sensitivity of the RC-shunted
SQUID to be useful for measuring a flux qubit, it is impor-
tant that the shunts not couple excessive dissipation to the
qubit and thus limit decoherence times. In this section, we
calculate the decoherence due to a SQUID with arbitrary
shunt admittances �Fig. 1�. The calculations are performed
for a single-junction qubit for definiteness, but the results
hold for any flux qubit, including three-junction qubits. In
contrast to previous calculations,8 we include the self-
inductance of the SQUID loop, and the junctions are shunted
individually.

In the spin-boson model, decoherence times are obtained
from the environmental spectral density function J��, which
can be found from the classical friction the phase of the qubit
experiences from its environment.16,24 For a total qubit flux
�Q

t and qubit potential UQ��Q
t �, one finds J��= �LQJQ�2 /

2���ImD���, where D�� is the linear coefficient in the
Fourier-transformed equation of motion

D���Q
t = − �UQ/��Q

t �20�

with the environmental coordinates eliminated.
We now model the decoherence induced when the SQUID

is in its “off” state, that is, for zero bias current, using this
formalism. To do this we must find the classical equation of
motion for the qubit, including influences from the SQUID.
We begin by splitting the total fluxes through the SQUID and
the qubit into external and screening fluxes, �S

t =�S+�S
s and

�Q
t =�Q+�Q

s , respectively, where �S and �Q are fluxes
from external sources. The screening fluxes arise from circu-
lating currents in the SQUID �JS� and qubit �JQ�, as

	�Q
s

�S
s 
 = 	 LQ MQS

MQS LS

	JQ

JS

 , �21�

where LQ is the inductance of the qubit which has mutual
inductance MQS to the SQUID with self-inductance LS.
Equation �21� allows us to express the fluxes through cur-
rents by matrix inversion,

	JQ

JS

 =

1

M�
2 	 LS − MQS

− MQS LQ

	�Q

s

�S
s 
 , �22�

where M�
2 =LQLS−MQS

2 �0.

FIG. 7. Measured 90% switching width vs temperature for sev-
eral different �S. Solid lines show the predicted distribution widths
for RC-shunted SQUID with Rs=40 �, Cj =9.3 fF, I0=1.96 �A,
Cs=20 fF, and a fit value Rl=52 �. Dashed line shows calculated
width for corresponding unshunted SQUID with Rl=� at �S

=0.01�0.

FIG. 8. Suppression of T* for RC-shunted SQUID 2�kBT* /�0

vs c /0. Four curves are shown for different values of �
�Cs /Cj.
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We can write current conservation at a node in the SQUID
loop as JS= IC+ Ij + IY, where the terms on the right are the
current through the junction capacitance, junction induc-
tance, and shunt admittance, respectively. Proceeding term
by term, we have

IC = CjV̇i = �Cj�0/2���̈i, �23�

where we have introduced the junction voltages Vi and used
dots to denote time derivatives. For Ib=0, the symmetry of
the two junctions is unbroken, so that Eq. �10� implies

�1 = − �2 = ��/�0���S
s + �S� . �24�

Thus, we have IC= �Cj /2��̈S
s . The next term is given simply

by the Josephson current-phase relation, Ij = I0 sin �i. Finally,
the current through the shunt is simply IY =ViY. Thus, the
equation of motion for the SQUID can be written as

�Cj/2��̈S
s + I0 sin���S + �S

s�/�0� + �Y/2��̇S
s

= �LQ�S
s − MQS�Q

s �/M�
2 . �25�

We expand the sine term for small �S
s /�0 and Fourier trans-

form to obtain

�− 2Cj

2
+ i

Y��
2

+
LQ

M�
2 +

�I0

�0
cos	��S

�0

��S

s

= − I0 sin���S/�0� − �MQS/M�
2 ��Q

s . �26�

We henceforth simplify the notation by introducing the ef-
fective inductance of the SQUID Leff, where 1/Leff
=LQ /M�

2 + ��I0 /�0�cos���S /�0�.
We perform a similar analysis for the qubit, in which cur-

rent conservation yields

CQ�̈Q
s + JQ sin2���Q + �Q

s �/�0� = �LS�Q
s − MQS�S

s�/M�
2 .

�27�

We do not linearize the Josephson term here, but instead
include it in UQ in Eq. �20�. We now Fourier transform,
regroup terms, and substitute �S

s from Eq. �26� into Eq. �27�
to find the Fourier-transformed equation of motion for the
qubit in the form prescribed by Eq. �20�, giving

D�� = �LS/M�
2 � − 2CQ + �MQS

2 /M�
4 �

��2Cj − iY��/2� − �1/Leff��−1. �28�

Using M�
2 �LQLS, we can write

J�� = �JQ
2 MQS

2 /2��LS
2�Im��2Cj − iY��/2� − �1/Leff��−1� .

�29�

This is the central result of this section.
We now consider the specific case of a purely resistive

shunt, Y =1/Rs, for which Eq. �29� becomes

J�� =
�

4
�	1 − 2Cj

Leff

2

2

+
2Leff

2

Rs
2 �−1

. �30�

This expression is ohmic at low frequencies with �
� lim→0 4J�� /=JQ

2 MQS
2 Leff

2 /��LS
2Rs. The internal effec-

tive LC-resonance of the SQUID appears as a high-

frequency peak in J��, which may be broadened by the
damping.

For the case of the RC-shunt, we substitute Y��
=Csc / �− ic� into Eq. �29� to find

J�� = ��3/c
2�4�2LeffCeff − 1�2

+ �2/c
2��2CjLeff − 2�2�−1, �31�

with effective capacitance Ceff=Cj /2+Cs /2. Since J��
scales as 3, it is superohmic at low frequencies; at higher
frequencies it contains a modified version of the LC-
resonance peak of the SQUID. This expression is valid for a
symmetric SQUID with zero current bias, where to first order
the internal circulating current mode is decoupled from ex-
ternal impedance sources.8 To account for the effect of Rl
away from this special point, one must numerically solve the
equations governing the coupling of the SQUID circulating
current to external decoherence.26

To estimate the contribution of an RC-shunted SQUID to
decoherence, we consider a symmetric SQUID with the es-
cape widths of our measured device coupled to a hypotheti-
cal flux qubit with MQS chosen to yield single-shot resolution
at the 99% level: LS=500 pH, I0=1.96 �A, Cj =9.3 fF, Rs
=40 �, LQ=200 pH, MQS=96 pH, and JQ=0.3 �A. We will
consider both case A, with Cs=153 fF and Rl=�, and case B,
with Cs=20 fF and Rl=52 �, as described in Sec. III both at
a flux bias of �S=�0 /4, where the SQUID resolution is near
optimal Fig. 6�c��, and with Ib=0 so that Eq. �31� is valid.
These parameters correspond to plasma frequencies in the
SQUID junctions of 80 and 120 GHz and roll-off frequen-
cies c /2�=26 and 200 GHz, for cases A and B, respec-
tively. We assume arbitrarily that the qubit has a tunneling
frequency � /h=1 GHz. The behavior of J�� calculated
from Eq. �31� is shown in Fig. 9. We see that J�� exhibits
the LC-resonance of the SQUID near 51 GHz for case A and

FIG. 9. J�� for a flux qubit coupled to an RC-shunted SQUID
with parameters given in text. Solid line corresponds to case A and
dashed line corresponds to case B.
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89 GHz for case B, while at the frequencies near 1 GHz
relevant to the qubit it is well within the 3 regime for both
cases.

Finally, we use J�� to calculate relaxation ��R
−1� and

dephasing ���
−1� rates25 for our qubit due to the RC-shunts:

�R
−1 = 4���/��2J�2���coth�h�/2kBT� �32�

and

��
−1 = �R

−1/2 + 2����/��2�kBT/�� . �33�

Here, �= ��2+�2�1/2 is the qubit frequency, where � is the
bias of the qubit relative to the degeneracy point. For the
RC-shunted SQUID, � vanishes because of the 3 depen-
dence at low frequencies, so that ��=2�R. In Fig. 10 we plot
�R and �� versus �. At �=0, �R=1.9 �s and ��=3.9 �s for
case A, while for case B �R=113 �s and ��=226 �s; both
times decrease with increasing � for both cases because of
the 3 dependence of �. For low �, �� is much longer than
values currently observed in flux qubits without echoes, so
that the readout device does not contribute significantly to
dephasing. Hence, the RC-shunted SQUID achieves single-
shot readout while inducing negligible decoherence in the
qubit. By contrast, a readout SQUID with the same param-
eters except for purely resistive shunts of Rs=40 � would
cause dephasing in 5.7 ns.

In this analysis we have assumed complete symmetry of
the SQUID. We note that for a symmetric SQUID with zero
bias current, noise currents generated by Rl decouple from
the qubit to linear order;8 however, even small asymmetries
can cause the qubit to couple strongly to Rl, rapidly degrad-
ing its coherence, even for zero bias current. For example,
borrowing the techniques developed in Ref. 26, we estimate
that a 5% asymmetry in the critical current of the SQUID
junctions would reduce �� from 226 �s to approximately
1 �s at the degeneracy point for case B with Ib=0. However,
it should be possible to compensate for this asymmetry by
adjusting Ib.27

V. CONCLUSION

The need to resolve the state of a flux qubit in a single
measurement while maintaining a weak coupling between
the qubit and SQUID drives the development of techniques
to enhance the sensitivity of the SQUID without a concomi-
tant increase in the decoherence induced in the qubit. This
requirement has led us to calculate the escape widths for a
SQUID with an arbitrary, frequency-dependent shunt admit-
tance across each junction, and with an arbitrary magnetic
flux bias, in both the thermal and quantum regimes. We find
that an appropriately designed, series RsCs shunt suppresses
the thermal-to-quantum crossover temperature T*, leading to
narrower escape widths at low temperatures.

We used this model to explain the temperature depen-
dence of the escape width for a SQUID equipped with such
shunts for several values of flux bias. This device showed a
switching distribution at low temperature that was narrower
than what one would expect from a corresponding unshunted
SQUID, improving the resolution by a factor of nearly 3.
However, for this model to explain the observed degree of
narrowing required a shunt capacitance an order of magni-
tude larger than the a priori value estimated for the interdigi-
tated capacitors we constructed. We explained this result by
including the effect of the SQUID lead impedance on the
switching process; a model employing the a priori value of
shunt capacitance combined with a lead impedance close to
50 � gave good agreement with the experimental data.

We further calculated the decoherence induced in a flux
qubit by a SQUID with arbitrary shunt admittances. As a
numerical example, we modeled a system in which our mea-
sured RsCs-shunted SQUID, using the a priori value of shunt
capacitance and including the lead impedance, is coupled to
a hypothetical �but realistic� qubit with parameters chosen to
yield single-shot readout. This combination of devices
yielded a dephasing time that ranged from about 200 �s at
the degeneracy point to 30 �s at an energy bias of 10 GHz.
These times are orders of magnitude longer than those ob-
served in flux qubits due to inhomogeneous broadening2,6

and obtained recently by means of spin echoes.27 However,
we emphasize that these calculated results are for a symmet-
ric SQUID; when an asymmetry in the SQUID junction criti-
cal currents is included, the dephasing times are likely to be
substantially reduced. This decoherence can be mitigated by
including sufficiently large resistors in series with the
SQUID leads.

As is made clear in Fig. 9, one can suppress T*, and
thereby narrow the low-temperature escape widths, by reduc-
ing the shunt resistance Rs or increasing the shunt capaci-
tance Cs, or by a combination of both. Furthermore, inspec-
tion of Eq. �31� shows that J��→0 as Rs→0, so that the
decoherence due to the shunts vanishes in this limit. Thus, a
design with a purely capacitive shunt across each junction is
the natural solution to the problem of obtaining a narrow
distribution.

ACKNOWLEDGMENTS

We are grateful to I. Serban for carefully checking the
calculations in Sec. IV. We thank M. H. Devoret, D. Esteve,

FIG. 10. Dephasing ���, black� and relaxation ��R, gray� times
for flux qubit coupled to RC-shunted SQUID. Solid lines corre-
spond to case A and dashed lines correspond to case B.

ROBERTSON et al. PHYSICAL REVIEW B 72, 024513 �2005�

024513-8



H. Grabert, C. J. P. M. Harmans, J. M. Martinis, R. McDer-
mott, J. E. Mooij, F. Portier, R. J. Schoelkopf, and D. Vion
for helpful discussions. This work was supported by the Air
Force Office of Scientific Research under Grant No. F49-
620-02-1-0295, the Army Research Office under Grant Nos.

DAAD-19-02-1-0187 and P-43385-PH-QC, the National
Science Foundation under Grant No. EIA-020-5641, the Ad-
vanced Research and Development Activity, and the Deut-
sche Forschungsgemeinschaft through Sonderforschungs-
bereich 631.

*Present address: Department of Physics, Syracuse University,
Syracuse, NY 13244-1130.

†Present address: Department of Quantum Electronics, Institute for
Physical High Technology, Albert-Einstein-Str. 9, 07745 Jena,
Germany.

1 C. van der Wal, A. ter Haar, F. Wilhelm, R. Schouten, C. J. P. M.
Harmans, T. Orlando, S. Lloyd, and J. E. Mooij, Science 290,
773 �2000�.

2 I. Chiorescu, Y. Nakamura, C. Harmans, and J. Mooij, Science
299, 1869 �2003�.

3 J. Friedman, V. Patel, W. Chen, S. Tolpygo, and J. Lukens, Nature
�London� 46, 43 �2000�.

4 E. Il’ichev, N. Oukhanski, A. Izmalkov, T. Wagner, M. Grajcar,
H.-G. Meyer, A. Smirnov, A. Maassen van den Brink, M. H. S.
Amin, and A. M. Zagoskin, Phys. Rev. Lett. 91, 097906 �2003�.

5 S. Saito, M. Thorwart, H. Tanaka, M. Ueda, H. Nakano, K.
Semba, and H. Takayanagi, Phys. Rev. Lett. 93, 037001 �2004�.

6 B. L. T. Plourde, T. L. Robertson, P. A. Reichardt, T. Hime, S.
Linzen, C. E. Wu, and J. Clarke, cond-mat/0501679 �unpub-
lished�.

7 R. Kleiner, D. Koelle, F. Ludwig, and J. Clarke, Proc. IEEE 92,
1534 �2004�.

8 C. H. van der Wal, F. K. Wilhelm, C. J. P. M. Harmans, and J. E.
Mooij, Eur. Phys. J. B 31, 111 �2003�.

9 I. Affleck, Phys. Rev. Lett. 46, 388 �1981�.
10 V. Lefevre-Seguin, E. Turlot, C. Urbina, D. Esteve, and M. H.

Devoret, Phys. Rev. B 46, 5507 �1992�.
11 B. L. T. Plourde, J. Zhang, K. B. Whaley, F. K. Wilhelm, T. L.

Robertson, T. Hime, S. Linzen, P. A. Reichardt, C.-E. Wu, and J.
Clarke, Phys. Rev. B 70, 140501�R� �2004�.

12 U. Weiss, Quantum Dissipative Systems, in Series in Modern

Condensed Matter Physics, 2nd ed., No. 10 �World Scientific,
Singapore, 1999�.

13 J. M. Martinis, M. H. Devoret, and J. Clarke, Phys. Rev. B 35,
4682 �1987�.

14 S.-X. Li, Y. Yu, Y. Zhang, W. Qiu, S. Han, and Z. Wang, Phys.
Rev. Lett. 89, 098301 �2002�.

15 F. Balestro, J. Claudon, J. P. Pekola, and O. Buisson, Phys. Rev.
Lett. 91, 158301 �2003�.

16 A. J. Leggett, Phys. Rev. B 30, 1208 �1984�.
17 P. Joyez, D. Vion, M. Götz, M. H. Devoret, and D. Esteve, J.

Supercond. 12, 757 �1999�.
18 F. Portier, Ph.D. thesis, CEA Saclay, 2002.
19 D. Esteve �private communication�.
20 B. Chesca, R. Schulz, B. Goetz, C. Schneider, H. Hilgenkamp,

and J. Mannhart, Phys. Rev. Lett. 88, 177003 �2002�.
21 G. Cardano, Ars Magna �1545�.
22 P. A. Reichardt, T. Hime, S. Linzen, B. L. T. Plourde, T. L. Rob-

ertson, C. E. Wu, J. Clarke, and F. K. Wilhelm, Bull. Am. Phys.
Soc. 49, A37.004 �2004�.

23 F. C. Wellstood, C. Urbina, and J. Clarke, Phys. Rev. B 49, 5942
�1994�.

24 F. K. Wilhelm, M. J. Storcz, C. H. van der Wal, C. J. P. M.
Harmans, and J. E. Mooij, Adv. Solid State Phys. 43, 763
�2003�.

25 Y. Makhlin, G. Schön, and A. Shnirman, Rev. Mod. Phys. 73,
357 �2001�.

26 C. H. van der Wal, Ph.D. thesis, Delft University of Technology,
2001.

27 P. Bertet, I. Chiorescu, G. Burkard, K. Semba, C. J. P. M. Har-
mans, D. DiVincenzo, and J. E. Mooij, cond-mat/0412485 �un-
published�.

SUPERCONDUCTING QUANTUM INTERFERENCE DEVICE… PHYSICAL REVIEW B 72, 024513 �2005�

024513-9


