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Non-Hermitian Luttinger liquids and vortex physics
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Abstract. – We study the effect of a single line defect on vortex filaments oriented parallel
to the surface of a thin planar high-Tc superconductor. When the applied field is tilted relative
to the line defect, the physics is described by a non-Hermitian Luttinger liquid of interacting
quantum bosons in one spatial dimension with a point defect. With a combination of analytic
and numerical methods we uncover a delicate interplay between enhancement of pinning due to
Luttinger-liquid effects and depinning due to the tilted magnetic field. Interactions dramatically
affect the transverse magnetization when the Luttinger-liquid parameter g ≤ 1.

The past decade has seen considerable work on the statistical mechanics and dynamics of
thermally excited vortices in type-II high-temperature superconductors [1]. The competition
between interactions, pinning and thermal fluctuations gives rise to a wide range of novel
phenomena, including a low-temperature Bose glass phase with vortices strongly pinned to a
disordered array of columnar defects [2].

A convenient way of understanding interacting flux lines is provided by the formal map-
ping between the classical statistical mechanics of (d+ 1)-dimensional directed flux lines and
the nonrelativistic quantum mechanics of d-dimensional bosons. In this mapping, flux lines
traversing the sample along the direction of the external magnetic field H = Hẑ correspond
to boson world lines propagating in imaginary time τ . The classical partition function of
thermally excited vortex lines is proportional to a quantum-mechanical matrix element. The
thickness of the sample in the z-direction, Lz, corresponds to the inverse temperature βh̄
of the bosons, while thermal fluctuations of the vortices, due to finite kBT , play the role of
quantum fluctuations of the bosons, controlled by h̄.

If the direction of the external magnetic field does not coincide with ẑ, the direction of the
columnar defects, it is convenient to separate the transverse component of the field H⊥ from
the parallel one H‖ along ẑ. When H⊥ � H‖, the transverse component H⊥ plays the role
of a constant imaginary vector potential for the bosons [2, 3]. The corresponding quantum
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Fig. 1 – Schematic snapshot of vortex lines and a columnar pin realized by a “notch”. Here, the
z-axis is denoted by imaginary time τ .

Hamiltonian is non-Hermitian, with new and interesting properties. ForH⊥ less than a critical
value Hc

⊥, the Bose glass phase mentioned above exhibits a “transverse Meissner effect”, such
that the vortex filaments remain pinned parallel to the columns even though the external field
is tilted away from the column direction [1, 2].

In this paper we study the effect of a single columnar pin (or an equivalent linear defect)
on the statistical mechanics of thermally fluctuating vortex lines confined in a thin, super-
conducting slab (see fig. 1). Little has been done on vortex physics in the limit of a dilute
concentration of columns (or twin planes). An effectively (1 + 1)-dimensional situation can
be realized if the thickness W of the sample is comparable the London penetration depth
λ. The resulting values of W ≈ 1µm for high-Tc cuprate compounds can easily be achieved
with ŷ parallel to the c-axis [1]. A further requirement for reduced dimensionality is that the
average vortex spacing a0 should be larger than the sample thickness, leading to typical fields
of order 100G.

The feasibility of studying vortex physics in samples which are effectively (1+1)-dimensional
was demonstrated by Bollé et al. [4] in thin samples of NbSe2, where the effect of point dis-
order on interacting vortices near Hc1 was observed. Similar experiments might be possible
on thin high-Tc samples where a single columnar defect could be implemented mechanically
by cutting a thin “notch”, as shown in fig. 1. A closely related problem in (2 + 1) dimensions
concerns the effect of an isolated twin plane or grain boundary on vortex matter, where point
disorder leads to algebraic decay of density correlations [5] of the Abrikosov flux lattice similar
to the Luttinger-liquid correlations discussed below. A single such plane has a similar pinning
effect on bulk flux lines as does a linear defect in (1 + 1)-dimensional systems subject only to
thermal fluctuations.

Although point disorder can be important in (1+1)-dimensional geometries [2,6], it can be
neglected compared to thermal fluctuations in certain regimes for high-Tc samples. Consider
the pinning energy (per length) due to point pins as experienced by a single vortex near a
columnar defect [2, 7]: Upoint ≈ ∆/a0T and Ucolumnar ≈ (Φ0/4πλ)2, where ∆ is the disorder
correlator. In high-Tc compounds, Ucolumnar dominates by several orders of magnitude. A
more delicate analysis shows that for clean samples or temperatures close to Tc point disorder
can also be neglected away from the pin on the length scales considered here [7, 8].

In the following we will consider a single columnar defect or “notch” in a system of in-
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teracting flux lines in (1 + 1) dimensions. Although results can also be obtained using a
flux-line–related phonon formalism [9], we here found it convenient to work with an equiva-
lent quantum Hamiltonian [1, 3]:

Ĥ = − (kBT )2

2m

∫
dxΨ†(x)

(
d
dx

− h

)2

Ψ(x) +

+
1
2

∫
dxdy n(x)V (|x− y|)n(y)− ε0 n(0), (1)

where V (|x|) is a short-range repulsive vortex interaction potential, Ψ(x) annihilates a bosonic
flux line, n(x) = Ψ†(x)Ψ(x) is the boson number density and m is the vortex tilt modulus.
The imaginary vector potential h = Φ0H⊥/(4πT ) arises due to the tilted magnetic field and
ε0 is the strength of the defect modelled by a δ-potential at the origin. In the following we set
kBT = 1 (i.e. h̄ = 1 in the quantum model).

Without the local potential and the non-Hermitian term, this model has been well stud-
ied [10, 11]. In particular, Haldane [11] has shown that this spinless Luttinger liquid exhibits
a line of critical points with continuously varying exponents. His calculation is based on the
bosonization technique, where the boson field

Ψ† ∼
√

n0 +
du
dx

∞∑
m=−∞

ei2πm(n0x+u(x))eiφ(x) (2)

is represented in terms of a boson phase operator φ(x) and (dimensionless) phonon operator
u(x). The two fields satisfy the commutation relation [φ(x), u(y)] = (i/2) sgn(x − y). With
applications to vortex physics in mind, we have extended the bosonization approach and work
on quantum impurities [12, 13] to the non-Hermitian case h > 0 and calculated asymptotic
low-energy properties for the model (1).

In addition, we have performed a non-perturbative numerical analysis using the Density-
Matrix Renormalization Group (DMRG) [14] for a discretized version of the Hamiltonian (1)

H =
L∑

i=0

[
− t

(
b†i bi+1e

h + b†i+1bie
−h

)
+

U

2
ni(ni − 1) + V nini+1

]
− ε0b

†
0b0 (3)

corresponding to a non-Hermitian Bose-Hubbard model where ni = b†i bi and the hopping is
t = 1/2m (for unit lattice constant). In the following we set t = 1. We work in the canonical
ensemble, fixing the density of bosons per site n0. We have retained an onsite and a next-
neighbor interaction, which turn out to be sufficient to qualitatively describe the full phase
diagram. Furthermore, for computational purposes we allow at most 2 bosons per site, which
effectively renormalizes the on-site repulsion. The lattice model (3) is a good approximation
to (1) for small filling n0 (average number of bosons per site). Our calculation is based on an
extension of the DMRG to non-Hermitian systems with complex eigenvalues and eigenvectors
(for details see [15]).

In the Hermitian case, h = 0 without impurity, we have first calculated the Luttinger-
liquid parameter g which governs the long-wavelength behavior of correlation functions and
is important to understand the response at finite tilt. We adapt the DMRG work of ref. [16]
to periodic boundary conditions, essential for the study of persistent currents (i.e. arrays of
tilted vortex lines) discussed below. We focus exclusively on the superfluid (Luttinger liquid)
phase. Via DMRG we have calculated the boson correlation function, which from conformal
field theory is expected to behave as 〈Ψ†(x)Ψ(0)〉 ∼ |L sin(πx/L)|−1/2g. We have verified this
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Fig. 2 – Luttinger-liquid parameter g vs. density. The dashed lines show the analytic result at low
densities.

behavior numerically with high accuracy and have extracted g by a fit to the data (see fig. 2).
We also determined g from the compressibility and the finite-size dependence of the ground-
state energy [17] with excellent agreement between the values of g obtained by both methods.
For arbitrary short-range potentials (in continuum or lattice models) we have derived the
general low-density result g ≈ 1 − 2an0 + O(a2n2

0), where a is the two-particle scattering
length. For our lattice Hamiltonian (3) we find a = −(8t2 − 4tV − UV )/(2tU + UV + 4tV ).
As shown in fig. 2, this asymptotic result is in good agreement with the numerical data.

We now include the pinning term proportional to ε0 in eq. (1). In order to determine the
relevance of this term at long wavelengths we have performed a perturbative renormalization
group (RG) analysis. We obtain the following renormalization flow of the pinning strength:

ε0(l) = ε0(l0)
(
l0
l

)g−1

, (4)

where l is an effective length scale or inverse cutoff momentum. For g > 1, the renormalized
coupling flows to zero at long length scales while for g < 1 it diverges.

Remarkably, while in fermionic systems with (generic) repulsive interactions one always
has g < 1, the bosonic Luttinger liquid studied here can be tuned to either regime. This can
be easily seen by setting U = ∞, V = 0 in (3): Since hard-core bosons in 1d are equivalent
to noninteracting spinless fermions, we obtain g = 1. Smaller U increases g from 1, while
additional next-neighbor interactions V > 0 lead to g < 1. In the following we will denote the
special situation g = 1 as the free-fermion limit, for which we have replaced the DMRG by
computationally less expensive exact diagonalization.

The irrelevance/relevance of the pin can be clearly observed in the Friedel oscillations of
the boson density ∆n(x) ≡ 〈n(x)〉 − n0, for which we find the analytic result

∆n ∝ cos(2πn0|x|)
|x|α (a � |x| � ξ⊥),

∝ cos(2πn0|x|) exp[−|x|/ξ⊥] (|x| � ξ⊥), (5)

where a is a microscopic cut-off scale, the exponent α =
{ g

2g−1

}
for

{ g<1
g>1

}
and the exponential

is presumably corrected by a power law factor in the second line. ξ⊥ ∝ 1/h is the decay length.
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Fig. 3 – Friedel oscillations of the flux line density vs. distance x from the defect, calculated numerically
for ε0 = 2, U = 10, V = 4, L = 128 and n0 = 0.25, corresponding to g ≈ 0.72.

As illustrated in fig. 3, the density oscillates with a phase set by the impurity position, and
an algebraic envelope before exponential decay sets in for x > ξ⊥(h). In the vortex picture,
configurations are dominated by parallel, tilted flux lines at distances larger than ξ⊥(h) from
the pin. Closer in, vortices attempt to align with the maxima in the density oscillations
present when h = 0. This alignment is limited by interactions as vortices enter and leave the
aligned region with increasing imaginary time τ . The resulting vortex configurations resemble
a symmetric traffic jam, with vortices queuing up (and occasionally changing places) in the
vicinity of the columnar defect. With our conventions, the slope of the lines far from the
pin is h/m, so new vortices enter the jam at imaginary time intervals ξ‖ ≈ m/hn0, where
n0 is the linear density of “bosons”. If c is the Luttinger-liquid velocity we expect that
ξ⊥(h) ∝ c ξ‖ ∝ 1/gh, a diverging length scale we confirm with our analytic calculations. Note
that the pinning strength is reduced dramatically for length scales x > ξ⊥(h) even for g < 1.

When h > 0, the non-hermiticity leads to a finite persistent current Jb = − i
Ld〈Ĥ〉/dh

in the ground state. This current is purely imaginary and corresponds to the transverse
magnetization in the original flux line system [3]:

M⊥ ∼ Φ0 Im Jb . (6)

The defect reduces this current, due to flux lines pinned even in the presence of a tilted
magnetic field. Although a single pin cannot modify the bulk current in the thermodynamic
limit L → ∞, it creates nontrivial finite-size effects. Since Im Jb = hNb/mL in the absence
of pinning (where Nb ≡ n0L), it is convenient to define a “pinning number” Np for vortices
given by ImJb ≡ h(Nb −Np)/mL. Because Re Jb = 0, this can be written

Np ≡ Nb[Jb(0)− Jb(ε0)]/Jb(0). (7)

The quantity Np may be readily calculated for the free-fermion case g = 1, where the
ground-state energy is determined by filling up all the states below the “Fermi surface”. The
pinning number obtained in this way has the asymptotic behaviour (L → ∞)

Np −→ (mε0)2

2π2n0h
(mε0 � h),

−→ n0

h
ln(|ε0|/n0) (mε0 � h), (8)
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Fig. 4 – Pinning number in the free-fermion limit g = 1 for L = 100 and ε0 = 2. Note the “step” due
to single-vortex depinning and the strong enhacement at small tilt h.

results valid provided h � n0 = Nb/L. Remarkably, Np diverges as h → 0. When the
pinning is strong, the functional form (8) can be understood in terms of the aligned local
density wave which extends out to a distance ξ⊥. The Np ≈ ξ⊥n0 ≈ n0/h vortices entrained
in this “traffic jam” do not contribute to the current. To check this divergence, we have also
calculated the pinning number numerically within the lattice model (3), both in the free-
fermion limit (U = ∞, V = 0) and for general interactions. Results are shown in fig. 4. A
clearly visible feature is the “step” at intermediate tilt for low boson densities, corresponding
to the single-vortex depinning transition at hc ≈ mε0 [3]. Most prominent, however, is the
dramatic increase in the number of pinned vortices at small tilt. We find similar results
with DMRG for g < 1. In the linear-response limit (hL → 0) we find more generally that
Np ∼ L3−2g for an irrelevant defect (g > 1), while in the relevant case almost all vortices are
pinned, i.e. Np → Nb for large system size L. The residual current for a relevant pin has the
linear-response form Jb(h)|h→0 ∼ hL1−1/g, which vanishes as L → ∞. A similar result for
fermions was obtained by Gogolin and Prokov’ev [18] in the case of a real vector potential.
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Fig. 5 – Main plot: finite-size scaling of the current (DMRG results) for filling n0 = 0.25, ε0 = 2
and a relevant pin (g ≈ 0.72). Notice the data collapse in the linear-response regime hL → 0. Inset:
pinning number Np as a function of h for the same parameters. The dashed line gives the logarithmic
behavior in eq. (9) with an offset of const = 0.5.
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We have verified this finite-size dependence of the current with good accuracy in the DMRG
calculation (see fig. 5).

The equivalence to a real vector potential breaks down at finite h. Our results are
consistent with two qualitatively different types of behaviour depending on the value of g.
While for an irrelevant pin with

{ 1<g<3/2
3/2<g

}
a simple power law scaling ansatz of the type

Np(h) =
{

h−3+2gΦ(hL)
Φ(hL)

}
works, our analytic work suggests a nontrivial logarithmic correction

for g < 1:
Np(h) = (n0/h)(−(1/g − 1) ln(h) + const). (9)

This equation is valid for hL � 1 and h � n0. The DMRG data (see inset of fig. 5) are
consistent with this conjecture.

In conclusion, we have studied the effect of a single columnar defect on a sea of interacting
vortices in 1+1 dimensions, in the presence of a tilted magnetic field. The physics is described
in terms of the ground state of a non-Hermitian Luttinger liquid. Our calculations demonstrate
that repulsive interactions can lead to a dramatic enhancement in the number of pinned flux
lines for g < 1 and thus to a strong transverse Meissner effect controlled by ξ⊥(h). Details of
our analytic and numerical work will appear later [8].
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[17] Blöte H. W. J. et al., Phys. Rev. Lett., 56 (1986) 742; Affleck I., Phys. Rev., 56 (1986)

746.
[18] Gogolin A. and Prokof’ev N., Phys. Rev. B, 50 (1994) 4921.


