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We investigate the propagation of density-wave packets in a Bose-Hubbard model using the adaptive time-
dependent density-matrix renormalization group method. We discuss the decay of the amplitude with time and
the dependence of the velocity on density, interaction strength, and the height of the perturbation in a numeri-
cally exact way, covering arbitrary interactions and amplitudes of the perturbation. In addition, we investigate
the effect of self-steepening due to the amplitude dependence of the velocity and discuss the possibilities for an
experimental detection of the moving wave packet in time-of-flight pictures. By comparing the sound velocity
to theoretical predictions, we determine the limits of a Gross-Pitaevskii- or Bogoliubov-type description and
the regime where repulsive one-dimensional Bose gases exhibit fermionic behavior.
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I. INTRODUCTION

The study of strong interactions in one-dimensional Bose
gases has recently attracted considerable interest, in particu-
lar the suggestion of Petrovet al. f1g that in sufficiently
dilute gases a regime appears in which one-dimensionals1Dd
bosons exhibit properties similar to those of a noninteracting
Fermi gas. Following the realization of single-mode atomic
wires by using strong 2D optical latticesf2g, this so-called
Tonks gas regime has indeed been seen in recent experiments
f3,4g.

Our aim in the present work is to study the propagation of
density waves in strongly interacting one-dimensional Bose-
Einstein condensates. Quite generally, the low-lying excita-
tions in a Bose-Einstein condensate are soundlike and corre-
spond to fluctuations of the condensate phasef5,6g. The
associated sound velocity depends on both the density and
interaction strength and is difficult to calculate microscopi-
cally in general. Beyond the weak-interaction limit, where a
Gross-Pitaevskii or Bogoliubov description applies, very few
results are available, except for the particular case of one
dimension. In that case an exact solution for the ground state
and the elementary excitations is available for the continuum
model with a short-range interaction through the well-known
Lieb-Liniger solution of the 1D Bose gasf7,8g. Experimen-
tally, density perturbations can be created by applying a lo-
calized potential to the system with a far-detuned laser beam
f9,10g. Alternatively, a phase imprinting method can be used,
which allows one to create solitonic excitationsf11,12g.

In our present work, we study the evolution of density-
wave packets in a one-dimensional system of ultracold
bosons which are subject to an optical lattice along the axial

direction. In previous studies, the motion of Gaussian wave
packets has been investigated theoretically for small density
perturbations or broad perturbations in three dimensions both
with and without an optical latticef14–16g. The sound ve-
locity in an optical lattice was studied inf17g. These inves-
tigations were confined to the regime of weak interactions,
describing properly systems with many particles per site.
Here, we focus on the case of one-dimensional systems at
low filling, i.e., with approximately one or less than one
particle per site on average. This regime is of particular in-
terest, since it allows one to study the behavior of sound
waves near the transition from a superfluid to a Mott-
insulating regime, as has been realized experimentally by
Stöferle et al. f18g. The creation of a density perturbation
with the width of a few lattice sites should be possible in
these systems by the application of a localized laser beam
f19g.

As first pointed out by Jakschet al., ultracold bosons in
an optical lattice provide a perfect realization of the Bose-
Hubbard modelfEq. s1dg f32g, which contains the interplay
between their kinetic energy and their on-site repulsive inter-
action. The recently developed adaptive time-dependent
density-matrix renormalization group methodsadaptive
t-DMRGd f21,22g is used to calculate the time evolution of
wave packets. This method allows us to find the time evolu-
tion for both weak and strong coupling. In particular, it
works best in an intermediate-interaction regime, where
other methods are not reliable. We focus our investigation on
the decay of the amplitude with time and on the sound ve-
locity, i.e., the velocity of propagation of an infinitesimal
perturbation. In addition, we determine the velocity of propa-
gation of a perturbation with finite amplitude, thus entering
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nonlinear effects which are difficult to discuss analytically
even in one dimension.

We compare our numerical results in the limits of weak
and strong interaction to different approximations. For weak
interactions a continuum description is applied, which leads
to a system of bosons withd interaction, the Lieb-Liniger
model f7,8g. We compare the resulting sound velocity with
our results and find good agreement up to intermediate inter-
action strength. A further simplification is obtained by treat-
ing the Lieb-Liniger model in a hydrodynamical approach.
The sound velocity determined by this approach is that of a
Gross-Pitaevskii-type description. It agrees with our result
only for rather small interaction strengths. In the limit of
strong interactions and at low fillings, the Bose-Hubbard
model can be mapped onto a model of spinless fermions
f23g. As expected, our numerical results for the sound veloc-
ity in this limit smoothly approach the value predicted from
this mapping to fermionsf24g.

The paper is organized as follows. We first introduce the
Bose-Hubbard model, the analytical approximations, and the
numerical method used. Then we investigate the motion of
the wave packet. We analyze the decay of the amplitude of
the perturbation and the dependence of the velocity, in par-
ticular the sound velocity, on system parameters like the
background density, the interaction strength, and the height
of the perturbation. Finally, we study how the presence of a
wave packet can be detected experimentally from the inter-
ference pattern in a time-of-flight experiment.

II. MODEL

The Hamiltonian of the Bose-Hubbard model is given by

H = − Jo
j=1

L−1

bj
†bj+1 + H . c . +

U

2 o
j=1

L

n̂jsn̂j − 1d + o
j=1

L

« jn̂j ,

s1d

whereL is the number of sites in the chain,bj
† andbj are the

creation and annihilation operators on sitej , and n̂j =bj
†bj is

the number operatorf25g. In the limit of strong interactions,
u@1 with uªU /J, the atoms tend to localize. At integer
filling r̃=N/L=1, 2…, where N is the total number of
bosons, an incompressible Mott-insulating phase with locked
density arises onceu is increased beyond a critical value
suc<3.37 for r̃=1 according tof26g in the thermodynamic
limit d. For weak interaction one finds a compressible super-
fluid phase. Experimentallyf3,18,27g, the parameteru can be
varied over several orders of magnitude by changing the lat-
tice depth. This allows one to tune through a superfluid–
Mott-insulator transition, as first realized by Greineret al. in
a 3D optical latticef27g. As mentioned before, it is possible
to generate additional localized potentials using laser beams.
These external potentials are modeled by the last term in Eq.
s1d. This term could as well describe arbitrary external po-
tentials, e.g., a parabolic trappingf35g or more complicated
structures. In the following we set"=1.

III. ANALYTICAL APPROXIMATIONS

For weak interactions, or quite generally for a description
of the long-wavelength properties of a noncommensurate su-

perfluid state, the continuum limit can be performed by tak-
ing Ja2=const anda→0. In this limit the Bose-Hubbard
model becomes equivalent to the Lieb-Liniger modelf7,8g,

HLL =E dxS 1

2M
u]xCsxdu2 + VsxdC†sxdCsxd

+
g

2
fC†sxdg2fCsxdg2D , s2d

a bosonic model withd interaction of strengthg and external
potentialV. In this limit, the hopping parameter of the lattice
model is related to the massM of the atoms byJa2=1/2M
and the interaction strength to thed-interaction strength by
Ua=g.

Starting from this continuum model and considering the
interaction in a mean-field approximation, the Gross-
Pitaevskii equation can be derivedf5g. Within this approxi-
mation, the motion of density waves is described by the two
coupled equationsf6g

]r

]t
+

]svrd
]x

= 0,

M
]v
]t

+
]

]x
SM

2
v2 + VD +

]

]x
Sgr −

1

2M

]x
2Îr

Îr
D = 0. s3d

Here r= uCu2 is the density and v=s1/2iM dsC* =C
−C=C*d /r the velocity field. This equation gives a good
description for systems in high dimensions or one-
dimensional systems with many particles per site. Lineariz-
ing the equations, one recovers the results of the hydrody-
namical approachf5g.

We now turn to the opposite limit of strong interactions.
For low densitiesr̃ø1 and strong interactions, the Bose-
Hubbard Hamiltonian can be mapped to an effective model
of spinless fermions with correlated hopping and attractive
interactionsf23g:

HF = − Jo
j=1

L Scj+1
† cj −

2Jn̂j

U
cj+1

† cj−1 + H . c.D
−

2J2

U
o
j=1

L

sn̂j+1 + n̂j−1dn̂j + OsJ3/U2d, s4d

wherehcj ,cj8
† j=d j ,j8, anticommuting otherwise, andn̂j =cj

†cj.
Due to the correctionOsJ3/U2d, this mapping is only valid
for u@1.

IV. METHOD

To study the evolution of a free wave packet in a homo-
geneous system we apply the recently developed adaptive
t-DMRG f20,21g. The adaptive t-DMRG is a numerical
method based on the well-known static DMRGf28–30g and
the time-evolving block-decimationsTEBDd procedure de-
veloped by Vidalf22g. The method describes the time evo-
lution of wave functions in an essentially exact mannersfor a
detailed error analysis seef31gd. In the calculation, the
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infinite-dimensional bosonic Hilbert space on a single site is
truncated to a finite valueNB. We checked the consistency of
our results by varyingNB. For a chain of lengthL=32 and
not too high density, the results forNB=6 and 9 agreed well.
In the following we use units in which the lattice spacinga
=1 and the hoppingJ=1 srecall"=1d. This means that times
are measured in units of" /J and velocities in units ofaJ/".

V. PREPARATION OF THE DENSITY PERTURBATION

To prepare a density perturbation in our system we apply
in Eq. s1d, for tø0, an external potential« j of Gaussian
form,

« jstd = − 2h̃r̃e−j2/2s̃2
us− td, s5d

which is switched off for timest.0. We determine the initial
state as the ground state of the corresponding Hamiltonian at
t=0 using a finite-system DMRG algorithm. Since DMRG
produces site-dependent matrix product statesf13g, it can
easily deal with the inhomogeneous density in our setup.

For weak perturbations, this potential creates an approxi-
mately Gaussian density packet

r jst ø 0d = r0s1 + 2he−j2/s2s2dd. s6d

Note the difference between the parameterss̃ and h̃, which
are used to describe the applied potential, and the parameters
s and h, which determine the resulting density profile. For
weak perturbationss=s̃, andh is related toh̃ via the com-
pressibility ]r̃ /]m,1/U. The background fillingr0 differs
from the filling r̃ not only by the effect of the perturbation
but also by boundary effects.

One constraint for the description of the time evolution of
a wave packet by the Bose-Hubbard model is that the bosons
should not be excited to higher-lying energy bands induced
by the periodic potential of the optical latticef32g. Hence it
is valid as long as the additional energy by the perturbation is
much smaller than the level spacing of the energy bands. The
energy change induced by the perturbation consists of two
contributions: the change in the interaction energy and the
change in the kinetic energy. The first can be approximated
by DEint=2rDrU, with Dr,hs and U<ged3xuwsxdu4,
where wsxd is the associated Wannier function. The set of
Wannier functions is often used in the context of periodic
potentials, since these functions are maximally localized at
the potential minima. Herewsxd is the Wannier function lo-
calized aroundx=0. The kinetic energy is dominated by the

fast oscillations induced by the periodic lattice potential as
long as the change in the density by the perturbation varies
more slowly. Hence an upper bound for the change in the
kinetic energy is given byDEkin,JDr. In total we demand
that DE,UDrsJ/U+2rd!n, where n is the energy level
spacing obtained on approximating the wells by parabolic
potentials. Forr,1 andJ/U&1, this condition is obeyed
provided thaths!a'

2 /aias,10, whereas is the scattering
length. The lengthsa' andai are the oscillator lengths per-
pendicular and parallel to the quasi-one-dimensional system.
The oscillator lengths are the length scales of the approxi-
mately parabolic potentials around the lattice minima. Note
that in this section we restored the dependence onJ for better
comparability to experimental parameters.

VI. EVOLUTION OF THE WAVE PACKET

A simple description of the evolution of a Gaussian wave
packet for weak interactions can be obtained from a hydro-
dynamical approach. Linearizing Eqs.s3d, one obtains a lin-
ear wave equation. An initially Gaussian wave packet of
height h and background densityr̄ therefore shows a time
evolution of the form:

rsx,td = r̄f1 + hse−sx − vtd2/2s2
+ e−sx + vtd2/2s2

dg. s7d

Note that the background densityr̄ in the continuum is re-
lated to the background densityr0 in the lattice system by
r̄=r0/a, where the lattice spacinga is restored. The wave
packet att=0 thus splits into two packets, which travel with
the same speed in opposite directions. Indeed this is the be-
havior found in our simulations at weak coupling. Figure 1
shows snapshots of the evolution of a density-wave packet
created at timet=0. When the wave packets reach the
boundaries, they are reflected back and after some time they
meet again in the center of the system. The evolution of the
density for up to four reflections is shown in Fig. 2 by a
density plot, i.e., the height of the density is encoded in a
gray-scale scheme. The bright lines indicate the motion of
the wave packet, which splits into two packets moving to-
ward the boundaries. After some time the pattern becomes
less pronounced and a substructure arises due to the reflec-
tion and scattering of the wave packets.

VII. HEIGHT OF THE AMPLITUDE

Damski f14g has shown that, neglecting the last term in
the Gross-Pitaevskii equations3d, the so-called quantum

FIG. 1. Snapshots of the evolution of the den-
sity distribution are shown at different times. At
t=0, a Gaussian wave packet is present in the
center of the system. It splits up into two packets
which move with the same speed in opposite
directions.
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pressure term, the amplitude of the perturbation stays con-
stant in time and equalsr̄s1+hd. A decay of the amplitude in
this approximation occurs when the quantum pressure term
become relevant. This term arises from the kinetic energy
term and describes a restoring force due to spatial variations
in the magnitude of the wave function of the condensate. It
becomes important if the length scale of spatial variations is
of the order of the healing lengthj=1/sÎ2gr̄d, whereg is
the dimensionless interaction strength defined byg=Mg/ r̄.
Hence a decay of narrow or high wave packets is expected
even without an external potential. In agreement with this
qualitative picture, our numerical results for the Bose-
Hubbard model show that the decay becomes faster ifsid the
width of the perturbation is narrower, andsii d the amplitude
of the perturbation is higher. As an example, in Fig. 3 the
decay of the amplitude is shown for different amplitude
heights and widths. Both plots show a very rapid decrease
for small timesfin sad for t,1 and insbd for t,2g, which is
due to the splitting of the wave packet. For larger times after
the two wave packets are separated, the decay is approxi-
mately linear in timesthis might be just the first contribution
of a more complicated decayd. Clearly, the decay of the am-
plitude of the initially small heighth̃<0.1 and width s̃
<1.4 fFig. 3sbdg is much slower than the decay of the am-
plitude of the initial heighth̃<0.3 and widths̃<1 fFig.
3sadg. The oscillations seen in the curve stem from the dis-
crete structure of the lattice, since we plot the maximum
value of the lattice occupancies over all lattice sitessand not
the maximum of a fitted continuous curve which could lie
between two lattice sitesd.

Due to the rather slow decay of small amplitudes, we
determine in the following the values to be used forr0, h,

and s, by fitting the initial wave packet att=0 to the form
given by Eq.s6d. Such a fit is shown in Fig. 1 att=0. The
error that results from assuming a time-independent ampli-
tudeh is negligible for small amplitudes and broad widths of
the perturbation. The uncertainties of the numerical results
for the densitysdetermined by convergence checks in the
number of DMRG statesm, the allowed number of bosons
NB per site, and the Trotter time stepDtd, and the errors made
when reading off the parameters from the fit are much
smaller than the size of the symbols used for data points in
our plotsssee for example Fig. 1d.

VIII. SOUND VELOCITY

To investigate the dependence of the sound velocity on
the background densityr0 and the interaction strengthu in

FIG. 2. Here the evolution of a density-wave packet is shown in
a density plot. A linear gray scale is used, bright meaning higher
densities. The bright lines correspond to the wave packets first split-
ting up, moving toward the boundaries, being reflected by the
boundaries, and meeting again in the center of the system, where
the cycle starts again. After some reflections a substructure arises
due to boundary effects and packet interactions.

FIG. 3. The typical decay of the amplitude of the perturbation.
We plot sr jdmax−r0, i.e., the difference between the largest discrete
site occupancy and the background occupation. The steep decrease
for small timesfup to t<1 in sad andt<2 in sbdg corresponds to the
splitting of the density-wave packet into two packets moving in
opposite directions. The small oscillations in the curve stem from
the discreteness of the underlying lattice. A linear fit is shown as a
first approximation. For the lower and broader amplitudesbd a
much slower decay is seen than for the amplitudesad.
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the Bose-Hubbard model, we create two small density per-
turbations with low amplitudes, a “bright” one, i.e.,h.0,
and a “gray” one, i.e.,h,0 suhu,0.02d at approximately the
same background densities. Since the sound velocity is the
velocity for an infinitesimal density perturbation and we
simulate the motion of perturbations with finite amplitude,
we interpolate between the two results for the velocity of the
perturbations ±h linearly sthis will be justified later on; see
Sec. IXd. The velocity is determined from the propagation of
the maximum or the minimum of the density perturbation for
±h, respectively. In Fig. 4 the sound velocity is plotted as a
function of the interaction strength at fixed background den-
sity r0<0.52.sThe background density can not be fixed eas-
ily to a certain value, since it depends on the total number of
particles, the boundary effects and the perturbation. In our
calculations it deviates fromr0 at most by 0.01.d

Our numerical results will be compared with the theoret-
ical predictions fromsid a hydrodynamical approach or the
linearized Gross-Pitaevskii equation,sii d the Bogoliubov ap-
proximation for the continuum gas by Lieb, andsiii d the
results of the mapping onto a spinless fermion model.

sid The sound velocity determined by a hydrodynamical
approach is given by

vsr̄,gd = Îgr̄/M . s8d

Using the relations of the continuum limit, the corresponding
velocity in the lattice is

vsr0,ud = 2r0
Îglat, s9d

with glat=u/2r0 being the lattice analog of the dimension-
less interaction.

sii d As will be shown below, a much wider range of ap-
plicability thansid is obtained from the results of Lieb for the

continuous bosonic modelfEq. s2dg with d interaction. They
found two distinct modes of excitations, the usual Bogoliu-
bov mode and the Lieb mode, which is associated with soli-
tary wavesf33g. At low momenta the dispersion relations for
both modes have the same slope, which means that they
propagate at the same sound velocity. The expression for the
sound velocity can be obtained from the thermodynamic re-
lation Mvs

2= r̄]r̄m, with m as the chemical potential of the
ground state, which is calculated within the Bogoliubov ap-
proximation. This results inf8g

vs = vbare

Îg

p
S1 −

Îg

2p
D1/2

, s10d

wherevbare=pr̄ /M is the analog of the bare “Fermi” ve-
locity. In order to relate that to the Bose-Hubbard model,
we use the expressions obtained from the continuum limit,
i.e., g→glat and vbare→vbare,lat=2pr0. Within the con-
tinuum model, the numerical calculation of the sound ve-
locity by Lieb shows that expressions10d is quantitatively
correct up tog,10. By contrast the hydrodynamical re-
sult s9d is valid only up tog<1.

siii d For strong interactions the sound velocity obtained
by a mapping on a spinless fermion model is given byf24g

vs
F . vFS1 −

8

u
sr0cospr0dD s11d

where the Fermi velocity of the lattice model isvF
=2 sinpr0.

In Fig. 4 we compare these predictions to our numerical
results. We see that for small interaction strengthu&1, i.e.,
glat&1 snote that forr0=0.52 andu<glatd, the curves ob-
tained usingsid andsii d agree well with our numerical results.
Around glat<1 the mean-field predictionsid starts to grow
too fast, while the Bogoliubov approximationsii d remains
close to the numerical results up to intermediate interaction
strengthglat<4. For even higher interaction strength alsosii d
starts to differ significantly from our numerical results. This
means that the lattice model starts to deviate from the con-
tinuum model, sincesii d was a very good approximation for
the continuum model up tog<10. A breakdown of the con-
tinuum limit in this regime is expected, since the lattice ana-
log of the healing length, i.e.,jlat=a/ sÎ2glatr0d, becomes of
the order of the lattice spacinga and thus the discreteness of
the lattice becomes relevantswe restored here the depen-
dence on the lattice spacingad. The sound velocity in the
lattice model always remains lower than in the continuum
model. For higher interaction strength the numerical results
approach the asymptotic value of predictionsiii d. Note, that
the predictionsiii d is only expected to become valid for even
stronger interactions than shown here, since it is an expan-
sion in u−1. In Fig. 5 we see that our numerical results up to
intermediate interaction strength show the dependence on the
background density predicted by Eq.s10d. Deviations from
the predicted form occur forglat*2, depending on the par-
ticular set of parametersu and r0. This dependence of the
breakdown of the continuum limitsjlat becomes of the order
of ad is due to the fact that the healing lengthjlat does not
only depend onr0 and u in the combination given byglat.

FIG. 4. The dependence of the sound velocity at constant back-
ground densityr0=0.52 on the interaction strength is shown. Our
numerical resultss+d are compared tosid the results Eq.s9d of the
hydrodynamical approach,sii d the sound velocity determined by
Lieb and Liniger Eq.s10d, and siii d the results Eq.s11d for strong
interaction strength obtained by mapping onto spinless fermions.
The results of Eq.s11d, i.e.,siii d, should become applicable for even
stronger interactions than the ones shown here.
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Therefore deviations at smaller values ofu arise for larger
background densities. Alternatively, this may be expressed in
the form shown in Fig. 5: the breakdown of the continuum
limit occurs for largeru at smallerglat.

To summarize, we find that the sound velocity as a func-
tion of the interaction strength shows a crossover between
Eq. s10d, wherevs/r0 depends only on the combination ofr0
and u given by glat, to a saturation at a value given by Eq.
s11d. In fact, a completely analogous behavior appears in the
average kinetic energy of the particles, allowing one to iden-
tify the Tonks regime for quasi-1D tubes of bosons which are
radially confined by a 2D optical lattice of increasing
strengthf4g. The breakdown of the prediction Eq.s10d is due
to the discreteness of the lattice model and takes place if the
healing length becomes of the order of the lattice spacing.

The results presented above were obtained using chain
lengths betweenL=32 and 48 sites. Our numerical results
for the time evolution of the density profile are converged in
the number of states kept in the reduced spacem staken
betweenm=64 and 96d, which means that the Trotter error
dominates the total errorf31g. The errors in observables are
very small sof the order of 0.0001d for Trotter time steps
betweenDt=0.01 and 0.05 and can safely be neglected in
comparison to the uncertainties introduced by the determina-
tion of the sound velocity. For small interaction strength the
velocity is relatively low and the movement over a long time
can be fitted such that the accuracy of the results is of the
order of ±0.01 before interpolation between ±h. For higher
interaction strength, the uncertainty in the results for the ve-
locity increasesfapproximatelyOs±0.05d for u=6g. This has
two reasons. First, the velocity increases such that the end of
the chain is reached in a rather short time. Moreover, oscil-
lations in the density distribution induced by the finite size of

FIG. 5. The dependence of the sound velocity on the interaction
strength and the background density is shown up to intermediate
interaction strength. To confirm the predictionsii d fEq. s10dg we plot
the ratiovs/ s2r0d versusglat=u/ s2r0d.

FIG. 6. The dependence of the velocity on the height of the
amplitudeh. The velocity is scaled bylsr0d to remove its depen-
dence on the background density.

FIG. 7. The evolution of a narrow density-
wave packet is shown for various fixed times.
The wave packets undergo self-steepening and
assume a symmetric form. The lines are guides to
the eye.
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the chain become more important and disturb the free evo-
lution of the wave packets.

IX. SELF-STEEPENING

In Fig. 6 the dependence of the velocity on the height of
the initial density-perturbation amplitude is shown. The data
are taken at fixed interaction strengthu=1 and different
background densitiesr0. The dependence of the velocity on
the density is taken out by dividing bylsr0dÎ2r0f1
−s1/2pds1/Î2r0dg1/2 using our knowledge from the previous
resultsfcf. Eq. s10d, with g=glat=u/2r0, andu=1g. We see
that for small amplitudesh, the dependence is approximately
linear. It may be parametrized byah+b wherea=0.8 and
b=1.1. This linear dependence justifies the previously ap-
plied linear interpolation between ±h for the determination
of the sound velocity.

As a consequence of the fact that the velocity increases
monotonically with the amplitude of the perturbation, the
wave can undergo self-steepening and shock-wave formation
can occurf14,15g. One example where the phenomenon of
self-steepening can be seen for a “bright” perturbation is
shown in Fig. 7sad. The form of the density wave becomes
very asymmetric. The front of the wave steepens and the
back becomes more shallow. An additional dip arises at the
front of the wave packet. This might stem from the discrete-
ness of our system. In the case of a “gray” perturbationfFig.
7sbdg, the asymmetry develops the other way round; the front
becomes more shallow and at the same time the back of the
wave steepens. It should be emphasized, however, that the
perturbations taken here are very narrow and high to have a
strong effect. The Bose-Hubbard model might not be quan-
titatively applicable to describe such perturbations as dis-
cussed in Sec. V.

X. MOMENTUM DISTRIBUTION

Experimentally, one way of detecting the density pertur-
bation is to take time-of-flight imagesf18,27g. Theoretically
the interference pattern can be determined from the Fourier
transform of the one-particle density matrix

Iskd = 1/N o
j ,j8=1

L

eis j−j8dakkbj
†bj8l,

neglecting its slowly varying envelopef34g. In a homoge-
neous system without a density perturbation a sharp interfer-
ence peak appears at low interaction strength due to the long-
range order in the one-particle density matrix. If the
interaction increases beyond the point where a Mott-
insulating phase is present, this peak broadens and decreases.
Finally, for very strong interaction only a diffuse pattern is
left f27,35g. In the presence of a density-wave packet, we
find that a second interference peak appears at a finite mo-
mentum. In Fig. 8 we show the difference between an inter-
ference pattern att=0, where the density wave is still in the
center, and a later point, where the wave packets travel
through the system. The possibility to resolve the second
peak in the experiments depends on the parameters of the

system. Specifically, the peak shown in Fig. 8 was calculated
for a high amplitude of the density perturbation. This ensures
that the mean number of bosons contributing to the second
peak in the interference pattern is a sufficiently large fraction
of the total boson number. In Fig. 8 the difference between
the patterns att=5 and 0 is shown.

In our investigations we neglected the transverse degrees
of freedom. Small corrections to the sound velocity are ex-
pected by the coupling of the sound mode to these transverse
degrees of freedomf36g.

In the experimental realizations a parabolic trapping po-
tential is present in addition to the periodic lattice. As a re-
sult, the background density is no longer homogeneous.
Since the sound velocity depends on the background density,
we expect it to vary for weak interactions according to Eq.
s10d and for strong interactions according to Eq.s11d. Only
in the region where the trap varies slowly enough that the

FIG. 8. On the left the interference pattern is shown for two
different times. Att=0 only one sharp interference peak atk=0
exists. For timest.0 further peaks at finite momentak and −k
arise, which correspond to the moving wave packets. Here only the
region k.0 is shown, exploiting the symmetry underk→−k. On
the right the difference of the interference pattern fort=5 and 0 is
shown. Here the errors are of the order of a few percent.
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background density is almost constant, we expect the trap to
have negligible effect on the motion of the wave packet.

XI. SUMMARY AND OUTLOOK

To summarize, we investigated the motion of a wave
packet in a Bose-Hubbard model which describes the dy-
namics of density perturbations in ultracold bosons in an
optical lattice with a filling close to one particle per site. In
the limit of weak interactiong&1, the motion of relatively
broad and small perturbations can be described by the hydro-
dynamical approach or the linearized Gross-Pitaevskii equa-
tion. For intermediate interaction strength, however, the
mean-field description breaks down while the results ob-
tained from the corresponding continuum Lieb-Liniger
model remain valid in this regimesg&4d. For strong inter-
actions, we found that the sound velocity is well approxi-
mated by a mapping onto a spinless fermionic model. In
addition, we found a linear dependence of the velocity on the
height of the amplitude. This gives rise to effects like self-
steepening and shock-wave formation, in agreement with
analytical predictions. Finally, we have shown that a density
wave may be detected experimentally as an additional peak
in the interference pattern.

Let us conclude by mentioning a few open questions. In
the exact solution of the continuum model by Lieb and Lini-
ger there are in fact two independent types of excitations.
One of them exhibits a generalized Bogoliubov-type disper-
sion, which is linear at small momenta and crosses over to a
quadratic free-particle behavior at large momenta. The other
one only exists in a finite momentum range. It was later
identified as the solitary wave of the nonlinear Schrödinger
equation in 1Df33,37g. As was shown by Lieb and Liniger,

the velocity of the dark solitons for repulsive interactions is
always smaller than the linear sound velocity, coinciding
with the latter only in the limit of long wavelengths. Experi-
mentally, dark solitons have been observed in quasi-1D
Bose-Einstein condensates, and have been identified by the
fact that their velocity depends on the imposed phase gradi-
ent f11,12g. In the case of a deep lattice potential, as is stud-
ied here, solitary waves are predicted to appear in the weak-
coupling regimeu!1 f38g and for sufficiently wide density
perturbations which can be described by the 1D nonlinear
Schrödinger equation. In addition, the presence of a lattice
potential implies that atoms with momenta near a reciprocal
lattice vector acquire a negative effective mass. This leads to
the existence of bright gap solitons, a subject of considerable
current interestf39–41g, in particular in connection with in-
stabilities for strongly driven optical latticesf42g. In this pa-
per we focused our investigations mainly on the case of per-
turbations with small momenta, for which the two modes
cannot be distinguished by their velocity. It is an open ques-
tion to what extent the density waves in our simulations, can
be interpreted as solitary waves and in particular what hap-
pens to these stable excitations in the regime of strong cou-
pling, where the nonlinear Schrödinger equation no longer
applies.
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