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In two and three coupled Josephson charge qubits, we exemplify how to take pulses for realizing quantum
gates from fidelity-limited pioneering stages to the decoherence limit of near time optimal high-fidelity con-
trols. Thus, a CNOT gate can be obtained with a fidelity �1–10−9 for the two qubits. Even when including
higher charge states, the leakage is below 1%, although the pulses are nonadiabatic. The controls are five times
faster than the pioneering experiment �Nature �London� 425, 941 �2003�� for otherwise identical parameters—
i.e., a progress towards the error-correction threshold by a factor of 100. We outline schemes to generate these
shaped pulses by Cauer synthesis, or more generally by few LCR circuits. The approach generalizes to larger
systems: e.g., directly realizing a TOFFOLI gate in three linearly coupled charge qubits is shown to be 13 times
faster than decomposing it into a circuit of nine CNOT gates of the above experimental work. In view of the next
generation of fast pulse shapers, the combination of methods is designed to find wide application in quantum
control of pseudospin and macroscopic quantum systems.
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I. INTRODUCTION

Aiming at Hamiltonian simulation and quantum computa-
tion recent years have seen an increasing array of quantum
systems that can be coherently controlled. Next to natural
microscopic quantum systems, a particularly attractive can-
didate for scalable setups are superconducting devices based
on Josephson junctions �1–3�. Due to the ubiquitous bath
degrees of freedom in the solid-state environment, the quan-
tum coherence time remains limited, even in light of recent
progress �4,5� approaching theoretical bounds. Thus it is a
challenge to generate the gates fast and accurately enough to
meet the error correction threshold. This poses fundamental
questions, such as �i� to which extent are gate accuracies and
speeds limited by the presence of nearby higher levels? �ii�
does a constant and relatively strong interaction promote or
hinder the gate performance and which parameter is limiting
the gate time? and �iii� given the challenge in building con-
trol electronics, which properties do pulses for quantum
gates in these pseudospin systems have to have?

Recently, progress has been made in applying optimal
control techniques to steer quantum systems �6� in a robust,
relaxation-minimizing �7� or time optimal way �8,9�. Spin
systems are a particularly powerful paradigm of quantum
systems �10�: N spins-1 /2 are fully controllable, if �i� all
spins can be addressed selectively by rf pulses and �ii� if the
spins form an arbitrary connected graph of weak �Ising-type�

coupling interactions. The optimal control techniques of spin
systems can be extended to pseudospin systems, such as
charge or flux states in superconducting setups, provided
their Hamiltonian dynamics can be expressed to sufficient
accuracy within a closed Lie algebra, e.g., su�2N� in a system
of N qubits.

II. CONTROLLING THE HAMILTONIAN DYNAMICS OF
COUPLED CHARGE QUBITS

As a practically relevant and illustrative example, we
consider two capacitively coupled charge qubits controlled
by dc pulses as in Ref. �1�. The infinite-dimensional Hilbert
space of charge states in the device can be mapped to
its low-energy part defined by zero or one excess charge
on the respective islands �2�. Identifying these charges
as pseudospins, the Hamiltonian can be written as Htot
=Hdrift+Hcontrol, where the drift or static part reads �for con-
stants see caption to Fig. 1�
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Note that the Pauli matrices involved constitute a minimal
generating set of the Lie algebra su�4�; hence the system is
fully controllable. The control amplitudes ng� , �=1,2 are
gate charges controlled by external voltages via ng�

=Vg�Cg� /2e. They are taken to be piecewise constant in each
time interval tk. This pseudospin Hamiltonian motivated by
Ref. �1� also applies to other systems such as double quan-
tum dots �11� and Josephson flux qubits �12�, although in the
latter case the controls are typically rf pulses.

In a time interval tk the system thus evolves under
Htot

�k�
ªHdrift+Hcontrol

�k� . The task is to find a sequence of control
amplitudes for the intervals t1 , t2 , . . . , tk , . . . , tM such as to
maximize the overlap with the desired quantum gate or ele-
ment of an algorithm Utarget. Moreover, for ensuring the de-

composition of UT=e−itMHtot
�M�

e−itM−1Htot
�M−1�

¯e−itkHtot
�k�
¯e−it1Htot

�1�

into evolutions under the available �Htot
�k�� to be time optimal,

Tª	k=1
M tk has to be minimal. This can be achieved by

optimal-control based gradient flows as described in Refs.
�13,14�.

Throughout the work, we take the parameters from the
experiment �1�. Figure 1 shows the fastest decompositions
obtained by numerical optimal control for the CNOT gate into
evolutions under available controls �Eqs. �1� and �2��. In con-
trast to the 255 ps in Ref. �1�, T=55 ps suffice to get

UT−Utarget
2=5.3464�10−5 corresponding to a trace fidelity
of �1/2N� � tr�Utarget

† UT� � �1−10−9 �41�.
Figure 2 illustrates how the sequence of controls acts on

specific input states �a product state in �a� and a maximally
entangled state in �b�� by tracing the quantum evolution on
local Bloch spheres �with �� �x ,y ,z� representing ���
�.

These pictures trigger physical insight: For a CNOT, the du-
ration T=55 ps has to accommodate at least a � /2 rotation
under the coupling Hamiltonian ��1/2��z � �z� lasting
21.7 ps concomitant to two � /2 x rotations under the drift
component ��1/2��x

�2�� each requiring 25.3 ps. This is in con-
trast to NMR, where the coupling interactions are some 100
times slower than the local ones. However, in our charge
qubit system, the time scales of local and nonlocal interac-
tions are comparable, and the local drifts are even time lim-
iting, while phase shifts are fast �cf. Eqs. �1� and �2��. As-
suming in a limiting simplification that two � /2 x pulses are
required, the total length cannot be shorter than 50.6 ps. A
sigmoidal phase distortion from a geodesic state inversion is
cheap timewise. While the duration of T=55 ps of our con-
trols is close to the lower bound of 50.6 ps, the controls in
Ref. �1� last 255 ps; they entail several closed great circles
on the Bloch sphere and are far from geodesic as obvious
from Fig. 3.

Note that the time course of controls turns out palindro-
mic �Fig. 1�. Self-inverse gates �Ugate

2 =1� relate to the more
general time-and-phase-reversal symmetry observed in the
control of spin systems �15�: For example, any sequence
e−itx�xe−ity�ye−itz�z is inverted by transposition concomitant to
time reversal t��−t� and �y �−�y. Since the Hamiltonians
in Eqs. �1� and �2� are real and symmetric, they will give the
same propagator, no matter whether read forward or back-
ward.

Let F denote the fidelity of a gate of duration T, and let T2
be the pertinent overall decay time. Assuming independent
errors, the quality is q�Fe−T/T2, where the error rate
1−q�10−4 is an estimate for the error-correction threshold.
With the pulses presented here, the total error rate amounts to
1−q=0.0055, instead of 1−q=0.5917 in the pioneering set-
ting �1�.
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FIG. 1. �Color online� Fastest gate charge controls obtained for
realizing a CNOT gate on two coupled charge qubits �left part: con-
trol qubit; right part: working qubit�. The total gate charges are
ng�=ng�

0 +�ng� with �=1,2. Here, ng1
0 =0.24, ng2

0 =0.26 and the en-
ergies Ec1 /h=140.2 GHz, Ec2 /h=162.2 GHz, EJ1 /h=10.9 GHz,
EJ2 /h=9.9 GHz, and Em /h=23.0 GHz were taken from the experi-
mental values in �1�. The 50 piecewise constant controls are shown
as bars �uniform width �= tk=1.1 ps�; the trace fidelity is
�1/2N� � tr�Utarget

† UT� � �1–10−9. Red lines give the analytic curves in
Eq. �3�.

(a)

(b)

FIG. 2. �Color online� �a� Evolution of the product state
���0�
= �0
 �0
 under the optimized controls resulting in ���T�

= �0
 �1
. The evolution 0	 t	T with T=55 ps is represented by the
reduced states trB ���t�
���t�� �left sphere� and trA ���t�
���t��
�right sphere� on the respective local Bloch spheres with the grid
lines spaced by 10�. The blowup shows the top of the left Bloch
sphere. �b� Evolution of the Bell state �
+
= �1/�2���00
+ �11
� into
the final state �1/�2���01
+ �11
� �filled red dots�. The Bell state is
maximally entangled hence in the center of the respective Bloch
spheres, while the final state is a product state �filled red dots on the
surfaces�. The projection on the left is a view from the top.
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A visualization complementary to the local Bloch spheres
is provided by the Weyl chamber �16� of Fig. 4: It solely
picks out the coupling evolution in the factor space �8,17�
G /K=SU�4� /SU�2��2. Whereas in NMR time scales, the
coupling evolution is time limiting and time optima are thus
geodesics �8� in G /K, here in the charge qubits, local and
nonlocal evolutions take similar times thus giving a mildly
recurrent curve in the Weyl chamber under the optimized
controls �a�, while under the rectangular pulses used in the
pioneering work �1� it goes back and forth �b�.

With the pulse shapes on either qubit ��=1,2� being pal-
indromic, they can be written as a cosine Fourier series

ng��t� = 	
�=0

19

a����cos�2� �
t − T/2

T
� , �3�

where 20 components �listed in Table I� suffice to give high
accuracy. Alternatively, the pulse shapes can be generated by
superimposing short Gaussian, single-flux quantum �SFQ�
pulses �18� or rapid SFQ pulses �19�, where the coupling
strength determines the minimal pulse length.

III. PULSE SHAPING HARDWARE

In the pertinent time scale, commercial devices for gener-
ating arbitrary wave forms are not available. Yet high-end
pulse generators �20,21� or ultrafast classical Josephson elec-
tronics �19,22� are close to the necessary specifications.

A. Overview

As a proof of principle, it is important to note on a general
scale how to generate these pulses experimentally, which can
readily be exemplified using the well-established technique
of pulse shaping in Laplace space �23�: One starts with an
input current pulse Iin�t� shorter than the desired one. Its
shape may be arbitrary as long as it contains enough spectral
weight at the harmonics necessary for the desired pulse. Such
pulses can be generated optically or electrically �21�. They
serve as input to a discrete electrical two-terminal element
with transfer function Z12 to be designed for the desired out-
put shape. In Laplace space, the output signal takes the form
Vg�s�ªZ12�s�Iin�s�. So the gate voltages Vg�t� �as in Fig. 1�
are Laplace transformed to V̂g�s� in order to determine the

transfer function Z12�s� by fitting Vg�s� to V̂g�s� given the
input pulse Iin�s�. However, here in the special case of pal-
indromic pulse shapes expressed by a cosine Fourier series
�see Eq. �3��, Z12 is already directly given by a series of
Lorentzians, viz. the Laplace transform of the cosine series.
This results in the particularly simple circuit networks of 20
reactive LC filters shown in Fig. 5. They match the desired
pulse shapes extremely well �see Fig. 1� giving a trace fidel-
ity of 1–10−5 for the entire CNOT. However, compensating
for a frequency-dependent transfer function from the genera-
tor to the sample, which has to be precisely determined for
the respective experimental setting, requires the above more
general approach.

B. General approach

Apart from giving details, this section generalizes the
pulse shaping schemes outlined above. The network of filters
can be obtained by Laplace transforming the gate voltages

Vg�t� obtained from optimal control theory to V̂g�s�. Then the
transfer function Z12�s� is determined by fitting a Vg�s� to

V̂g�s� in Laplace space, where Vg�s�=Z12�s�Iin�s�.
Now criteria of realizibility of standard network synthesis

�23,24� apply. A standard two-terminal element is created by
input and output impedances Z11 and Z22 as well as transfer
functions Z12 and Z21. A pulse shape can be realized by a
passive LCR two-terminal element �where, henceforth,

(a)

(b)

FIG. 3. �Color online� Same as Fig. 2, but with pulses of the
experiment taking 255 ps �1�. The trajectory in �b� completes two
full circles �see inset� before reaching its final state near the south
pole. Grid lines are spaced by 10° on the Bloch spheres and by 1° in
the inset.

(a)

(b)

FIG. 4. �Color online� Coupling evolution under the controls of
Fig. 1 represented in the Weyl chamber. With local and nonlocal
controls being of comparable time scale, where the time for a local
� pulse is actually time limiting, the time-optimized controls �a�
give a mildly recurrent smooth curve which ends at the point
�� /2 ,0 ,0� as expected for a CNOT requiring a � /2 evolution under
the coupling term �1/2��z � �z. In contrast, the coupling evolution
under the controls of Ref. �1� is meandering back and forth �b� and
terminates �red dot� without reaching � /2 exactly.
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L,C,R, denote inductivity, capacity and resistance, respec-
tively�, if in Laplace space �with sª�+ i�� the pertinent
transfer function Z12�s� can be found such that the determi-
nant H�s�=Z11Z22−Z12Z21 as well as the input and output
impedances alone can be written as fractions of polynomials
H�s�= P�s� /Q�s� such that in each case �1� H�s� is a real-
valued rational function, �2� Q�s� is a Hurwitz polynomial
�42�, �3� the degree of P�s� does not exceed the degree of
Q�s�, and �4� �H�i�� � 	1.

Conditions �2� and �3� exclude that the H�s� have poles in
the right half-plane. Note that many important time-domain
functions, such as, e.g., the trigonometric functions, the
Heaviside function, the Dirac delta function, and the expo-
nential function are expressed as rational functions in
Laplace space. Thus a wide range of pulse shapes in time
domain is accessible by circuit synthesis. Importantly, the
transmission functions of typical coaxial cables used to in-
terconnect the different parts of the experimental setup give
rise to damping and thus introduce dissipative �i.e., resistive�
elements in the circuit, the main physical limitation being
that the bandwidth of the output cannot be greatly enhanced
relative to the input. The maximum enhancement originates
from a series inductor with Z=sL. Thus the spectral content

required at the output must be contained in the input as this
scheme is essentially subtractive synthesis.

With the corresponding decomposition, there are a num-
ber of ways for designing a lumped circuit for a given trans-
fer function, e.g., the method of Gewertz �25� that system-
atically eliminates poles and introduces loops in the
electrical circuit. Iteratively the circuit is synthesized from
basic building blocks: One LCR loop for each pair of com-
plex conjugate poles, and one RC filter for each pole on the
real axis. Note that in Laplace space the degree of both the
nominator and the denominator polynomial of the transfer
function Z12 approaches the same limiting value for large
values of s.

1. Cauer synthesis for controls with time reversal symmetry

In the special case of a real symmetric Hamiltonian allow-
ing for a palindromic pulse sequence, the transfer function
Z12�s� is directly obtained by the Laplace transform of the
cosine series representation of the control pulses thus cir-
cumventing the above numerical fitting procedure in Laplace
space. In order to simplify the circuit, we chose Z11=Z22
=Z12=Z21. This condition can be dropped at the expense of
additional inductors if more elaborate impedance matching is

TABLE I. Translation of the Fourier coefficients a1,2��� of the cosine series expansion �Eq. �3�� of the pulse shape for both qubits found
by optimal control �ng��t�� into the parameters of the circuit network for shaping the pulse �Fig. 5�. The duration of the shaped output pulse
is T=55 ps, while a rectangular current pulse of the same length of 55 ps is used as input. Similar results hold for any on-off pulse as the
ones generated by ultrafast flip-flops such as the TFF �22�. For normalization of the impedances �0=2� /T=2��18.2 GHz and
R0,1=1.17k �, R0,2=603 � have been chosen so that for the main frequency at �=1 the circuit is matched to 50 � impedance, thus being
in accordance with typical superconducting charge qubit frequencies and electrical high level sources. Due to this matching condition the
values of C1 and L1 ��=1� are identical for qubit 1 and qubit 2. The pulses from network synthesis match the desired pulse shape with

2=0.000 081 320 �first qubit� and 
2=0.002 089 946 �second qubit�, respectively. The simulated fidelity obtained from the pulse sequence
expressed via this Fourier decomposition is F=0.99 997 805.

Qubit 1 Qubit 2

� a1��� �10−2� C� �fF� L� �pH� t1� a2��� �10−2� C� �fF� L� �pH� t2�

0 2.3445 318.3603 1 18.5266 78.3569 1
1 4.2633 175.0704 437.6761 −1 8.2920 175.0704 437.6761 −1
2 −6.9807 53.4606 358.3209 −1 −4.9516 146.5863 130.6809 −1
3 3.9959 62.2623 136.7408 −1 4.4588 108.5254 78.4498 −1
4 −3.8557 48.3952 98.9563 −1 −4.4322 81.8828 58.4861 −1
5 1.4294 104.4348 29.3481 −1 4.4960 64.5769 47.4623 −1
6 −0.3707 335.5804 6.3426 −1 −4.0870 59.1986 35.9544 −1
7 0.1844 578.2083 2.7045 −1 3.4886 59.4460 26.3055 −1
8 0.0675 1382.8464 0.8658 1 −2.9192 62.1604 19.2607 −1
9 −0.1152 719.5833 1.3146 1 2.4259 66.4889 14.2276 −1
10 0.1707 437.1645 1.7528 1 −2.0116 72.1667 10.6177 −1
11 −0.1510 449.3288 1.4093 1 1.6640 79.3116 7.9844 −1
12 0.1499 414.8163 1.2828 1 −1.3829 87.4772 6.0829 −1
13 −0.1175 488.8320 0.9275 1 1.1498 97.1160 4.6686 −1
14 0.1039 513.0812 0.7619 1 −0.9614 107.8496 3.6249 −1
15 −0.0752 662.0660 0.5144 1 0.8033 120.4750 2.8267 −1
16 0.0663 703.9375 0.4252 1 −0.6702 135.3691 2.2111 −1
17 −0.0448 979.9308 0.2706 1 0.5537 154.2253 1.7191 −1
18 0.0438 947.3556 0.2496 1 −0.4576 176.2347 1.3419 −1
19 −0.0251 1567.1105 0.1354 1 0.3965 192.6855 1.1016 −1
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desired. We take the Heaviside-type rectangular input pulse
I= I0���T�−��0��. The method applies to all toggle-style

pulses of the form I= Ĩ�t�− Ĩ�T− t�, where Ĩ is an arbitrary
function of sufficient bandwidth. For the pulses presented in
Fig. 1, Table I gives the Fourier amplitudes of the cosine-
series decompositions according to Eq. �3� translated into the
parameters for the reactive circuit elements of Fig. 5. The
values are obtained from a Fourier series decomposition
of the pulse shapes from optimal control ng�

�t�
=	�=0

19 a����cos�2�� �t−T /2� /T� with an appropriate basic
frequency �0=2� /T. For the Cauer synthesis, the terms in
the polynomial Z12�s� can be split into terms that either give
a capacitive circuit element, an inductive circuit element or a
parallel circuit of both capacitances and inductances. These
circuit elements are normalized with respect to both fre-
quency and resistance according to C�,norm=C��R0�0� and
L�,norm=L���0 /R0� �23�. Here R0,1=1.17 k�, R0,2=603 �,
and �0=2� /T=2��18.2 GHz have been used for normal-
ization. This leads to a typical impedance for the fundamen-
tal frequencies of order 50� thus matching typical coaxial
cables. �More detailed modeling requires taking the output
level of the pulse generator into account.�

The numerical values for the reactive circuit elements are
obtained by Cauer synthesis, namely C�= ���a���� � �−1,
L�=T0 �a�����2 / �2�� �, and t�=sgn��−1��a�����. Both parts of
the table show a Cauer network synthesis with experimen-
tally feasible values for the reactive elements, which at these
frequencies can, e.g., be realized by the on-chip cavitylike
structure of variable width and length adjusting capacitances
and inductances from the simulated time evolution of the
CNOT gate. Under the synthesized controls a fidelity of
F=1–10−5 is obtained without taking leakage and decoher-
ence into account.

We want to emphasize that since palindromic pulse con-
trols can be written as a cosine series, the Cauer synthesis

translates them into a network solely made of capacitive and
inductive elements, which are nondissipative thus reducing
the heat load on the circuit.

C. Additional compensation for nonideal transfer functions

Moreover, in view of concrete experiments, the transfer
function from the pulse shaping unit to the qubit can be
measured, e.g., by using a capacitor that mimics the qubit. In
the linear case, it takes the form of another four-pole
impedance matrix Zsample. The total transfer function of
the series configuration of those four poles then reads
Z12

�full�
ªZ12,sampleZ12,filter / �Z22,filter+Z11,sample�. For the experi-

mental setup it suffices to make sure the transfer function to
the sample is not filtering out the relevant frequencies �i.e.,
becomes small for values of s important to Vg

�out��: Then one
may readily design a filter compensating for specified experi-
mental imperfections so that finally the full transfer function
Z12

�full� is taken into account for shaping the pulse. In general,
however, Z12

�full� will also contain dissipative elements, which
means it cannot be obtained by the particularly simple Cauer
synthesis. Note that in general network synthesis the poles of
Z12

�full��s� have to be investigated carefully and the circuit net-
work will be more complex than the one shown in Fig. 5, yet
it can still be split into basic circuits corresponding to the
different poles of Z12�s�.

Due to unavoidable fabrication uncertainties, the optimum
pulse will be slightly different for each individual pair of
qubits. Thus the parameters for the Hamiltonians in Eqs. �1�
and �2� have to be determined spectroscopically before re-
running our algorithm to adapt the optimal pulse shapes.

Importantly, pulses can also be formed by means of su-
perimposing short pulses of shapes that are generated with
different heights, widths, and delays. The two main candi-
dates for this approach are �i� Gaussian pulses �11�, which
can be generated at room temperature and pass the necessary
cryogenic filtering nearly undistorted, and �ii� SFQ pulses
�vide supra�, which can be generated on chip �hence avoid-
ing the filters� using ultrafast classical Josephson electronics
�22�. The pulse sequences obtained in this work can be fitted
very well by superpositions of a few Gaussian or harmonic
pulses still leading to fidelities �0.999.

Note that our optimization method also applies to control
by microwave Rabi-type pulses �3�, where pulse shaping ap-
pears to be easier as time scales are usually longer.

IV. LOW LEAKAGE AND ROBUSTNESS OF OPTIMIZED
CONTROLS

The limited bandwidth allows us to maintain high fidelity
even if leakage levels formed from higher charge states of
the qubit system are taken into account: We now explicitly
apply the pulses to the extended system obtained by mapping
the full Hamiltonian �1� to the subspaces of −1, . . . ,2 extra
charges per island. The two-qubit CNOT gate is thus embed-
ded into the group SU�16�; still the full propagator generated
by the above controls projects onto the CNOT gate giving a
trace fidelity �0.99. Even the time courses starting with any
of the four canonical two-qubit basis vectors hardly ever

Z0

1:1

1:1

1:1

1:t

C L Z

Zn

I

V

in

g
(out)

� �

�

�

FIG. 5. Circuit network for pulse shaping by Cauer synthesis via
the Laplace transform of the cosine Fourier series of Eq. �3�, so
Z12=	�a�����−1��s / �s2+ �2�� /T�2�. Iin is the input current pulse
�here 55 ps� and Vg�s�=Z12�s�Iin�s� relates to gate voltages
ng�=CG,�Vout,� /2e on qubits �=1,2. All the values a����, L�, and
C� are tabulated in Table I.
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leave the state space of the working qubits: At no time do the
projections onto the leakage space exceed 0.6%. Clearly, op-
timization including explicit leakage levels could improve
the quality even further in systems where necessary �26�.

As illustrated in Fig. 6, in simplified terms, the high qual-
ity can be understood by relating the limited bandwidth to
the transitions between the eigenstates of the local parts of
Hdrift in Eq. �1�: While one-charge transitions to leakage lev-
els like �−1
↔ �0
 and �2
↔ �1
 are allowed, two-charge tran-
sitions like �−1
↔ �1
 and �2
↔ �0
 are forbidden in terms of
the transition-matrix elements ���final �Hcontrol�initial
�2. Note
the charge control on gate 2 in Fig. 1 is around �ng2=0.2
thus driving the working transition �0
↔ �1
, while the “spec-
tral overlap” of the Fourier transform of the time course in
both controls with energy differences corresponding to one-
charge leakage transitions is small. Hence simple spectro-
scopic arguments underpin the high fidelity.

Moreover, our controls are notably robust with regard to
±5% variation of the tunneling frequencies EJ1,2

and the cou-
pling term Em as well as to Gaussian noise on the control
amplitudes and time intervals as shown in Fig. 7. Variations
of the tunneling energies EJ� ��=1,2� may result from im-
perfections in the junction oxide as well as deviating cou-

pling strength Em. These parameters have to be determined
spectroscopically, where the relative error normally does not
exceed 5%. Even the time-optimized controls as short as
T=55 ps cope with such variations. Significant improvement
of the broadband behavior, however, could not be obtained
by pulse sequences up to a total duration of T=75 ps, thus
suggesting that broadband CNOT controls tailored for the spe-
cial �and rare� instances with ill-defined experimental param-
eters will require considerably longer pulse schemes. Similar
robustness is observed against Gaussian noise on the control
amplitudes or time units.

V. TOFFOLI GATE FOR THREE LINEARLY COUPLED
QUBITS

Likewise, in a system of three linearly coupled charge
qubits, we determined a realization of the TOFFOLI gate with
experimentally available controls �Fig. 8�, where the
speed-up against a circuit of nine CNOT gates is by a factor of
2.8 with our CNOT and by 13 with the CNOT gates of Ref. �1�.

In a linear chain of three coupled qubits, a TOFFOLI

gate needs nine CNOT gates, which gives an error rate of
1−qpioneer=1−0.40839=0.9997 using the CNOT of Ref. �1�,

FIG. 6. �Color online� Spectroscopic explanation of the high quality of the optimized pulse controls: The spectral overlap of the Fourier
transforms �right walls� of the controls of Fig. 1 with the energy differences corresponding to the one-charge transitions into leakage levels
�solid lines on the surface� is small at gate charges in the working range �within black dashed lines� around �ng��0.2 ��=1,2� correspond-
ing to ng��0.45. In the 3D representation, intensities at allowed �solid lines� vs forbidden transitions �broken lines� into leakage levels are
given in terms of transition-matrix elements �normalized by charging energies Ec1

2 , Ec2
2 � with an extended control Hamiltonian expressed by

Hc��ng�� in ��� f �Hc�i
�2: The working transitions �blue� are far more probable than the allowed ones into leakage levels �red� that have no
overlap with the excitation bandwidth of the pulses; the forbidden transitions are but spurious.

FIG. 7. �Color online� Left: Trace fidelities
under controls of Fig. 1 when the parameters Em

and EJ in Eqs. �1� and �2� vary by ±5%. Right:
Fidelities under Gaussian noise on control ampli-
tudes and time intervals parametrized by the stan-
dard deviations 2�� /� and 2�amp/amp ranging
from 0 to 5%. �As in Fig. 1, �ª tk; ampª�ng�

with �=1,2.� Each data point is an average of
25 000 Monte Carlo simulations.
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an error rate of 1−qnetwork=1−0.99459=0.0483 with nine of
our CNOT, while the error rate of the TOFFOLI gate shown
in Fig. 8 is 1−qdirect=1−0.99999e−180 ps/10 ns=0.0178, as-
suming for the moment that the T2 in a coupled three-qubit
Josephson system would also be in the order of 10 ns.

Due to the quite strong qubit-qubit interactions in multi-
qubit setups, generating three-qubit gates directly is much
faster than by universal gates. This also holds in simple al-
gorithms �27� on superconducting qubit setups: A minimiza-
tion algorithm for searching control amplitudes in coupled
Cooper pair boxes was applied in �28�, where the optimiza-
tion was restricted to very few values. In Ref. �29�, a rf-pulse
sequence for a CNOT with fixed couplings was introduced, to
which optimal control could be applied likewise: The se-
quence is longer using more of the available decoherence
time, which is partly �but not fully� compensated by the
longer T2 at the optimum point. For the charge-qubit setting
here, the control techniques lead to a time-optimized gate
that can be performed some 200 times within a nonoptimum
point T2

* of 10 ns.

VI. TOWARD THE ERROR-CORRECTION THRESHOLD:
GUIDELINES AND FRONTIERS AHEAD

It is the main purpose of this section to make a strong case
for the next generation of fast pulse shapers. Actually we
regard them as paramount for reaching the goal of scalable
quantum computation with superconducting Josephson ele-
ments. Let F denote the fidelity of a gate of duration T, and
let T2 be the pertinent overall decay time. Assuming indepen-
dent errors, the quality of a gate is roughly determined by
q�Fe−T/T2 �F�1−T /T2�, where the error rate 1−q�10−4 is
an estimate for the error-correction threshold �see, e.g., �30��.
This goal can be met by improvements on three frontiers: �1�
Fighting decoherence by making T2 longer, �2� cutting gate
times by making T shorter, and �3� improving fidelity by
making F larger, where this work shows how to exploit op-

timal control for getting to the limits in the latter two.
�1� In fact the Josephson devices known today �1,3,4�

have already undergone a great deal of hardware optimiza-
tion bringing decoherence down close to its theoretical lim-
its. The observed decoherence times in charge qubits are on
the scale of T2�0.5 to 2.5 ns for two-qubit dynamics �31�,
and 10 ns for single qubits �32�. Both can be improved by
using echo techniques �33�, which hints at 1 / f noise as the
limiting factor. Other improvements of T2 rely on operating
with microwave pulses �3,34� at an optimum bias point at the
expense of much slower pulses limited by the Rabi fre-
quency. Although our technique may incorporate both strat-
egies, echo and microwave pulses, we base our technological
estimate in the next section on an optimistic T2 of 10 ns,
which appears to be accessible in a charge qubit setup as in
�1�.

�2� The pulse controls currently available are too slow to
fully exploit the potential of the experimental setting: Within
a decay time of 10 ns, just 40 CNOT gates of the current
duration of 255 ps can be performed �with the rise times in
the order of 35 ps�. On the other hand, the capacitively
coupled Josephson hardware elements themselves have large
intrinsic frequency scales allowing for fast operation and
may well reach the decoherence-limited threshold—provided
gates could be executed some 10 times faster than in the
current experimental setting, where we have shown that,
within 10 ns, approximately 200 time-optimized high-fidelity
CNOT can be run.

�3� For obtaining sufficiently high fidelities experimen-
tally, an important part of the future challenge will be the
accurate determination of the experimental system response:
Once this can be done, a nonideal system response can easily
be incorporated into our algorithms thus allowing for getting
fidelities that are essentially limited by the robustness of the
experimental setting. With fidelities of F up to 1–10−9 being
ideally accessible by our pulses, the total error rate is then
entirely limited by decoherence �T /T2�.

FIG. 8. �Color online� Fastest gate charge
controls obtained for realizing a TOFFOLI gate on
a linear chain of charge qubits coupled by
nearest-neighbor interactions with a trace fidelity
of �1/2N� � tr�Utarget

† UT� � �1–10−5. Parameters:
Ec1 /h=140.2 GHz, Ec2 /h=120.9 GHz, Ec3 /h
=184.3 GHz, EJ1 /h=10.9 GHz, EJ2 /h=9.9 GHz,
EJ3 /h=9.4 GHz, Em1,m2 /h=23 GHz, ng1

0 =0.24,
ng2

0 =0.26, and ng3
0 =0.28.
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A. Guidelines

Our results make a strong case for faster pulse generation,
both shorter in total length and with the possibility of shap-
ing the external structure. This is a cornerstone for future
progress and needs to be combined with the current strate-
gies such as decoherence engineering and the optimal work-
ing point. In particular, even though the current experimental
controls �1� could further be optimized for higher fidelity, a
simple estimate shows that this will not suffice for significant
improvements given the time scales of current pulse shaping
technology: In the case of a CNOT, the quality would always
be limited by e−T/T2 =0.975 even at fidelities of F=1. On the
same footing, if higher fidelity is achieved by additional
compensation pulses �35–38�, the total sequence becomes
longer and the quality again deteriorates. The optimal work-
ing point strategy works excellent for single qubits �34� but
becomes difficult for two-qubit operations, which also ap-
pear to be slow �29,39�. Rather, by making the Josephson
hardware system even faster without introducing higher T2
decay rates, high quality gates can be achieved by optimized
fast control alone, even if the optimal point is not invoked.
Realistically, a combination of optimal control, optimal
point, and refocusing may be most powerful and accessible.
Clearly, this technological frontier has not been really ex-
plored so far, yet the time scales needed are not excessively
short compared to what has been realized with electro-optical
methods involving pulsed lasers and switches �40�. For get-
ting sufficiently high fidelities experimentally, it will be cru-
cial to accurately determine the experimental system re-
sponse, which should then be included into the numerical
algorithms.

VII. CONCLUSION

We have shown how to take pulse controls for realizing
quantum gates in pseudospin systems from fidelity-limited
pioneering stages to the decoherence limit of near time
optimal high-fidelity controls. In superconducting charge
qubits, the progress towards the error-correction threshold
is by a factor of 100. Limiting the optimal-control based
shapes to low bandwidth allows for nonadiabatic pulses
with remarkably low leakage to higher states thus
justifying the two-level truncation to the low-energy part
of the spectrum. Moreover, shapes could be kept
simple enough to be realized by Cauer synthesis or a few
LCR circuits. So the approach will find wide application,
in particular for the next generation of fast pulse-shaping
devices.

We expect T2 time scales dominated by 1/ f contributions
will not change largely under the pulses, so time optimal
controls provide a significant step towards the accuracy
threshold for quantum computing, even if cutting decoher-
ence times reaches its intrinsic limits.
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