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We discuss dephasing times for a two-level system(including bias) coupled to a damped harmonic oscillator.
This system is realized in measurements on solid-state Josephson qubits. It can be mapped to a spin-boson
model with a spectral function with an approximately Lorentzian resonance. We diagonalize the model by
means of infinitesimal unitary transformations(flow equations) and calculate correlation functions, dephasing
rates, and qubit quality factors. We find that these depend strongly on the environmental resonance frequency
V; in particular, quality factors can be enhanced significantly by tuningV to lie belowthe qubit frequencyD.
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I. INTRODUCTION

A key feature in qubit design is to gain good control of
dephasing induced by the environment. A much-studied
model that has yielded considerable insight into the dephas-
ing of qubits(more generally, two-state systems) is the spin-
boson model.1 Most studies of this model assume a spectral
function Jsvd that has a power-law form. However, several
qubit systems of current interest are coupled to an environ-
ment that features rather strong resonances, which would
correspond to a spectral functionJsvd with well-defined
peaks at characteristic frequencies. A prominent example is
the case of flux-qubits,2 which are read out using a supercon-
ducting quantum interference device(SQUID), with a char-
acteristic resonance frequencyV (of order 3 GHz) that is in
order of magnitude comparable to the characteristic qubit
energy scales10 GHzd.3,4

The presence of environmental resonances raises several
interesting questions with both fundamental and practical im-
plications: How is the qubit dynamics influenced by the pres-
ence of environmental resonances? Can the latter be used to
indirectly tune qubit properties, such as the tunneling rate or
q-factor? Is it more advantageous to have the resonance fre-
quency higher or lower than the characteristic qubit ener-
gies?

Here, we explore these questions in the framework of a
model that has been used with great success to describe and
optimize recent generations of flux qubits:3 it involves a spin
degree of freedom(qubit) coupled to an harmonic oscillator
with frequencyV (modeling the environmental resonance),
which in turn is coupled to a bath of harmonic oscillators(to
provide damping).5 It can be mapped6 onto a regular spin-
boson model with a spectral functionJsvd featuring an al-
most Lorentzian resonance peak nearV. We are interested
not only in the regime where the qubit tunneling rateD is
much smaller thanV (which would correspond to the stan-
dard spin-boson model, withV playing the role of the bath
cutoff frequency), but also in the hitherto unexplored regime
D.V. Here a standard weak-coupling, poor-man scaling ap-
proach that predicts a downward renormalization ofD is in-
sufficient; instead, we need a method sufficiently powerful to
deal with all ratios ofD /V. To this end, we use the flow-

equation renormalization(FER) group approach of Wegner7

and of Glazek and Wilson.8 Interestingly, we find thatD is
renormalizedupwardsif the initial D is greater thanV, and
that correspondingly, the dephasing times and q-factors are
strongly increased. These results have the very important
implication thatby appropriately tuning the environmental
resonance frequencyV, significant additional control of the
qubit dynamics can indeed by obtained.

II. SPIN-BOSON-MODEL

We consider the Hamiltonian
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which describes a two-state system with asymmetry energy«
and tunneling matrix elementD, coupled linearly with
strengthg to a harmonic oscillator with frequencyV, which
is itself linearly coupled with strengthskk to a bath of har-
monic oscillators. The coupling to the environment is com-

pletely defined by the spectral functionJ̃svd;ok kk
2dsv

−ṽkd=GvQsvc−vd, which is as usual taken to be of ohmic
form to model the dissipative environment. This system can
be mapped to a spin-boson model6
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where spin dynamics depends only on the structured spectral
function Jsvd;ok lk

2dsv−vkd given by3

Jsvd =
2avV4Qsvc − vd

sV2 − v2d2 + s2pGvVd2, with a =
8Gg2

V2 . s3d
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III. FLOW EQUATION RENORMALIZATION

FER is based on infinitesimal unitary transformations of
the Hamiltonian.7 We follow the approach of Ref. 9 and
mention only the main steps here:

(a) In order to decouple the two-level system from its
environment we apply a sequence ofunitary transformations
Usld to Eq. (2): Hsld=UsldHU†sld. HereHsl =0d=H is the
initial Hamiltonian; Hsl =`d is the final, diagonal Hamil-
tonian; andl denotes the flow parameter, which characterizes
the square of the inverse energy scale being decoupled. In
differential formulation this transformation reads

dHsld
dl

= fhsld,Hsldg with hsld =
dUsld

dl
U−1sld. s4d

(b) The canonical choice for thegeneratorh suggested by
Wegner is hc=fH0,Hg with H0=−D /2sx+« /2sz

+ok vkbk
†bk.

7 However, becausehc generates coupling terms
originally not present in the Hamiltonian, it is advisable to
modify our generator. For«Þ0 we choose10
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for which Eq.(4) closes for terms linear in bosonic operators.
We neglect small higher-order terms infh ,Hg that contain a
coupling of the system to two bosonic modes. The param-
eters hk and hkq in Eq. (5) are given by hk

x=−slk /2d
3s«D /vkdfsvk , ld, hk

y=−slk /2dDfsvk , ld, hk
z=−slk /2dfsvk

2

−«2d /vkgfsvk , ld, and hkq=D2/ s2D«dtanhsbD« /2dlklqvq/
svk

2−vq
2dffsvk , ld+ fsvq, ldg with D«=ÎD2+«2. We choose

fsvk , ld=fvk
2svk−D«dg / fD«

2svk+D«dg. By comparing numeri-
cal results for the«=0 (see Ref. 10) and the«Þ0 Ansatz we
see that for«Þ0, due to our particular choice offsvk , ld, we
are restricted to couplingsa&0.02, which is a reasonable
bound for experimental realizations. For an alternative An-
satz(for «Þ0) see also Ref. 11.

(c) Equations(4) and(5) give us a set of differential equa-
tions (flow equations) for the parameters in the Hamiltonian,
namely«sld, Dsld, andlksld [respectivelyJsv , ld]:

− ]lD/D =E dv cothFbv

2
GJsv,ldfsv,ld, ]l« = 0, s6d
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s7d

Note that according to(6) the bias« is not renormalized. The

renormalization of the bath frequenciesvk vanishes in the
thermodynamic limit of infinitely many modes.

(d) Observables, such assz, have to be subject to the
same sequence of infinitesimal transformations as the Hamil-
tonian:dszsld /dl=fhsld ,szsldg. For the flow ofsz we make
the Ansatz10

szsld = hsldsz + ssldsx + rsld + isyo
k

mk
ysldsbk − bk

†d

+ o
k

fsxxk
xsld + szxk

zsldgsbk + bk
†d. s8d

We neglect(small) terms infh ,szg that contain a coupling to
two bosonic modes. The calculation of the flow equations for
the six parametersh, s, r, xk

x, xk
z, and mk

y in Eq. (8) is
straightforward.12

(e) To calculatecorrelation functionsof the form Cstd
=1/2kszstdszs0d+szs0dszstdl we use the decoupled Hamil-
tonian Hs`d=−fDs`d /2gsx+f« /2gsz+ok vkbk

†bk, and Eq.
(8) for l =`. For T=0 the Fourier transformCsvd of Cstd
then takes the form(here all parameters are taken atl =`):10
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Numerically, one finds thaths`d=ss`d=0, and (i) rs`d=0
for «=0 or (ii ) rs`dÞ0 for «Þ0. Therefore, of the terms in
the first line of(9) only dsvd remains and describes the non-
zero expectation value ofsz for systems with asymmetry.

In order to obtain quantitative results for the correlation
function Csvd, we numerically integrate the flow equations
up to some valuel0, which is taken sufficiently large that the
final results do not depend on it. From the numerical results
for Csvd, which reflects the dynamics of the two-level sys-
tem, we extract “dephasing times,” defined as the widths at
half maximum of the resonances occurring inCsvd (as de-
picted in the inset of Fig. 1). For zero biass«=0d a sum rule
of the forme0

` dvCsvd=1 should hold.9

Ohmic bath

We start by comparing our results for the dephasing time
for a spin-boson model with an ohmic bath,Jsvd
=2avQsvc−vd, with results from real-time renormalization
group (RTRG)13 and weak coupling calculations(WCC).14

Figure 1 shows the dephasing timet as a function of the
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coupling strengtha. For weak coupling the dephasing time
(at T=0) is given by14

tw = 4/JfD«s`dg. s10d

We find very good agreement with RTRG and WCC.

Structured bath/weak coupling

We now turn to the structured spectral density given by
Eq. (3). The main features of the corresponding system[Eq.
(1)] can already be understood by analyzing only the coupled
two-level-harmonic oscillator system(without damping, i.e.,
G=0). For «=0 this system exhibits two characteristic fre-
quencies, close toV andD, associated with the transitions 1
and 2 in Fig. 2(c). These should also show up in the corre-
lation functionCsvd; and indeed Fig. 2(a) displays adouble-
peakstructure with the peak separation somewhat larger than
sD−Vd, due to level repulsion. The coupling to the bath will
in general lead to a broadening of the resonances and an
enhancement of the repulsion of the two energies. Due to the

very small couplingsa=0.0006d, peak positions ofCsvd in
Fig. 2 can with very good accuracy be derived from a
second-order perturbation calculation for the coupled two-
level-harmonic oscillator system, yielding the following tran-
sition frequencies[depicted in Fig. 2(c)]: v1,+−v0,+=V
−g22Ds0d / fD2s0d−V2g<0.987V and v0,−−v0,+=Ds0d
+g22Ds0d / fD2s0d−V2g<1.346V. With the two peaks we as-
sociate two different dephasing times,tV andtD, as shown in
Figs. 2(a) and 2(b). In Fig. 3(a) both these dephasing times
are shown as functions ofDs0d /V for a=0.0006. Moreover,
tD is compared to the WCC resulttw of Eq. (10). This com-
parison is expected to work well forJsVd /V!1, and indeed
it does[hereJsVd /V<0.08]. Due to the small coupling be-
tween the two-level-system and harmonic oscillator,g
<0.06V, the dependence oftV on Ds0d is very weak.

For Ds0d close toV, the two resonances inCsvd merge to
a symmetric double-peak structure as shown in the inset of
Fig. 3(a). Here a characterization by two different time scales
becomes difficult. Therefore the corresponding data points in
Fig. 3(a) have not been included.

Stronger coupling to bath

Figure 3(b) showstD, tV, and tw for a larger coupling
strength ofa=0.01. Figure 4(a) shows one of the calculated
correlation functions. Note that the stronger couplinga leads
to a larger separation, or “level repulsion,” between theD-
andV- peaks than in Fig. 2. The inset of Fig. 3(b) shows the
renormalized tunneling matrix elementDs`d as a function
the initial matrix elementDs0d. Very importantly, forDs0d
*V, D increases during the flow, whereas forDs0d*V, it
decreases.15 This behavior can be understood from the fact
that fsv , ld in Eq. (6) changes sign atv=D. Note also, that
the upward renormalization toward largerDs`d in the inset
of Fig. 3(b) is stronger than the downward one toward
smaller values, i.e., the renormalization isnot symmetric
with respect toDs0d=V. The reason for thisasymmetrylies
in the fact thatfsv , ld has a larger weight forv,D than for
v.D. Also tD and eventw=1/JfDs`dg in Fig. 3(b) show an
asymmetric behavior with a steep but continuous increase at

FIG. 1. (Color online) Dephasing times for an ohmic bath with
spectral functionJsvd=2avQsvc−vd as a function ofa. The FER
resultf«=0 and vc=10Ds0dg is compared with results from RTRG
calculations13 and WCC.14 The inset shows a typical FER spin-spin
correlation function.

FIG. 2. (Color online) Spin-spin correlation
function as a function of frequency for experi-
mentally relevant parameters discussed in Ref. 3:
a=0.0006, Ds0d=4 GHz, «=0 (this is the so-
called idle state), V=3 GHz, G=0.02, andvc

=8 GHz. The sum rule is fulfilled with an error of
less than 1%.(a) Blowup of the peak region re-
veals a double peak,(b) blowup of the larger
peak, (c) term scheme of a two-level system
coupled to an harmonic oscillator, drawn for
Ds0d@V (a=0.0006 corresponds tog/V<0.06).
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Ds0d<V: dephasing times forDs0d.V are larger than for
Ds0d,V. That this happens, althoughJsvd is more or less
symmetric around its maximum, is a direct consequence of
the stronger renormalization ofD for the latter case. Also the
quality factor [q-factor, see inset in Fig. 3(b)] defined asq
=tDDs`d /2 shows this asymmetric behavior[being larger for
Ds0d.V than for Ds0d,V] with a steep increase atDs0d
=V from 8 to 43, i.e., by a remarkably large factor of<5.
We consider the asymmetry of the renormalized tunneling
matrix element, the dephasing time and the quality factor as
the central results of this paper: By tuningV such that
Ds0d.V, dephasing times can be significantly enhanced(as
compared toDs0d,V).16 Note also thattV in Fig. 3(b)
shows a much stronger dependence onDs0d than in Fig. 3(a).
This is due to the stronger couplingsg<0.3Vd of the two-
level system to the bath in(b).

Nonzero bias

We now turn to the case of nonzero bias,«Þ0. A second-
order perturbation calculation, analogous to the zero-bias
case, shows that a third resonance inCsvd is expected to
show up at an energy scaleD«+V. Indeed it does, as exem-
plified in Fig. 4(b), which shows a typical result forCsvd for
nonzero bias.18 With every resonance we associate a dephas-
ing time (analogous to the zero bias case). Figure 5(a) shows
all three dephasing times(tD, tV, andtD+V) as a function of
«. tD is compared to the weak coupling resulttw. As ex-
pected,tD shows a minimum at«min<ÎV2−D2s0d, which
corresponds to the maximum ofJsv , l =0d. Beyond«min, tD

increases whereastV andtD+V decrease. This is the expected
behavior: In the limit«→`sD→0d, Cstd, respectively,Csvd
should become independent of all bath characteristics, i.e.,
Cstd→1 andCsvd→dsvd. In this limit the dephasing times

should show the following behavior:tD→`, tV→0, and
tD+V→0. In Figs. 5(b) and 5(c) and the renormalized tunnel-
ing matrix element and the quality factor are shown as func-
tion of the bias. Note that since« is not renormalized[see
Eq. (6), D«s`d as a function of« /V does not show a strong
asymmetry, in contrast to the case«=0. As a direct conse-
quence, dephasing times and quality factors do not change
much at«min. Finally, t andq as a function ofDs0d for fixed
« can be shown12 to show a qualitatively similar behavior to
Fig. 3.

IV. SUMMARY

We used FER to study a two-level-system coupled to a
damped harmonic oscillator for arbitrary ratios ofD /V. We

FIG. 4. Spin-spin correlation function for the structured bath
[Eq. (3)] as a function of frequency.18 The maximum height of the
middle peak in(b) is <7.2.

FIG. 3. (Color online) FER results for dephasing times(tD andtV) for the structured bath[Eq. (3)] compared to results from WCCstwd
given by Eq.(10), with Ds`d occurring therein calculated using FER. Parameters are«=0, V=3 GHz, G=0.02. (a) weak coupling:a
=0.0006 andvc=8 GHz. Sum rules are fulfilled with errors of less than 1%. Inset: Spin-spin correlation function forDs0d=0.987V. (b)
stronger coupling:a=0.01 andvc=9 GHz. Sum rules are fulfilled with errors of less than 3%. Inset:3—Renormalized tunneling matrix
element;L—quality factorq=tDDs`d /2.
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find that by tuning the system into the regimeD.V, which
is studied here, dephasing times andq-factors can be signifi-
cantly enhanced.

Note added in proof. Recent numerical simulations19 us-
ing the QUAPI method for model(1) show similar behavior
to our results. A quantitative comparision is, however, diffi-
cult since the QUAPI is restricted to finite temperature.
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