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We investigate the formation of a spin gap in one-dimensional models characterized by groups with hidden
dynamical symmetries. A family of two-parametric models of isotropic and anisotropic spin-rotator chains
sSRC’sd characterized by SUs2d3SUs2d and SOs2d3SOs2d3Z23Z2 symmetries is introduced to describe
the transition from SUs2d to SOs4d antiferromagnetic Heisenberg chains. The excitation spectrum is studied
with the use of the Jordan-Wigner transformation generalized foro4 algebra and by means of the bosonization
approach. Hidden discrete symmetries associated with invariance under various particle-hole transformations
are discussed. We show that the spin gap in SRC Hamiltonians is characterized by the scaling dimension 2/3,
in contrast to dimension 1 in the conventional Haldane problem.
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More than 20 years ago Haldane1 made a conjecture that
the properties of spin-S Heisenberg antiferromagneticsAFd
chains are different for integer and half-integer spins;
namely, the excitations in Heisenberg AF chains with half-
integer spins are gapless, whereas for integer spins there is a
gap in the spectrumsHaldane gapd. While the first part of the
Haldane conjecture has been proven a long time agossee
Refs. 2 and 3d, the second part, although confirmed by many
numerical4 and experimental5 studies and tested by some ap-
proximate analytical calculations,6–10 remains a hypothesis.
The problem of SUs2d Heisenberg chains has been attacked
by modern tools such as, e.g., bosonization6–8 ssee also Ref.
11d, various numerical methods,4,12,13 and the recently pro-
posed fermionization by means of the Jordan-Wigner trans-
formation for higher spins.14 However, the main focus of
interest has been put either onS=1 chains characterized by
SUs2d symmetry or onN-leg ladders described in terms of
dynamic SOsNd groups.16 There have also been made several
conjectures concerning spontaneous discrete symmetry
breaking inS=1 chain models associated with, e.g., exis-
tence of hidden Z2 and Z23Z2 symmetries.13,17 Neverthe-
less, the general question about the nature of the spin gap is
still open.

In this paper we propose yet another approach to the spin
gap problem. It is based on investigation of a family of two-
parametric Hamiltonians described by dynamical groups.18

This family includes the conventional two-leg ladder and
several models intermediate between the ladder and the
chain. Here we concentrate on the most instructive example
of a “barbed-wire-like” chain with spins 1/2 in each site
coupled by the ferromagnetic exchangeJ' within a rung and
the AF interactionJi along the legsFig. 1d. The model
Hamiltonian is

H = Jio
i

sW1,isW1,i+1 − J'o
i

sW1isW2i . s1d

This model is a natural extension of theS=1 chain to a
case where the states on a given rung form a triplet-singlet

pair. We call the chain shown in Fig. 1 the spin-rotator chain
sSRCd sin contrast to the spin-rotor model10,19d. Unlike ear-
lier attempts to construct the representation of anS=1 state
out of s=1/2 ingredients,7,8 we respect in this case the SOs4d
symmetry of the spin manifold on each rung.20 As a result,
the singlet state cannot be projected out.Moreover, it plays
an integral part in the formation of the spin gap. We show
that the hidden Z2 symmetries in this model are an intrinsic
property of the local SOs4d group of the spin rotator on the
rung, and the symmetry breaking due to nonlocalsstringd
effects results in spin gap formation. These special symme-
tries distinguish our model fromsNù2d-leg ladder models
and SUs2d chains. In particular we show also that the scaling
dimension of a spin gap in a SRC differs from that in a
two-leg ladder.

New variables on a rung are introduced to keep track of

S=1 properties. We defineSW i =sW1,i +sW2,i, RW i =sW1,i −sW2,i, whereSW i
stands for a tripletS=1 ground state and singletS=0 excited

state. The operatorRW describes dynamical triplet-singlet
mixing.18,20 Then

H =
Ji

4 o
i

fSW iSW i+1 + SW iRW i+1 + sSW ↔ RW dg −
J'

4 o
i

sSW i
2 − RW i

2d,

s2d

where the set of operatorsSW i, RW i fully defines theo4 algebra
in accordance with the commutation relations

fSi
a,Sj

bg = idi j«abgSi
g, fRi

a,Rj
bg = idi j«abgSi

g,

FIG. 1. Spin-rotator chain.
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fRi
a,Sj

bg = idi j«abgRi
g, s3d

where eabg is the totally antisymmetric Levi-Cività tensor
and Casimir constraints on each sites are given by

sSW id2 + sRW id2 = 3, sSW i ·RW id = 0. s4d

In order to characterize low-lying excitations in the SRC we
propose a fermionization procedure, which extends the
Jordan-WignersJWd transformation to the SOs4d group, and
a bosonization formalism based on this procedure. Our
method incorporates the JW transformation forS=1 pro-
posed by Batista and OrtizsBOd in Ref. 14. The relationships
between the SOs4d JW representation and the BO represen-
tation is discussed below in some detail.

We begin with a single-rung dimer problem. A two-

component fermionsa†b†d basis representingSW operators is
introduced as followssS±=Sx± iSyd:

S+ = a† + eipa†ab†, S− = a + be−ipa†a, Sz = a†a + b†b − 1.

The complementary representation forRW generators is

R+ = a† − eipa†ab†, R− = a − be−ipa†a, Rz = a†a − b†b.

This representation satisfies commutation relationss3d for
the SOs4d group and preserves the Casimir operatorss4d. The
advantage of the two-fermion formalism in comparison with
two independent JW transformations for eachs=1/2 is that
the latter requires an additional Majorana fermion to provide
commutation of two spins on the same rung. Two-component
spinless fermions may be combined into one spin fermion,
which is most conveniently done by the definition

f↑ = sa − bd/Î2, f↓
† = sa + bd/Î2. s5d

In order to generalize the one-rung representation for a linear
chain of rungs we introduce a “string” operatorKj,

Kj = expSip o
k, j ,s

nskD = p
k, j

s1 − 2n↑kds1 − 2n↓kd s6d

sns= fs
† fsd. As a result of the JW transformation the SOs4d

generators acquire the following form:

Sj
+ = Î2ff↑ j

† s1 − n↓ jdKj + Kj
†f↓ js1 − n↑ jdg,

Sj
− = sSj

+d†, Sj
z = n↑ j − n↓ j , s7d

Rj
+ = Î2sf↑ j

† n↓ jKj + Kj
†f↓ jn↑ jd,

Rj
− = sRj

+d†, Rj
z = f↑ j

† f↓ j
† + f↓ j f↑ j . s8d

Part of the representations7d describingS=1 coincides with

the BO representation. Nevertheless, sinceSW2 is no longer a

conserved quantity, being defined bySW j
2=2f1−n↑ jn↓ jg, the

projection of the SOs4d group on theS=1 representation of
the SUs2d group requires an additional Hubbard-like interac-
tion responsible for the hidden constraint overlooked in the
BO paper14 ssee also Ref. 15 where the unconstrained JW
transformation is constructed forS=3/2d. When theS=1
sector is fixed, three statessn↑ ,n↓d, namely,s1,0d, s0,0d, and

s0,1d, determine a threefold degenerate triplet state whereas
the doubly occupied states1,1d stands for a singlet separated
from the ground state by the gapD=J'. The Hamiltonians2d
is fermionized by means of a purely one-dimensionals1Dd
string operatorKj fEq. s6dg in contrast to the meandering
strings proposed for the theory of two-leg laddersssee Ref.
21 and references thereind.

The Hamiltonian of the anisotropicXXZ SRC model is
H=Hi+oiH',i, where

Hi =
Ji

x

8 o
i

fSi
+Si+1

− + Si
+Ri+1

− + sS↔ Rd + H.c.g +
Ji

z

4 o
i

fSi
zSi+1

z

+ Si
zRi+1

z + sSz ↔ Rzdg, s9d

H',i =
J'

x

8
sRi

+Ri
− + Ri

−Ri
+d +

J'
z

4
sRi

zd2 − sRW i ↔ SW id.

There exists a set of discrete transformations keeping the
Hamiltonianss2d and s9d intact and preserving the commu-
tation relationss3d and Casimir operatorss4d. In general,
these transformations are described by the matrix of finite
rotations characterized by Euler anglesu ,c ,f ,w for the case
of the SUs2d3SUs2d or SOs2d3SOs2d3Z23Z2 groups.
An example of such a transformation is

S+ → R+, S− → R−, Sz → Sz, Rz → Rz, s10d

which is a Us1d3Us1d rotation in the “Sx-Rx” and “Sy-Ry”
subspaces. This is in fact a particle-hole flavor transforma-
tion f↑→ f↓

†, f↓→ f↑
†. On the other hand, it corresponds to the

replacementb→−b, thus manifesting hidden Z2 symmetry.
This means that an additional gauge factor expsiud with
u= ±p appears in the fermion operator characterizing the
“free ends” of rungs in the SRC chain. Other examples are
sf↑→ f↓d and sf↑→ f↑

†, f↓→ f↓
†d. The latter corresponds to a

particle-hole transformationsa→a†,b→b†d in the nonro-
tated fermion basis.

After a JW transformation in thea-b basis s5d–s8d the
Hamiltonians9d is written as follows:

Hi = Ji
xo

i

sai
†ai+1 + ai+1

† aidcosspni
bd

+ Ji
zo

i
Sni

a −
1

2
DSni+1

a −
1

2
D s11d

andH'=oiH',i with

H',i = −
J'

x

2
sai

†bi + bi
†aid − J'

z Sni
a −

1

2
DSni

b −
1

2
D , s12d

where the shorthand notationsna=a†a, nb=b†b, and
cosspnbd=Re exps±ipnbd=1−2nb are used. Below we con-
sider the domainJ'!Ji where the strongest deviations from
the conventional Haldane gap regime6,7 are anticipated. In
the limit J'=0 our SRC model reduces to ans=1/2 AF
chain; the gauge factor cosspnbd= ±1 is a fictitious random
variable which can be eliminated by the transformation
Sx→−Sx andSy→−Sy on the corresponding site. This situa-
tion is similar to the so-called Mattis disorder22 where ran-
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domness in an interaction is removed by proper redefinition
of spin variables.

The kinematic factor,cosspni
bd in Hi

x fEq. s11dg can be

eliminated by a unitary transformationH̃=U†HU with
U=expsipol,j.lnj

anl
bd. Then H'

z and Hi
z remain unchanged

and theJ'
x term acquires the string form

H̃',i
x = −

1

2
J'

x Fai
†bi expS− ipo

j,i

faj
†aj + bj

†bjgD + H.c.G .

s13d

Thes=1/2 chain is represented in terms of a half-filled band
of fermions. Since interactionss11d and s12d do not change
the occupation numbers for each color, we expect that the
interacting case is also represented by two half-filled bands
ssee belowd. We note that the HamiltonianHi in Eq. s9d
possesses Us1d3Us1d symmetry whereas only one local
Us1d associated withb fermions exists in Eq.s11d due to the
nonlocal character of the JW transformation.

Let us consider theXYi-XY' modelsJi
z=J'

z =0d. We split
the first term in Eq.s11d into the bare hopping and the kine-
matic term,Ji

xni
bsai

†ai+1+H.c.d playing the part of the effec-
tive interactionHint

XY. One gets after diagonalization of the
hopping term

H0 = o
p,l=±

«lspdcl,p
† cl,p s14d

with c+=u+a+u−b, c−=u+b−u−a,

u±
2spd = ± «±spd/f«+spd − «−spdg, s15d

«±spd = Ji
x cosp ± fsJi

x cospd2 + sJ'
x d2g1/2. s16d

The chemical potentialh=0 is pinned in the gap. Thus, the
mixing term fixes the global phase difference fora-b fields.
The remaining symmetry is local Z23Z2.

We representHint
XY in terms of new variablesc± by expand-

ing the Hamiltonians11d in the vicinity of two Fermi points
of the nonhybridized system:

Hint
XY =

1

2 o
hm,n,aj=±1,q

gmm8
nn8 sqdrmm8,asqdLnn8,a8s− qd s17d

where the operatorrmm8 is given by

rmm8,asqd = o
k

ca,m,k−q/2
† ca,m8,k+q/2. s18d

Its diagonal part is the quasiparticle density. The operator
Lnn8 is defined as

Lnn8,asqd = − ao
k

k ca,n,k−q/2
† ca,n8,k+q/2, s19d

while its diagonal part isLnn=div jnn=−]trnn.
In expressionss18d ands19d the indexa=± stands for the

“old” Fermi surface pointskF
± = ±p /2 swe take unit lattice

spacingd, and k is measured from kF. The indices
m ,m8 ,n ,n8=± denote the branch of fermionsc±. We used the

property of u±,as±p /2d<1/Î2. The tensorgmm8
nn8 for these

scattering processes has the form

gmm8
nn8 = Ji

xsdmm8 + smm8
x dsdnn8 − snn8

x d. s20d

We analyze Eq.s17d in terms of theg-ology approach23

classifying various terms ingmm8
nn8 sqd as forward and back-

ward scattering and umklapp processes. We see, first, that if
uqu!p /2 andg, ±Ji

x, both diagonal and off-diagonal matrix
elements of Lnn8 vanish in accordance with Adler’s
principle.24 Thus, the forward scattering processes leading to
small renormalization of the coupling,sJ'

x d2/Ji
x are irrel-

evant. The backward scattering processess±p /2→ 7p /2d
result in a reductionJi→Ji

1−gJ'
g of the effective coupling

s0,g,1 is a constantd. To get this estimate we cut off the
logarithmic corrections to the coupling constant at
Dmin,sJ'

x d2/Ji whereDmin determines the gap in the density
of spin-fermion states«±. However, there is yet another en-
ergy scaleD,J'

x associated with the gap in a two-point
particle-hole correlator with zero total momentum of the pair.
This energy scale is attributed to the gap separating the
S=0 excited state on a rung from the triplet state. The cross-
over between the two energy scales will be discussed else-
where. The Hamiltonians17d allows also “interband” um-
klapp processes determined by the off-diagonal elements of
rmm8 and Lnn8 and responsible for the periodicityQ=2p.
These processes, associated with the transfer of a pair of
quasiparticles over the gap, do not change the leading term in
Eq. s16d.

The above arguments are complemented by bosonization
calculations for the strongly asymmetric two-leg ladder with
finite Fermi velocityub in theb subsystem, which may be set
to zero at the end of the scaling procedure. The continuum
representation for spin operatorssW1,sW2 in Eq. s1d reads11,25

fi =as1d ,bs2dg

si
±sxd , e±iuifcosspxd + coss2fidg,

si
zsxd , p−1]xfi + cosspx + 2fid s21d

with canonically conjugated variablesfi andPi =]xui. Keep-
ing only the most relevant terms in the rung interactionJ'

a ,
we arrive at the conventional equations of Abelian bosoniza-
tion for the spin Hamiltonians2d,

FIG. 2. Dispersion law for hybridized spin fermionsc±.
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H = o
i=a,b

E dxSpuiK

2
Pi

2 +
ui

2pK
s]xfid2 + J'

x cossua − ubd

+ J'
z cos 2fa cos 2fbD s22d

with K=1/2 andJ'!ub!ua=pJi /2 for Ji=Ji
x=Ji

z.
To find the scaling dimension of the gap we start with the

case J'
x =0, J'

z =J'Þ0. Using the scaling procedure

sx→Lx,t→Ltd, one has J̃'→J'L2−b where b /2=K /2
is the scaling dimension of cos 2fi. The renormalization
of theb component stops when the renormalizedJ' becomes
comparable with the lower scale of the energyub. The
corresponding scaleL=jb defines the first correlation
length jb=sub/J'd1/s2−bd and the first energy gap
Db=ubjb

−1=ubsJ' /ubd1/s2−bd. At the second stage of the renor-
malization, with frozenkcos 2fbl,jb

−b/2, the factor cos 2fa

undergoes further enhancement. The procedure halts when

the renormalized amplitudeJ̃' is comparable withua at
J'L2−b/2jb

−b/2,ua, which defines a second correlation length
ja=sjb

b/2ua/J'd1/s2−b/2d and a second gapDa=uaja
−1. In our

particular caseb=1 these formulas simplify as follows:

jb = sub/J'd, Db = J',

ja = jbsua/ubd2/3, Da = J'sua/ubd1/3. s23d

One may decreaseub in the regime of frozenfb down to
ub,J'. ThenDa,JisJ' /Jid2/3. Further decrease ofub does
not change the exponent 2/3 of the spin gap fully determined
by the scattering on the random potential cos 2fa.

26 The two-

stage renormalization procedure is essential for understand-
ing the SRC model. In the limitua,ub, Eq. s23d leads to
standard scaling of the spin gapD,J' ssee, e.g., Ref. 27d.

In the caseJ'
x Þ =0, J'

z =0 the scaling behavior of the
spin gapD,JisJ'

x /Jid2/3 is determined by the backward scat-
tering processes of the fielda on the random potential asso-
ciated with fluctuations of cosua.

The fully isotropic case,J'
x =J'

z =J', might be expected
to yield the same estimateD,Ji

1/3sJ'd2/3. A refined analysis
ssee, e.g., Ref. 28d including the less relevant terms in Eq.
s17d may correct the gap values, but does not change this
estimate.

To summarize, we introduced a 1D model intermediate
between the spinS=1 chain and the two-leg ladder. Our SRC
possesses special hidden Z2 symmetries connected with dis-
crete transformations in a 6D space of the SOs4d group char-
acterizing the spin rotator. The SRC chain is mapped on the
two-component unconstrained interacting fermions by means
of ano4 JW transformation. The two fermion fields are char-
acterized by sharply different dynamics demanding a two-
stage renormalization procedure. One of the two fields is
frozen atk→ ±p /2 and the scaling dimensionb of the rung
operator exchangeJ' is b=1/2 instead ofb=1,27,29as in the
conventional Haldane problem. As a result, the formation of
massive excitations in the isotropic SRC model is character-
ized by a “two-thirds” scaling law.
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