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Interplay of Spin and Charge Channels in Zero-Dimensional Systems
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We study the interplay of charge and spin (zero-mode) channels in quantum dots. The latter affects the
former in the form of a distinct signature on the differential conductance. We also obtain both longitudinal
and transverse spin susceptibilities. All these observables, underlain by spin fluctuations, become
accentuated as one approaches the Stoner instability. The nonperturbative effects of zero-mode interaction
are described in terms of the propagation of gauge bosons associated with charge [U�1�] and spin [SU�2�]
fluctuations in the dot, while transverse spin fluctuations are analyzed perturbatively.
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As one decreases the effective dimensionality of a con-
ductor, the role of electron-electron interactions—notably
in the charge and spin channels—is enhanced. In one
dimension (d � 1) these two channels, responsible for a
widely ranged spectrum of effects, often decouple. It is of
obvious interest to study the counterpart of this physics in
d � 0 quantum dots (QDs). An easily accessible scheme is
the ‘‘Universal Hamiltonian’’ [1,2] where, in addition to
the (impurity and geometry dependent) single-particle
Hamiltonian, only zero-mode interactions (charge and
spin (exchange) in our case) are included. The former leads
to the phenomenon of the Coulomb blockade, while the
latter leads to the Stoner instability [3] which is modified in
mesoscopic systems [1]. Attention has been given to the
intriguing interplay between the charge and the spin chan-
nels. This is manifest, e.g., in the suppression of certain
Coulomb peaks due to ‘‘spin blockade’’ [4]. In a recent
theoretical study [5], the effect of the spin channel on
Coulomb peaks has been analyzed employing a master
equation in the classical limit. Notwithstanding the success
of this approach, quantum effects are expected to play an
important role. A full fledged quantum mechanical analy-
sis of the charge-spin interplay in zero dimensions is thus
called for.

Here we report on the first step in this direction. In
contrast to Ref. [5], we focus on the ‘‘Coulomb valley,’’ a
regime which, in principle, is amenable to experimental
study, but which so far has not been investigated thor-
oughly. In a future publication [6], employing essentially
a similar approach, we shall address the vicinity of the
Coulomb peak regime. The message to be conveyed from
our present analysis is twofold: (i) quantum fluctuations
play an essential role in affecting charge and spin related
observables; (ii) the charge and spin channels in zero-
dimensional systems are coupled, and the latter renormal-
izes the former.

More specifically we find that (i) as the spin modes
renormalize the Coulomb blockade (CB), they modify
the tunneling density of states (TDOS)—hence the differ-
ential conductance—of the dot [cf. Eq. (15)]. For an Ising-
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like spin anisotropy the longitudinal mode partially sup-
presses the CB. Quantum fluctuations, manifest through
the transverse modes, act qualitatively in the same way, but
as one approaches the Stoner instability (from the disor-
dered phase) their effect reverses its sign, giving rise to
suppression of the conductance (i.e., enhancement of the
CB). This results in a nonmonotonic behavior of the TDOS;
(ii) the longitudinal spin susceptibility [Eq. (17)] diverges
at the thermodynamic Stoner instability point, while the
transverse susceptibility is enhanced by gauge fluctuations
(but remains finite).

Our QD of linear size L is in the ‘‘metallic regime’’
(either diffusive (l� L) or ballistic-chaotic (l � L)). The
Thouless energy and the mean level spacing satisfy g �
ETh=�� 1. We consider the following terms of the
Universal Hamiltonian:

H �
X
�;�

��a
y
�;�a�;� �HC �HS: (1)

The spin (�) degenerate levels of the single-particle
Hamiltonian obey the Wigner-Dyson statistics. For sim-
plicity we confine ourselves to the Guassian unitary em-
semble case. The charging interaction HC � Ec�n̂	 N0�

2

accounts for the Coulomb blockade. Here n̂ is the number
operator;N0 represents the positive background charge and
is tuned to the Coulomb valley regime. The term
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represents spin, ~S��0 �
1
2

P
�a
y
�;� ~���0a�;�0 , interactions

within the dot. Below we allow for an easy axis anisotropy,
� � J?=J < 1, reducing the original SU�2� symmetry to
SO�2�. There are several possible sources for such an
anisotropy: geometrical, molecular anisotropy, etc. The
degree of anisotropy can be controlled by introducing
magnetic impurities into the system, or by applying aniso-
tropic mechanical pressure [7].

The main steps of our analysis are as follows: (i) We first
apply a Hubbard-Stratonovich transformation on our
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Euclidean action (no dependence on spatial coordinates),
leading to a Lagrangian quadratic in the fermionic fields,
with auxiliary bosonic fields, � (scalar) for the charge and
~� (vector) for the spin degrees of freedom [cf. Eq. (3)].
(ii) We next apply a nonunitary transformation on the fields
[Eq. (5)] whose effect is to gauge out both the Coulomb
and the longitudinal component of the spin interaction.
Next we integrate out the fermionic variables. In the ab-
sence of transverse components [� � 0, implying a U�1�
symmetry], and following Ref. [8], one is then able to
integrate out (exactly) the finite Matsubara frequency com-
ponents of the bosonic fields, and express the dot’s Green’s
function (GF) as a product of the bare (interaction free) GF
(with a shifted chemical potential) and two gauge factors
(the ‘‘charge boson’’ and the ‘‘longitudinal boson’’
[Eq. (11)]). (iii) The presence of the transverse components
of ~� gives rise to non-Abelian action [SU�2� symmetry for
� � 1], which is the reason why a simple simultaneous
gauging out of all components of ~�, similar to Ref. [8], is
not possible. Instead, we expand the GF in powers of �
[Eq. (9)]. The above GF is now additionally dressed by
transverse correlators. (iv) We evaluate the transverse cor-
relator [Eq. (13)] and then calculate the first nontrivial
diagram for the GF (Fig. 1). We obtain a close expression
for the TDOS [Eq. (15)] which is then computed (Fig. 2).
(v) In a similar manner we write and evaluate the leading
diagrams to the longitudinal and transverse susceptibility.

Before proceeding we recall that beyond the thermody-
namic Stoner instability point, Jth � �, the spontaneous
magnetization is an extensive quantity. At smaller values of
the exchange coupling, Jmesoscopic < J < Jth, finite magne-
tization shows up, which, for finite systems, does not scale
linearly with the size of the latter [1]. Its non-self-
averaging nature gives rise [9] to strong sample-specific
mesoscopic fluctuations [10]. We next provide some tech-
nical details on our analysis.

Gauge transformation.—The Euclidian action for the
model (1) is given by
S �
Z �

0
L���d� �

Z �

0

�X
�

� ��@� ��� � 	H
�
d�: (2)
Here f �g stand for Grassmann variables representing
electrons in the dot. Following a Hubbard-Stratonovich
transformation the Lagrangian contains a term quadratic
in �, L� �

P
�

���M���, where we use spinor notations
for ��� � � � "� � #�� and the matrix M� is given by
M� �
@� 	 	� � i���z ����

�
p

�	����
�
p

�� @� 	 	� � i�	�z

� �
:

(3)
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To obtain the GF we add source terms to the Lagrangian,
L�� � L� ���� ���� ~� ~� . The fermionic (2
 2)
and bosonic (3
 3) matrix GF’s are given as derivatives
of the generating (partition) function Z [8],

G��0
� ��i; �f� �

@2Z

@ ���
�f@��0

�i

;

D�
��i; �f� �
@2Z

@��
�f@�


�i

;
(4)

with �! 0, ~�! 0. Here G��
� � 	hT������f� ������i�i

while D�
 � 	hT��
���f��


��i�i.
Our gauge transformation is given by ~M� � WM�W	1,

~� � W���� and ~�� � ��W	1��� with

W��� � ei���� e���� 0
0 e	����

 !
: (5)

Here � and � account for the U�1� fluctuations of the
charge and longitudinal fluctuations, respectively,

� �
Z �

0
����0� 	�0�d�0; � �

Z �

0
��z��0� 	�z

0�d�
0:

(6)

In defining the gauge fields �0 [8] and �z
0 one needs to

account for possible winding numbers (k;m � 0
 1; . . . )
[11]:

��0 �
Z �

0
�d�� 2
k; ��z

0 �
Z �

0
�zd�� 2i
m:

(7)

In Eq. (6) initial conditions [W�0� � 1] and periodic
boundary conditions [W�0� � W���] are employed. As a
result, the diagonal part of the gauged inverse electron’s
GF ( ~M�) does not depend on the finite-frequency compo-
nents of fields. The off-diagonal part can be taken into ac-
count by a perturbative expansion in � < 1. We represent
~M���G

�0�
� �	1�

����
�
p

�� with �G�0�� ����	1��@�		��
i�0�1̂��z

0�
z and the self-energy

����
�
p

�������
�
p
��	e2������e	2��	�. We next calculate the

Green’s function

G ��0
� ��; ~�� � ���0 hG

�0�
� ��; ~�� exp���� � i���i ~��: (8)

Hereafter h:::i ~�� denotes Gaussian averaging over fluctua-

tions of the bosonic field � ~�; �� and the shifted chemical
potential ~� � �� ��z

0 � i�0. Integrating over all
Grassmann variables and expanding ~M� with respect to
the transverse fluctuations, one obtains [12]
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where �0� ~�� � 	T lnZ0, Z0 is the partition function of
the noninteracting electron gas. Also, computing the bo-
sonic correlator [Eq. (4)], we find

D�
��i; �f� �
1

Z���

Z
D� ~������i��
��f�


 exp
�
Tr log�1�G�0�� ��� 	

1

J

Z �

0

~�2d�
�
:

(10)

In the spirit of [8], the interaction of electrons with the
finite-frequency charge and longitudinal modes (�n, �z

n)
may be interpreted in terms of a gauge boson [13] dressing
the electron propagator [cf. Fig. 1(a)]. The exact electronic
GF which depends on the winding number [Eq. (7)]
through ~�, is given by [11]

G �;���i	�f��
X

windings

G�0��;���i	�f; ~��e	Sk��i	�f�; (11)

where the Coulomb-longitudinal U�1� gauge factor is

Sk��� � 4T
X
n�0

Ec 	 J=4
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: (12)

The exchange interaction effectively modifies the charging
energy. For long-range interaction this correction is small
Ec=J � �kFL�d	1 [2], while for contact interaction Ec �
J=4 [2]. The spin effects for Ising model (� � 0) lead
therefore to a shift of the charging energy.

Transverse fluctuations.—The first nonvanishing dia-
gram of our expansion (9) is depicted in Fig. 1(b). The
bare GF, G�0��;���� � e		����n	���1	 ��� 	 �1	 n	������,
depends on the transverse correlator (or D�	). The latter
is evaluated in the Gaussian approximation

h����1��
	��2�i ~���

J
2
���1	�2��

�J2

2���	�J�
: (13)
FIG. 1 (color online). Zeroth and first order Feynman
diagrams contributing to electron’s GF. Solid line represents
G�0��;�; dashed lines stand for Coulomb bosons, dashed-dot lines
denote longitudinal bosons, while the zigzag line represents
h����1��

	��2�i.
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In Eq. (13) the first term is a manifestation of the white
noise fluctuations of the fields ~� arising from the Gaussian
weight factor [cf. Eq. (10)]. The second term involves
expansion of the Tr log term [(10)] and reflects the feed-
back of G�0� on D�	. Note that the transverse components
�
 are always accompanied by the gauge factors e�2�,
hence the longitudinal bosons contribute to the dynamics
involving the transverse fluctuations.

To proceed we now sum Eq. (9) over �. We compute
perturbative corrections to the GF, G���� �

P
�G�;����,

arising from the first term in the correlator Eq. (13) (to
second order in �J

T ) and the second term there of (first order

in �2J2

T��	�J� ). This yields

G���� � G�0�� ���e	Sk���F?��; ��: (14)

Note the following technical points concerning this
expansion: (i) F?��; �	

�2

�� preserves the symmetry (in
�) with respect to �=2 to all orders of the expansion.
(ii) Consider the term in F? [arising from the first
term in Eq. (13)], � J

2 ��	
�2

��. It can be exponentiated
and combined with the contribution of the longitu-
dinal boson (12), resulting in J=4! J�1� 2��=4 in the
expression for Sk�J�1� 2��=4! JS�S� 1� for the iso-
tropic model]. (iii) The second term in Eq. (13) contributes
�	 �2J2

2���	�J���	
�2

��
2, which, upon exponentiation, leads

to a non-Gaussian contribution to G����. (iv) It is easy to
show that below the incipient Stoner instability, J <
Jmesoscopic, F? is dominated by the ‘‘white noise’’ term of
Eq. (13), while above this point it is the second (singular
Stoner) term in (13) which dominates.

Tunneling density of states.—The conductance gT is
related to the TDOS 
 through gT �

e
@

R
d�
���	���


�	 @fF
@� � where fF is the Fermi distribution function at the
FIG. 2 (color online). The spin-normalized tunneling density
of states shown as function of energy Ec=T � 10 and J=� �
0:92
 0:02 for all plots. Inset: TDOS as a function of tempera-
ture, Ec=� � 10.
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contact and 	 is the golden rule dot-lead broadening. To
obtain the TDOS from the GF, Eq. (14), we deform the
contour of integration in accordance with [8]. As a result,
the TDOS is given by [14]


��� � 	
1



cosh

�
�

2T

�Z 1
	1

X
�

�
G�

�
1

2T
� it

�	
k;m
ei�tdt:

(15)

where h. . .ik;m denotes a summation over all winding num-
bers for Coulomb and longitudinal zero-modes [11].
Examples for the temperature and energy dependence of
the TDOS (for various �) are depicted in Fig. 2. The energy
dependent TDOS shows an intriguing nonmonotonic be-
havior at energies comparable to the charging energy Ec.
This behavior, absent for J � 0 (see, e.g., [15]), is due to
the contribution of the second term in Eq. (13), correspond-
ing to the transverse spin susceptibility (see discussion
below). It is amplified in the vicinity of the Stoner
Instability point, and signals the effect of collective spin
excitations (incipient ordered phase). One of possible ex-
perimental realizations of predicted effect is transport
measurements in magnetic QD [16].

Spin susceptibilities.—These are defined through

��
��i; �f� �
@4Z

@ ���
�f@�


�f@
��

�i@��

�i

: (16)

The longitudinal susceptibility (�zz� is not affected by the
gauge bosons. By contrast, the transverse ��	 acquires the
gauge factor he2����im;�z , where the average is performed
with respect to the Gaussian fluctuations of �z and, in
principle, the winding numbers [cf. Eq. (7)]. In practice,
since T > J, only the m � 0 winding should be taken
into account; T > � allows us to evaluate the path integral
in the Gaussian approximation. One finds to leading order
in �

�zz��� �
�0

1	 J�0
; ��	��� �

2��0e
J�

1	 �J�0
; (17)

where �0 � 1=�. The above susceptibilities are given as
function of �. To obtain the dynamic susceptibilities one
needs to Fourier transform and then continue to real fre-
quencies. �zz (17) [17] diverges at the thermodynamic
Stoner Instability point, akin to the Ising case (no � cor-
rections to the denominator), while ��	 remains finite at
the transition. Notwithstanding, the static transverse sus-
ceptibility is enhanced by the gauge fluctuations. The
oscillating (in real time) factor in the dynamic ��	,
Eq. (17), describes Bloch precessions in an anisotropic
easy axis spin model.

Summarizing, we have studied the influence of spin and
charge zero-mode interactions on the TDOS and the spin
susceptibilities, �zz and ��	. Longitudinal spin fluctua-
tions suppress the CB and the static �zz diverges at the
Stoner transition. Transverse fluctuations generally tend to
suppress the CB, but also contain a term which dominates
06680
the dynamics near the Stoner instability and enhances the
CB; ��	 will be enhanced as well. The building blocks
(correlators) defined here allow for various extensions of
our analysis, e.g., studying the dynamic susceptibilities
(including relaxation processes), � corrections to ��
,
spin fluctuations modified two-particle GF, and analysis
of the Coulomb peak regime. This will be discussed else-
where [6].
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