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Abstract

In the spin-boson model, the properties of the oscillator bath are fully characterized by the spectral density of oscillators JðxÞ.
We study the case when this function is of Breit–Wigner shape and has a sharp peak at a frequency X with width C � X. We use a

number of approaches such as the weak-coupling Bloch–Redfield equation, the non-interacting blip approximation (NIBA) and the

flow-equation renormalization scheme. We show, that if X is much larger than the qubit energy scales, the dynamics corresponds to

an ohmic spin-boson model with a strongly reduced tunnel splitting. We also show that the direction of the scaling of the tunnel

splitting changes sign when the bare splitting crosses X. We find good agreement between our analytical approximations and nu-

merical results. We illuminate how and why different approaches to the model account for these features and discuss the inter-

pretation of this model in the context of an application to quantum computation and read-out.
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1. Introduction

The subject of open-system quantum mechanics and

the physics of the boundary between classical and quan-
tumphysics has been of strong interest since the early days

of quantum theory. A paradigmatic standard model for

the study of open quantum systems is the spin-boson

model [1,2]. A single two-state system coupled to a bath of

harmonic oscillators described by the Hamiltonian

ĤH ¼ 1

2
ð�r̂rz þ Dr̂rzÞ þ

1

2
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X
i

cix̂xi
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X
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�
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�
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Here, H0 is a constant counter-term. The energy eigen-

values of the two-state system alone are �E=2 with
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p
. The oscillator bath can model arbitrary

Gaussian noise sources. It is fully characterized by a

spectral function JðxÞ which depends on the distribu-

tion of frequencies and couplings

JðxÞ ¼
X
i

c2i
2mix2

i
dðx� xiÞ: ð2Þ

For a given physical system, e.g. a superconducting
quantum bit coupled to a noisy electronic circuit, JðxÞ
can be obtained by analyzing either the effective friction

[3] or noise [4] originating from the environment. It is

useful to also introduce the semiclassical noise power

SðxÞ ¼ JðxÞ cothðx=2T Þ.
Next to its long tradition in chemical physics, the

physics of open quantum systems and in particular the

spin-boson model has gained recent practical impor-
tance in the field of quantum computation [5]. There,

one is interested in obtaining long phase coherence times

for the actual computation and long relaxation times for

the readout. In a number of quantum computation re-

alizations, the researcher has the option to engineer at

least part of the properties of the quantum system and
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the dissipative environment under study [6], e.g. in the

case of superconducting qubits coupled to their control

and readout electronics [4]. In particular, environments

with non-trivial internal dynamics, e.g. with resonances,

can be realized and appear to be attractive [4,7,8]. Much
is known about the physics of the spin-boson model

whose spectral density is a power law with an expo-

nential cutoff [1,2]. Such spectral densities only contain

the cutoff as internal energy scale, which is typically

assumed to be very high, leading to scale-free rates.

Much less is known about structured environments.

We are interested in a generic realization of this physics

described by a spectral density containing a Breit–Wig-
ner resonance

JðxÞ ¼ ax
X4

ðx2 � X2Þ2 þ 4x2C2
ð3Þ

in the underdamped case C � X. In that case, we can

expand

JðxÞ ¼ aX3

8iC

X
r;r0¼�1

rr0

x� ir0 ~XX� irC
; ~XX ¼ X� 2C2=X:

ð4Þ

Moreover, we will be able to profit from the analytical

continuation of results with a Drude spectral density,

noting that Eq. (3) can be written as

JðxÞ ¼ aX3

4iC

X
r¼�1

rx

x2 � ðr~XXþ iCÞ2
: ð5Þ

Note that the shift of the real part of the resonance
frequency from X towards ~XX can be neglected in the

underdamped case, except close to the resonance. We

will henceforth only emphasize this shift in those cases,

when it actually affects the results.

This type of spectral density is generically obtained by

coupling the spin to a harmonic oscillator with eigen

frequencyXwhich in turn is damped with a linear friction

coefficient C=2. This friction is modeled quantum-
mechanically by a bath of harmonic oscillators. Using a

normal mode transformation, one can show that this is

equivalent to our spin-boson Hamiltonian with a struc-

tured bath [9]. More details are given in Section 5. This

model is realized in various physical systems such as

chemical reactions involving biomolecules [9], atoms in

cavities [10] or superconducting qubits coupled to reso-

nators [4,8,11–14]. It is related to the non-linear dimer
model of polaron physics [15]. The case of no dissipation

with restriction to a rotating wave approximation is

known in quantum optics as the Jaynes–Cummings

model [16]. Our notation corresponds to the one adopted

in [7] and is slightly different to the one of [17].

The spin-boson model cannot be solved exactly in

closed form. It has been studied by a number of ap-

proaches. Some of them are largely numerical such as
quantum Monte Carlo [18], real-time renormalization

group [19], quasi-adiabatic path integrals [20] flow

equation renormalization [21] and numerical renormal-

ization group [22], others are mainly analytical such as

the non-interacting blip approximation (NIBA), a sys-
tematic weak damping approximation or exact Born

approximation [23,24] or Bloch–Redfield [25–27]. A

spectral density of the type Eq. (3) poses a challenge to

most of these approaches, since the dimensionless cou-

pling, the spectral density in units of the frequency,

JðxÞ=x, can be either very small (off-resonance) or large

(on-resonance). In order to explore the physics of this

model and to obtain useful analytical information, these
approximation schemes have to be applied within their

range of validity and compared to numerical methods

which are essentially non-perturbative in JðxÞ=x. Al-

ternatively, one can treat the coupled TSS and oscillator

system as multilevel quantum system and only the fric-

tion to the oscillator as a bath [28].

The plan of this paper is to analyze this model using

the weak-coupling Bloch–Redfield theory and the non-
perturbative NIBA and to compare the results to a full

numerical study obtained in the flow equation scheme.

We will very briefly introduce these methods and com-

pare the dynamics of the reduced density matrix (char-

acterized through the expectation value szðtÞ ¼ hr̂rziðtÞ
with, for definiteness, localized initial condition szð0Þ ¼
1), effective reduced Hamiltonians, dephasing and co-

herence rates. Interpretations of the results in terms of a
superconducting quantum bit coupled to a measurement

circuit will be given.
2. Bloch–Redfield

The Bloch–Redfield-theory has originally been de-

veloped in the context of nuclear magnetic resonance

(NMR) [25]. It offers a systematic way to obtain a

generalized master equation within the weak coupling

Born approximation between system and bath with

JðxÞ=x as small parameter. It contains a subtle Markov
approximation such that the resulting master equation is

local in time; however, the main bath correlations rele-

vant within the Born approximation are kept and they

do lead to time-dependent rates for a driven system

[27,29]. Bloch–Redfield has been shown to be numeri-

cally equivalent to a full non-Markovian path integral

technique for a rather generic choice of parameters [27].

Nevertheless, recent calculations at T ¼ 0 seem to indi-
cate [24] that there may under certain circumstances be

additional terms in the Born approximation, that are

neglected in the Bloch–Redfield approach.

The natural starting point for the Bloch Redfield

theory in the undriven case are the energy eigenstates of

the spin-part of the Hamiltonian (1). In that ‘‘energy
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basis’’, the Bloch–Redfield equation can be written as

(see e.g. [2])

_qqnm ¼ �ixnmqnm þ
X
kl

Rnmklqkl; ð6Þ

where all indices take the values + and � corresponding

to the ground and excited state and xnm ¼ ðEn � EmÞ=�h.
The Redfield tensor has the form

Rnmkl ¼ dlm
X
r

CðþÞ
nrrk þ dnk

X
Cð�Þ

lrrm � CðþÞ
lmnk � Cð�Þ

lmnk; ð7Þ

where we have introduced

CðþÞ
lmnk ¼ðrzÞlmðrzÞnkCðxnkÞ; Cð�Þ

lmnk ¼ðrzÞlmðrzÞnkC�ð�xlmÞ;
ð8Þ

where ðrzÞnk are matrix elements of rz in the energy

basis, the � denotes complex conjugation. The basic

building block of the rates in the Redfield tensor is the

rate C which can be written as

CðdxÞ ¼ 1

2p�h

Z 1

0

dt e�idxte�0þt

�
Z 1

0

dxJðxÞ cosxt coth
x
2T

� �h
� i sinxt

i
:

ð9Þ
The resulting dynamics displays exponential decay and

reads

szðtÞ ¼
�2

E2
eff

e�Cr t

�
þ tanh

Eeff

2T

� �
ð1� e�Cr tÞ

�

þ D2
eff

E2
eff

cosðEeff tÞe�C/t: ð10Þ

The quantities Deff and Eeff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ D2

eff

q
can be asso-

ciated with a renormalized Hamiltonian

Heff ¼
1

2
�r̂rz

�
þ Deff r̂rx

�
: ð11Þ

The details of the shift of the tunnel splitting D 7!Deff

will be discussed below.

The term in Eq. (10) containing Cr describes inco-

herent energy relaxation. It leads the system into ther-

mal occupation of the renormalized Hamiltonian

described below. The relaxation rate can be deduced
from the Bloch–Redfield rates Eqs. (7)–(9)

Cr ¼ R���� þ Rþþþþ

¼ ðrzÞ�þðrzÞþ�ðCðEÞ þ Cð�EÞ þ c:c:Þ

¼ D2

2E2
SðEÞ: ð12Þ

This result is easily understood in terms of the

Born-approximation: in order to relax, the system has to
exchange the energy corresponding to the energy split-

ting E with the environment at once, using a single

photon.
The last term in Eq. (10) describes quantum coherent

oscillations analogous to Larmor precession of a spin

[30]. These are the hallmark of (macroscopic) quantum

coherence in the spin-boson system. Their decay rate can

hence be identified with the dephasing rate and can,
using Eqs. (7)–(9), be written as

C/ ¼ �ReC�þ�þ

¼ Re½2ðrzÞ��ðrzÞþþCð0Þ

þ ðrzÞ�þðrzÞþ�ðCðEÞ þ C�ð�EÞÞ� ¼ Cr

2
þ aT

�2

D2
:

ð13Þ

Note, that on very general grounds [30] we have

2C/ PCr. The extra factor of 1/2 originates from the
fact that there are in principle two dephasing channels

corresponding to clockwise and counterclockwise Lar-

mor precession. We are following here the standard

NMR-motivated notation [30]; one could equivalently

define 2C/ as the true physical dephasing rate. The first

term in Eq. (13) is proportional to the relaxation rate

Eq. (12), which reflects that a relaxation process cer-

tainly also randomizes the phase information. The ad-
ditional term involves Sð0Þ, which in our case is /T .
This contribution originates from ‘‘flipless’’ dephasing

processes which randomize the phases while keeping

energy constant, i.e. transitions from a state into itself.

The form of both rates Eqs. (12) and (13) resembles

the case of unstructured environments [23], even though

the spectral density Eq. (4) has singularities close to the

real axis. The high relaxation rate at E ’ X corresponds
to resonant interaction between the qubit and the cen-

tral environmental oscillator. When interpreting this

result, one has to be aware, that the Born approximation

involved is only valid for Cr;/ � E, which, bounding

JðxÞ6 JðXÞ, means aX2 < C2. This a very rigorous

constraint in the underdamped case, C � X, which we

are considering. Also physically, we do not expect this

result to be consistent up to strong couplings, because
the relatively weakly damped big oscillator is a highly

coherent quantum system which mostly reversibly ex-

changes energy with the spin. Since the Golden-Rule

approximation in Bloch–Redfield only takes the long

time limit, this reversible exchange cannot be seen in the

Bloch–Redfield result. This can be understood from the

order of limits prescribed by Bloch–Redfield and shown

in the appendix: The imaginary part of the energy is first
sent to zero. Non-Markovian approximation schemes

[23,24] would at least take a self-consistent value and

thus shift the SðEÞ in Eq. (12) into ReSðE þ iCrÞ. Such
shifts can be important in particular if E ’ X, when both

predicted rates are very high. Results are summarized in

Fig. 1. We clearly see the peaked behavior at resonance

and notice that the influence of the self-consistent so-

lution is rather small even at rather extreme parameters.
On the other hand, the self-consistent solution predicts
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Fig. 1. Relaxation and dephasing rates as a function of energy bias

predicted from Bloch–Redfield theory. Parameters are D ¼ 0:1X,
T ¼ 0:01X. For the low-damping plots we have chosen a ¼ 10�6,

C ¼ 10�2X, for the high-damping plots we have chosen a ¼ 10�4,
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sistent relaxation rate around the resonance for D ¼ 0:1X, T ¼ 0,
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Fig. 2. Renormalization of the energy splitting at T ¼ 0 taken at the

degeneracy point � ¼ 0, defined as positive if the splitting is decreased.

Upper panel: ohmic-like logarithmic contribution from Eq. (15).

Lower panel: Contribution of the environmental resonance from Eq.

(16) (for discussion see text). Low damping: C ¼ 0:01X, a ¼ 10�4.

High damping: C ¼ 0:1X, a ¼ 10�2.
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lower rates as compared to the non-self-consistent one,

similar to the predictions of flow-equation studies [17].

As mentioned above, the environment not only cau-

ses dephasing and relaxation, it also renormalizes the

tunnel splitting D (and with it the transition frequency),
by dressing the two-state system with environmental

degrees of freedom. This is similar to the physics of the

Lamb shift or the Franck–Condon effect and leads, in

the non-perturbative regime, to the dissipative quantum

phase transition [1,31,32]. In our case, the transition

frequency is renormalized according to E ! E � Im

Rþ�þ�. If we look at the imaginary part of the generic

rate, Eq. (A.2),

C0ðEÞ ¼ 1

4p�h

Z
dxJðxÞP 1

x2 � E2
coth

bx
2

� �
E � x

� �

we observe a weight function Pðx2 � E2Þ�1
which

changes sign at x ’ E. Thus we can expect an upward

renormalization of E if most of the spectral weight of
JðxÞ is above E (corresponding to E < X) whereas E
scales downward in the opposite case. Physically, this

corresponds to level repulsion between the spin and the

oscillators in the environment. The result also is con-

sistent with usual second order perturbation theory for

the energies. The sign change happens at E ’ X, the

point where most of the spectral weight is concentrated,

thus we expect a rather sharp structure of the splitting
EeffðXÞ. Note, that this sign change is not predicted for

the usual spin-boson in the scaling limit, which can be

studied by the well-known adiabatic renormalization

approach [1,31]. In that case, Eeff is always reduced. This

is consistent with our findings, because in the scaling

limit, the vast majority of the environmental oscillators

have high frequency, much above the qubit splitting.
From the structure of the dephasing rate Eq. (13) we

can conclude that the last term in Eq. (A.3), which is

even in energy, drops from the final result. Moreover,

the remaining contribution to Eq. (A.3) vanishes as

E ! 0. If we finally go to low temperatures, we can re-
place p in Eq. (A.3) by an appropriate logarithm and

find for the shift of the transition frequency

dE ¼ D2

E2

a
2p

iX2E
C

X
r

r

E2 � ðr~XX2 þ iCÞ2

� log
C� ir~XX

iE

 !
: ð14Þ

In the underdamped limit we are working in, we can

approximate the logarithm as log jX=Ej � irp=2 and

split the result as Eeff ¼ E þ dE, dE ¼ dEX þ dEres. It

contains a logarithmic contribution which resembles the

scaling in the ohmic case (with cutoff frequency X),

dEX ¼ 2

p
D2

E2
JðEÞ log E

~XX

����
����: ð15Þ

This contribution changes sign from an upward shift at

X < E to a downward shift at X > E as is expected from

the general arguments above. The logarithmic divergence

at low E can be indicated as a precursor of a dissipative

phase transition. The other contribution takes into

account the enormous spectral weight of the resonance

dEres ¼
D2

E2
JðEÞE

2 � ~XX2

XC
: ð16Þ

This contribution is of the order a=C. It will be shown

below, that terms of this kind persist even in the absence

of damping of the external oscillator. It, too, undergoes

the expected sign change. It is linear at low E and hence

does not contribute to a dissipative phase transition. It in-

stead represents a substantial but finite renormalization.
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This is due to the fact, that for a dissipative phase tran-

sition, the environment has to get entangled with the spin

down to arbitrarily small frequencies. These results are

summarized in Fig. 2. As expected, we find in Fig. 2, that

the energy shift has a sharp structure around the sign
change at E ’ X. At this point, the spin becomes strongly

entangled with the central oscillator, hence the concept of

‘‘qubit energy splitting’’ is of limited applicability. This

observation is consistent with the usual dressed atom

approach of cavity quantum electrodynamics.
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Fig. 3. Relaxation rates calculated from the NIBA Eq. (24), in the long

time approximation using C ¼ 0:01X. Note, that for small a values

the rate first grows with growing a, until the localization due to the

resonance takes over and relaxation rates drop dramatically.
3. NIBA

So far, we have restricted ourselves to the Born ap-

proximation, i.e. to the lowest order in JðxÞ=x and have

otherwise kept the system general. We now turn to the
NIBA, which is non-perturbative in that parameter. It

can be derived from evaluating the influence functional

in a path-integral approach by assuming that the off-

diagonal excursions (‘‘blips’’) of the density matrix

contributing to the path of the two-state system are

uncorrelated [1,2]. It is thus justified when E � X, be-
cause then the bath is oscillating rapidly on the scale of

the two-state system and the time-integrated bath cor-
relation function quickly averages out, leading to weak

damping on longer time scales. Alternatively, the NIBA

can be obtained by analyzing a the polaron-transformed

version of the spin-boson Hamiltonian.

NIBA is known to work well under these conditions

at the degeneracy point � ¼ 0. At � 6¼ 0, the situation is

more subtle. At � � D [1,2] the true dynamics is domi-

nated by incoherent relaxation, which is again accu-
rately predicted. This application of NIBA is closely

related to the so-called P ðEÞ theory of Coulomb block-

ade [2,33–35].

In this approach, the dynamics turns out to be gov-

erned by the Laplace transformed exponentiated corre-

lation function

P ðkÞ ¼ D2

2p

Z 1

0

e�kteKðtÞ dt; ð17Þ

where KðtÞ is the twice integrated bath correlation

function from Eq. (9)

KðtÞ ¼ 1

2p

Z 1

0

dt
JðxÞ
x2

ðcosxt
�

� 1Þ coth x
2T

� �
þ i sinxt

�
: ð18Þ

At the degeneracy point, the dynamics of the system in

Laplace space is readily found from

szðkÞ ¼
Z 1

0

e�ktszðtÞ ¼
1

kþReSðkÞ ; ð19Þ

where SðkÞ ¼ ðP ðkÞ þ P �ðk�ÞÞ=2. Far from the degener-

acy point, we find incoherent relaxation
szðtÞ ¼ e�Cr t 1� tanh
�

2T
þ tanh

�

2T
;

Cr ¼ 2RePði�þ 0Þ: ð20Þ

At T ¼ 0, we can use Eq. (4) to evaluate KðtÞ in closed

form

KðtÞ ¼ aX
8pCi

X
rr0

r0X� iCr
ir0Cþ rX

eðirX�r0CÞtEið
h

� ðirX� r0CÞtÞ

� c� logð � iðrX� r0CÞtÞ
i
: ð21Þ

This is too complicated to allow a direct calculation of

P ðkÞ from Eq. (17). At low energies, E � X we can

concentrate on the long time limit of Eq. (21) and find,

keeping only lowest order terms in C=X,

KlongðtÞ ¼ � aX
C

� 2a½log jXtj þ cþ ip=2�; ð22Þ

where c is the Euler–Mascheroni constant. This is a
combination of a constant term of the order a=C and a

logarithmic term which resembles the findings in the

ohmic case [1,2]. This is similar to what we observed in

our Bloch–Redfield result for the scaling in Eqs. (15)

and (16). From here, we find PðkÞ being

P ðkÞ ¼ e�aX=Ce�2cae�iap D
2

k
Cð1� 2aÞ k

X

� �2a

: ð23Þ

Off the degeneracy point, we can directly evaluate the

relaxation rate from Eq. (20) which reads

Cr ¼
D2

j�j e
�aX=C e�2ca

Cð2aÞ
j�j
X

� �2a

: ð24Þ

This rate resembles to the ohmic case [2,33] but is re-
duced by an extra exponential prefactor expð�aX=CÞ,
which again represents the contribution of the resonance

and can be very small. Thus, we find the important re-

sult that by designing small a but appreciable aX=C, the
incoherent relaxation rate of the spin can be reduced to

extremely small values. A physical interpretation of this

finding will be given later on. The predictions of Eq. (24)

are shown in Fig. 3. At the degeneracy point, at � ¼ 0,
we find the Laplace transform of sz using Eqs. (19) and
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(23). In analogy to the ohmic case [1,2] we obtain for the

back-transform that

szðtÞ ¼ E2�2að�ðDeff tÞ2�2aÞ; ð25Þ

where E is the Mittag–Leffler function [1,2,36] and

Deff ¼ D
D
X

� �a=ð1�aÞ

e�aX=Ce�2cacos paCð1
	

� 2aÞ

1=ð2�2aÞ

ð26Þ
is the renormalized tunnel splitting. Note that this is

only valid at D � X because we have taken the long

time limit for KðtÞ. Consequently, it always predicts a

downward renormalization. As in the ohmic case, the

dynamics show a crossover from decaying oscillations at

low a to incoherent decay at aP 1=2 at � ¼ 0. The

renormalized tunneling frequency Deff shows a combi-

nation of the usual ohmic scaling behavior governed by
a, including a dissipative phase transition at a ¼ 1, plus

a very effective down-scaling of e�aX=2Cð1�aÞ governed by

a=C only, which also occurs for an undamped resonance

and is not present for the ohmic case. This again cap-

tures the contribution of the resonance and reflects the

behavior we have observed in Eqs. (16) and Fig. 2 to

lowest order in a=C. The dynamics is illustrated in Fig. 4.

We can observe, that the time evolution of the spin is
almost brought to a standstill, in the sense of absence of

both oscillations and decay, already at modest coupling

constants.
0 0.02 0.04 0.06 0.08 0.1
0

0.5

∆ ef
f/∆

Bloch-Redfield
flow equations
adiabatic ren.
NIBA long time limit

1

1.2

Fig. 6. Rescaling of the tunneling matrix element using different

methods. Main plot: C=X ¼ 0:02p, D=X ¼ 0:1; inset: C=X ¼ 0:06p,
D=X ¼ 1:1.
4. Comparison to flow equation results

So far, we have studied our system using traditional
methods for open quantum systems. In order to com-

plement this work, we want to compare the above re-

sults with previous work [17], in which the same

Hamiltonian was studied with the flow-equation renor-

malization method [21], which originates from strongly

correlated electron systems and very well suited for

treating problems with several different energy scales.

We will restrict ourselves to � ¼ 0. This method typically
can be used to calculate spin-spin correlation functions
in equilibrium such as CðtÞ ¼ hrzðtÞrzð0Þieq. A typical

example is shown in Fig. 5. The Fourier-transformed

correlation function CðxÞ is peaked at several frequen-

cies. The resonance around Deff corresponds to coherent

oscillations, its width can be identified with the de-

phasing rate. There can also be a resonance around X
corresponding to oscillations of the oscillator leaving a
trace on the qubit, but it hardly carries spectral weight.

We have numerically solved the flow equations for small

and moderate coupling strengths. More complete results

are published elsewhere [17]. We see in Fig. 6, that at

D � X, Deff is rescaled downwards similar to the NIBA,

but with quantitative differences The Bloch–Redfield
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result produces the correct slope at small a, see Fig. 6.

Around D ¼ X, the rescaling changes sign. Remarkably,

Bloch–Redfield also predicts the slope above the sign

change with good accuracy, see inset of Fig. 6, although

this set of date is taken very close to resonance. Please
note, that in the inset Fig. 6 it is important to keep ~XX in

Eq. (14).
Qubit

Qubit

Fig. 7. Underdamped read-out devices for superconducting flux (left)

and charge (right) quantum bits involving a tunable Josephson junc-

tion representing a SQUID or a superconducting SET.

V(x)

Fig. 8. Visualization of the ground state j0i and the coherent

pointer-states jLi and jRi of the oscillator in the potential V ðxÞ.
5. Relation to quantum measurement and entanglement

As already mentioned in the introduction, a

straightforward way to implement this model with the
spectral density Eq. (3) is to couple the TSS to a single

harmonic oscillator with resonance frequency X, which
is in turn damped by additional oscillators. This model

has the Hamiltonian

ĤH ¼ �

2
r̂rz þ

D
2
r̂rx þ

P̂P 2

2M
þM

2
X2ðX̂X � qr̂rzÞ2

þ
X
i

p̂p2i
2mi

 
þ mi

2
x2

i ðx̂xi � ð~cci=mix
2
i ÞX̂X Þ2

!
: ð27Þ

The oscillator bath is characterized through an ohmic

spectral density ~JJðxÞ ¼
P

ðp~cc2i =2mixiÞdðx� xiÞ ¼
MCx, where, C=2 is the friction coefficient of the

damped big oscillator. It was shown in [9], using a
normal-mode decomposition, that this system is equiv-

alent to the spin-boson Hamiltonian Eq. (1) with spec-

tral density Eq. (3), where a ¼ 2Mq2C=�h.
There are a number of realizations of such models.

We would like to concentrate on a specific implemen-

tation in superconducting quantum circuits: A flux

quantum bit coupled to the plasma resonance of a DC-

SQUID. This setup has been thoroughly analyzed in
[3,4]. It has been shown that the spectral density of the

flux noise indeed leads to Eq. (3) and how the circuit

parameters relate to the parameters of that function.

Moreover, it has been shown that the coupling param-

eter q actually can be tuned by the bias current through

the SQUID. A representative circuit is shown in Fig. 7.

It is also shown there and discussed in [7], that a similar

though less favorable realization can be found for
charge quantum bits. We are mentioning this model,

because it describes a detector of a quantum variable.

Thus, we are going to interpret the findings of this paper

in terms of quantum measurement theory. Other appli-

cations of resonators coupled to superconducting qubits

have been discussed in [12–14] As a key result, we have

found above within Bloch–Redfield as well as within

NIBA, that at �;D � X, the system dynamics can be
interpreted as an ohmic spin-boson model with a

strongly down-scaled tunneling matrix element. This can

be understood in terms of the following model, which

was introduced and discussed already in [7]. We start

from the undamped case, C ¼ 0. the low-energy Hilbert
space is spanned by j�ieff ¼ j�ijL=Ri where j�i are the
basis states of the qubit, rzj�i ¼ �j�i and jL=Ri are

coherent states of the harmonic oscillator centered

around X ¼ �q, see Fig. 8. So in a general low-energy

state jwi ¼ ajþieff þ bj�ieff , jaj2 þ jbj2 ¼ 1, qubit and

oscillator are entangled. In this low-energy basis, the

Hamiltonian acquires the form of the renormalized spin

part of the spin-boson Hamiltonian Eq. (11), with

Deff ¼ DhLjRi ¼ De�g, where g ¼ MXq2=�h. This coin-
cides with the result of Eq. (26) in the limit of a ! 0 but

a=C ¼ const: Under an appropriate choice of parame-

ters, we can achieve g > 1 and Deff � D. Following the

notion of [37], the degree of entanglement is equal to

1� e�2g ¼ 1� jDeff=Dj2, i.e. we can interpret strong

separation of the preferred states of the external oscil-

lator and strong renormalization, i.e. Deff=D � 1 with

strong entanglement. In terms of quantum measurement
theory, the oscillator states are pointers onto the qubit

states [38]. Choosing g � 1 corresponds to the condition

of almost orthogonal pointer states in the environment,

which has been identified as the condition for an ideal

detector-dominated von-Neumann-measurement [38,

39]. Such a measurement corresponds to the standard

textbook quantum measurement: The preferred states

into which superpositions are decohered are assumed to
be Eigenstates of the measured observable regardless of
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the Hamiltonian of the qubit. In our case, Eq. (27) de-

scribes coupling of the pointer degree of freedom to r̂rz
and hence measurement thereof. Rescaling Deff asymp-

totically to zero means bringing the target states of the

decoherence arbitrarily close to eigenstates of r̂rz, thus
realizing the aforementioned textbook assumption.

As it stands, the qubit just gets entangled with the

pointers, but they are not read out. This can be done by

coupling to the dissipative environment. As shown

above, its influence corresponds to that of an ohmic

environment of strength a. Taking a � 1, this leads to

dephasing and relaxation rates analogous to the Bloch–

Redfield results Eqs. (12) and (13)

Cr ¼ pa
D2

eff

Eeff

coth
Eeff

2T

� �
;

C/ ¼ Cr

2
þ 2pakB

�2

Eeff

T =�h:

ð28Þ

Note, that the result on Cr correspond, for � ¼ 0 to the

non-perturbative NIBA result, Eq. (24). There may be

non-exponential contributions to the dynamics as well
[24].

It is important to notice that in the strongly entangled

case, Deff � D, the relaxation rate, which describes the

thermalization of the system independent from the ini-

tial state, is strongly reduced, whereas the dephasing

rate, which describes the projection of a superposition

into a mixture of the eigenstates Heff is hardly affected.

This is a very favorable situation for a practical mea-
surement: The information is quickly available, after

s/ ¼ C�1
/ and is destroyed only after sR ¼ C�1

r . This is

not only convenient for experimental implementation

but also guarantees high fidelity: The probability for

reading out the correct result after the dephasing time is

P ¼ e�s/=sR and thus close to unity. For completing the

description of the measurement, one has to evaluate the

resolution of the detector and the typical measurement
times. This depends on details of the physical realization

of interest and has been done in [7] for the supercon-

ducting setup. In general, our scheme should permit very

high resolution up to single shot, because the signal can

be enhanced by strong coupling without reducing sR.
6. Summary and outlook

We have studied the spin-boson model with a struc-

tured bath using three different approaches: Bloch–

Redfield, NIBA, and flow equation renormalization. We
have arrived at a number of common features: If the

peak in the spectral density is at frequencies much above

the environmental resonance, the system is equivalent to

a renormalized ohmic spin-boson model. This has been

interpreted in terms of quantum measurement and the

usefulness of this result for modeling quantum detectors

has been outlined. We have furthermore shown that the
tunneling matrix element of the spin part is renormal-

ized downward if its initial value D is below the envi-

ronmental resonance X and renormalized upward if it is

above. We have compared this renormalization from all

approaches and shown that they are in reasonable
agreement within the scope of their applicability. In

particular, our analytical results from NIBA and Bloch–

Redfield reliably approximate the numerical results

from flow equations.
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Appendix A. Calculation of rates including poles of the

spectral density

We now want to outline how to calculate the rates

Eq. (9) We can interchange the order of integration and

evaluate the time integral, which can be expanded into a

delta function contribution and a Cauchy principal va-
lue. We can split CðEÞ into real and imaginary part,

C0ðEÞ and C00ðEÞ and find

C0ðEÞ ¼ 1

8�h
JðEÞ cothðbE=2Þ½ � 1� ðA:1Þ

for the real part, which determines the decoherence and

C0ðEÞ ¼ 1

4p�h

Z
dx JðxÞP 1

x2 � E2
cothðbx=2ÞE½ � x�

ðA:2Þ
for the imaginary part, which controls the frequency

shifts. The latter can be calculated by extending the in-

tegration contour to the complete real axis, applying the
residue theorem and resumming the resulting Matsu-

bara series. We end up with

C00ðEÞ ¼ a
2p

X2E
2iC

X r

E2 � ðrXþ iCÞ2
pðC
�

� irÞ

� RepðiEÞ � p
C� irX

E

�
ðA:3Þ

where pðxÞ ¼ wð1þ bx=2pÞ þ wðbx=2pÞ involves the

digamma function w.
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